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ABSTRACT

This paper presents results of an experimental investigation of solute transport in a simplified model of the spinal canal. The work aims to
provide increased understanding of the mechanisms responsible for drug dispersion in intrathecal drug delivery (ITDD) procedures. The
model consists of an annular channel bounded externally by a rigid transparent tube of circular section, representing the dura mater, and
internally by an eccentric cylindrical compliant insert, representing the spinal cord. The tube, closed at one end, is connected to a rigid acrylic
reservoir, representing the cranial cavity. The system is filled with water, whose properties are almost identical to those of the cerebrospinal
fluid. A programmable peristaltic pump is employed to generate oscillatory motion at frequencies that are representative of those induced by
the cardiac and respiratory cycles. Laser induced fluorescence is used to characterize the dispersion of fluorescent dye along the canal and into
the cranial cavity for different values of the relevant Womersley number and different eccentricities of the annular section. The present work
corroborates experimentally, for the first time, the existence of a steady bulk flow, associated with the mean Lagrangian motion, which plays a
key role in the transport of the solute along the spinal canal. The measurements of solute dispersion are found to be in excellent agreement
with theoretical predictions obtained using a simplified transport equation derived earlier on the basis of a two-timescale asymptotic analysis.
The experimental results underscore the importance of the eccentricity and its variations along the canal and identifies changes in the flow
topology associated with differences in the Womersley number, with potential implications in guiding future designs of ITDD protocols.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0150158

NOMENCLATURE h,h, W Width of the canal (temporal, unperturbed, and time-
dependent radial deformation)
A Operating window area h,  Width of the interior experimental flexible tube
¢ Characteristic value k  Dimensionless wave number
C  Solute concentration L Lagrangian component
e,e, Eccentricity: distance between internal and externa L Total length of the canal
walls of the canal (constant configuration, variable ¢ Perimeter of the internal surface of the canal
configuration) p',p Differential pressure (axial, azimuthal)
E.  Characteristic value of the Young modulus of the exper- Q  Experimental flow rate of the pump
imental flexible tube qr  Width-averaged Lagrangian velocity magnitude
f  Dimensional frequency of the oscillatory motion R, Internal radius of the experimental plexiglass tube
f Sampling frequency of the experimental image acquisition R;  External radius of the experimental flexible tube
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S Schmidt number
SD  Stokes drift component
S§S  Steady streaming component
T  Dimensional period of the oscillatory motion
t Time
T, Tensile strength of the experimental flexible tube
(u, v, w)  Curvilinear velocity components of CSF motion (axial,
radial, and azimuthal)
V' Total volume of the CSF in the SSAS
Non-dimensional normalized curvilinear spatial compo-
nents (axial, radial, and azimuthal)
0 Leading order component
o Womersley number
f Relative eccentricity of the canal
y  Compliance of the dura membrane
AV Stroke volume of the CSF in the SSAS
AL  Stroke length
Intracranial pressure
oh*  Wall deformation
op*  Pressure fluctuation
¢ Dimensionless small parameter
Kk Molecular diffusivity of the passive scalar
A Tracer emission wave length
v Kinematic viscosity of the CSF
p  Density of the CSF
7 Dimensionless long-term-scaled time
7. Dimensionless arriving long-scaled time
¢ Fluid property

®  Angular frequency of the CSF motion
*  Any variable denoted with upper asterisk * represents a
dimensional variable
I. INTRODUCTION

The cerebrospinal fluid (CSF) is an ultrafiltrate of plasma that
bathes the entire surface of the central nervous system (CNS). It behaves
as a Newtonian fluid with close-to-water physical properties (density
p = 10% kg/m?> and kinematic viscosity v = 0.71 x 10~° m? /s at body
temperature). The total volume of CSF in a healthy adult human is
around 140170 ml, distributed between the cerebral ventricles (30 ml),
the cerebral subarachnoid space (70-80 ml), and the spinal subarach-
noid space (SSAS) (40-60 ml)." CSF is mainly secreted in the choroid
plexus via the ependymal cells that line the ventricles of the brain and is
reabsorbed through the arachnoid villi, the total volume being renewed
every 5 to 6h.”” CSF acts as shock absorber for the brain. Besides, its
presence induces a buoyancy force that effectively reduces the brain
weight, thereby limiting the compression on the spinal-cord stem. In
addition to these important mechanical functions, CSF has a number of
physiological functions associated with the transport of hormones,
nutrients, and neuroendocrine substances.”

Because of its importance in connection with physiological pro-
cesses and its potential role in the development of neurological pathol-
ogies,”” the motion of CSF has been the subject of numerous
theoretical, numerical, and in vivo and in vitro experimental studies
(see, for example, the recent literature reviews given in Refs. 8 and 9).
The focus of the present work will be on the motion occurring in the
spinal subarachnoid space (SSAS), a slender, compliant, annular canal
surrounding the spinal cord. As shown in Fig. 1, the spinal canal,
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FIG. 1. Anatomy of the spinal subarachnoid space of a healthy human with axial
cuts at several locations and the CSF colored in blue.

which is connected to the cranial cavity through the foramen magnum
and is closed at its distant sacral end, is bounded externally by the
dura membrane, which separates it from an outer epidural layer con-
taining fatty tissue and blood vessels, and internally by the pia
membrane.

It is now well established that the CSF velocity in the SSAS, pre-
dominantly aligned with the spinal cord, displays pulsatile compo-
nents synchronized with the cardiac and respiratory cycles, with peak
values on the order of a few centimeters per second. The cardiac-
driven motion, with a typical frequency of 1 Hz, is induced by pressure
fluctuations in the cranial vault associated with the cyclic in-/outflow
of arterial/venous blood."’ During each cardiac cycle, a small CSF vol-
ume AV ~ 1 — 2 ml is pushed in and out of the spinal canal through
the foramen magnum. This stroke volume is accommodated by the
displacement of the dura and pia membranes, with the local CSF pres-
sure fluctuations related to the local changes in the cross-sectional
area of the SSAS through a complicated fluid-structure interaction
problem involving the displacement of venous flow and fatty tissue.”
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The cardiac-driven oscillatory flow rate is maximum near the foramen
magnum and decays monotonically to zero at the sacrum, with typical
peak values of order 5ml/s in the upper cervical region and 1 ml/s in
the lumbar region.'*"’

Unlike the cardiac-driven motion, the flow component synchro-
nized with the respiratory cycle,'” which exhibits frequencies on the
order of 0.3 Hz, is not driven by the intracranial pressure fluctuations.
Instead, its origin is hypothesized to lie in the pressure variations
induced by respiration in the venous plexus, located in the epidural
space of the lower thoracic and upper lumbar spine."” Recent magnetic
resonance (MR) measurements performed under normal breathing
conditions have revealed that the associated flow rates are maximum
near the thoracolumbar junction (1 — 3 ml/s) and much smaller in
the cervical spine."”

Apart from the aforementioned purely oscillatory motion, CSF
also undergoes a slow steady motion characterized by small velocities
on the order of a centimeter per minute. Unlike the oscillatory flow,
this “bulk motion” has the ability to transport solutes along the total
distance of the spinal canal and therefore plays a key role in enabling
the numerous physiological functions attributed to CSE. This bulk
motion is also important in connection with the transport of drugs in
intrathecal drug delivery (ITDD) procedures,” a technique used to
administer pain, analgesic, and cancer medication in which the drug is
delivered directly into the CSF, typically through a lumbar puncture,
thereby circumventing the blood-brain barrier.'” The widespread use
of ITDD faces challenges related to underdosing and overdosing, with
the former resulting in reduced therapeutic effects in the case of cancer
treatments and the latter leading to permanent nerve damage in the
case of pain medication.'” It is evident that a better understanding of
the bulk motion of CSF is essential both to prevent physiological dys-
functions and pathologies of the CNS® and to enable optimized
subject-specific ITDD protocols.

While the existence of bulk motion has been known since the
seminal radiographic observations of Di Chiro,'® its physical origin
has been unveiled only relatively recently.” The analysis considered a
simplified model of the cardiac-driven oscillatory flow in agreement
with the considerations described before. The associated Eulerian
velocity field was computed using a perturbation analysis involving a
small parameter ¢ representing the ratio AV/V < 1 of the stroke vol-
ume AV ~ 1 — 2 ml to the total volume of CSF contained in the SSAS
(V =~ 40 — 60 ml). In the limit ¢ < 1, the velocity at the leading order
was found to be purely oscillatory, with a zero time-averaged value. By
way of contrast, the first-order corrections, associated with the nonlin-
ear convective acceleration, were found to contain a steady-streaming
component that corresponds to the bulk flow observed in in vivo
experiments. The theory was applied to a simplified geometry, which
consisted of an annular doubly slender canal, open at the entrance and
closed at the end. (This steady component has also been studied with
elliptical cross section geometries in recent works.””) Although compli-
cating micro-anatomical features, such as nerve roots, dentriculate lig-
aments, and trabeculae, were not taken into account (see, for example,
Refs. 10 and 21-27) the model did account for a key feature of the
SSAS, namely, the eccentric placement of the spinal cord within the
lumen of the spinal canal. The magnitude of the axial streaming flow
was found to depend critically on the level of eccentricity.

The analysis of Ref. 19 was extended in Ref. 28 to show that the
mean Lagrangian velocity experienced by a fluid particle in the spinal
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canal is the sum of the steady-streaming velocity, determined by time-
averaging the Eulerian velocity field, and the so-called Stokes drift,”” a
purely kinematic effect associated with the spatial nonuniformity of
the pulsatile flow. One can understand the origin of the Stokes drift by
noting that, in the presence of a velocity gradient, a fluid particle sub-
ject to an oscillating velocity field experiences during each oscillatory
cycle an instantaneous velocity that differs by a small amount from
that existing at the initial point at corresponding times. As a result, the
fluid particle does not return to its original position at the end of the
cycle. The Stokes drift arises as a result of the accumulation of dis-
placements over subsequent cycles, yielding characteristic velocities
that are comparable in magnitude to those of steady streaming. The
asymptotic analysis performed in Ref. 28 also provided a reduced
transport equation describing the dispersion of a solute carried by the
CSF, with the mean Lagrangian velocity (i.e., the sum of the steady-
streaming and Stokes-drift velocities) determining the convective
transport rate in the long timescale characterizing dispersion along the
spinal canal. The strength of the previous reduced models'”** lies in
the fact that they provide closed-form expressions for the time-
averaged velocity field associated with the bulk motion, as well as sim-
plified transport equations that describe the slow solute transport,
which can be evaluated very efficiently, without the need to solve the
flow over thousands of oscillation cycles, as required in direct numeri-
cal simulations targeting solute dispersion along the spinal canal.

As mentioned before, the eccentricity of the spinal canal has an
important effect on the Lagrangian motion, and hence on the trans-
port of solutes in the spinal canal. As shown in Fig. 1, in the human
SSAS, this eccentricity changes longitudinally, as the spinal cord
changes its position relative to the dura in the anteroposterior plane.
Indeed, in healthy humans, the spinal canal exhibits concavity varia-
tions in the sagittal plane stemming from the four main curves of the
spine, i.e., two kyphoses and two lordosis,” characterized by the Cobb
angles.”’ In adults, the spinal cord located inside the spinal canal
extends cranially from the brain to nearly the end of the L1 region.”
The spinal cord’s relative position inside the SSAS varies along the
canal,””"” as well as with posture,”** which yields subject-specific spi-
nal canal eccentricity variations. In particular, the spinal cord is located
near the posterior side of the canal in the cervical region, but close to
the anterior side in most of the thoracic region, shifting posteriorly
again as it approaches the lumbar region.'””>***** This variable
eccentricity has an important effect on the spatial structure of the
Lagrangian motion, leading to the emergence of closed recirculating
regions. These recirculating Lagrangian vortices have been computed
on theoretical grounds for a realistic patient specific geometry'' and
were corroborated in an idealized geometry by means of direct numer-
ical simulations.”® The existence of these Lagrangian recirculating
regions can have a strong clinical impact, since they modulate the rate
of transport with which a drug injected intrathecally in the lumbar
region is transported to the cranium. The presence of closed
Lagrangian streamlines leads to augmented solute residence times in
certain regions, thereby possibly increasing the risk of local overdose
in ITDD procedures.

Beyond efforts to analytically and numerically model CSF flow
and solute transport, a few attempts have recently been made to
address the problem experimentally.”” *' In these works, different
types of in vitro models, including an idealized channel with a simpli-
fied flow waveform®” and realistic patient-specific geometries with real
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CSF flow rates,”*”” have been considered, leading to promising results.
However, these studies deal with rigid canals that are open at both
ends and do not directly address the role of the compliant dura mem-
brane and the associated fluid-structure interaction problem, an
important aspect of the CSF dynamics in the SSAS.

Motivated by the clinical relevance of solute transport in the spi-
nal canal and the lack of a thorough experimental characterization of
the problem, we present here an in vitro experimental study of the sol-
ute transport along a compliant spinal canal. We begin by giving in
Sec. IT a description of the experimental facility and experimental tech-
niques employed in this study. The facility is designed according to the
models discussed in our previous works,'”***° with consideration
given to the case in which the annular canal has constant eccentricity
and the more realistic case in which the eccentricity varies with the dis-
tance from its entrance. A brief description of the analytical flow and
transport models developed earlier'”* is provided in Sec. IIl. The
experiments, reported in Sec. IV, are used to investigate effects of
eccentricity and oscillating frequency. The experimental results are
supported by predictions given by the analytical model. Finally, con-
clusions are drawn in Sec. V.
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Il. EXPERIMENTAL FACILITY AND EXPERIMENTAL
TECHNIQUES

The experimental facility used in our study, to be described
below, enables the quantification of effects of spinal-cord eccentricity
and flow frequency on solute transport in the spinal canal. The experi-
ments were performed in an in vitro model of the subarachnoid space,
using distilled water of density p = 998.2 kg/m® and kinematic viscos-
ity v = 107° m*/s as the working fluid. The model consisted of a 15
x 15 x 15 cm’ acrylic tank, emulating the cranial vault, connected to
a plexiglass tube of length L = 50 cm, representing the dura mater. To
allow for temporal variations of the local cross-sectional area, needed
to accommodate the oscillating flow, a hollow flexible tube of circular
section was placed inside, with its distal end anchored at the closed
bottom of the rigid tube and its proximal end connected to a peristaltic
pump, as indicated in Fig. 2(a). The flexible tube, with outer radius
R;=7mm and thickness h;=2 mm, was made up of rubber (Shore
hardness 60 A, elastic modulus of approximately E. = 2.2 MPa, and
tensile strength of T, = 11 MPa), yielding an elastic wave of character-
istic wavelength (E./p) 1/2 /o, larger than the tube length L. The defor-
mation of the inner tube associated with this elastic wave drives the
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FIG. 2. (a) Schematic representation of the experimental in vitro facility of the SSAS. (b) Representation of the constant eccentricity canal and (c) variable eccentricity canal,
with cross sections at planes x = x* /L = 0, 0.5, and 1, showing the dimensionless curvilinear coordinates (x, s, 77), which vary from zero to unity, defined in Sec. Ill. (d)
Schematic view of the unperturbed canal width and the eccentricity, e,, where e, (x*) = e in the constant eccentricity canal and e, (x*) = ecos (2zx* /L) in the variable one.
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motion in the annular canal. The expressions for the local variation of
the cross-sectional area can be derived, as done in Ref. 36, enabling the
elastic wave to be related to the pressure variations along the canal.
Note that the speed of the elastic wave in the experiments (E./ p)l/ :
~ 45 m/s is comparable to, although somewhat larger than, those
reported in the literature, with values ranging from 3.5 to 33.8 m/s for
subjects under different conditions.”* "

To explore effects of spinal-cord eccentricity, two different canal
geometries were implemented, as indicated in Fig. 2. Most experiments
considered the geometry depicted in Fig. 2(b), in which the outer tube
is a circular cylinder of inner radius R, = 10.5 mm that lies parallel to
the inner tube, so that the resulting canal eccentricity, characterized by
the distance between their axes, e, remains constant along the canal.
The eccentricity can be changed using cams with different eccentrici-
ties in the lower and upper parts of the facility, where the flexible tube
was anchored. In this case, the resulting undeformed canal width can
be approximated by the expression h'(s) = h’ [l —  cos(27s)],
where bl = (R, — R;) =3.5mm is the average canal width, § = e/h
< 1 is the dimensionless eccentricity, and s is the azimuthal distance
normalized with the perimeter of the inner tube ¢* = 2z7R;, with
0 < s <1 and 27s being the corresponding azimuthal angle [see Fig.
2(d)]. A limited set of experiments used the geometrical configuration
shown in Fig. 2(c), involving an outer rigid tube with longitudinal cur-
vature, resulting in a canal eccentricity that varies with the distance
from the canal entrance x* according to e, = ecos (2nx*/L) mm,
where e=1.5mm was fixed. In this case, the circular section of the
outer tube has inner radius R,=10mm, so that A7 =3mm and
f = e/h: = 0.5.In this case, the canal width varies with both x* and s

Peristaltic pump
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according to " = h* [1 — f§ cos(2nx* /L) cos(27s)]. A programma-
ble peristaltic pump was used to generate a flow rate varying harmoni-
cally with time ¢* according to Q(t*) = Qyuqx sin (wt*) of amplitude
Qumax and angular frequency o, the latter related to the period T and
frequency f by w = 2nf = 2n/T. The stroke volume that enters and
leaves the flexible tube during each cycle, given by AV = Jon/ “Qadt
= 2Quuax/®, was chosen to be a small fraction of the volume con-
tained in the annular canal V = nL(R? — R?), resulting in values of
AV/V ~0.018-0.084 similar to those observed in the SSAS.” The
volume changes induced by the expansions and contractions of the
flexible tube were accommodated in the facility thanks to the presence
of a compressible air balloon placed inside the tank [see Fig. 2(a)].
Two types of experiments were performed using laser induced
fluorescence techniques (LIF). The first one was used to determine the
transport of a solute concentration along the spinal canal, from an ini-
tial position x;/L = 0.5 from the entrance of the canal. In these
experiments, the bottom half of the canal (from x*/L=0.5 to
x* /L =1) was carefully filled with fluorescent dye of sodic fluorescein,
of diffusivity x ~ 4 x 107 m*/s and corresponding Schmidt number
S = v/Kk ~ 2500, at a concentration C= 1.6 g/cm’ using a syringe
pump. The facility was illuminated with UV LED’s lights, and the
ascending motion of the solute, induced by the peristaltic pump, was
recorded with two synchronized reflex cameras, placed at two perpen-
dicular planes, ie., s=0 and s=0.25 (see Fig. 3). During the experi-
ments, the sampling period was adjusted to lie between two and eight
times the period of the oscillating flow to assure a minimum of 200
images per test. Thus, we were able to track the front of the filament
moving toward the upper reservoir until it reached the canal entrance.

Lighti
Balloon UV Lighting

= FIG. 3. Schematic view of the complete
setup: in vitro model of the subarachnoid
UV Lighting space, cameras, programmable peristaltic
I Frontal view pump, and UV lighting. The flow rate wave
form provided by the pump is also displayed
in the figure with Q(t*) = Qyuax Sin (0t*),
Spinal aAn\(/i _thze corresponding  stroke  volume,

= Canal = 2Quax/ .
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Side view
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The second type of experiments focused on the evolution of the solute
concentration in the cranial vault, an important aspect for ITDD pro-
cedures targeting brain tumors. In these experiments, the tank was
illuminated with a black light and the time evolution of the intensity of
the light emitted by the fluorescein reaching the tank was recorded
with a CCD camera, with the sampling period selected to be 30 times
the oscillatory period T. Since the light intensity is proportional to the
solute concentration, these measurements provided a useful quantifi-
cation of the time evolution of the concentration of solute reaching the
cranial vault.

For the two types of experiments described above, the images
were processed with a custom MATLAB® routine as described below.
First, a background image was subtracted from all the images to elimi-
nate the external noise induced by the UV-light. Since the wavelength
of light emitted by the fluorescein is 4 =541 nm, corresponding to
green color, only the green component of the RGB image was proc-
essed and converted to a gray-scale image. Afterward, the minimum
value of the intensity of each pixel of the images recorded was sub-
tracted from all the images to enhance the solute detection process
and to avoid the generation of shadows and bright areas, which could
be wrongly interpreted as a part of the solute motion. The pre-
processed images were subsequently post-processed to determine the
motion of the front of the tracer through the application of an image
analysis routine based on that developed by Refs. 38, 39, and 46. For
the second type of experiments, measuring the temporal evolution of
the solute concentration in the cranial vault, two windows, located on
both sides of the flexible tube crossing the reservoir, were selected and
the time evolution of the averaged value of the tracer concentration in
each region was determined. To be able to compare the results, all the
experiments were performed under the same conditions of light
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intensity, UV LED light location, and initial solute concentration. This
analysis allowed us to obtain not only the time taken for the solute to
reach the cranial vault, but also the amount of solute entering it.

A large number of experiments were performed using the straight
configuration depicted in Fig. 2(b) for different values of the eccentric-
ity f and the oscillating frequency w = 2xf, the latter characterized
in the following plots by the associated Womersley number o
= (hP?w/ u)l/ ? (see Table I). To explore the effects of canal eccentric-
ity on solute transport, three values of f were tested, namely,
f =0.14, 0.28, and 0.42, using the straight configuration with o
=4.39. Experiments 1 to 6 in Table I were devoted to the description of
the time evolution of the tracer front along the canal, while experiments
7 to 12 focused on the description of the time evolution of the concen-
tration of solute in the reservoir (cranial vault). In addition, to study the
effect of the oscillation frequency, a series of experiments were per-
formed varying o from 3.04 to 11.77 (experiments 13 to 16), for
f = 0.42. The variable-eccentricity configuration of Fig. 2(c) was used
in experiments 17 and 18 for a fixed value of the Womersley number
o =4.45. In particular, experiment 17 focuses on the motion of the
tracer along the curved SSAS, while experiment 18 aims at describing
the evolution of the tracer concentration in the cranial vault.

I1l. MATHEMATICAL MODEL

The flow of CSF in the spinal canal fundamentally involves a
fluid-structure interaction problem governed by the Navier-Stokes
equations for an incompressible fluid, together with a constitutive law
characterizing the deformable dura membrane behavior. In addition,
to describe the transport of a solute of molecular diffusivity x, the spe-
cies transport equation should also be solved.”” In our previous
works,'”** the flow and transport of the CSF along the SSAS was

TABLE |. Experimental conditions of the different sets of experiments performed. Here, f is the relative eccentricity, f is the oscillatory frequency of the motion, with
= 2nf, o= (h;zw/z/)“ 2 s the Womersley number, AV/V < 1 is the ratio between the stroke volume and the total volume in the canal, and f, is the data acquisition

frequency.

Experiment B f(Hz)  (rad/s) o AV/V f: (Hz) Configuration Type

1 0.14 0.25 1.571 4.39 0.052 0.03125 Straight SSAS

2 0.14 0.25 1.571 4.39 0.084 0.03125 Straight SSAS

3 0.28 0.25 1.571 4.39 0.052 0.050 00 Straight SSAS

4 0.28 0.25 1.571 4.39 0.084 0.050 00 Straight SSAS

5 0.42 0.25 1.571 4.39 0.052 0.083 33 Straight SSAS

6 0.42 0.25 1.571 4.39 0.084 0.083 33 Straight SSAS

7 0.14 0.25 1.571 4.39 0.052 0.00833 Straight Cranial vault
8 0.14 0.25 1.571 4.39 0.084 0.008 33 Straight Cranial vault
9 0.28 0.25 1.571 4.39 0.052 0.00833 Straight Cranial vault
10 0.28 0.25 1.571 4.39 0.084 0.008 33 Straight Cranial vault
11 0.42 0.25 1.571 4.39 0.052 0.008 33 Straight Cranial vault
12 0.42 0.25 1.571 4.39 0.084 0.008 33 Straight Cranial vault
13 0.42 0.12 0.754 3.04 0.030 0.040 00 Straight SSAS

14 0.42 0.60 3.77 6.80 0.030 0.100 00 Straight SSAS

15 0.42 1.20 7.54 9.61 0.024 0.200 00 Straight SSAS

16 0.42 1.80 11.31 11.77 0.018 0.200 00 Straight SSAS

17 0.50 0.35 2.20 4.45 0.052 0.01750 Curved SSAS

18 0.50 0.35 2.20 4.45 0.052 0.008 33 Curved Cranial vault
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described in terms of dimensionless curvilinear coordinates, including
the normalized axial and azimuthal coordinates x = x*/L and s intro-
duced above along with the transverse coordinate 7, defined as the
transverse distance to the inner surface normalized with the local
width, h*(x, s, t), so that all coordinates vary from zero to unity (see
Fig. 2). Here, t = t* represents the dimensionless time, and the vari-
ables with asterisks denote dimensional variables. Since a detailed deri-
vation of the reduced-order equations is available in previous
publications, ”** we shall only give below a succinct description of the
model.

In the analysis, the cranial pressure oscillations are assumed to be
harmonic, described by (Ap), cos (t), with (Ap), representing the
intracranial pressure fluctuation amplitude. Since the canal is slender,
in that the characteristic values of the canal length L, spinal-cord
perimeter ¢7, and characteristic SSAS width h’ satisfy L > £ > h,
terms of order (¢ /L)* and (k! /L)* (and smaller) can be neglected in
the conservation equations, as well as those associated with the small
curvature along the spinal canal (see Ref. 19). The small local deforma-
tions Oh* of the canal width h* = k" + 0h*, induced by the local pres-
sure variations Op*, are described using a linear elastic model
Oh* = y*op*, where 7* measures the canal compliance,'”**"° spatial
variations of that are accounted for by introduction of the dimension-
less function y(x, s) = y* /7%, where 7! is the characteristic value of y*.
The canal compliance is limited, in that

ve(8p). AV AL

~ — 1 1
n: v sh W

where AL is the characteristic value of the stroke length.

An order-of-magnitude of the Navier-Stokes equations shows
that the convective acceleration, of order u?/L, is ¢ smaller than the
local acceleration, of order wu,, where u, ~ @ AL ~ ewL is the char-
acteristic axial flow velocity. The viscous force per unit mass, of order
uv/ hjz, scales in the dimensionless formulation with the inverse of

o2, where
h*zw 1/2
()

is the relevant Womersley number, typically in the range of
3 < o =< 10. On the other hand, the deformable behavior of the dura
membrane is characterized by the dimensionless wavenumber

wlL
k= 3
[(h2y2) /0] ©

representing the ratio canal length to the characteristic wavelength of
the elastic wave.

In the dimensionless formulation, **” the geometry of the canal
is characterized by the dimensionless functions ¢(x) = ¢*/¢; and
h(x,s,t) = h*/h;. The limited compliance of the dura membrane
leads to small changes of the canal width h(x,s,t) = h(x,s)
+eh'(x,s,t), where h(x,s) is the unperturbed canal width, and
W' (x,s,t) represents the time-dependent radial deformation. The
streamwise, azimuthal, and traverse components of the velocity were
scaled with their corresponding characteristic values, namely,
ue = ewL, we = ewl}, and v, = cwh’, respectively, to give (u, w, v).
In addition, the streamwise pressure difference from the entrance

19,28
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value was scaled with its characteristic value pew?L?, whereas the
small pressure variations around the canal at a fixed value of x, which
are necessary to describe the azimuthal motion, are scaled with its cor-
responding characteristic value pew?£:* to give the functions p'(x, t)
and p(x, s, t), respectively.

The problem can be solved under the assumptions of canal slen-
derness L >> ¢’ >> h! and small compliance ¢ < 1, by introducing reg-
ular asymptotic expansions in powers of ¢ for all variables (ie.,
¢ = by + edy + &P, + -+, with ¢ representing any unknown func-
tion). The nonlinear terms associated with convective acceleration, of
order ¢, can be neglected at the leading order, leading to a linear
unsteady lubrication problem involving a linear elastic law, the solution
of which depends on the specific geometry of the SSAS through the
functions £(x) and h(x, s, t), on the dimensionless elastic-wave number
k and the Womersley number, o, and on the compliance distribution,
measured by the function y(x,s). The resulting velocity components
and wall deformation can be expressed in the harmonic form
up = Re(iUe"), wy = Re(iWe™), vy = Re(iVe), and hj = Re(H'e'"),
where U, W, V, and H' are complex functions carrying the spatial
dependence. Since at the leading order, the time-averaged values are
zero, it is the first-order corrections, arising from the nonlinear effects
associated with the convective acceleration and the canal deformation,
that induce a nonzero steady component (ugs, Wss, Uss). This steady-
streaming motion”” has longitudinal velocities that are of order e2wL,
resulting in residence times in the spinal canal of order ¢ 2! > 1.
Since ¢ ~ 1/40, it follows that the residence time is about half an hour,
to be compared with the period of the cardiac cycle (e, T ~ 1 s).

As shown in Ref. 28, the mean Lagrangian motion following a
fluid particle has an additional component arising from the so-called
Stokes drift, whose magnitude is comparable to that of the steady-
streaming velocities, so that the mean Lagrangian velocity determining
the slow convective transport of the solute in the spinal canal is given
by (ur,vr, wr) = (uss + usp, Uss + Usp, Wss + wsp). The dispersion
of the solute includes an additional diffusion contribution that scales
with the solute molecular diffusivity x. The disparity of times scales
between the oscillatory motion of CSF particles, with characteristic
time » !, and the time-averaged Lagrangian motion, with characteris-
tic time ¢ 2!, enables a two-timescale asymptotic analysis to be per-
formed, leading to a reduced transport equation

le aC  Ohn ac)
— 4y, —————
ot Ox Oxhon
1 9cC
- o2e2Sh’ O’

for the solute concentration C(x, s, 7, ) involving the slow time vari-
able t = &°t and the Schmidt number S = v/ ~ ¢72 >> 1. Note that,
since Eq. (4) only accounts for transverse molecular diffusion, the
streamwise dispersion of the solute is driven entirely by convective
transport. The above simplified description, whose accuracy was tested
in Ref. 36 via comparisons with the results of direct numerical simula-
tions, will be used below for generating theoretical predictions, to be
compared with the experimental results.

IV. RESULTS

The effects of eccentricity and pulsation frequency on the disper-
sion of a solute are to be investigated below using the in vitro

0. 8C  wy (ac amac)

Won 0 \as ashon

(4)
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experiments and mathematical model described above. We begin by
presenting in Sec. the experimental results obtained with the
constant-eccentricity model depicted in for values of f§ rang-
ing from f =0.14 to f = 0.42 and Womersley numbers ranging
from o = 3.04 to o = 11.77. The configuration with variable eccen-
tricity shown in is investigated separately in Sec. for a
Womersley number equal to o = 4.45. The measurements will be
compared with predictions from the theoretical analysis, which will
also be used to describe the velocity field along the canal.

Attention will be focused on the evolution of the solute front. In
particular, the temporal variation of the front shape and its advance
rate along the canal toward the cranial vault will be registered and
compared with predictions obtained from the model with S & 2500.
In presenting the results, the axial coordinate and the time will be
expressed in the dimensionless form x = x*/L and t = & t* = & t,
respectively, as consistent with the theoretical model.

7=0.10

0 -
0.1
0.2
X 0.3
0.4
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0.5
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0.9
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A. Constant eccentricity configuration: Effect of  and «

Let us begin by analyzing the case corresponding to ff = 0.42
and o = 4.39, as the reference case. shows a sequence of
snapshots of the temporal evolution of a solute initially filling the tube
from x = 0.5 to x = 1. The frontal view shows the projection on a verti-
cal plane at s = 0.25, where the narrowest section is at the central axis
of the view, while the lateral view shows a projection on a vertical
plane at s =0, where the widest section is on the left of the image and
the narrowest one on the right. Note that, since the experimental
images are in fact projections of a three-dimensional view, the abscissa
axes do not really show the variable s. The inner, compliant tube can
also be seen in the images and should not be confused with the light
emitted by the fluorescein. Although perturbed, the ascending motion
of the solute is nearly symmetric with respect to the symmetry plane
around the narrowest section, as observed in the frontal view. For this
configuration, the solute is observed to move upward (cranial

7 =0.31

T =042 T =0.52

FIG. 4. Time sequence of the experimental evolution of the solute along the spinal canal for f = 0.42 and o = 4.39 (experimental set 5 in

). The upper and central

rows show the experimental frontal and side views, while the bottom row shows the results obtained from the mathematical model. (The red and green boxes represent the
frontal and side views, respectively.) Here, W and N indicate the widest and the narrowest sections of the canal.
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direction) along a small region within the narrowest part of the canal,
s=0, whereas it moves toward the distal end (caudal direction)
around the widest part of the canal, s=0.5. The decrease in the area
close to the widest region is not appreciated in the images because, as
previously stated, they show the projection on a plane of a three-
dimensional view. Thus, the liquid in front of the narrowest section,
whose level is higher, blocks the view of that area. Furthermore, it can
be inferred from the time sequences that the front advances with a
speed that increases as it gets closer to the cranial vault, as it will be
later corroborated. The model predictions show reasonably good
agreement with the measurements. In particular, as displayed in the
bottom panel of Fig. 4, the solute exhibits cranial motion along the
narrowest region and descends toward the distal end along the widest
region. In addition, the transport velocity is also seen to increase near
the canal entrance. The quantitative agreement between the experi-
ments and the model is excellent, as seen by comparing the time
needed for the solute to reach the canal entrance as predicted by the
model (t = 0.48) and by the experiments (t ~ 0.52).

The mathematical model will be used to analyze in detail the
experimental results shown in Fig. 4. Unless otherwise stated, the com-
putations assume a uniform compliance factor y = 1. Figure 5 shows
distributions of the streamwise components of the steady-streaming,
ugs, Stokes-drift, ugp, and Lagrangian velocities, u;, respectively, at dif-
ferent distances from the entrance, x. As it can be observed, the steady

z=0
xz =0.25
z = 0.50
x =0.75
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streaming motion is directed toward the distal end around s=0.5
(widest section) and toward the canal entrance close to s =0 (narrow-
est section), whereas the Stokes drift shows a downward movement
along s=0 and upward along s = 0.5, the latter becoming larger for
intermediate values of s and peaking close to s = *£0.25. The steady-
streaming velocity is significantly larger than the Stokes-drift velocity,
so that the resulting distribution of Lagrangian velocity, shown in the
third column of Fig. 5, is similar to that of steady streaming, shown in
the first column. The associated induced net convective flow can be
characterized by representing the Lagrangian streamlines of the width-
averaged values of the axial and azimuthal velocities fo urdn and
fo wrdn in a s—x plane (see Fig. 5). A net stationary motion is observed
entering the channel and moving down through s= 0.5 at a relatively
large velocity, as indicated by the proximity of the streamlines. The
motion decelerates with the distance from the canal entrance, where
the fluid moves with an azimuthal component toward s=0, and
begins to rise toward the cranial vault with a speed that increases as it
approaches the entrance of the canal (i.e., as x decreases).

The effect of the eccentricity on the transport of a solute was fur-
ther investigated experimentally by varying the distance between the
axes of both cylinders, e, to yield values of f§ equal to 0.14, 0.28, and
0.42, respectively (see Fig. 2), while maintaining a constant value of the
Womersley number o = 4.39. Snapshots at 7 = 0.48 are shown in
Fig. 6 for the three values of § and compared with the results obtained

qrL
0
08 VTN l,}
0.6 0.6
0.4
0.5
402
j © H04
{102 ¥
403
H-04
0.6
0.2
0.8
<9 0.1
1.2

FIG. 5. Distribution of streamwise components of the steady-streaming, Stokes-drift, and Lagrangian velocity fields at different sections x in the first, second, and third column,
respectwely Streamlmes obtained for the width-averaged Lagrangian components j01 updn and j01 w, dn with distribution of width-averaged Lagrangian velocity magnitude,

jo udn)® + fo wydn)?*®
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from the theoretical model. Two volume ratios AV /V were consid-
ered, namely, 0.052 and 0.084 (Table I), yielding similar results. From
the measurements, it can be observed that, while f hardly affects the
flow topology in the range considered, i.e., the solute travels upward
around s = 0 and downward around s = 0.5, it has a major impact on
the net flow velocity and, thus, the time needed for the solute to reach
the cranial vault. As seen in the snapshots for 7 = 0.48, increasing the
eccentricity results in larger transport velocities, so that the front of the
solute distribution, initially located at x=0.5, reaches x ~ 0.35
for f=0.14, x ~ 0.12 for f = 0.28, and x ~ 0 for f§ = 0.42. The
right-hand side of each panel in Fig. 6 shows the corresponding pre-
dictions of the solute distribution given by the theoretical model, yield-
ing results in reasonably good agreement with the experimental
observations.

To better quantify the effect of f5, the time evolution of the solute
front as it moves toward the canal entrance, between x=0.45 and
x=0.05, is shown in Fig. 7 for f# = 0.14, 0.28, and 0.42 and a constant
value of o = 4.39, both for the experiments and the theoretical model.
As it has been previously mentioned, in the range of eccentricities con-
sidered here, the solute rises faster as f§ increases. The plots indicate
that the increase in the dispersion rate is not linearly proportional to
p. For instance, the time needed for the solute to reach the canal
entrance is halved when f increases from 0.14 to 0.28, while it is
reduced by approximately only 25% when f is increased from 0.28
to 0.42. It is also of interest that the slope of the curves, —dx/dx,
increases as x decreases, indicating that the rising velocity increases as
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B=0.14

FIG. 6. Distribution of a solute, initially fill-
ing the canal from x=0.5 to x=1, for
p =042, f=0.28, and f=0.14, at
7 = 0.48 in the straight configuration, cor-
responding to experiments 5, 3, and 1 of
Table |, respectively. Experimental results
are represented on the left-hand side of
the panels, while the theoretical predic-
tions obtained integrating Eq. (4) are rep-
resented on the right-hand side. Here, N
and W indicate the location of the narrow-
est and widest sections in the experimen-
tal visualizations.

T ]
0 02505
s

the solute approaches the entrance of the canal. All of these features
are also captured by the reduced model, with results represented by
solid curves in Fig. 7.

The model was used to further investigate the effects of variations
of f, with results given in Fig. 8, including distributions of the axial

0.45 T T T T T
; * ——— Bnodet = 0.42
0'4 ﬂHlDdPl =028/
ﬂmodel =0.14
0.35 O By = 0.42
O Beap = 0.28
03 % Bup =014 |]
8] 025 1
0.2 4
0.15 b
0.1} 4
0.05
0 0.2 0.4 0.6 0.8 1 1.2

FIG. 7. Temporal evolution of the solute along the spinal canal for o = 4.39 and
p = 0.14,0.28, and 0.42, respectively (experiments 1-6 in Table [). Symbols repre-
sent the experimental measurements, and the solid lines the results given by the
theoretical model with y =1.
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FIG. 8. (a) Contours of the axial component of the Lagrangian velocity, u;, at the
entrance of the canal, x=0, for different values of f3, provided by the theoretical
model. (b) Time taken by the solute to travel from x = 0.45 to x = 0.05 as a function
of f3, defined as .. Symbols correspond to the experimental measurements, and
the solid line represents the model predictions with uniform compliance y = 1.

component of the Lagrangian velocity, 1, at the entrance of the canal,
x=0, for different values of f§ [Fig. 8(a)], as well as the variation with
P of the time that the solute takes to travel from x=0.45 to x=0.05
[Fig. 8(b)]. Peak velocities are seen to initially increase with f3, reaching
a maximum value at f§ ~ 0.54, for which the associated time needed
to reach x=0.05 is correspondingly minimum, as shown in Fig. 8(b).
For values of f§ > 0.54, the proximity of the walls at s=0 causes
the peak velocity to decrease in magnitude, as shown for the case of
p = 0.75 in the contours of velocity displayed in Fig. 8(a). Similarly,
the net flow rate entering/exiting the canal decreases monotonically as
f increases in the range of 0 < f# < 0.54.

In addition to performing experiments to describe the transport
of a solute along the canal, we also characterized the time evolution of
fluorescein concentration at the cranial vault (experimental sets 7-12
in Table I). In these experiments, the temporal evolution of the light
intensity emitted by the fluorescein reaching the measuring windows
in the reservoir was recorded, (C)(tr) = 1/A[,Cdo. Here, A is the
area of the measuring windows, and C is the solute concentration,
which is proportional to the light emitted by the fluorescein. Figure 9
displays the temporal evolution of the mean solute concentration in
the interrogation windows in the cranial vault for f =0.14, 0.28, and
0.42 corresponding to o = 4.39. In accordance with the results of the
solute transport in the spinal canal described above, it can be seen that
the time at which the fluorescein begins to be detected in the region of
interest (ROI) increases as [} decreases. Note that such time does not
correspond with 7. reported in Fig. 8 since the amount of fluorescein
in the ROI must be larger than a given threshold to be detected in
these experiments. Nevertheless, it can be observed that the rate at
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FIG. 9. Experimental measurements of the temporal evolution of the solute concen-
tration in the cranial vault, (C)(z) = 1/A[,Cda, for o =4.39 and f = 0.14,
0.28, and 0.42, respectively (experiments 7, 9, and 11 in Table ).

which the solute reaches the cranial vault increases with f3, since
d(C) /dr increases with f3. Interestingly, the quasi-asymptotic value of
the concentration that reaches the cranial vault also increases with f.
This result is attributable to the existence of increasing rising velocities
at the bottom of the canal for increasing values of f. Quantitative
information regarding dispersion times is important in connection
with ITDD processes, especially in the case of drugs of short half-life."”

The effects of the oscillating frequency were investigated in
experiments with constant eccentricity f = 0.42 by varying o from
3.04 to 11.77 (experimental sets 13-16 in Table I). Figure 10 shows the
distribution of solute, obtained both experimentally (left-hand side of
the panels), and using the theoretical model (right-hand side of the
panels), at different selected times. The results reveal that variations in
o lead to markedly different flow topologies and associated velocities.
This strong dependence of the steady streaming on the Womersley
number is well known in oscillatory flows over obstacles,”’ but had
not previously been demonstrated in connection with the flow in the
spinal canal. For the lowest values of o, i.e, o = 3.04 and o = 4.39,
the generated net flow rises up along the narrow part of the canal,
s=0, along a zone that gets thinner as « increases, while it decreases
along the widest region, s = 0.5. However, for larger values of o, the
flow also begins to rise around the widest section (see panel corre-
sponding to o = 6.80). Indeed, for intermediate values of «, ie.,
o = 6.80 and o = 9.61, the solute rises along both the narrow and
wide regions of the canal, this movement becoming more important
in the wide region for increasing values of «, i.e., 9.61. Finally, for the
largest value of o = 11.77, the flow dynamics inverts almost
completely and the solute moves upward mainly along s = 0.5 (widest
section). There is a good qualitative agreement between the model and
the experiments, although the discrepancies are somewhat larger than
those previously found when varying f§ for o = 4.39.

To experimentally quantify the effect of o on solute transport,
Fig. 11 includes the temporal evolution of the uppermost front of a sol-
ute initially located at x=0.5. In all cases, the transport velocities are
seen to increase at positions closer to the canal entrance. The results
reveal a non-monotonic behavior in the ascending velocity of the sol-
ute for increasing values of o, in that the rising velocity displays a
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FIG. 10. Distribution of a solute, initially filling the canal from x=0.5 to x=1, for o = 3.04, 6.80, 9.61, and 11.77, where = 0.42 in the straight configuration, corresponding
to experiments 13-16 of Table |. Experimental results are represented on the left-hand side of the panels, while the theoretical predictions obtained integrating Eq. (4) are rep-
resented on the right-hand side.

pronounced decrease when o is increased from 3.04 to 6.80 but predictions obtained with the model using two different compliance

increases for larger values of o, indicating that the solute transport is functions, y(x, s). First, a uniform compliance y; = 1, used up until
less efficient at intermediate values of o, i.e., 3.04 < o < 9.61. now, has been considered, for which the small deformations of the
The influence of o is further investigated by evaluating the time canal thickness are axisymmetric. Second, to account for possible

7. taken by the solute, initially located at x=0.5, to travel from experimental asymmetries when the compliant tube deforms, a
x=0.45 to x = 0.05, with values represented in Fig. 12 as a function of
o. The figure includes the experimental results, together with
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03 1 &
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T FIG. 12. Dependence of the time taken by the solute, initially located at x = 0.5, to
travel from x=0.45 to x=10.05, ., with . Symbols represent the experimental
FIG. 11. Temporal evolution of the solute along the spinal canal for f = 4.2 and measurements, and solid lines the model predictions obtained for y; =1 and
o= 3.04, 6.80 and 9.61 and 11.77, respectively (experiments 1316 in Table ). 7,(8) = 0.2 — 9.6 (28> — s), respectively. Here, § = 0.42.
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compliance function given by y,(s) = 0.2 — 9.6 (25> — s) was also
considered, which corresponds to a canal slightly more compliant at
s = £0.25 than in the symmetry plane s=0 and s=0.5. In both
cases, three different regions can be identified in the evolution of t,
with o. Initially, for small values of o, for which it has been observed
that the flow rises through the narrowest section of the canal, 7,
decreases with o. However, for intermediate values of o, for which the
solute rises along both the narrow and wide regions of the canal, 7,
increases until it reaches a maximum. Finally, for larger values of «, for
which the flow rises through the widest section of the canal, 7,
decreases again as o increases. Interestingly, 7. barely depends on the
compliance factor in the range of 0 < o < 5, indicating that the results
presented above for o« = 4.39 and varying values of f§, where y=1,
were not affected by the function of y(x,s) selected. However, for
o > 5, the differences in the values of 7, obtained with the two compli-
ance functions become more relevant. Probably, the most striking dif-
ference is the decrease in the local maximum when y is assumed to
depend on s, which takes place at lower values of o. In fact, the local
maximum obtained with y, = 1, corresponding to the case & = 9.6, is
1. = 1.79, while for y,, the maximum, now for o« = 7.9, decreases to
7. = 0.84. The differences between the experiments and the model
with uniform compliance y; are significant, especially for o > 6. Such
discrepancies could be explained by the behavior of the flexible tube
used in the experiments, stemming from the difficulties to completely
preserve the eccentricity, the geometric inaccuracies or the asymmetric
behavior of the elastic tube deformation, represented by 7y, at large o
values. However, the results obtained by implementing the model with
a non-uniform compliance function, y,, agree fairly well with the
experimental ones, which also exhibit a local maximum of 7, although
ato ~ 8.
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B. Variable eccentricity configuration

As previously discussed, the annular cross section of the human
SSAS displays an eccentricity that varies along the spinal canal, as the
position of the spinal cord relative to the dura mater varies. In previous
works, these variations have been postulated to play a relevant role in
the dynamics of the flow of CSF. While Refs. 11 and 36 reported the
formation of closed recirculating Lagrangian vortices in the canal that
hampered the transport of a solute, no experimental evidence corrobo-
rating these results is currently available, thereby motivating the pre-
sent analysis, which employs the configuration sketched in Fig. 2(c),
where h(x,s) =1 — f§ cos(27mx) cos(2ms) with f = 0.5, all experi-
ments performed with o = 4.45.

As shown in Fig. 13, where the experimental/model results are
shown in the left-hand/right-hand sides of each panel, for this value of
o a volume of solute initially located at x < 0.5 moves upward (down-
ward) around the narrow (wide) part of the canal. In this configura-
tion, at x = 0.5, the narrowest section corresponds to s = 0.5. Focusing
on the upward motion, one can observe that, as the solute reaches
x =~ 0.27 (1 =~ 0.36), it slows down dramatically and starts moving
azimuthally from s= 0.5 toward s=1 due to the change of eccentric-
ity, since the narrow (wide) section changes from s=0.5 (s=0, 1)
upstream from that location. This change of eccentricity provokes the
formation of closed recirculating regions along the canal,' " so that,
instead of continuing its progress along the canal, the solute turns
around and moves down through the wide section (see panels at
7 =0.68, 0,82, and 1 in Fig. 13). Only a small amount of solute is
observed to cross the boundary between recirculating regions to rise
toward the canal entrance (see the narrow filament of solute moving
upward in the left side of the flexible tube in the experiments, and at
s=1att=11in Fig. 13). As expected, the amount of solute reaching

7 =10.82

|

050.75 1 050.75 1 050.75 1
s s s

FIG. 13. Time sequence of the evolution of a solute along a curved canal of unperturbed thickness h(x, s) = 1 — f8 cos(2nx) cos(2xs), with § = 0.5, initially filling the canal
from x=0.5 to x=1, corresponding to experiment 17 of Table |. Experimental results are represented on the left-hand side of the panels, while the theoretical predictions
obtained integrating Eq. (4) are represented on the right-hand side.
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the cranial vault is much smaller than in the case of the straight config-
uration and it takes longer to arrive. The comparisons indicate that the
theoretical model accurately predicts the motion of the solute in the
canal.

The above results suggest that a variable eccentricity might have
a major impact on the flow topology and the associated transport rate
along the SSAS. To further quantify this effect, Fig. 14(a) represents
the temporal evolution of the axial location of the solute front as it
travels toward the canal entrance determined both experimentally and
using the model for the constant and variable eccentricity configura-
tions. It can be observed that, in both cases, the experimental results
and the predictions given by the analytical model agree fairly well.
Initially, for x < 0.35, the evolution is similar in both cases, ie.,
increasing transport velocity at higher locations (decreasing values of
x). However, differently from the constant eccentricity case, in the
canal of varying eccentricity, the solute motion slows down as it
approximates the stagnation point separating the upper and central
recirculating regions, located at x ~ 0.27. At this position, where the
flow turns azimuthally from s=0.5 toward s =0, 1, the fluid hardly
advances toward the canal entrance [see the plateau at 0.5 < 7 < 1.2
in Fig. 14(a)], to subsequently move upward again in that region,
which is now the narrow one, with increasing velocities at locations
closer to the cranial vault. As a consequence, the time for the solute to
reach the canal entrance, 7., becomes three times larger than that in
the constant eccentricity configuration for the case at hand.
Furthermore, not only the advance velocity but also the amount of sol-
ute able to reach the entrance of the canal also decreases, since a part
of the solute remains trapped in the lower recirculating Lagrangian
vortex located below x ~ 0.27.

Figure 14(b) displays the comparison of the time evolution of sol-
ute concentration in the cranial vault for the constant and variable
eccentricity cases. Note that the rate at which the solute reaches the
cranial vault is lower in the case of variable eccentricity, since d(C)/dt
is smaller in this case than that in the canal with constant eccentricity,
as well as the quasi-asymptotic value of the concentration that reaches
the cranial vault. In view of the above results, it is evident that the
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formation of recirculating flow patterns hinders the dispersion of the
solute, with important implications concerning the rate at which a
drug injected in the lumbar region can reach target locations at the
cervical or cerebral level.

V. CONCLUSIONS

This experimental analysis addresses the motion of CSF in the
human SSAS, with attention given to the dispersion rate of a solute
injected at the low thoracic and lumbar regions, a key process in con-
nection with ITDD procedures. To that aim, we have conducted
in vitro experiments in a simplified annular geometry modeling the
SSAS, similar to that considered in previous theoretical ** and
numerical ° studies. A programmable pump has been used to induce a
harmonic fluid motion in and out of the compliant canal with a stroke
volume AV much smaller than the total volume contained in the
canal, that being the relevant limiting case for the flow in the SSAS.
The solute motion has been characterized with the use of LIF techni-
ques. In particular, the effects of the canal eccentricity and the oscilla-
tion frequency, the latter measured by the Womersley number, have
been assessed in a configuration with uniform eccentricity. A modified
geometry allowing for the spatial variation of the cross section eccen-
tricity, a key feature of the human spinal canal, has also been consid-
ered. The results have been compared with predictions obtained using
the analytical model developed in Refs. 19 and 28.

The results corroborate the existence of a slow net transport rate,
with characteristic times of order ¢ 2w ™! > w™!, which is regulated
by the convective transport driven by the time-averaged Lagrangian
velocity (i.e., the sum of the Eulerian steady-streaming velocity and the
Stokes-drift velocity) and, to a lesser extent, by the action of molecular
diffusion across the SSAS.”** In the constant-eccentricity configura-
tion, variations of the eccentricity are seen to yield significant varia-
tions in the induced transport velocities and associated amounts of
solute reaching the canal entrance, with the solute transport achieving
peak rates for intermediate values of /i ~ 0.5. Variations in the
Womersley number are seen to result in important changes in
the flow topology, in addition to the flow velocities. In particular, the
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FIG. 14. (a) Temporal evolution of the solute along a constant eccentricity canal of § = 0.42 (experiment 5 in Table ), and a canal whose eccentricity varies with x as
B cos (2nx), with = 0.5 (experiment 17 in Table |), for « =~ 4.4. Symbols represent the experimental measurements, and the solid lines the results given by the theoretical
model with (x, s) = 1. (b) Experimental measurements of the temporal evolution of the solute concentration in the cranial vault, (C)(z) = 1/A[,C da, for the constant and

the variable eccentricity canals (experimental sets 11 and 18, respectively, in Table 1).
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motion of solute was found to occur toward the cranial vault (bottom)
in the narrow (wide) region of the canal for f = 0.42 and o =~ 3,
whereas it occurred in the opposite direction for ff = 0.42 and
o ~ 11. On the other hand, the measurements conducted using a vari-
able eccentricity configuration revealed, for the first time in in vitro
experiments, the formation of recirculatory Lagrangian cells along the
canal. As a consequence, a part of the solute remained trapped inside
these cells, thus hindering its transport toward the cranial vault. The
results of this study are important in guiding future developments of
predictive tools to assist clinicians and to evaluate the effectiveness of
ITDD processes.
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