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a b s t r a c t

We propose a stationary system that might be regarded as a migration model of
some population abandoning their original place of abode and becoming part of
another population, once they reach the interface boundary. To do so, we show a
model where each population follows a logistic equation in their own environment
while assuming spatial heterogeneities. Moreover, both populations are coupled
through the common boundary, which acts as a permeable membrane on which
their flow moves in and out. The main goal we face in this work will be to
describe the precise interplay between the stationary solutions with respect to
the parameters involved in the problem, in particular the growth rate of the
populations and the coupling parameter involved on the boundary where the
interchange of flux is taking place.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this work we analyse the existence of stationary solutions of two different species living separately in
wo regions of a heterogeneous environment and having an interaction through a permeable membrane, the
ommon boundary of the two regions.

To be more specific, the problem we have in mind is a reaction–diffusion model with spatially heteroge-
eous coefficients that provides us with the stationary non-negative solutions for an evolution model of two
pecies, that live separately in two subdomains Ω1 and Ω2 of Ω ⊂ RN , see Fig. 1 and Section 2 for a precise

description of the domain. So that, if we denote the density of these populations by u1, u2, we have that
ui > 0 in Ωi and ui = 0 in Ω \ Ωi, with i = 1, 2. The model that describes their stationary behaviour is
shown as {

−∆u1(x) = λm1(x)u1(x) − a1(x)u1(x)p, in Ω1,
−∆u2(x) = λm2(x)u2(x) − a2(x)u2(x)p, in Ω2,

(1.1)
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Fig. 1. A possible configuration of the domain.

here λ is a real parameter and p > 1. The weights mi are assumed to be two positive L∞(Ωi) functions,
o that λmi(x) stands for the intrinsic growth rate of ui respectively. The coefficients ai(x) are two non-
egative Hölder continuous functions in C0,η(Ωi), for some η ∈ (0, 1], that measure the crowding effects of
he populations in the corresponding subdomains of Ωi. In order to take into account these effects, we define
he following subsets, related to the positivity of the potentials a1 and a2,

Ωa1
0 := {x ∈ Ω1 : a1(x) = 0} and Ωa2

0 := {x ∈ Ω2 : a2(x) = 0} (1.2)

so that Ω
a1
0 ⊂ Ω1, and Ω

a2
0 ⊂ Ω2, while ai remain positive in the rest of the subdomain Ωi.

The two populations only interact through the interior boundary, also called interface or membrane Γ .
oreover, we will consider a hostile outside region. Hence, the boundary conditions read as follows⎧⎨⎩

∂u1

∂n1
= ∂u2

∂n1
= µ(u2 − u1), on Γ ,

ui = 0, on Γi, with i = 1, 2,
(1.3)

where n1 is the unitary outward normal vector of Γ , which points outward with respect to Ω1 and µ > 0 is a
real parameter, the membrane permeability constant. Note that the intersections between both manifolds Γi

and Γ satisfy both boundary conditions. Hence, at these points we have the continuity between both sides
and the set Γ could be assumed to be closed if we include these intersection points, in case of having the
standard configuration shown in Fig. 1.

The major novelty that we address in this paper stems from the boundary conditions. Indeed, besides
the usual Dirichlet data on the boundary of Ω , we also consider an interior interface condition. Our aim
s to describe the behaviour of the solutions for that interface problem. The main results that we show,
ee Sections 5 and 6, state the existence and behaviour of solutions to problem (1.1)–(1.3) considering two
ifferent configurations for the potentials ai. First, we will deal with the non-degenerate case, in which
i are positive everywhere. We obtain that there exist positive solutions to (1.1)–(1.3) if the parameter λ
s bigger than a certain λ∗, while below that value λ∗ we just have the trivial solution everywhere. The
ituation changes radically in the degenerate case, in which we assume two vanishing domains, Ωai

0 , inside
he subdomains Ωi, where the coefficients ai are neglected. In this case, problem (1.1)–(1.3) has positive
olutions if the parameter λ is bounded between two precise constants λ∗ < λ < λ∞. As in the previous
ase, if λ < λ∗ one just finds the trivial solution. If λ ≥ λ∞ we get a blow-up behaviour in uniformly
ompact subsets of Ω

ai
0 . In the complement of these blow-up regions we find a steady-state solution that

lows-up at the border of the regions. We notice that, even though the behaviour we obtain here is similar to
logistic model with spatial heterogeneities and vanishing subdomains (cf. [1]), our model has an important

eometrical issue which makes the results more constrained to some conditions. These geometrical aspects
ive richer situations and allow us to study a novel branch of problems that aim to model situations in which
nterior membranes appear, a circumstance which has been little studied from a rigorous point of view.
2
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Furthermore, many problems that arise in biology, physics and/or medical science can be modelled by
onsidering two subdomains with a common interior membrane that allows permeation from one domain to
he other one. This interface boundary condition, also called the Kedem–Katchalsky interface condition, [2],
as introduced in 1961 in a thermodynamic setting. These conditions, describing the flow through the
embrane, are compatible with mass conservation lead to flux continuity, and energy dissipation, that gives
s that the flux is proportional to the jump of the function through the membrane with proportionality
oefficient µ; see [3] for further details.

From a biological point of view, the use of Kedem–Katchalsky interface conditions goes back to [4],
here the authors studied the dynamics of the solute in the vessel and in the arterial wall. Since then,
iological applications of membrane problems have increased and have been used to describe phenomena
uch as tumour invasion, transport of molecules through the cell/nucleus membrane, cell polarisation and
ell division or genetics, see [3] and references therein.

As far as the study of the mathematical properties is concerned, articles that include a geographical barrier
re relatively few. We were only aware of a few works: In [5] a semi-linear parabolic problem is considered.
hey investigate the effects of the barrier on the global dynamics and on the existence, stability, and profile
f spatially non-constant equilibria. A similar problem was previously considered in [6] and [7]. His analysis
as mainly in the framework of the existence of weak solutions of parabolic and elliptic differential equations
ith barrier boundary conditions. The author establishes a new comparison principle, the global existence of

olutions, and sufficient conditions of stability and instability of equilibria. He shows, in particular, that the
tability of equilibrium changes as the barrier permeability changes through a critical value. Very recently,
iavolella and Perthame [3] and [8] adapted the well-known L1-theory for parabolic reaction–diffusion

ystems to the membrane boundary conditions case and proved several regularity results. Finally, in [9]
semi-linear elliptic interface problem is studied. The authors analyse the existence and uniqueness of

ositive solutions, under the assumption that the interface condition in not symmetric, allowing different
n and out fluxes of the domain. Although we assume symmetry on the interface our results are also valid
or non-symmetric conditions. It is worth mentioning that all these references deal with problems that do
ot consider refuges (that is Ω

ai
0 are empty).

Organisation of the paper. — In Section 2 we go through the model we are dealing with and fix the
otation that we are going to use throughout the paper. Section 3 is devoted to the study of two auxiliary
inear problems that take into account the interface condition. In Section 4 we describe the limit behaviour
f a parameter dependent linear elliptic eigenvalue problem that will be crucial to establish the main results
f the paper, when applying the method of sub and supersolutions for the existence of solutions. Finally,
e state and prove the main results of the paper in Sections 5 and 6. Section 7 is devoted to presenting the
onclusions of this paper and to establish some open problems.

. Preliminaries

The aim of this section is to comment on the special characteristics of the model. In particular, we describe
t both from a biological and mathematical point of view. We also describe the notation that we are going
o use.

.1. The model

The equations in (1.1) arise occur in population dynamics as a stationary model of reaction–diffusion
quations in which the individuals of a group live in a domain where neither competition or cooperation
ith other species exists. The model equation

p
−∆u(x) = λm(x)u(x) − a(x)u(x)
3
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ssuming spatial heterogeneities was first mathematically analysed by Cantrell and Cosner in their seminal
aper [10], with p = 2. Here the population grows following a logistic (when a > 0) or Malthusian behaviour

(in the regions where a = 0), λm(x) stands for the intrinsic growth rate of the population, since the function
m(x) is going to be considered strictly positive, at any point x, and λ will be a positive parameter. Moreover,
a(x) is the so-called intra-specific competition. Therefore, in the regions where a = 0, the refuges or regions
with unlimited resources, the population grows without limits.

Hence, the model we consider here could represent the migration or relation of two groups of the previous
population living in different regions of a common habitat, but having some interaction between them,
through an interchange of flux on the common boundary, Γ , that can be seen as a natural or geographical
barrier. For the transmission condition

∂u1

∂n1
= ∂u2

∂n1
= µ(u2 − u1)

the parameter µ measures the strength of the membrane. The flux of individuals remains continuous being
proportional to the change of density across the barrier by a rate 1/µ. Therefore, the smaller µ is the stronger
he barrier is. And in fact, at the limit, when µ → 0, there is no transmission across Γ . The limit problem

consists of two populations living separately in two different domains with homogenous mixed boundary
conditions, Dirichlet on Γi and Neumann on Γ , see [11] for properties of this type of problems.

If only one of the populations is zero on Γ , say u1, then, again, the problem for u2 becomes uncoupled,
with mixed homogenous boundary conditions, Robin on Γ and Dirichlet on Γ2. Clearly, we can understand
the problem that defines the behaviour of u1 as a problem with non-homogeneous mixed boundary data in
Ω1. Moreover, this would also allow the existence of semi-trivial solutions of the type (u1, 0)T having now
u1 homogeneous boundary conditions on ∂Ω1.

2.2. Basic notation and functional setting

Though one of the aims we have in mind consists of understanding this problem as a whole system,
in vectorial logistic form in the whole domain Ω , depending on the results and proofs we are dealing with,
sometimes it will be more convenient to work with a two equation point of view. For the sake of completeness,
we think that it is worth writing this short subsection to state the notation we are going to use throughout
the paper.

Domains and geometry: To fix the geometric structure of the problem let Ω ⊂ RN , with N ≥ 2 be a
ounded, connected domain. We split Ω into two non-empty, regular sets, Ω1 and Ω2, such that Ω = Ω1∪Ω2.
e will denote by Γ the inside boundary, Γ = Ω1 ∩Ω2 and by Γ1 := ∂Ω1 \Γ and Γ2 := ∂Ω2 \Γ the outside

oundaries. It is worth noting that in Fig. 1 we are assuming that Γ1 and Γ2 are non-empty. However, it
ould be also possible to have, say Γ1 = ∅ and Γ = ∂Ω1 which in turn would mean Ω1 ⊂ Ω2 (see [12] or [9]).
his configuration, though possible and easily applicable, is not considered here. We also assume that these
omains, as well as all the possible subsets appearing throughout the paper, are as regular as necessary; let
s say with Lipschitz boundary, which again will play a role in obtaining some of the results.

We will use the subscript 1, respectively 2, to denote objects (functions, parameters...) defined in Ω1 (resp.
2) and each time we write the subscript i we mean i = 1, 2 and we will not mention it anymore.
Vectors: In order to simplify notation, we will use capital letters to denote the vector corresponding to

pair of functions (typically solutions of a system), where the first entry is defined in Ω1, or defined equal
o zero in Ω2, and the second one in Ω2. Thus, for example, we will write U to denote the vector (u1, u2)T ,
here ui : Ωi → R and U(x) will stand for (u1(x), 0)T if x ∈ Ω1 and (0, u2(x))T if x ∈ Ω2. By abuse of
otation we will use ∇U to denote (∇u1,∇u2)T . Also, we will write Φ > 0 if ϕ1 > 0 in Ω1 and ϕ2 > 0 in
2 and Φ ⪰ 0 if we allow one of the components to be identically zero in its domain, while the other one
s positive.
4
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Matrices: All the matrices that appear in this paper come from a two equation framework. Hence, they
re 2 × 2 and in most of the cases, diagonal.

We will keep the letter L to denote the “laplacian diagonal matrix,” I will stand for the 2 × 2 identity
atrix and we will denote other matrices using capital boldface letters, for instance

L =
(

−∆ 0
0 −∆

)
, F =

(
f1 0
0 f2

)
where fi will be functions. We will denote L + F as LF. In Section 5 we will deal with the inverse of the
laplacian. With this aim, we will also define the diagonal matrix

L−1 =
(

(−∆)−1 0
0 (−∆)−1

)
. (2.1)

As before, we will write C > 0 (or ≥) to denote a matrix with positive (non-negative) entries and we will
write C > D if C − D > 0 (respectively < or ≤, ≥). Moreover, C+ will stand for the positive part of the
matrix in the sense that we take the positive part of each entry (which are usually functions) in the matrix.

Integrals: To simplify notation and if no confusion arises, as is commonly occurs in the literature, we will
avoid writing differentials on the integrals. It will be understood that integrals in Ω or Ωi require dx and
integrals over boundaries, for instance Γ or ∂Ωi, have a surface differential such as ds.

Functional spaces: In order to deal with problem (1.1)–(1.3) and the related ones, described in the next
sections, we have to fix our framework. For this reason we denote the space of continuous functions with the
flux condition on Γ as

CΓ (Ω) := {Ψ ∈ C(Ω1) × C(Ω2) : ∂ψ1

∂n1
= ∂ψ2

∂n1
= µ(ψ2 − ψ1) on Γ}.

As for the continuous functions up to the boundary we will write

CΓ (Ω) := {Ψ ∈ C(Ω1) × C(Ω2) : ∂ψ1

∂n1
= ∂ψ2

∂n1
= µ(ψ2 − ψ1) on Γ}.

We consider, following [12], functions ψi defined in Ωi belonging to the spaces C⋆(Ωi) defined as the set of
ll continuous functions with compact support in Ω = Ω1 ∪ Ω2; that is ψi is the restriction of a function of
ompact support in Ω to the subdomain Ωi and we define, as before

C⋆,Γ (Ω) := {Ψ ∈ C⋆(Ω1) × C⋆(Ω2) : ∂ψ1

∂n1
= ∂ψ2

∂n1
= µ(ψ2 − ψ1) on Γ}.

nalogously we define the spaces of continuously differentiable and Hölder continuous functions C1
Γ , C0,η

Γ ,
1,η
Γ , C1

⋆,Γ , . . . for some η ∈ (0, 1].
We will denote by L the product space L2(Ω1)×L2(Ω2), and consider its usual scalar product ⟨Φ,Ψ⟩L =
i⟨φi, ψi⟩L2(Ωi) and the induced norm ∥Φ∥2

L = ⟨Φ,Φ⟩L =
∑

i ∥φi∥2
L2(Ωi). Following [3], let H0 be the

ilbert space of functions H1
0 (Ω1) × H1

0 (Ω2), satisfying Dirichlet homogeneous conditions on Γ1 and Γ2.
hen, we define HΓ as

HΓ := {Ψ ∈ H0 : ∂ψ1

∂n1
= ∂ψ2

∂n1
= µ(ψ2 − ψ1) on Γ},

quipped with the norm

∥Ψ∥2
HΓ

:= ∥∇Ψ∥2
L = ∥∇ψ1∥2

L2(Ω1) + ∥∇ψ2∥2
L2(Ω2).

Obviously, HΓ is a Hilbert space and we define the scalar product in HΓ as
⟨Φ,Ψ⟩HΓ
:= ⟨∇φ1,∇ψ1⟩L2(Ω1) + ⟨∇φ2,∇ψ2⟩L2(Ω2) .

5
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hus, since HΓ is a closed linear subspace of H0, it is a Banach space in which the following compact and
ontinuous embedding hold:

HΓ ↪→ L, and HΓ → LΓ := L2(Γ ) × L2(Γ ). (2.2)

oreover, if Φ ∈ HΓ we have
∫
Γ
φ2

i =
∫

∂Ωi
φ2

i , and due to the trace inequality, we find that∫
Γ

φ2
i = ∥φi∥2

L2(∂Ωi) ≤ CΩi
∥φi∥2

H1(Ωi),

ith CΩi
> 0, depending on the domain Ωi. It is worth pointing out that, due to Poincare’s inequality the

orms ∥ · ∥HΓ
and ∥ · ∥H0 are equivalent. Therefore, if CΩ is a positive constant, we define a global trace

nequality as (∫
Γ

φ2
1 +

∫
Γ

φ2
2

)
= ∥Φ∥2

LΓ
≤ CΩ∥Φ∥2

HΓ
.

Finally, we consider the linear operator LF : D(LF) = HΓ → L. Using this framework, we can rephrase
ur original problem (1.1)–(1.3) as follows:

Find U ∈ HΓ such that,
(L−λM + AUp−1)U = 0, (2.3)

here Up stands for (up
1, u

p
2)T .

A natural idea of what a positive weak solution is, consists in considering functions that vanish on ∂Ω but
mposing the inside boundary condition. Hence we define a weak solution to (2.3) by formally multiplying
in L) by a test function Φ and integrating by parts. The precise definition reads as follows:

efinition 2.1. Let U ∈ HΓ be positive. We will say that U is a (weak) solution of (2.3) if∫
Ω1

∇u1 · ∇φ1 +
∫
Ω2

∇u2 · ∇φ2 +
∫
Γ

µ(u2 − u1)(φ2 − φ1) = λ⟨MU,Φ⟩L − ⟨AUp,Φ⟩L,

or Φ = (φ1, φ2)T ∈ C∞
⋆,Γ .

We define weak sub- and supersolutions as usual; i.e, by replacing in the definition of solution equality
y ≤ or ≥ respectively.

. Auxiliary problems

This section is devoted to state the general properties for two interface linear problems related to (1.1)
hat we will use in the next sections. We collect them here for the sake of completeness and refer the reader
o [3,9], or [5] for the detailed proofs.

.1. A linear problem

Let us consider the linear problem given by{
(−∆ + f1(x))u1(x) = g1(x), in Ω1,
(−∆ + f2(x))u2(x) = g2(x), in Ω2,

(3.1)

ogether with boundary conditions⎧⎨⎩
∂u1

∂n1
= ∂u2

∂n1
= µ(u2 − u1), on Γ , (3.2)
ui = 0, on Γi, with i = 1, 2,
6
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here F = (f1, f2)T , G = (g1, g2)T and F > 0. Using the notation introduced in Section 2 we can rewrite
his problem in a more compact form as

LFU = G in Ω . (3.3)

ssociated with problem (3.1)–(3.2) we define the bilinear form a : HΓ → R, given by

a(U, V ) =
∫
Ω1

∇u1 · ∇v1 +
∫
Ω2

∇u2 · ∇v2 +
∫
Ω1

f1u1v1 +
∫
Ω2

f2u2v2 +
∫
Γ

µ(u2 − u1)(v2 − v1), (3.4)

nd, consequently, a weak solution of (3.1)–(3.2) is a function U ∈ HΓ such that

a(U, V ) = ⟨G,V ⟩L

for all V ∈ HΓ .

Theorem 3.1. If F ∈ L∞(Ω1) × L∞(Ω2) and G ∈ L, then (3.1)–(3.2) has a unique weak solution U .
Moreover, there exits a positive constant C, such that

∥U∥HΓ
≤ C(∥G∥L + ∥U∥L).

Proof. The proof might be performed after applying Lax–Milgram Theorem by showing first that the
bilinear form a(·, ·) is continuous and coercive in the Hilbert space HΓ . We omit the details here, which can
be adapted from [3], [9] and [5]. □

Under these conditions, we define the resolvent operator for (3.3), (LF)−1 : L → HΓ , by

G ∈ L ↦→ U := (LF)−1G ∈ HΓ ,

having the following.

Lemma 3.2. The resolvent operator (LF)−1 is linear, continuous and compact.

Proof. The continuity and linearity of the resolvent (LF)−1 are clear from Lax–Milgram Theorem. To show
the compactness of the resolvent we take a sequence Gn ∈ L such that

lim
n→0

∥Gn −G∥L = 0,

and set U = (LF)−1G, Un = (LF)−1Gn for n ≥ 1. Now, using the bilinear form (3.4), we get

a(Un − U,Un − U) = ⟨Gn −G,Un − U⟩L, ∀n ≥ 1.

Since a(·, ·) is coercive

∥Un − U∥2
HΓ

≤ C|a(Un − U,Un − U)| = C|⟨Gn −G,Un − U⟩L| ≤ C∥Gn −G∥L∥Un − U∥HΓ
.

Consequently,
∥Un − U∥HΓ

≤ C∥Gn −G∥L → 0, as n → ∞,

showing that the resolvent is a compact operator. □

Next, by elliptic regularity, see [13] and [5], and also as a direct consequence of the comparison principle
stated in [5], we have the following result:
7
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heorem 3.3. Let F,G ∈ C0,η(Ω1) × C0,η(Ω2) for some η ∈ (0, 1) and F > 0, then (3.3) has a unique
olution U ∈ C2,η

Γ (Ω) that verifies
∥U∥

C
2,η
Γ

≤ C∥G∥C0,η .

oreover, if G ≥ 0, then U ≥ 0.

To end this subsection, let us consider, for F ∈ C0,η(Ω1) × C0,η(Ω2) the eigenvalue problem

LFU = σU in Ω . (3.5)

his problem will be crucial in the sequel to describe the existence of solutions for the nonlinear prob-
em (2.3). We firs notice that having a compact and positive resolvent, one has that the spectrum of LF

ight contain infinitely many isolated eigenvalues (see for instance [14]) and together with the compactness
f the operator, we have that the spectrum is discrete and each one of the eigenvalues has finite multiplicity.
s it is usual in the literature, see for instance [15], we introduce the following definition.

efinition 3.4. Given an operator A and a domain O = O1 ∪O2, we will say that Σ [A; O] is the principal
igenvalue of A in O if Σ [A; O] is the unique value for which AΦ = Σ [A; O]Φ (together with the boundary
onditions) possesses a solution Φ with Φ ⪰ 0. Such a function Φ is called principal eigenfunction.

Note that it is common to assume that the principal eigenfunction is positive in O. In our context we only
mpose that one of the two components is positive in O1 (or O2), allowing the other one to be identically 0.

heorem 3.5. Problem (3.5) has a principal eigenvalue Σ [LF;Ω ] which is unique and simple (i.e., the
lgebraic multiplicity is 1). Moreover, Σ [LF;Ω ] is continuous and monotone increasing with respect to µ.

The proof of this result is a consequence of the previous analysis and can be found in [5].

.2. A weighted linear eigenvalue problem

Let us now extend the results shown for problem (3.5) to a weighted eigenvalue problem of the form

LFΦ = λMΦ in Ω , (3.6)

here mi are assumed to be two positive L∞(Ωi) functions. Problem (3.6) is the short version of the
quivalent problem of finding (φ1, φ2)T ∈ HΓ such that{

(−∆ + f1)φ1 = λm1(x)φ1 in Ω1,

(−∆ + f2)φ2 = λm2(x)φ2 in Ω2.
(3.7)

ith boundary conditions

∂φ1

∂n1
= ∂φ2

∂n1
= µ(φ2 − φ1) on Γ , φ1 = 0 on Γ1, φ2 = 0 on Γ2. (3.8)

imilar weighted systems, with the solutions defined in the whole domain Ω , but without the interface
oundary condition, were studied in, for instance, [16]. For the one equation setting see [17].

efinition 3.6. A function Ψ ∈ H is said to be strongly positive, denoted by Ψ ≫ 0, if Ψ ∈ CΓ (Ω) and
the following two conditions hold:

(i) For any x ∈ Ω ∪ Γ , ψ (x) > 0; and
i i

8
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ii) for any y ∈ Γi,
∂ψi(y)
∂ni

< 0 and ψi(y) = 0.

Lemma 3.7. Let Φ ∈ HΓ be a non-negative solution of (3.6) associated with a positive eigenvalue λ. Then
Φ is strongly positive.

Proof. Let (φ1, φ2)T ∈ HΓ be a non-negative solution of (3.7)–(3.8). Now, following the analysis developed
in [18], let v1 ∈ H1

0 (Ω1) be a positive solution to the auxiliary problem{
(−∆ + f1)v1 = g1, in Ω1,
v1 = 0, on ∂Ω1,

with g1 = λm1(x)φ1 ≥ 0. (3.9)

y assumption, we have that φ1 ≥ 0 on Γ and, hence, φ1 is a supersolution for the auxiliary problem (3.9),
uch that by the comparison principle and the maximum principle

φ1 ≥ v1 > 0 in Ω1.

urthermore, we show that actually the solution φ1 is strictly positive on Γ . Indeed, if we assume that
φ1(x0) = 0 for some x0 ∈ Γ , due to Hopf’s Lemma we have that

∂φ1(x0)
∂n1

< 0,

hich means that x0 is not a minimum of φ1 in Ω1, contradicting the fact that φ1(x0) = 0. Therefore,
1 > 0 on Γ . Condition (ii) is also a direct consequence of Hopf’s Lemma.
On the other hand, we also consider a second auxiliary problem{

(−∆ + f2)v2 = λm2(x)φ2, in Ω2,
v2 = φ1, on ∂Ω2.

(3.10)

hanks to the strong maximum principle and since φ1 > 0 on Γ ⊂ ∂Ω2 we find that v2 > 0 in Ω2.
onsequently, since φ2 is a supersolution to problem (3.10) it follows that

φ2 ≥ v2 > 0 in Ω2,

howing the strong positivity of the eigenfunction Φ.
The fact that each φi ∈ C(Ωi) follows from elliptic regularity and the previous subsection. □

emark 3.8. Having that any non-negative solution is actually a strong positive solution is in some sense
way of having the strong Maximum Principle and the existence of a positive strict supersolution. In fact,

nce we have that the first eigenvalue is positive, by the previous Lemma 3.7 we find that the eigenfunctions
ssociated with it are positive. This provides us with a strict positive supersolution. Indeed, for the operator
F +ΛI, with Λ a sufficiently large positive constant, positive constants Υ are positive strict supersolutions

n the sense that
(LF + ΛI)Υ > 0 in Ω , or Υ > 0 on ∂Ω .

Furthermore, we will now prove that the first eigenvalue is actually positive and simple, in the sense of
lgebraic multiplicity 1, applying Krein–Rutrman Theorem as one of the main ingredients. To do so, the
ext definition is an important element in order to apply the classical Krein–Rutman Theorem.

efinition 3.9. Let P be a positive cone with non-empty interior in HΓ and T : HΓ → HΓ a linear
perator. We say that T is strongly positive if

T (P \ 0) ⊂ IntP.

9
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See [19,20] for more details on strongly positive operators and positive cones. The next theorem shows
hat (3.6) has indeed a principal eigenvalue.

heorem 3.10. Problem (3.6) has a principal eigenvalue denoted by λ1. Moreover, λ1 is real, simple (in
he sense of multiplicities) and strictly positive.

The proof of this theorem will relay on the analysis of the eigenvalues of two problems related to (3.6),
hat we analyse in the following two lemmas.

emma 3.11. Let r(Kλ) be the spectral radius of the operator Kλ : HΓ → HΓ denoted by

Kλ := (LF + ΛI)−1(λM + (Λ + ω)I). (3.11)

For any λ ∈ R such that
λmi + (Λ + ω) > 0. (3.12)

holds, r(Kλ) is positive and simple. Moreover, it is the principal eigenvalue of

KλΦ = σΦ. (3.13)

Proof. The result is a direct consequence of the Krein–Rutman Theorem (cf. [19, Theorem 3.2]), as well
as of several results performed in [21] and [17].

Let us first consider, for a fixed value of λ, the problem

LF−λMΦ = ωΦ. (3.14)

It is straightforward to see that λ ∈ R is an eigenvalue of (3.6) if and only if ω = 0 is an eigenvalue of the
operator LF−λM.

On the other hand, it is also easily seen, see [17] for a weak formulation of the result, that ω is an eigenvalue
of (3.14) if and only if σ = 1 is an eigenvalue of problem (3.13), where Kλ is an operator denoted by (3.11),
for any λ ∈ R. Here Λ is a constant (which depends on λ), chosen sufficiently large, so that condition (3.12)
and, thus, (LF + ΛI)−1 exists.

Then, it turns out that Kλ is a compact, strongly positive operator (see Definition 3.9). Indeed, first of
all observe that thanks to the embedding (2.2), we can ensure that Kλ : HΓ → HΓ is a compact operator.
In order to prove that Kλ is strongly positive, let us take Φ0 ∈ P \ {0}. Thus, thanks to the comparison
principle we find that the corresponding components are strictly positive in the interior of the subdomains
Ωi and, thanks to Hopf’s Lemma, we also have that the exterior normal derivatives are negative on the
boundary of Ω , where we have homogeneous Dirichlet boundary conditions. In other words, Definition 3.6
is satisfied by Φ0, proving that Kλ is strongly positive.

Consequently, due to Krein–Rutman’s Theorem, we have that Kλ has positive spectral radius, r(Kλ),
which is a simple eigenvalue of (3.13). Moreover, the associated eigenfunction Φ ∈ IntP is positive, in
the sense that Φ ⪰ 0, and there is no other eigenvalue with a positive eigenfunction. Hence, following
Definition 3.4, r(Kλ) is the principal eigenvalue of (3.13). Indeed, thanks to Lemma 3.7 we actually have
that the eigenfunction is strongly positive. □

Remark 3.12. It can be seen that, if Φ is the eigenfunction corresponding to the eigenvalue σ = 1 in
problem (3.13), then Φ is also an eigenfunction for ω in problem (3.14). The same happens for the pair
(0,Φ) and (λ,Φ) corresponding to (3.14) and (3.6), respectively.

¯
Lemma 3.13. For any ω > 0, there exists λ ∈ R such that r(Kλ̄) = 1.
10
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roof. First of all observe that, since (ω + Λ)I + λM is an increasing function of λ, we have that, as long
as (3.12) holds, Kλ1 < Kλ2 for λ1 < λ2. Hence, see [19] and [22], r(Kλ) is a continuous, increasing function
of λ.

Let us assume that ω > Σ [LF], where Σ [LF] is the principal eigenvalue of (3.5). Then, for λ = 0 and
using (3.13), we get that

r(K0) = Λ + ω

Λ + Σ [LF] > 1. (3.15)

e claim that there exists λ < 0, with |λ| large, such that r(Kλ) < 1. By continuity and monotonicity of
he spectral radius this yields the desire conclusion in the case ω > Σ [LF].

To prove such a claim we follow the ideas in [17]. Since

(ω + Λ)I + λM = (ω + Σ [LF] − 1 + Λ + 1 − Σ [LF])I + λM
≤ (Λ + Σ [LF] − 1)I +

(
(ω + 1 − Σ [LF])I + λM

)+  
:=A+

,

here A+ is defined as the positive part of the matrix, see Section 1, it yields to

r(Kλ) < r̂,

eing r̂ the spectral radius of the operator (LF + ΛI)−1(
(Λ + Σ [LF] − 1)I + A+)

. Hence, the claim follows
f we show that r̂ < 1 for λ < 0, with |λ| large.

By assumption, the weights mi are assumed to be two positive and bounded functions. Thus, we have
hat

lim
λ→−∞

(
(ω + 1 − Σ [LF])I + λM

)+ = 0.

et us denote by r the spectral radius of (LF + ΛI)−1(
(Λ + Σ [LF] − 1)I

)
. It is easy to see that

r = Λ + Σ [LF] − 1
Λ + Σ [LF] < 1.

inally, we have limλ→−∞ r̂ = r < 1, and we conclude that there exists λ̄ < 0 such that r(Kλ̄) = 1. □

Notice that if 0 < ω < Σ [LF], then (3.15) becomes r(K0) < 1. We can repeat the same proof by
onsidering the negative part and taking the limit as λ → ∞ to get r̄ > 1. By continuity if ω = Σ [LF]
hen λ̄ = 0.

orollary 3.14. For any ω > 0, there exists λ̄ ∈ R such that ω is the principal eigenvalue of (3.14).

roof. Lemma 3.13 implies that given any ω > 0 we can find λ̄ such that ω is an eigenvalue for the operator
F−λ̄M, see (3.14). The eigenfunctions corresponding to ω are the same as the eigenfunctions corresponding

o r(Kλ̄); see Remark 3.12. We conclude the proof by using Lemma 3.11 so that ω = Σ [LF−λ̄M;Ω ]. □

Proof of Theorem 3.10. As we have mentioned above, the problem of analysing the existence of a principal
eigenvalue of problem (3.6) is equivalent to the problem of finding a zero principal eigenvalue for (3.14). That
s, finding zeros for the function

Σ (λ) := Σ [LF−λM;Ω ].

t can be seen that this function is real analytic, continuous, decreasing and Σ (λ) → −∞ as λ → ∞; see [19]
nd [11] for further details. As a consequence of the previous results, we have that Σ (0) > 0. Thus, there
xists λ1 > 0, such that Σ (λ1) = 0, which implies that λ1 is an eigenvalue for (3.6). It is moreover the
rincipal eigenvalue and, as r(K ) is simple, so is λ . □
λ 1

11
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. Asymptotic behaviour of a spatially heterogeneous linear problem

In this section we ascertain the asymptotic behaviour of a parameter dependent linear elliptic eigenvalue
roblem that will be crucial in the sequel. In particular, the limiting problem obtained in this section will
rovide us with an eigenfunction used in the following sections to characterise the existence of positive
olutions by the method of sub and supersolutions.

Given a real parameter α, we consider the linear weighted elliptic eigenvalue problem

LαAΦα = λαMΦα (4.1)

or equivalently
(−∆ + αai(x))φi,α = λαmi(x)φi,α, in Ωi (4.2)

together with the boundary conditions given by (1.3).
Here, under the framework explained in the previous section, we assume that the principal eigenfunction

Φα is normalised, so that ∫
Ω1

m1(x)φ2
1,α +

∫
Ω2

m2(x)φ2
2,α = 1. (4.3)

Moreover, since Φα ⪰ 0 we can actually conclude that λα ≥ 0. In other words, λα is the value such that we
have an eigenfunction of the operator LαA−λαM corresponding to the (principal) eigenvalue zero, i.e.

Σ [LαA−λαM;Ω ] = 0.

We also observe that due to the monotonicity of the principal eigenvalue with respect to the domain (see [15]
or [11])

0 = Σ [LαA−λαM;Ω ] < Σ [L−λαM;Ω0],

where Ω0 = Ωa1
0 ∪ Ωa2

0 . Furthermore, let us consider the uncoupled problem{
−∆φ1,0 = σ1φ1,0 in Ωa1

0 , and φ1,0 = 0 on ∂Ωa1
0 ,

−∆φ2,0 = σ2φ2,0 in Ωa2
0 , and φ2,0 = 0 on ∂Ωa2

0 ,

where σi := σ[−∆;Ωai
0 ] denotes the principal eigenvalue for each equation. We define

σ[L;Ω0] = inf{σ1, σ2},

which is simple and positive. Note that the actual value of Σ [L;Ω0] depends only on the size of the
subdomains Ωa1

0 and Ωa2
0 . Now, applying the monotonicity of the principal eigenvalue with respect to the

potential we find that
Σ [L−λαM;Ω0] ≤ σ[L;Ω0] − λαm,

where m := inf{m1(x)|Ω1 ,m2(x)|Ω2}. Therefore, we have the following estimation for the eigenvalues λα,

λα <
σ[L;Ω0]
m

. (4.4)

Thanks to the monotonicity of the principal eigenvalue with respect to the potential we know that the
eigenvalues λα are increasing in terms of the parameter α and due to (4.4) bounded above. Therefore, for a
ufficiently big α we can say that the eigenvalues λα are strictly positive.

The following result will be of great importance in the proof of the main result of this section.

Lemma 4.1. For each fixed α > 0, let (λα,Φα) be a solution to (4.1). Then

∥Φα∥HΓ
≤ λα, µ

∫
(φ2,α − φ1,α)2 ≤ λα, α

(∫
a1φ

2
1,α +

∫
a2φ

2
2,α

)
≤ λα.
Γ Ω1 Ω2

12
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roof. Multiplying (4.1) by Φα ∈ HΓ and integrating by parts we get, for the left-hand side of (4.1)

⟨LαAΦα,Φα⟩L

=
∫
Ω1

|∇φ1,α|2 −
∫
Γ

φ1,α
∂φ1,α

∂n1
+

∫
Ω2

|∇φ2,α|2 +
∫
Γ

φ2,α
∂φ2,α

∂n1
+ α

(∫
Ω1

a1φ
2
1,α +

∫
Ω2

a2φ
2
2,α

)
=

∫
Ω1

|∇φ1,α|2 +
∫
Ω2

|∇φ2,α|2 +
∫
Γ

∂φ1,α

∂n1
(φ2,α − φ1,α) + α

(∫
Ω1

a1φ
2
1,α +

∫
Ω2

a2φ
2
2,α

)
.

Moreover, due to the inside boundary condition, the previous integral over Γ can be written as∫
Γ

∂φ1,α

∂n1
(φ2,α − φ1,α) = µ

∫
Γ

(φ2,α − φ1,α)2.

For the right-hand side of (4.1), we get, since we are considering a normalised Φα,

λα⟨MΦα,Φα⟩L = λα.

herefore,∫
Ω1

|∇φ1,α|2 +
∫
Ω2

|∇φ2,α|2 + α

(∫
Ω1

a1φ
2
1,α +

∫
Ω2

a2φ
2
2,α

)
+ µ

∫
Γ

(φ2,α − φ1,α)2 = λα,

and we conclude the result. □

Subsequently we want to analyse the asymptotic behaviour of (4.1), when the parameter α goes to infinity.
To do so, we consider also the following limit uncoupled problem{

−∆φ1,∞ = λ∞m1(x)φ1,∞ in Ωa1
0 , and φ1,∞ = 0 on ∂Ωa1

0 ,
−∆φ2,∞ = λ∞m2(x)φ2,∞ in Ωa2

0 , and φ2,∞ = 0 on ∂Ωa2
0 ,

(4.5)

where
λ∞ := inf{λm1 [−∆,Ωa1

0 ], λm2 [−∆,Ωa2
0 ]}, (4.6)

stands for the principal eigenvalue of problem (4.5) associated with the normalised eigenfunction Φ∞ ∈
H1

0 (Ωa1
0 ) ×H1

0 (Ωa2
0 ), with

φ1,∞ = 0 in Ω \ Ωa1
0 and φ2,∞ = 0 in Ω \ Ωa2

0 , (4.7)

and λmi [−∆,Ω
ai
0 ] are the principal eigenvalues of −∆φi = λmi(x)φi in the domain Ω

ai
0 under homogeneous

Dirichlet boundary conditions. Recall that, thanks to the definition of eigenfunction, we allow that one of
the components of Φ∞ is equal to zero, so that (4.5) may have a trivial equation.

Theorem 4.2. Let Ωa1
0 and Ωa2

0 be two non-empty subdomains and let (λα,Φα) and (λ∞,Φ∞) be a solution
to (4.1) and (4.5) respectively. Then, Problem (4.1) converges to the limiting problem (4.5) when the parameter
α goes to infinity in the sense that λα → λ∞ and Φα → Φ∞ in HΓ .

Before we state the proof of this theorem, let us discuss, through different possible situations, the limiting
behaviour of the eigenvalue λ∞ depending on the geometrical configuration of the vanishing subdomains Ωa1

0
and Ωa2

0 .
Assume first that

λ∞ = λm1 [−∆,Ωa1
0 ] = λm2 [−∆,Ωa2

0 ]. (4.8)

Then, each Eq. (4.5) is satisfied with positive uncoupled eigenfunctions that concentrate in the corresponding
subdomain of “more than enough resources”, Ωai

0 :
a1 a2
φ1,∞ > 0 in Ω0 and φ2,∞ > 0 in Ω0 .

13
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n the other hand, if we assume that, for example,

λ∞ = λm1 [−∆,Ωa1
0 ] < λm2 [−∆,Ωa2

0 ], (4.9)

(which might happen, for instance, if Ωa2
0 is bigger than Ωa1

0 and m1 = m2 at every single point), then the
limit eigenfunction concentrates in Ωa1

0 being zero in the rest of Ω , i.e. Φ∞ is defined by

φ1,∞ > 0 in Ωa1
0 and φ2,∞ = 0 in Ω2.

In general, we can conclude that for limit function

Φ∞ =
{

(φ1,∞, 0)T if λm1 [−∆,Ωa1
0 ] < λm2 [−∆,Ωa2

0 ],
(0, φ2,∞)T if λm2 [−∆,Ωa2

0 ] < λm1 [−∆,Ωa1
0 ].

(4.10)

Observe that the limit eigenfunction pair is just given in the corresponding domain Ωi while the limit
eigenfunction Φ∞ will be zero on both components in Ω \ Ωi respectively.

Proof of Theorem 4.2. Let {αn}n≥1 be an increasing unbounded sequence. For each αn we take the
normalised principal eigenfunctions Φαn of (4.1) with principal eigenvalue λαn . Note that then, thanks
o Lemma 4.1 and since the coefficients m1 and m2 are two positive L∞-functions, the norms for the
igenfunctions Φαn are bounded in HΓ . Moreover, since the embedding HΓ ↪→ L is compact, there exist a
ubsequence of {αn}n≥1, again labelled by n, and Φ∞ ∈ L such that

lim
n→∞

∥Φαn − Φ∞∥L = 0,

trongly and weakly in HΓ . Thus, we can extract a subsequence, again labelled by {Φαn}, weakly convergent
n HΓ and strongly in L to some function Φ∞.

Next, we will prove that {Φαn}n≥1 is actually a Cauchy sequence in HΓ . This implies that Φ∞ ∈ HΓ and

lim
n→∞

∥Φαn − Φ∞∥HΓ
= 0. (4.11)

ndeed, let n < m so that 0 < αn < αm. We define

Dn,m := ∥∇(Φαn − Φαm)∥L =
∫
Ω1

|∇(φ1,αn − φ1,αm)|2  
D1

n,m

+
∫
Ω2

|∇(φ2,αn − φ2,αm)|2  
D2

n,m

.

Using separately each of the equations in system (4.2) and taking into account the boundary conditions (1.3)
it gives that

D1
n,m =

∫
Ω1

|∇φ1,αn |2 +
∫
Ω1

|∇φ1,αm |2 − 2
∫
Ω1

⟨∇φ1,αn ,∇φ1,αm⟩

=
∫
Ω1

(λαnm1φ1,αn − αna1φ1,αn)φ1,αn + µ

∫
Γ

(φ2,αn − φ1,αn)φ1,αn

+
∫
Ω1

(λαmm1φ1,αm − αma1φ1,αm)φ1,αm + µ

∫
Γ

(φ2,αm − φ1,αm)φ1,αm

− 2
∫
Ω1

(λαnm1φ1,αn − αna1φ1,αn)φ1,αm − 2µ
∫
Γ

(φ2,αn − φ1,αn)φ1,αm .
14
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n,m is similar. Thus, rearranging terms, we are driven to

Dn,m = λαn

∫
Ω1

m1φ1,αn(φ1,αn − φ1,αm) + λαn

∫
Ω2

m2φ2,αn(φ2,αn − φ2,αm)

+ λαm

∫
Ω1

m1φ1,αm(φ1,αm − φ1,αn) + λαm

∫
Ω2

m2φ2,αm(φ2,αm − φ2,αn)

+ (λαm − λαn)
∫
Ω1

m1φ1,αnφ1,αm + (λαm − λαn)
∫
Ω2

m2φ2,αnφ2,αm +Rn,m + Fn,m,

here we have denoted by Fn,m the sum of all the terms involving integrals over Γ and Rn,m are the
emaining terms (terms involving integrals in Ωi and the potentials ai). Since {αn} is increasing we have

Rn,m =
∑

i=1,2

(
−αn

∫
Ωi

ai(φi,αn − φi,αm)2 − (αm − αn)
∫
Ωi

aiφ
2
i,αm

)
≤ 0.

n the other hand,

Fn,m = −µ
∫
Γ

(φ2,αn − φ1,αn)2 − µ

∫
Γ

(φ2,αm − φ1,αm)2 + 2µ
∫
Γ

(φ2,αn − φ1,αn)(φ2,αm − φ1,αm)

= −µ
∫
Γ

((φ2,αn − φ1,αn) − (φ2,αm − φ1,αm))2 ≤ 0.

n analysing the terms where the eigenvalues λαn are involved we take into consideration that the sequence
λαn} is increasing, thanks to the monotonicity of the principal eigenvalue with respect to the potential and
ounded above due to the estimation (4.4). Hence and subsequently, applying Hölder’s inequality, the order
f the sequence {λαn} and the upper bound for the eigenvalues λαn

Dn,m ≤ C

[∫
Ω1

(φ1,αn − φ1,αm)2 +
∫
Ω2

(φ2,αn − φ2,αm)2
]
, with C a positive constant.

herefore, (4.11) is satisfied and we have that the limit function Φ∞ ≥ 0 is normalised in the sense of (4.3).
The next step consists in showing that Φ∞ is indeed a solution to (4.5). First, we claim that (4.7) holds;

that is, φi,∞ = 0 outside Ω
ai
0 . In fact, thanks to Lemma 4.1 it follows that

lim
n→∞

(∫
Ω1

a1φ
2
1,αn

+
∫
Ω2

a2φ
2
2,αn

)
= 0.

Moreover, since the sets Ωi are disjoint, we have that each of the integrals above is equal to zero and hence,
due to the normalisation of Φ∞ and after applying Hölder’s inequality, we find that⏐⏐⏐⏐∫

Ωi

aiφ
2
i,αn

−
∫
Ωi

aiφ
2
i,∞

⏐⏐⏐⏐ ≤
∫
Ωi

ai(φi,αn + φi,∞)|φi,αn − φi,∞|

≤ max
Ω̄i

ai · ∥φi,αn −φi,∞∥L2(Ωi)

(∫
Ωi

φ2
i,αn

+φ2
i,∞+2φi,αnφi,∞

)1/2

≤ 2C max
Ω̄i

ai · ∥φi,αn − φi,∞∥L2(Ωi) → 0,

where C is a positive constant which depends on the coefficients mi. Therefore,∫
Ω1

a1φ
2
1,∞ +

∫
Ω2

a2φ
2
2,∞ = 0,

which concludes the proof of (4.7), since ai are nonnegative and identically zero in Ω
ai
0 .

Consequently, we show that (4.7) implies that

1 a1 1 a2
Φ∞ ∈ H0 (Ω0 ) ×H0 (Ω0 ).
15
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ndeed for a sufficiently small δ > 0, consider the open sets

Ω
ai
δ := {x ∈ Ωi : dist(x,Ωai

0 ) < δ }. (4.12)

ccording to (4.7),
Φ∞ ∈ H1

0 (Ωa1
δ ) ×H1

0 (Ωa2
δ ),

and, hence, there exists δ0 > 0 such that

Φ∞ ∈
⋂

0<δ<δ0

(
H1

0 (Ωa1
δ ) ×H1

0 (Ωa2
δ )

)
.

On the other hand, since Ωa1
0 and Ωa2

0 are smooth subdomains of Ω , they are stable in the sense of Babuska
and Výborný [23] and, therefore,

H1
0 (Ωa1

0 ) ×H1
0 (Ωa2

0 ) =
⋂

0<δ<δ0

(
H1

0 (Ωa1
δ ) ×H1

0 (Ωa2
δ )

)
.

Finally, we pass to the limit in the weak formulation of (4.1) to show that Φ∞ is indeed a (weak) solution
of (4.5). To this aim, consider the test function

Υ = (υ1, υ2)T ∈ C∞
0 (Ωa1

0 ) × C∞
0 (Ωa2

0 ).

Multiplying (4.1) (assuming α = αn, with n > 1) by Υ and integrating by parts gives rise to∫
Ω

ai
0

∇υi · ∇φi,αn = λαn

∫
Ω

ai
0

υimiφi,αn .

Consequently, passing to the limit as n → ∞, it is apparent that Φ∞ provides us with a weak solution of
the uncoupled problem

− ∆φ1,∞ = ℓm1(x)φ1,∞ in Ωa1
0 , and − ∆φ2,∞ = ℓm2(x)φ2,∞ in Ωa2

0 ,

together with (4.7) and φi,∞ ≥ 0 in Ω
ai
0 and where ℓ = limn→∞ λαn . Moreover, by elliptic regularity Φ∞ is

indeed a classical solution C2,η(Ωa1
0 ) × C2,η(Ωa2

0 ). Therefore, ℓ = λ∞. □

5. Existence of solutions for the non-degenerate case

In this section we characterise the existence and uniqueness of positive solutions U of problem (2.3) in
erms of the parameter λ in the case in which the coefficients of the non-linear terms ai are strictly positive
t every point of the domain Ωi. To this aim we define λ∗ as the principal eigenvalue of the problem

LΦ = λ∗MΦ in Ω , (5.1)

nder the boundary conditions (1.3), whose existence was analysed in Section 3. Note that λ∗ can also be
nderstood as the value such that the principal eigenvalue Σ [L−λM;Ω ] is 0.

heorem 5.1. Let Ωa1
0 = Ωa2

0 = ∅. For any λ, problem (2.3) admits a unique positive solution U ∈ C2,η
Γ (Ω)

f and only if
λ > λ∗. (5.2)

emark 5.2. Observe that condition (5.2) is equivalent to Σ [L−λM;Ω ] < 0, since the function Σ (λ) =
[L ;Ω ] is continuous and decreasing with respect to λ, see [22] for similar problems.
−λM

16
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roof. The proof, that uses the method of sub and supersolutions, see [19,24] for further details, follows
similar arguments to those shown in [1, Theorem 3.7] so we omit the details. □

In the next result we prove that there exists a branch of positive solutions of (2.3) emanating from the
rivial solution (λ,U) = (λ, 0) at λ = λ∗. This, indeed, means that λ∗ is a bifurcation point to a smooth
urve of solutions of (2.3), [25]. Moreover, since there is no other bifurcation point, this branch of positive
olutions goes to infinity, [26]. Additionally, we will show that the solutions are monotone with respect to
he parameter λ.

heorem 5.3. For any λ > λ∗, let θ(λ) := Uλ be the unique positive solution of problem (2.3). Then, the
ap

θ : (λ∗,∞) −→ CΓ (Ω), such that λ ↦→ θ(λ)

s of class C1. Moreover, θ(λ) > θ(η) if λ > η > λ∗, and θ bifurcates from (λ,U) = (λ, 0) at λ = λ∗, i.e.,

lim
λ↓λ∗

θ(λ) = 0. (5.3)

roof. Let us consider the operator F : R × CΓ (Ω) −→ CΓ (Ω), defined by

F(λ, U) := (I − L−1(λM − AUp−1))U,

here L−1 denotes the “inverse laplacian matrix”, denoted by (2.1). We know that F is of class C1 and, by
elliptic regularity, F(λ, ·) is a compact perturbation of the identity for every λ ∈ R.

We observe that, for each fixed λ > λ∗, if Uλ ∈ CΓ (Ω) is the positive solution to (2.3), then F(λ, Uλ) = 0.
oreover, since any non-negative solution turns out to be strongly positive, we have

0 = Σ [L−λM+AU
p−1
λ

;Ω ]. (5.4)

Differentiating F with respect to U , we have that, for every U ∈ CΓ (Ω),

DUF(λ, Uλ)U =
(
I − L−1(λM − pAUλ

p−1)
)
U,

and, in particular, as consequence of the compactness of the inverse operator L−1M, we get that DUF(λ, Uλ)
is a Fredhölm operator of index zero, since it is a compact perturbation of the identity map, see [14].
Moreover, we claim that it is injective, and hence a linear topological isomorphism. Indeed, let U ∈ CΓ (Ω)
uch that (

I − L−1(λM − pAUp−1
λ )

)
U = 0.

Then, by elliptic regularity, U ∈ C2,η
Γ (Ω) and, we have that

L−λM+pAU
p−1
λ

U = 0. (5.5)

n the other hand, owing to the monotonicity of the principal eigenvalue with respect to the potential, [11],
nd since p > 1, we find from (5.4) that

Σ [L−λM+pAU
p−1
λ

;Ω ] > 0 (5.6)

hich implies, together with (5.5) that U = 0, and hence, that DUF(λ, Uλ) is injective. Therefore, we have
hat DUF(λ,Uλ) is a linear topological isomorphism and hence, it is invertible.

Moreover, if we differentiate the nonlinear operator F(λ,Uλ) with respect to the parameter λ we have
hat

DUF(λ,Uλ)dUλ = −DλF(λ, Uλ).

dλ

17



P. Álvarez-Caudevilla and C. Brändle Nonlinear Analysis: Real World Applications 73 (2023) 103918

A

T

o
i

F

b

T
(
n

pplying the operator L on both sides, this latter expression yields

L−λM+pAUλ
p−1

dUλ

dλ
= MUλ.

herefore, since (5.6) holds, thanks to the characterisation of the maximum principle [27] we find that
θ′(λ) = dUλ

dλ is positive and, then, Uλ is increasing with respect to λ. Moreover, due to the uniqueness
f the positive solutions and the application of the Implicit Function Theorem it follows that the map θ(λ)
s of class C1.

Finally, to analyse the bifurcation of θ(λ) we observe that F(λ, 0) = 0 for all λ ∈ R and

DUF(λ, 0)U = (I − λL−1M)U, λ ∈ R, U ∈ CΓ (Ω).

or each λ ∈ R, we denote by Lλ the linear operator DUF(λ, 0). Also, Lλ is real analytic in λ, since it is a
compact perturbation of the identity of linear type with respect to λ. Thus, as a consequence, there exists
a λ0 such that Lλ0U = 0 if and only if there is U ̸= 0, U ∈ CΓ (Ω) such that

LU = λ0MU in Ω and U = 0 on ∂Ω . (5.7)

Thus, by definition of λ∗ we get λ0 := λ∗ and associated with it there is a unique solution Φ∗ ≻ 0 of (5.7),
up to a multiplicative constant. It is clear, then, that Ker[Lλ∗ ] = span(Φ∗). Now, set

L1 := dLλ

dλ
= −L−1M.

Moreover, the following condition holds:
L1Φ∗ ̸∈ R[Lλ∗ ], (5.8)

see [25]. Indeed, suppose by contradiction that there exists U ∈ CΓ (Ω) such that

(I − λ∗L−1M)U = −L−1MΦ∗.

Thanks to elliptic regularity we have U ∈ C2,η
Γ (Ω) and L−λ∗MU = MΦ∗. Multiplying by Φ∗ and integrating

y parts in Ω it follows that∫
Ω1

u1(−∆ − λ∗m1(x))φ1,∗ −
∫

∂Ω1

u1
∂φ1,∗

∂n1
+

∫
Ω2

u2(−∆ − λ∗m2(x))φ2,∗ −
∫

∂Ω2

u2
∂φ2,∗

∂n2

= −
(∫

Ω1

m1(x)φ2
1,∗ +

∫
Ω2

m2(x)φ2
2,∗

)
.

he left hand side will be zero since it represents the weak expression for the linear eigenvalue problem
5.7) with a test function U ∈ C2,η

Γ (Ω). However, this is impossible, because the right hand side is
egative. Therefore, condition (5.8) holds. Consequently, according to the main theorem of Crandall and

Rabinowitz [25], (λ, U) = (λ∗, 0) is a bifurcation point from (λ, U) = (λ, 0) to a smooth curve of positive
solutions of (2.3), since Φ∗ ≻ 0. Moreover, due to the uniqueness proved in Theorem 5.1, condition (5.3)
holds. Finally, applying the global bifurcation theorem of Rabinowitz [26] such a smooth curve of positive
solutions is actually an unbounded branch of positive solutions since there is only one simple eigenvalue for
the problem (5.7). □

6. Existence of solutions for the degenerate case

We are now concerned with the case in which a1 = 0 and a2 = 0 in some open subdomains of Ω1 and Ω2;
that is, we assume spatial heterogeneities such that Ωa1 ̸= ∅ and Ωa2 ̸= ∅.
0 0

18
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efinition 6.1. We say that U is a nonnegative subsolution (respectively U is a nonnegative supersolution)
to Eq. (2.3) if U ≥ 0 and⎧⎪⎪⎪⎨⎪⎪⎪⎩

L−λM−AUp−1U ≤ 0 (resp. ≥) in Ω ,

U ≤ 0 (resp. ≥), on ∂Ω ,

∂u1
∂n1

≤ µ(u2 − u1) −∂u2
∂n1

≤ µ(u2 − u1) on Γ , (resp. ≥).

heorem 6.2. Let Ωa1
0 ̸= ∅,Ωa2

0 ̸= ∅. Then, Problem (2.3) admits a unique positive solution U ∈ C2,η
Γ (Ω)

f and only if
0 < λ∗ < λ < λ∞, (6.1)

here λ∗ is given by (5.1) and λ∞ is given by (4.6).

emark 6.3. Analogously to Remark 5.2, condition (6.1) is equivalent to

Σ [L−λM;Ω ] < 0 < Σ [L−λM;Ω0] . (6.2)

ndeed, the function Σ (λ) := Σ [L−λM; O], for any domain O, is continuous and decreasing in λ, so that
here exists a unique value for the parameter λ, say λ̂, for which Σ (λ) = 0. Thus, if Σ (λ) stands for the
rincipal eigenvalue of the problem L−λMΦ = Σ (λ)Φ in O, we will find that Σ (λ) > 0 if λ < λ̂ and
(λ) < 0 if λ > λ̂. Using now, Ω and Ω0 instead of O we arrive at condition (6.1). Recall that for Ω0 we

ave characterised λ̂ as λ∞ in Section 4.

roof. Let us assume that U ∈ C2,η
Γ (Ω) is a positive solution of problem (2.3). Thanks to the uniqueness

of the principal eigenvalue we have
Σ

[
L−λM+AUp−1 ;Ω

]
= 0.

Then, applying the monotonicity of the principal eigenvalue with respect to the potential,

Σ [L−λM;Ω ] < Σ
[
L−λM+AUp−1 ;Ω

]
= 0.

Moreover, due to the monotonicity of the principal eigenvalue with respect to the domain and the spatial
configuration of ai it follows that

0 = Σ
[
L−λM+AUp−1 ;Ω

]
< Σ [L−λM;Ω0] .

Note that, depending on the order of the eigenvalues given by (4.8) or (4.9), the value of λ∞ might be
different. However, we are not distinguishing those cases here. It is just the smallest one.

On the other hand, if (6.1) holds we obtain the existence of positive solutions for problem (2.3) applying
the method of sub and supersolutions.

First we choose the supersolution and to do so, let us consider for sufficiently small δ > 0, the sets Ω
ai
δ

defined in (4.12). By the continuous dependence with respect to the domains, see [15],

lim
δ→0

Σ [−∆ − λmi;Ωai
δ ] = Σ [−∆ − λmi;Ωai

0 ].

Therefore, by assumption, for sufficiently small δ > 0,

0 < Σ [−∆ − λm ;Ωai ] < Σ [−∆ − λm ;Ωai ], (6.3)
i δ i 0

19
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ee (6.2). Let φδ,i, denote the principal eigenfunction associated with Σ [−∆ − λmi;Ωai
δ ], for δ fixed with

ero Dirichlet data on ∂Ω
ai
δ . Now, consider Ψ = (ψ1, ψ2)T defined as

ψi :=
{

φδ,i in Ω
ai
δ/2,

φ+,i in Ωi \ Ω
ai
δ/2,

here φ+,i is any smooth extension, positive and separated away from zero, chosen such that Ψ ∈ C2
Γ (Ω).

ote that φ+,i exists since φδ,i is positive and bounded away from zero on ∂Ω
ai
δ/2.

Subsequently, we show that kΨ is a supersolution of (2.3) for sufficiently large k. Indeed, by construction,
Ψ verifies the boundary condition on Γ and it is non-negative on ∂Ω . Moreover, since ai = 0 in Ω

ai
δ/2 and

> 0, from (6.3) we have

(−∆ − λmi)kφδ,i = Σ [−∆ − λmi;Ωai
δ ]kφδ,i ≥ 0 in Ω

ai
δ/2.

inally, in Ωi \ Ω
ai
δ/2 it follows that

(−∆ − λmi)φ+,i + aik
p−1φp

+,i ≥ 0,

or sufficiently large k > 1, since ai and φ+,i are positive and bounded away from zero. Therefore, kΨ
rovides us with a supersolution of (2.3) for sufficiently large k > 1.

As a subsolution we take ϵΦ0, for 0 < ϵ ≪ 1, and where Φ0 is the eigenfunction associated with the
rincipal eigenvalue Σ [L−λM;Ω ]. Indeed

ϵ(−∆ − λmi)φi,0 = ϵΣ [L−λM;Ω ]φi,0 < −ai(x)ϵpφp
i,0 in Ωi,

or sufficiently small ϵ > 0, since Σ [L−λM;Ω ] < 0, see (6.2). On the boundary we have the equality.
Once we have a subsolution and a supersolution to problem (2.3), applying standard iteration arguments

e are provided with the existence of a positive solution for the system (2.3). Moreover, as for the
on-degenerate case, the uniqueness follows again as shown in [1, Theorem 3.7]. □

emark 6.4. Theorem 5.3 holds in the case we are considering in this section since the monotonicity with
espect to the potential used in (5.6) only requires ai to be different from zero in sets of positive measure;
ee [28] for a discussion on that matter.

Next we analyse the asymptotic behaviour of the solution Uλ when the parameter λ is in the interval
λ∗, λ∞) but approximates to λ∞, both inside the sets Ωa1

0 and Ωa2
0 and outside them.

We have already seen in Theorem 5.3 that Uλ is strictly increasing for λ ∈ (λ∗, λ∞), see also Remark 6.4.
owever, we shall prove that positive solutions actually blow-up when λ approaches λ∞ in the respectively
anishing domains Ωa1

0 and Ωa2
0 and depending on (4.8) or (4.9).

heorem 6.5. For any fixed λ ∈ (λ∗, λ∞) let Uλ = (u1,λ, u2,λ)T be the unique positive solution of (2.3).
Then, as λ → λ∞:

• If λ∞ = λm1 [−∆,Ωa1
0 ] < λm2 [−∆,Ωa2

0 ] then u1,λ tends to infinity uniformly on every compact subset of
Ωa1

0 , while u2,λ ≡ 0.
• If λ∞ = λm2 [−∆,Ωa2

0 ] < λm1 [−∆,Ωa1
0 ] then u2,λ tends to infinity uniformly on every compact subset of

Ωa2
0 while u1,λ ≡ 0.

• If λ∞ = λm1 [−∆,Ωa1
0 ] = λm2 [−∆,Ωa2

0 ] then u1,λ and u2,λ tend to infinity uniformly on every compact
a1 a2
subset of Ω0 and Ω0 , respectively.

20
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roof. Let us consider a sequence {λn} converging from below to λ∞ as n → ∞ and the corresponding
nique solutions Uλn , which we denote, for simplicity, Un. Take two compact subsets Ki ⊂ Ω

ai
0 . Now,

or a fixed λn, let Φn be the principal eigenfunction associated with the principal eigenvalue λn of (4.1).
urthermore, thanks to the convergence of the linear problem (4.1) shown in Section 4, it follows that

Φn → Φ∞ in H1(K1) ×H1(K2),

s n → ∞, where Φ∞ is a solution of (4.5) and φ1,∞ or φ2,∞ might be identically 0, depending on (4.8), (4.9)
r (4.10). Hence, without loss of generality, let us assume that λ∞ = λm1 [−∆,Ωa1

0 ] < λm2 [−∆,Ωa2
0 ]. The

ther two cases are handled analogously.
It is straightforward to see that, if U = α

1
p−1
n Φn, then u1 satisfies

−∆u1 − λnm1u1 − a1u
p
1 ≤ 0 for x ∈ Ω1, u1|x∈Γ1 = 0, ∂u1

∂n1
− µ(u2 − u1)|x∈Γ = 0.

oreover, if C is a big enough constant, then Cφ2 is a supersolution in K2 to

−∆v − λnm2v = 0, v = sup
x∈∂K2

u2,n(x).

ince φ1,∞ > 0 in K1 and φ2,∞ = 0 in K2, by comparison we find that

u1,n ≥ α
1

p−1
n φ1,n → ∞ uniformly in K1, and u2,n ≤ Cφ2,n → 0 uniformly in K2.

Moreover, due to the convergence of the eigenfunctions proved in Section 4 it follows that u2,n → 0 uniformly
in Ω2. To conclude the proof we must prove convergence up to the boundary of Ωa1

0 for the component
u1,n. The proof consists on a geometric construction based upon an argument shown in [29] and argues by
contradiction.

Since λn > 0 for all n ≥ 1 we have that −∆u1,n = λnm1u1,n ≥ 0 in Ωa1
0 . Then, due to the maximum

principle it is enough to prove

u1,n(xn) := min
∂Ω

a1
0

u1,n(x) → ∞, as n → ∞,

where xn ≡ xλn ∈ ∂Ωa1
0 . Assume, by contradiction that there is a subsequence such that

u1,n(xn) ≤ κ for all n ≥ 1 and xn ∈ ∂Ωa1
0 , (6.4)

with κ a positive constant.
Due to the smoothness of ∂Ωa1

0 , there exists R > 0 and a map y : ∂Ωa1
0 → Ωa1

0 , such that for every
x ∈ ∂Ωa1

0
BR(y(x)) ⊂ Ω

a1
0 , BR(y(x)) ∩ ∂Ωa1

0 = {x}. (6.5)

Indeed, the map y provides us with the centre of the balls in Ωa1
0 satisfying (6.5). Observe that ∂Ωa1

0 ⊂ Ω1,
and the boundaries do not touch, ∂Ω1 ∩ ∂Ωa1

0 = ∅. In particular,

u1,n(x) ≥ u1,n(xn) for each x ∈ BR(y(xn)).

efine AR(y(xn)) = BR(y(xn)) \BR/2(y(xn)) and consider the problem⎧⎪⎨⎪⎩
−∆u = λnm1u in AR(y(xn)),
u = u1,n(xn) + cn

(
e−δR2/4 − e−δR2

)
on ∂BR/2(y(xn)), (6.6)
u = u1,n(xn) on ∂BR(y(xn)),
21
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here

cn =
minBR/2(y(xn)) u1,n(x) − u1,n(xn)

e−δR2/4 − e−δR2 .

It is clear that u1,n(xn) + cn

(
e−δR2/4 − e−δR2

)
≤ u1,n(x), for all x ∈ BR/2(y(xn)). Hence, u1,n(x) is a

supersolution of the problem (6.6).
Similarly, if we define for δ > 0 and x ∈ AR(y(xn)) the barrier function of exponential type (as in the

proof of the Hopf–Oleinik boundary lemma)

wn(x) := e−δ|x−y(xn)|2 − e−δR2
,

we can see that un(xn) + cnwn is a subsolution of (6.6). Indeed, a simple computation gives

(−∆ − λnm1)wn(x) =
(

2δN − 4δ2|x− y(xn)|2 − λnm1(xn)
)
e−δ|x−y(xn)|2 + λm1e

−δR2
.

Thus, for η > 0, there exists δ > 0 large enough such that

(−∆ − λnm1)wn(x) ≤ −η < 0 in AR(y(xn)).

Therefore, due to the comparison principle for (6.6), we have

u1,n(x) > u1,n(xn) + cnwn for every x ∈ AR(y(xn)). (6.7)

Finally, choose a compact set K ⊂⊂ Ω
ai
0 such that ∪∞

n=1BR/2(y(xn)) ⊂ K. Since u1,n(x) → ∞ uniformly
in K and, by assumption, ui,n(xn) < κ for all n, we have that

cn → ∞, as n → ∞ (in other words, when λn goes to λ∞). (6.8)

Furthermore, setting the normalised direction

nn := y(xn) − xn

R
,

t follows, using (6.7), that the partial derivative in that direction yields

∂u1,n

∂nn
(xn) = lim

t→0

u1,n(xn + tnn) − u1,n(xn)
t

≥ cn lim
t→0

wn(xn + tnn)
t

= cn lim
t→0

e−δ|xn+tnn−y(xn)|2 − e−δR2

t

= cn lim
t→0

e−δ|tnn−nnR|2 − e−δR2

t
≥ cn lim

t→0

e−δ(t−R)2 − e−δR2

t
= cn2δRe−δR2

.

onsequently, due to (6.8),
lim

n→∞

∂u1,n

∂nn
(xn) = ∞. (6.9)

n the other hand, we claim that
∂u1,n

∂nn
(xn) ≤ C, (6.10)

ontradicting (6.9) and proving that u1,n → ∞ uniformly in Ω
a1
0 .

We deal now with the proof of the claim (6.10). To this aim, we consider the auxiliary problem

p Ω
a1 , (6.11)
− ∆u = λnm1(x)u− a1(x)u in Ω1 \ 0
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ith boundary conditions

u = u1,n(xn) on ∂Ωa1
0 , u = 0 on Γ1,

∂u

∂n1
+ µu = C on Γ . (6.12)

here C > 0 depends on u2,n. Problem (6.11)–(6.12) admits a unique positive solution, vn, for every λn ≤ λ∞

ufficiently close, see [30]. Thus, if C is chosen so that min(u2,n) on Γ is bigger than C, then u1,n is a positive
trict supersolution for (6.11)–(6.12) and, by comparison

vn(x) ≤ u1,n(x), for any x ∈ Ω1 \ Ωa1
0 . (6.13)

Moreover, let v∞ be the unique positive solution of

−∆u = λ∞m1(x)u− a1(x)up in Ω1 \ Ω
a1
0

nd
u = κ on ∂Ωa1

0 , u = 0 on Γ1,
∂u

∂n1
+ µu = 0 on Γ ,

hich is, again by comparison, a supersolution to (6.11)–(6.12), with κ as the upper bound of un in (6.4).
y comparison we have vn < v∞ and, in particular, ∥vn∥L∞(Ω1\Ωa1

0 ) has a bound independent of n. Due
o the Lp estimates and the Sobolev embedding theorem we have that {vn} is a bounded sequence in
1,η(Ω1 \ Ωa1

0 ) and, hence, ∥∇vn∥L∞(Ω1\Ωa1
0 ) ≤ C, for a positive constant C. Finally, due to (6.13) and

ince vn(xn) = u1,n(xn), we conclude that

∂u1,n

∂nn
(xn) ≤ ∂vn

∂nn
(xn) ≤ C,

hich proofs the claim (6.10) and contradicts (6.9). □

Next, we analyse what happens outside the sets Ωa1
0 and Ωa2

0 . We deal first with the case λ∞ =
m1 [−∆,Ωa1

0 ] = λm2 [−∆,Ωa2
0 ]. To this aim we consider the problem

− ∆ui = λ∞mi(x)ui − ai(x)up
i in Ωi \ Ω

ai
0 , (6.14)

ith boundary conditions

∂u1

∂n1
= ∂u2

∂n1
= µ(u2 − u1) on Γ , ui = 0 on Γi (6.15)

and
ui = ∞ on ∂Ω

ai
0 . (6.16)

s is common in the literature, by ui = ∞ on ∂Ω
ai
0 we mean that ui(x) → ∞ as dist(x, ∂Ωai

0 ) → 0.

Lemma 6.6. For any λ ∈ (−∞,∞), Problem (6.14)–(6.16) has a minimal positive solution.

Proof. The proof of this result follows the same argument as in [29]. □

Theorem 6.7. For any fixed λ ∈ (λ∗, λ∞) let Uλ be the unique positive solution of (2.3). If λ∞ =
λm1 [−∆,Ωa1

0 ] = λm2 [−∆,Ωa2
0 ], then Uλ → Uλ∞ uniformly on compact subsets of Ω \ (Ωa1

0 ∪ Ω
a2
0 ), as

λ → λ , where U is the minimal positive solution of (6.14)–(6.16).
∞ λ∞
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roof. Consider an increasing sequence {λn} which converges to λ∞ as n → ∞ and let Un := Uλn be the
corresponding unique positive solutions to (2.3).

First, we first show that the sequence {Un} is uniformly bounded on every compact subset of Ω \ (Ωa1
0 ∪

Ω
a2
0 ). For a sufficiently small ϵ > 0 consider the ϵ–neighbourhoods

Ωi,ϵ := {x ∈ Ωi \ Ω
ai
0 ; dist(x,Ωai

0 ) > ϵ},

hich are smooth and non-empty.
For a positive constant cε, such that ai(x) > cϵ in Ω i,ϵ we consider, for a fixed n, the problem⎧⎪⎨⎪⎩

−∆ui = λ∞mi(x)ui − cϵu
p
i in Ωi,ϵ,

∂u1

∂n1
= ∂u2

∂n1
= µ(u2 − u1) on Γ ,

ui = 0 on Γi.

(6.17)

together with the boundary condition
ui = ui,n on ∂Ωi,ϵ. (6.18)

Thanks to Theorem 6.2, Problem (6.17)–(6.18) possesses a classical solution which is actually unique.
Moreover, by construction, Un is a subsolution for problem (6.17)–(6.18).

Next, we look for a supersolution to (6.17)–(6.18). To do so, consider Z, the unique solution to the
auxiliary problem (6.17), see [29], and replace the boundary condition (6.18) by

zi = ∞ on ∂Ωi,ϵ.

It is straightforward to see that Z is a subsolution to (6.17)–(6.18). Therefore, due to the comparison
principle

zi ≥ ui,n in Ωi,ϵ.

Moreover, since Z is bounded in Ω i,2ϵ, see [29], we have that there exists a positive constant such that
i,n ≤ C in Ω i,2ϵ, for every n ≥ 1. This implies, since ϵ > 0 is arbitrary, that Un is in fact uniformly
ounded on compact sets of Ω \ (Ωa1

0 ∪ Ω
a2
0 ).

Now, since Un are uniformly bounded and monotone (see Theorem 5.1 and Remark 6.3) we have that Un

converges to a limit function Uλ∞ in Ω \ (Ωa1
0 ∪ Ω

a2
0 ). Furthermore, by regularity we can pass to the limit

n problem (1.1) and (1.3) to get that Uλ∞ actually verifies (6.14)–(6.15). So, we only have to verify that
the limit function Uλ∞ verifies (6.16).

Indeed, since Un increases to Uλ∞ as n → ∞, we have that Uλ∞ > Uk, for any k ≥ 1. Now suppose that

lim
dist(x,∂Ω

ai
0 )→0

ui,λ∞ = ∞, uniformly for x ∈ Ω i \ Ω
ai
0 ,

s not true. Then, there exists a sequence xn ∈ Ω i \ Ω
ai
0 such that ui,λ∞(xn) ≤ C for any n ≥ 1 and some

onstant C > 0. So that we have ui,k(xn) ≤ C for all n ≥ 1 and k ≥ 1. On the other hand, owing to
heorem 6.5 we also know that ui,k(x∞) → ∞ as k → ∞, uniformly for any n ≥ 1, x∞ ∈ ∂Ω

ai
0 . Thus, there

xists k0 sufficiently large such that ui,k0(x∞) ≥ 3C for all n ≥ 1. Since ui,k0 is uniformly continuous we
educe that |ui,k0(xn) − ui,k0(x∞)| → 0. In other words,

ui,k0(xn) ≥ ui,k0(x∞) − C ≥ 3C,

which is a contradiction since we were assuming that ui,k(xn) ≤ C for all n ≥ 1 and k ≥ 1.
Finally, to see that Uλ∞ is actually the minimal positive solution of (6.14) we choose any solution Ûλ∞ of

6.14) and by comparison, Un < Ûλ∞ in Ω \ (Ωa1
0 ∪Ω

a2
0 ). Thus, letting n → ∞ we deduce that Uλ∞ < Ûλ∞ ,
and, hence, Uλ∞ is the minimal positive solution of (6.14). □
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<

c

Finally we consider the non-symmetric case in which the limit behaviour is given by λ∞ = λm1 [−∆,Ωa1
0 ]

λm2 [−∆,Ωa2
0 ]. To do so, we consider again problem (6.14)–(6.15), but now coupled with the boundary

ondition
u1 = ∞ on ∂Ωa1

0 , and u2 = 0 on ∂Ωa2
0 . (6.19)

Theorem 6.8. For any fixed λ ∈ (λ∗, λ∞) let Uλ be the unique positive solution of (2.3). If λ∞ =
λm1 [−∆,Ωa1

0 ] < λm2 [−∆,Ωa2
0 ], then Uλ → Uλ∞ uniformly on compact subsets of Ω \ (Ωa1

0 ∪ Ω
a2
0 ), as

λ → λ∞, where Uλ∞ is the minimal positive solution of (6.14)–(6.15) and (6.19).

Proof. The proof follows the same idea as the one performed to prove Theorem 6.7 and we omit it. We
only want to remark that, when passing to the limit we get for u2,∞

−∆u2 = λm1 [−∆,Ωa1
0 ]m2(x)u2 − a2(x)up

2 in Ω2 \ Ω
a2
0 .

This problem has a unique positive solution, since λm1 [−∆,Ωa1
0 ] < λm2 [−∆,Ωa1

0 ], see [29]. □

7. Conclusions and further work

In this work, we characterise the solutions of a steady-state model of population migration through
a membrane in terms of the intrinsic growth rate of the populations when crowding effects for those
populations are considered. Our strategy relies on the previous analysis of related linear problems, some
of them studied in [9] and [5] and applying afterwards the sub and supersolutions technique, [1], and the
results in [25], [29] and [26] to fully characterise the behaviour of positive solutions to the system.

A very interesting direction both from the biological and mathematical point of view, could be coupling
the system with a third equation, representing a population that inhabits everywhere and acts as either prey
or predator of the other two species. Moreover, we could also consider, following [9], different permeability
conditions on the membrane, not only from one side to the other side of the domain, i.e. non symmetric
conditions, but also a permeability that depends on the region of crossing from one side to the other. We
think that this would be a realistic approach to model, for instance, problems assuming geographical barriers
with different types of permeability terms.

Finally, our interest in analysing the existence of such stationary solutions comes from the fact that
this analysis is imperative as the first necessary step towards ascertaining the dynamics of the associated
parabolic problem. Although such a dynamical analysis has not been carried out in this work we plan to
perform it shortly.
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[14] H. Brezis, Analyse fonctionnelle, in: Collection Mathématiques Appliquées Pour la Mâıtrise (Collection of Applied
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