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We propose a stationary system that might be regarded as a migration model of
some population abandoning their original place of abode and becoming part of
another population, once they reach the interface boundary. To do so, we show a
model where each population follows a logistic equation in their own environment
while assuming spatial heterogeneities. Moreover, both populations are coupled
through the common boundary, which acts as a permeable membrane on which
their flow moves in and out. The main goal we face in this work will be to
describe the precise interplay between the stationary solutions with respect to
the parameters involved in the problem, in particular the growth rate of the
populations and the coupling parameter involved on the boundary where the
interchange of flux is taking place.
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1. Introduction

In this work we analyse the existence of stationary solutions of two different species living separately in

two regions of a heterogeneous environment and having an interaction through a permeable membrane, the

common boundary of the two regions.

To be more specific, the problem we have in mind is a reaction—diffusion model with spatially heteroge-

neous coefficients that provides us with the stationary non-negative solutions for an evolution model of two
species, that live separately in two subdomains §2; and 2 of 2 C RY, see Fig. 1 and Section 2 for a precise
description of the domain. So that, if we denote the density of these populations by ui,us, we have that
u; > 0in £ and u; = 0 in 2\ 2, with ¢ = 1,2. The model that describes their stationary behaviour is

shown as
{ —Auq () = dmy(x)uy (z) — ar(x)uq (z)?, in {2, (11)
—Aug(x) = dma(x)uz(z) — az(x)us(z)?, in {2, ‘
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Fig. 1. A possible configuration of the domain.

where A is a real parameter and p > 1. The weights m; are assumed to be two positive L>°({2;) functions,
so that Am;(x) stands for the intrinsic growth rate of w; respectively. The coefficients a;(z) are two non-
negative Holder continuous functions in C%7((2;), for some 7 € (0, 1], that measure the crowding effects of
the populations in the corresponding subdomains of 2;. In order to take into account these effects, we define
the following subsets, related to the positivity of the potentials a; and ag,

0t ={xe? : ai(x) =0} and 252 ={z € : as(z) =0} (1.2)

so that ﬁgl C 2, and 582 C {2, while a; remain positive in the rest of the subdomain (2;.
The two populations only interact through the interior boundary, also called interface or membrane I'.
Moreover, we will consider a hostile outside region. Hence, the boundary conditions read as follows

Our _ Ouz _ (ug —uq) on I’
on;  om, 2T ’ (1.3)
u; =0, on I;, with ¢=1,2,

where nj is the unitary outward normal vector of I', which points outward with respect to 2y and g > 0 is a
real parameter, the membrane permeability constant. Note that the intersections between both manifolds I
and [ satisfy both boundary conditions. Hence, at these points we have the continuity between both sides
and the set I' could be assumed to be closed if we include these intersection points, in case of having the
standard configuration shown in Fig. 1.

The major novelty that we address in this paper stems from the boundary conditions. Indeed, besides
the usual Dirichlet data on the boundary of 2, we also consider an interior interface condition. Our aim
is to describe the behaviour of the solutions for that interface problem. The main results that we show,
see Sections 5 and 6, state the existence and behaviour of solutions to problem (1.1)—(1.3) considering two
different configurations for the potentials a;. First, we will deal with the non-degenerate case, in which
a; are positive everywhere. We obtain that there exist positive solutions to (1.1)—(1.3) if the parameter A
is bigger than a certain A*, while below that value A* we just have the trivial solution everywhere. The
situation changes radically in the degenerate case, in which we assume two vanishing domains, (2,7, inside
the subdomains {2;, where the coefficients a; are neglected. In this case, problem (1.1)—(1.3) has positive
solutions if the parameter A is bounded between two precise constants \* < A < Ay. As in the previous
case, if A < A* one just finds the trivial solution. If A > A, we get a blow-up behaviour in uniformly
compact subsets of {25%. In the complement of these blow-up regions we find a steady-state solution that
blows-up at the border of the regions. We notice that, even though the behaviour we obtain here is similar to
a logistic model with spatial heterogeneities and vanishing subdomains (cf. [1]), our model has an important
geometrical issue which makes the results more constrained to some conditions. These geometrical aspects
give richer situations and allow us to study a novel branch of problems that aim to model situations in which
interior membranes appear, a circumstance which has been little studied from a rigorous point of view.
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Furthermore, many problems that arise in biology, physics and/or medical science can be modelled by
considering two subdomains with a common interior membrane that allows permeation from one domain to
the other one. This interface boundary condition, also called the Kedem—Katchalsky interface condition, [2],
was introduced in 1961 in a thermodynamic setting. These conditions, describing the flow through the
membrane, are compatible with mass conservation lead to flux continuity, and energy dissipation, that gives
us that the flux is proportional to the jump of the function through the membrane with proportionality
coefficient y; see [3] for further details.

From a biological point of view, the use of Kedem-Katchalsky interface conditions goes back to [4],
where the authors studied the dynamics of the solute in the vessel and in the arterial wall. Since then,
biological applications of membrane problems have increased and have been used to describe phenomena
such as tumour invasion, transport of molecules through the cell/nucleus membrane, cell polarisation and
cell division or genetics, see [3] and references therein.

As far as the study of the mathematical properties is concerned, articles that include a geographical barrier
are relatively few. We were only aware of a few works: In [5] a semi-linear parabolic problem is considered.
They investigate the effects of the barrier on the global dynamics and on the existence, stability, and profile
of spatially non-constant equilibria. A similar problem was previously considered in [6] and [7]. His analysis
was mainly in the framework of the existence of weak solutions of parabolic and elliptic differential equations
with barrier boundary conditions. The author establishes a new comparison principle, the global existence of
solutions, and sufficient conditions of stability and instability of equilibria. He shows, in particular, that the
stability of equilibrium changes as the barrier permeability changes through a critical value. Very recently,
Ciavolella and Perthame [3] and [8] adapted the well-known L!-theory for parabolic reaction—diffusion
systems to the membrane boundary conditions case and proved several regularity results. Finally, in [9]
a semi-linear elliptic interface problem is studied. The authors analyse the existence and uniqueness of
positive solutions, under the assumption that the interface condition in not symmetric, allowing different
in and out fluxes of the domain. Although we assume symmetry on the interface our results are also valid
for non-symmetric conditions. It is worth mentioning that all these references deal with problems that do
not consider refuges (that is 25° are empty).

Organisation of the paper. — In Section 2 we go through the model we are dealing with and fix the
notation that we are going to use throughout the paper. Section 3 is devoted to the study of two auxiliary
linear problems that take into account the interface condition. In Section 4 we describe the limit behaviour
of a parameter dependent linear elliptic eigenvalue problem that will be crucial to establish the main results
of the paper, when applying the method of sub and supersolutions for the existence of solutions. Finally,
we state and prove the main results of the paper in Sections 5 and 6. Section 7 is devoted to presenting the
conclusions of this paper and to establish some open problems.

2. Preliminaries

The aim of this section is to comment on the special characteristics of the model. In particular, we describe
it both from a biological and mathematical point of view. We also describe the notation that we are going
to use.

2.1. The model

The equations in (1.1) arise occur in population dynamics as a stationary model of reaction—diffusion
equations in which the individuals of a group live in a domain where neither competition or cooperation
with other species exists. The model equation

—Au(z) = dm(x)u(x) — a(x)u(x)?
3
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assuming spatial heterogeneities was first mathematically analysed by Cantrell and Cosner in their seminal
paper [10], with p = 2. Here the population grows following a logistic (when a > 0) or Malthusian behaviour
(in the regions where a = 0), Am(x) stands for the intrinsic growth rate of the population, since the function
m(x) is going to be considered strictly positive, at any point z, and A will be a positive parameter. Moreover,
a(x) is the so-called intra-specific competition. Therefore, in the regions where a = 0, the refuges or regions
with unlimited resources, the population grows without limits.

Hence, the model we consider here could represent the migration or relation of two groups of the previous
population living in different regions of a common habitat, but having some interaction between them,
through an interchange of flux on the common boundary, I', that can be seen as a natural or geographical
barrier. For the transmission condition

8u1 - 8u2

Tnlfainl:#(wful)

the parameter p measures the strength of the membrane. The flux of individuals remains continuous being
proportional to the change of density across the barrier by a rate 1/u. Therefore, the smaller p is the stronger
the barrier is. And in fact, at the limit, when g — 0, there is no transmission across I'. The limit problem
consists of two populations living separately in two different domains with homogenous mixed boundary
conditions, Dirichlet on I'; and Neumann on I', see [11] for properties of this type of problems.

If only one of the populations is zero on I', say w1, then, again, the problem for us becomes uncoupled,
with mixed homogenous boundary conditions, Robin on I'" and Dirichlet on I's. Clearly, we can understand
the problem that defines the behaviour of u; as a problem with non-homogeneous mixed boundary data in
1. Moreover, this would also allow the existence of semi-trivial solutions of the type (ui,0)” having now
u1 homogeneous boundary conditions on 92;.

2.2. Basic notation and functional setting

Though one of the aims we have in mind consists of understanding this problem as a whole system,
in vectorial logistic form in the whole domain {2, depending on the results and proofs we are dealing with,
sometimes it will be more convenient to work with a two equation point of view. For the sake of completeness,
we think that it is worth writing this short subsection to state the notation we are going to use throughout
the paper.

Domains and geometry: To fix the geometric structure of the problem let 2 C RY, with N > 2 be a
bounded, connected domain. We split {2 into two non-empty, regular sets, £2; and {2, such that 2 = 2,U25.
We will denote by I' the inside boundary, I' = 21 N 25 and by I'y :== 92, \ I" and Iy := 9% \ I' the outside
boundaries. It is worth noting that in Fig. 1 we are assuming that I} and I, are non-empty. However, it
would be also possible to have, say I1 = () and I' = 9 which in turn would mean {1 C 2 (see [12] or [9]).
This configuration, though possible and easily applicable, is not considered here. We also assume that these
domains, as well as all the possible subsets appearing throughout the paper, are as regular as necessary; let
us say with Lipschitz boundary, which again will play a role in obtaining some of the results.

We will use the subscript 1, respectively 2, to denote objects (functions, parameters...) defined in {24 (resp.
{)5) and each time we write the subscript i we mean i = 1,2 and we will not mention it anymore.

Vectors: In order to simplify notation, we will use capital letters to denote the vector corresponding to
a pair of functions (typically solutions of a system), where the first entry is defined in 2, or defined equal
to zero in §25, and the second one in 2. Thus, for example, we will write U to denote the vector (uy,us)?,
where u; : 2; — R and U(z) will stand for (ui(z),0)T if z € 2, and (0,ua(x))T if € 2. By abuse of
notation we will use VU to denote (Vuy, Vug)T. Also, we will write @ > 0 if ¢; > 0 in £; and ¢o > 0 in
% and @ > 0 if we allow one of the components to be identically zero in its domain, while the other one
is positive.
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Matrices: All the matrices that appear in this paper come from a two equation framework. Hence, they
are 2 x 2 and in most of the cases, diagonal.

We will keep the letter L to denote the “laplacian diagonal matrix,” I will stand for the 2 x 2 identity
matrix and we will denote other matrices using capital boldface letters, for instance

([ =4A 0 (A O
() (0 R)

where f; will be functions. We will denote L + F as Lg. In Section 5 we will deal with the inverse of the
laplacian. With this aim, we will also define the diagonal matrix

L1 ( (—AO)‘1 (_g)_l > (2.1)

As before, we will write C > 0 (or >) to denote a matrix with positive (non-negative) entries and we will
write C > D if C — D > 0 (respectively < or <, >). Moreover, C* will stand for the positive part of the
matrix in the sense that we take the positive part of each entry (which are usually functions) in the matrix.

Integrals: To simplify notation and if no confusion arises, as is commonly occurs in the literature, we will
avoid writing differentials on the integrals. It will be understood that integrals in 2 or (2; require dr and
integrals over boundaries, for instance I' or 0{2;, have a surface differential such as ds.

Functional spaces: In order to deal with problem (1.1)—(1.3) and the related ones, described in the next
sections, we have to fix our framework. For this reason we denote the space of continuous functions with the
flux condition on I' as

Cr(2) = {W € C() x C() - gzi—g%j:

p(o —p1) on I'}.

As for the continuous functions up to the boundary we will write

Cr(2) ={¥ eC(N) xC(2s): o = e = pu(h2 — 1) on I'}.

8111 8111

We cousider, following [12], functions v; defined in §2; belonging to the spaces C,({2;) defined as the set of
all continuous functions with compact support in {2 = 2y U {%; that is 1); is the restriction of a function of
compact support in {2 to the subdomain {2; and we define, as before

Cor(2) = { ¥ € Cu( 1) X Cu($22) : gﬁi gfj = (12 —b1) on I'}.
Analogously we define the spaces of continuously differentiable and Hélder continuous functions CF., C%”,
cpl, Cy s - for some 7 € (0,1].

We will denote by £ the product space L?(£2;) x L?({2), and consider its usual scalar product (&, ¥), =
> i) r2(g,) and the induced norm [[&[|z = (&, &) = Y, ||80i||iz( o,)- Following [3], let Ho be the
Hilbert space of functions H}(£2;) x H}(§2), satisfying Dirichlet homogeneous conditions on Iy and I%.
Then, we define H as

O _ o _

’Hr—{WGHo ony

(2 — 1) on I'},
equipped with the norm
11, = V1% = 99112 0 + V2220

Obviously, Hr is a Hilbert space and we define the scalar product in H as

(D, W)t 1= (Vor, Vi) 2oy + (V2 Vi) 12(g,) -
5
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Thus, since Hp is a closed linear subspace of Hy, it is a Banach space in which the following compact and
continuous embedding hold:

Hr — L, and Hp — Lr:=L*I) x L*(I). (2.2)

Moreover, if & € Hp we have [, ¢? = [,, ¢?, and due to the trace inequality, we find that

]Cw$=nwaﬁ%M%)§6bm¢m%ugﬁ

with Cp, > 0, depending on the domain (2. It is worth pointing out that, due to Poincare’s inequality the
norms || - ||, and || - ||3, are equivalent. Therefore, if C; is a positive constant, we define a global trace

(A¢+[y$=nmzs0ﬂmmf

Finally, we consider the linear operator Ly : D(Lg) = Hy — L. Using this framework, we can rephrase

inequality as

our original problem (1.1)—(1.3) as follows:
Find U € Hr such that,
(L_xm + AUPHU =0, (2.3)
where U? stands for (u},ub)T.
A natural idea of what a positive weak solution is, consists in considering functions that vanish on 042 but
imposing the inside boundary condition. Hence we define a weak solution to (2.3) by formally multiplying

(in £) by a test function ¢ and integrating by parts. The precise definition reads as follows:
Definition 2.1. Let U € Hp be positive. We will say that U is a (weak) solution of (2.3) if

Vul . V<p1 + VUQ . V(pg +/ M(UQ — ul)(gog — (,01) = /\<].V.[Uv7 @)L — <1§va7 ¢>£,
2 $29 r

for & = (¢1,2)" € C2%p.
We define weak sub- and supersolutions as usual; i.e, by replacing in the definition of solution equality
by < or > respectively.

3. Auxiliary problems
This section is devoted to state the general properties for two interface linear problems related to (1.1)

that we will use in the next sections. We collect them here for the sake of completeness and refer the reader
to [3,9], or [5] for the detailed proofs.

3.1. A linear problem

Let us consider the linear problem given by

(2), in 2,

(=4 + fo(@))uz(z) = g2(x),  in 2,
together with boundary conditions
8u1 5)u2
—_— = — F
anl anl IU’(UZ ul)? on f, (32)
u; =0, on I, with ¢=1,2,
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where F' = (f1, f2)7,G = (g1,92)7 and F > 0. Using the notation introduced in Section 2 we can rewrite
this problem in a more compact form as

LyU =G in 0. (3.3)

Associated with problem (3.1)—(3.2) we define the bilinear form a : Hp — R, given by

a(U,V) = Vup - Vuy + Vusy - Vg + fruivg + fauavo +/ p(ug —ur)(ve — v1), (3.4)
o} 29 2 2 r

and, consequently, a weak solution of (3.1)—(3.2) is a function U € H such that
a(U, V)= (G, V)¢

forall Ve Hr.

Theorem 3.1. If F € L>®({) x L>® (%) and G € L, then (3.1)~(3.2) has a unique weak solution U.
Moreover, there exits a positive constant C, such that

10l < CAUIGe + 1U]l2)-

Proof. The proof might be performed after applying Lax—Milgram Theorem by showing first that the
bilinear form a(-,-) is continuous and coercive in the Hilbert space H . We omit the details here, which can
be adapted from [3], [9] and [5]. O

Under these conditions, we define the resolvent operator for (3.3), (Lg)~! : £ — Hr, by
Gel—U:=(Lp) 'GeHr,

having the following.
Lemma 3.2. The resolvent operator (Lg)~! is linear, continuous and compact.

Proof. The continuity and linearity of the resolvent (Lg)~! are clear from Lax—Milgram Theorem. To show
the compactness of the resolvent we take a sequence G,, € L such that

lim |G, = Gl =0,
and set U = (Lg)"'G, U, = (Lg) 'G,, for n > 1. Now, using the bilinear form (3.4), we get
a(Uy — U, Uy —U) = (G — G, Up — U, ¥ > 1.
Since af(-, ) is coercive
1Un = U3, < Cla(Un = U, U, = U)| = C{Gn = G,Up = U)z| < C||Gr = Gll||Un = Ull-

Consequently,
\Un = Ulln, <C|Gn —Gllz =0, as n— oo,

showing that the resolvent is a compact operator. [

Next, by elliptic regularity, see [13] and [5], and also as a direct consequence of the comparison principle
stated in [5], we have the following result:
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Theorem 3.3. Let F,G € C%"(§) x C*"(§) for some n € (0,1) and F > 0, then (3.3) has a unique
solution U € C3"(2) that verifies
1Tl gz < CliGllcon-

Moreover, if G > 0, then U > 0.
To end this subsection, let us consider, for F' € C%(£;) x C%"({2) the eigenvalue problem
LeU =oU in 2. (3.5)

This problem will be crucial in the sequel to describe the existence of solutions for the nonlinear prob-
lem (2.3). We firs notice that having a compact and positive resolvent, one has that the spectrum of Ly
might contain infinitely many isolated eigenvalues (see for instance [14]) and together with the compactness
of the operator, we have that the spectrum is discrete and each one of the eigenvalues has finite multiplicity.
As it is usual in the literature, see for instance [15], we introduce the following definition.

Definition 3.4. Given an operator A and a domain O = O; UQ,, we will say that Y[A; O] is the principal
eigenvalue of A in O if X[A; O] is the unique value for which A® = Y[A; O] P (together with the boundary
conditions) possesses a solution @ with @ = 0. Such a function @ is called principal eigenfunction.

Note that it is common to assume that the principal eigenfunction is positive in O. In our context we only
impose that one of the two components is positive in O (or Os), allowing the other one to be identically 0.

Theorem 3.5. Problem (3.5) has a principal eigenvalue X[Lg; 2] which is unique and simple (i.e., the
algebraic multiplicity is 1). Moreover, X[Ly; £2] is continuous and monotone increasing with respect to .

The proof of this result is a consequence of the previous analysis and can be found in [5].

3.2. A weighted linear eigenvalue problem
Let us now extend the results shown for problem (3.5) to a weighted eigenvalue problem of the form
Lp®=XM¢ in ({2, (3.6)

where m; are assumed to be two positive L°°({2;) functions. Problem (3.6) is the short version of the
equivalent problem of finding (o1, ¢2)T € H such that

(7A + fl)ipl = )\ml(x)gol in Ql, (3 7)
(—A+ f2)pa = Ama(z)p2  in (2. .
with boundary conditions
0 0
ﬂfﬂi#(@z*%) on I 01 =0 on I7, w2 =0 on I5. (3.8)

8n1 B anl

Similar weighted systems, with the solutions defined in the whole domain (2, but without the interface
boundary condition, were studied in, for instance, [16]. For the one equation setting see [17].

Definition 3.6. A function ¥ € H is said to be strongly positive, denoted by ¥ > 0, if ¥ € Cp({2) and
the following two conditions hold:

(i) For any = € £, U ', ¥;(z) > 0; and
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i (y)
8ni

(ii) for any y € I, < 0 and 9;(y) = 0.
Lemma 3.7. Let & € Hr be a non-negative solution of (3.6) associated with a positive eigenvalue A. Then
@ is strongly positive.

Proof. Let (¢1,92)T € Hr be a non-negative solution of (3.7)—(3.8). Now, following the analysis developed
n [18], let v; € H}(f21) be a positive solution to the auxiliary problem

(_A+f1)vl =91, in 917 .
= > . .

{ v =0, on o, Mth gi=Ami(@)er=0 (3.9)
By assumption, we have that ¢; > 0 on I'" and, hence, 1 is a supersolution for the auxiliary problem (3.9),
such that by the comparison principle and the maximum principle

@12U1>0 in Ql-

Furthermore, we show that actually the solution ¢ is strictly positive on I'. Indeed, if we assume that
v1(xg) = 0 for some z¢ € I', due to Hopf’s Lemma we have that
01 (x

pi(zo) _ 0,

8n1
which means that zy is not a minimum of ¢; in 21, contradicting the fact that ¢1(xg) = 0. Therefore,
©1 > 0 on I'. Condition (ii) is also a direct consequence of Hopf’s Lemma.

On the other hand, we also consider a second auxiliary problem

(—A + fo)ve = Ama(x) 2, in (%,

{ vg = (1, on Ofh. (3.10)
Thanks to the strong maximum principle and since ¢; > 0 on I' C 9f2 we find that vo > 0 in (.
Consequently, since @2 is a supersolution to problem (3.10) it follows that

w2 >v2 >0 in (b,

showing the strong positivity of the eigenfunction @.
The fact that each o; € C(£2;) follows from elliptic regularity and the previous subsection. O

Remark 3.8. Having that any non-negative solution is actually a strong positive solution is in some sense
a way of having the strong Maximum Principle and the existence of a positive strict supersolution. In fact,
once we have that the first eigenvalue is positive, by the previous Lemma 3.7 we find that the eigenfunctions
associated with it are positive. This provides us with a strict positive supersolution. Indeed, for the operator
Ly + AT, with A a sufficiently large positive constant, positive constants 1" are positive strict supersolutions
in the sense that

(Lr+A)T >0 in 2, or >0 on 0.

Furthermore, we will now prove that the first eigenvalue is actually positive and simple, in the sense of
algebraic multiplicity 1, applying Krein—Rutrman Theorem as one of the main ingredients. To do so, the
next definition is an important element in order to apply the classical Krein—Rutman Theorem.

Definition 3.9. Let P be a positive cone with non-empty interior in Hp and T : Hp — Hp a linear
operator. We say that T is strongly positive if

T(P\ 0) C IntP.
9
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See [19,20] for more details on strongly positive operators and positive cones. The next theorem shows
that (3.6) has indeed a principal eigenvalue.

Theorem 3.10. Problem (3.6) has a principal eigenvalue denoted by A\1. Moreover, \y is real, simple (in
the sense of multiplicities) and strictly positive.

The proof of this theorem will relay on the analysis of the eigenvalues of two problems related to (3.6),
that we analyse in the following two lemmas.

Lemma 3.11. Let 7(Ky) be the spectral radius of the operator Ky : Hr — Hr denoted by
Ky = (Lp + AD) "1 OM + (A + w)I). (3.11)

For any A € R such that
Am; + (A+w) > 0. (3.12)

holds, r(Ky) is positive and simple. Moreover, it is the principal eigenvalue of

Kad =00, (3.13)

Proof. The result is a direct consequence of the Krein—-Rutman Theorem (cf. [19, Theorem 3.2]), as well
as of several results performed in [21] and [17].
Let us first consider, for a fixed value of A, the problem

LF,)\M@ =wo. (314)

It is straightforward to see that A € R is an eigenvalue of (3.6) if and only if w = 0 is an eigenvalue of the
operator Ly_\m.

On the other hand, it is also easily seen, see [17] for a weak formulation of the result, that w is an eigenvalue
of (3.14) if and only if o = 1 is an eigenvalue of problem (3.13), where K, is an operator denoted by (3.11),
for any A € R. Here A is a constant (which depends on \), chosen sufficiently large, so that condition (3.12)
and, thus, (L + AI)~! exists.

Then, it turns out that Iy is a compact, strongly positive operator (see Definition 3.9). Indeed, first of
all observe that thanks to the embedding (2.2), we can ensure that Ky : Hy — Hp is a compact operator.
In order to prove that K, is strongly positive, let us take ¢, € P\ {0}. Thus, thanks to the comparison
principle we find that the corresponding components are strictly positive in the interior of the subdomains
{2; and, thanks to Hopf’s Lemma, we also have that the exterior normal derivatives are negative on the
boundary of {2, where we have homogeneous Dirichlet boundary conditions. In other words, Definition 3.6
is satisfied by @q, proving that Cy is strongly positive.

Consequently, due to Krein-Rutman’s Theorem, we have that K has positive spectral radius, r(Ky),
which is a simple eigenvalue of (3.13). Moreover, the associated eigenfunction ¢ € IntP is positive, in
the sense that @ > 0, and there is no other eigenvalue with a positive eigenfunction. Hence, following
Definition 3.4, r(K,) is the principal eigenvalue of (3.13). Indeed, thanks to Lemma 3.7 we actually have
that the eigenfunction is strongly positive. [

Remark 3.12. It can be seen that, if @ is the eigenfunction corresponding to the eigenvalue ¢ = 1 in
problem (3.13), then @ is also an eigenfunction for w in problem (3.14). The same happens for the pair
(0, @) and (A, @) corresponding to (3.14) and (3.6), respectively.

Lemma 3.13. For any w > 0, there exists A € R such that r(K5) = 1.

10
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Proof. First of all observe that, since (w+ A4)I + AM is an increasing function of A, we have that, as long
as (3.12) holds, K0y, < Ky, for A1 < Ag. Hence, see [19] and [22], 7(Ky) is a continuous, increasing function
of A.

Let us assume that w > Y[Lg], where Y'[Lg] is the principal eigenvalue of (3.5). Then, for A = 0 and

using (3.13), we get that
r(Ky) = — ATy (3.15)
A+ Y[Ly]
We claim that there exists A < 0, with |A| large, such that 7(K)) < 1. By continuity and monotonicity of
the spectral radius this yields the desire conclusion in the case w > X[Lg].

To prove such a claim we follow the ideas in [17]. Since

(w+ ADI+AM = (w+ Z[Lg] =1+ A+ 1 — Z[Lg))I + AM
<A+ Z[Lp] - DI+ (w+1 - Z[Le)I+AM) ",

=AT

where AT is defined as the positive part of the matrix, see Section 1, it yields to
T(IC)\) <7,

being 7 the spectral radius of the operator (Lg + AI)™'((4 + X[Lg] — 1)I 4+ A™). Hence, the claim follows
if we show that # < 1 for A < 0, with || large.
By assumption, the weights m; are assumed to be two positive and bounded functions. Thus, we have
that
lim ((w+1-Z[Le)I+AM)" = 0.

A——00

Let us denote by T the spectral radius of (Lg + AI)~*((4 + X[Lg] — 1)I). It is easy to see that

A+ S[Lg] -1

<1
A+ Y[Lg]

T =
Finally, we have limy_, ., 7 =7 < 1, and we conclude that there exists A < 0 such that r(Ky)=1. O

Notice that if 0 < w < X[Lg], then (3.15) becomes r(Ky) < 1. We can repeat the same proof by
considering the negative part and taking the limit as A — oo to get 7 > 1. By continuity if w = Y[Lg]
then \ = 0.

Corollary 3.14. For any w > 0, there exists A € R such that w is the principal eigenvalue of (3.14).

Proof. Lemma 3.13 implies that given any w > 0 we can find A such that w is an eigenvalue for the operator
Lyp_sa see (3.14). The eigenfunctions corresponding to w are the same as the eigenfunctions corresponding
to 7(K5); see Remark 3.12. We conclude the proof by using Lemma 3.11 so that w = Y[Lgp_5p; 2], O

Proof of Theorem 3.10. As we have mentioned above, the problem of analysing the existence of a principal
eigenvalue of problem (3.6) is equivalent to the problem of finding a zero principal eigenvalue for (3.14). That
is, finding zeros for the function
Y(A) = Z[Lp_xm; 2]

It can be seen that this function is real analytic, continuous, decreasing and X'(\) — —oo as A — oo; see [19]
and [11] for further details. As a consequence of the previous results, we have that X'(0) > 0. Thus, there
exists Ay > 0, such that ¥'(\;) = 0, which implies that A, is an eigenvalue for (3.6). It is moreover the
principal eigenvalue and, as r(Ky) is simple, so is A;. O

11
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4. Asymptotic behaviour of a spatially heterogeneous linear problem

In this section we ascertain the asymptotic behaviour of a parameter dependent linear elliptic eigenvalue
problem that will be crucial in the sequel. In particular, the limiting problem obtained in this section will
provide us with an eigenfunction used in the following sections to characterise the existence of positive
solutions by the method of sub and supersolutions.

Given a real parameter «, we consider the linear weighted elliptic eigenvalue problem

Loa $0 = A\aM &, (4.1)

or equivalently
(—A+ aa;(x)) pi,a = Aami(2)Qia; in (4.2)

together with the boundary conditions given by (1.3).
Here, under the framework explained in the previous section, we assume that the principal eigenfunction
@, is normalised, so that

mi(x)el .+ [ ma(z)es, =1 (4.3)
2 2o

Moreover, since @, = 0 we can actually conclude that A\, > 0. In other words, A, is the value such that we
have an eigenfunction of the operator Loa—x,m corresponding to the (principal) eigenvalue zero, i.e.

Y[Laa-xaMm; 2] = 0.

We also observe that due to the monotonicity of the principal eigenvalue with respect to the domain (see [15]
or [11])
0= Y[Laa-x.M; 2] < Y[L_x,m; o),

where 2y = 25 U 2y%. Furthermore, let us consider the uncoupled problem

—A(pLO:O'l(pLO in .le, and (,0170:0 on 6.9611,
—Apa g =02p20 in 2, and w20=0 on 012,

where o; := o[—A; 23] denotes the principal eigenvalue for each equation. We define
o[L; 2] = inf{o1, 02},

which is simple and positive. Note that the actual value of X[L; ()] depends only on the size of the
subdomains 23 and £2;?. Now, applying the monotonicity of the principal eigenvalue with respect to the
potential we find that

Y[L_xom; 2] < o[Ls ] — Aam,

where m := inf{m(z)|o,, m2(x)| o, }. Therefore, we have the following estimation for the eigenvalues Ao,

Ao < %. (4.4)

Thanks to the monotonicity of the principal eigenvalue with respect to the potential we know that the
eigenvalues A\, are increasing in terms of the parameter o and due to (4.4) bounded above. Therefore, for a
sufficiently big o we can say that the eigenvalues A, are strictly positive.

The following result will be of great importance in the proof of the main result of this section.

Lemma 4.1. For each fired o > 0, let (Mg, Do) be a solution to (4.1). Then

||¢Oé||’r'{p < >‘Om /”'/ (4102,04 - 4101,04)2 < )‘Ow « (/ al()pia +/ a‘230§,a> < AO!'
r 21 )

12



P. Alvarez-Caudevilla and C. Brindle Nonlinear Analysis: Real World Applications 73 (2023) 103918

Proof. Multiplying (4.1) by &, € H and integrating by parts we get, for the left-hand side of (4.1)

<LaA ¢a7 ¢a>£

Op1 Opa
:/ IVw,aIQ—/ Lo +/ \sz,al2+/ Pram " ta / am?,aJr/ 203 4
2 r n 29 r ny 7 2

9p1.a
= / |v901,a|2 +/ |V‘P2,a|2 + 501’ (2.0 = $P1,0) T @ (/ al@%,a +/ a2(P%,a> .
2 2 r om 2 2y

Moreover, due to the inside boundary condition, the previous integral over I' can be written as

6@1,04
r ony

(V20— p10) =t [ (20— o1l

r
For the right-hand side of (4.1), we get, since we are considering a normalised &,
Aa(M D, Do) = Ao

Therefore,
/ IVeral? +/ Vol +a (/ a1, +/ az@%,a> + N/ (P2,0 = P1.0)” = Aas
2 22 21 2 r
and we conclude the result. 0O

Subsequently we want to analyse the asymptotic behaviour of (4.1), when the parameter « goes to infinity.
To do so, we consider also the following limit uncoupled problem

—AQ1.00 = Aoomi1(T)p1,00 In 251, and Y100 =0 on 9025, (4.5)
—Aps 0o = Ao (T) 200 In (252, and V200 =0 on 902, ‘
where
Moo = Inf{A"[— A, 5], A2 [— A, 25?1}, (4.6)

stands for the principal eigenvalue of problem (4.5) associated with the normalised eigenfunction @, €
H{(025Y) x Hg(£25?), with

V100=0 In N2\027 and @2 =0 in 2\ 252, (4.7)

and \™i[— A, 2] are the principal eigenvalues of —Ay; = Am;(x)p; in the domain £25° under homogeneous
Dirichlet boundary conditions. Recall that, thanks to the definition of eigenfunction, we allow that one of
the components of @, is equal to zero, so that (4.5) may have a trivial equation.

Theorem 4.2. Let 25 and 252 be two non-empty subdomains and let (Ao, Do) and (Moo, Poo) be a solution
to (4.1) and (4.5) respectively. Then, Problem (4.1) converges to the limiting problem (4.5) when the parameter
« goes to infinity in the sense that Aoy — Moo and @o, — Doo in Hp.

Before we state the proof of this theorem, let us discuss, through different possible situations, the limiting
behaviour of the eigenvalue Ao, depending on the geometrical configuration of the vanishing subdomains (27"
and 252

Assume first that

Aoo = A=A, Q5] = X"2[— A, 252]. (4.8)

Then, each Eq. (4.5) is satisfied with positive uncoupled eigenfunctions that concentrate in the corresponding
subdomain of “more than enough resources”, 25

V100>0 in 250 and @200 >0 in 2.

13
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On the other hand, if we assume that, for example,
Moo = A=A, 001] < A2 [— A, 03] (4.9)

(which might happen, for instance, if 252 is bigger than 257 and m; = ms at every single point), then the
limit eigenfunction concentrates in 25 being zero in the rest of £2, i.e. o, is defined by

V100 >0 in 250 and @200=0 in (k.

In general, we can conclude that for limit function

o, )T i AT A, Q] < A2 [~ A, 202],
@m:{m, T A=A, 05 < A=A, 0 w0

(0, p20)” i A"2[-A, Q2] < Am1[- 4, Q1)

Observe that the limit eigenfunction pair is just given in the corresponding domain §2; while the limit
eigenfunction @, will be zero on both components in 2 \ §2; respectively.

Proof of Theorem 4.2. Let {ay,}n>1 be an increasing unbounded sequence. For each a, we take the
normalised principal eigenfunctions @,, of (4.1) with principal eigenvalue A,,. Note that then, thanks
to Lemma 4.1 and since the coefficients m; and mqy are two positive L°°-functions, the norms for the
eigenfunctions @,,, are bounded in H . Moreover, since the embedding Hr — L is compact, there exist a
subsequence of {ay, }n>1, again labelled by n, and &, € L such that

lim ||d§01n — Dol =0,

n—oo
strongly and weakly in H . Thus, we can extract a subsequence, again labelled by { ®,,, }, weakly convergent

in Hp and strongly in £ to some function @.
Next, we will prove that { @, }n>1 is actually a Cauchy sequence in H . This implies that @, € Hpr and

nh_{%o | Pa,, — Poollpe, = 0. (4.11)
Indeed, let n < m so that 0 < «,, < a,,. We define

Dn:m = ||V(¢an - Qam)‘lﬁ = / |V(Q01,an - (lplxam)'z +/ |v((102;04n - @2;04777,)'2 .
2 29

1 2
Dn,m Dn,m

Using separately each of the equations in system (4.2) and taking into account the boundary conditions (1.3)
it gives that

D= [ Forail+ [ 1Voranl =2 [ (6100010
2 2 2
:/ ()\anmlgol»an - analwlﬁén)@l@én + /l/ (@270471 - Spl,an)sol,ozn
2 r
+ / (AamM1P1,0m = Cm1P1 0 )P1am T N/ (02,0m = Plam)Plam
@ r
- 2/ (AanM101,00, — O‘nal‘pl’an)ﬁpl,am - 2#/ (2,00 — ¢17an)@1,am'
(o3 r

14
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The term Di’m is similar. Thus, rearranging terms, we are driven to
Dim = /\an/ M1P1an (P1an = Plam) + /\an/ M202,0 (92,00 — P2,00m)
2 2

+ )\Oém ml@l,am(spl,am - 90110471) + )\Oém m2€0270¢m (302,04771 - 902»0671)
i 29

+ ()\Oém - )\Oén) mlSOLanSDlaam + (Aam - Aan) m2@2,an¢2,am + Rn,m + Fn’m7
27 22

where we have denoted by F), ,, the sum of all the terms involving integrals over I' and R, ,, are the
remaining terms (terms involving integrals in (2; and the potentials a;). Since {«,} is increasing we have

Rym = Z <_04n/ ai(‘ﬂi,an - @i,am)Z - (am - an)/ ai@zz,am> <0.

i=1,2 2 2

)

On the other hand,
Frm = —u/ (P2,0n — PLian)’ — u/ (P2,0m — Pliam)’ + 2#/ (P2,0n = PLan) (P2,0m — Plam)
I I I

- / (P2.0n — @1om) — (P2.0m — @1an))? < 0.

In analysing the terms where the eigenvalues )\, are involved we take into consideration that the sequence
{Aa,, } is increasing, thanks to the monotonicity of the principal eigenvalue with respect to the potential and
bounded above due to the estimation (4.4). Hence and subsequently, applying Holder’s inequality, the order
of the sequence {\,, } and the upper bound for the eigenvalues A,

Dy <C {/ (P1,0an — ‘Pl,am)Q —I—/ (p2,0n — <,027am)2} , with C a positive constant.
27 )

Therefore, (4.11) is satisfied and we have that the limit function @, > 0 is normalised in the sense of (4.3).
The next step consists in showing that &, is indeed a solution to (4.5). First, we claim that (4.7) holds;
that is, ¢;.0 = 0 outside §25°. In fact, thanks to Lemma 4.1 it follows that

lim (/ aupian —|—/ agcp;an) =0.
n— oo o 29

Moreover, since the sets §2; are disjoint, we have that each of the integrals above is equal to zero and hence,
due to the normalisation of @, and after applying Holder’s inequality, we find that

‘/ ai<p12,an _/ ai@z%oo’ S/ ai(Pi,an  Pio0)|Pian — Pijool
£2; 0 0.

7 K3

1/2
< max a; - 0i,an —i,00 I L2(02;) </ @?,anJFSO?,oo‘F?sﬁi,an%oo)
) 2

K3

<20 m{,?X ai - ||Pi,an — PicollL2(2;) = 05

K3

where C' is a positive constant which depends on the coefficients m;. Therefore,

/ al(p%,oo +/ GQ@%,OO =0,
2 )

which concludes the proof of (4.7), since a; are nonnegative and identically zero in £27°.
Consequently, we show that (4.7) implies that

Foo € HY(O) x HI(OG2).

15



P. Alvarez-Caudevilla and C. Brindle Nonlinear Analysis: Real World Applications 73 (2023) 103918

Indeed for a sufficiently small § > 0, consider the open sets
Q= {x e dist(x, 25°) <6} (4.12)
According to (4.7),
Poo € Hy (0251) x HY(£2572),
and, hence, there exists dg > 0 such that
Do € [ (HI2) x Hy(£25?)) .
0<6<dp

On the other hand, since 25" and 22 are smooth subdomains of 2, they are stable in the sense of Babuska
and Vyborny [23] and, therefore,

Hy(26") x Ho(25%) = (1) (Ho(25") x Hy(£257))
0<6<dp

Finally, we pass to the limit in the weak formulation of (4.1) to show that @, is indeed a (weak) solution
of (4.5). To this aim, consider the test function

T = (v1,v2)T € C(R0Y) x C(0282).

Multiplying (4.1) (assuming o = a,, with n > 1) by 7" and integrating by parts gives rise to

V'Ul VS@z an — )\an / o Vi Pi oup, -

foXs foas

Consequently, passing to the limit as n — oo, it is apparent that &, provides us with a weak solution of
the uncoupled problem

— Ap100 =My (x)p1,00 In 27, and — Ao oo = Ima(x)pa,00  In 12,

together with (4.7) and ¢; 0 >0 in 25" and where = lim, s )\an Moreover, by elliptic regularity &, is
indeed a classical solution C2"(25") x C2"(2;%). Therefore, £ = Aoy O

5. Existence of solutions for the non-degenerate case

In this section we characterise the existence and uniqueness of positive solutions U of problem (2.3) in
terms of the parameter A in the case in which the coefficients of the non-linear terms a; are strictly positive
at every point of the domain §2;. To this aim we define \* as the principal eigenvalue of the problem

Lé=\Md  in R, (5.1)

under the boundary conditions (1.3), whose existence was analysed in Section 3. Note that A\* can also be
understood as the value such that the principal eigenvalue X [L_xng; £2] is 0.

Theorem 5.1. Let 25 = 052 = (). For any X, problem (2.3) admits a unique positive solution U € C"(12)
if and only if
A> A" (5.2)

Remark 5.2. Observe that condition (5.2) is equivalent to X [L_xn; £2] < 0, since the function X'(\) =
X [L_xm; 2] is continuous and decreasing with respect to A, see [22] for similar problems.
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Proof. The proof, that uses the method of sub and supersolutions, see [19,24] for further details, follows
similar arguments to those shown in [1, Theorem 3.7] so we omit the details. [

In the next result we prove that there exists a branch of positive solutions of (2.3) emanating from the
trivial solution (A,U) = (A,0) at A = A\*. This, indeed, means that A* is a bifurcation point to a smooth
curve of solutions of (2.3), [25]. Moreover, since there is no other bifurcation point, this branch of positive
solutions goes to infinity, [26]. Additionally, we will show that the solutions are monotone with respect to
the parameter .

Theorem 5.3. For any A > \*, let 0(\) := Uy be the unique positive solution of problem (2.3). Then, the
map
0:(A\",00) — Cr(£2), suchthat X — 0(\)

is of class C1. Moreover, O(\) > 0(n) if X > n > \*, and 0 bifurcates from (A\,U) = (X,0) at A = \*, i.e.,

}1&& () = 0. (5.3)

Proof. Let us consider the operator § : R x Cr(2) — Cr(£2), defined by
FO\U) =1 -L'O0M - AUP YU,

where L~! denotes the “inverse laplacian matrix”, denoted by (2.1). We know that § is of class C! and, by
elliptic regularity, F(A,-) is a compact perturbation of the identity for every A € R.

We observe that, for each fixed A > \*, if Uy € Cr(2) is the positive solution to (2.3), then F(A,Uy) = 0.
Moreover, since any non-negative solution turns out to be strongly positive, we have

0= YL (5.4)

—AM+AUPTY 2].

Differentiating § with respect to U, we have that, for every U € Cp(12),
DyF(\U\U = (I-L7'(AM — pAU™))U,

and, in particular, as consequence of the compactness of the inverse operator L~ M, we get that Dy F(\, Uy)
is a Fredholm operator of index zero, since it is a compact perturbation of the identity map, see [14].
Moreover, we claim that it is injective, and hence a linear topological isomorphism. Indeed, let U € Cr(£2)
such that

(I-L7'(A\M - pAUL H))U =0.

Then, by elliptic regularity, U € C3"(2) and, we have that

L (5.5)

—AM+pAU§71 U - 0

On the other hand, owing to the monotonicity of the principal eigenvalue with respect to the potential, [11],

and since p > 1, we find from (5.4) that
E[L—)\MerAUf_l; 2]>0 (5.6)
which implies, together with (5.5) that U = 0, and hence, that Dy§(X, Uy) is injective. Therefore, we have
that DyF (A, Uy) is a linear topological isomorphism and hence, it is invertible.
Moreover, if we differentiate the nonlinear operator §(A,Uy) with respect to the parameter A\ we have
that
dUy

DyF (A Uy) N = —D)r§(\, Uy).

17
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Applying the operator L on both sides, this latter expression yields

dUy
L—)\M+pAUAP*1W:MU>\'

Therefore, since (5.6) holds, thanks to the characterisation of the maximum principle [27] we find that
o'\ = dd% is positive and, then, Uy is increasing with respect to A. Moreover, due to the uniqueness
of the positive solutions and the application of the Implicit Function Theorem it follows that the map 6(\)
is of class C'.

Finally, to analyse the bifurcation of 6(\) we observe that §(A,0) =0 for all A € R and
DyF (N, 00U = (I - AL™'M)U, ANER, UecCr(2).

For each A € R, we denote by £, the linear operator DyF(\,0). Also, £y is real analytic in A, since it is a
compact perturbation of the identity of linear type with respect to A. Thus, as a consequence, there exists

a Ao such that £5,U = 0 if and only if there is U # 0, U € Cr({2) such that
LU = AMU in 2 and U=0 ondf. (5.7)

Thus, by definition of A\* we get \g := A* and associated with it there is a unique solution @, = 0 of (5.7),
up to a multiplicative constant. It is clear, then, that Ker[£x«] = span(®,). Now, set

agy .
=2 i
=

Moreover, the following condition holds:
£1 8. € R[], (5.8)

see [25]. Indeed, suppose by contradiction that there exists U € Cr(£2) such that
(I-NL'M)U = -L'M&,.

Thanks to elliptic regularity we have U € C%’"(ﬁ) and L_y»pmU = M @,.. Multiplying by &, and integrating
by parts in {2 it follows that

0p1 « 0p2.«
/ ur(—A — Xemy ()1, — / uy 6901» +/ ug(—A — Aema(z))pa.. — / 1y P2
2 n; 2

=—( ma(@)g?, + m2<x>w5,*).
29

29
The left hand side will be zero since it represents the weak expression for the linear eigenvalue problem
(5.7) with a test function U € C;’"(ﬁ). However, this is impossible, because the right hand side is
negative. Therefore, condition (5.8) holds. Consequently, according to the main theorem of Crandall and
Rabinowitz [25], (A,U) = (A\*,0) is a bifurcation point from (A, U) = (A,0) to a smooth curve of positive
solutions of (2.3), since @, > 0. Moreover, due to the uniqueness proved in Theorem 5.1, condition (5.3)
holds. Finally, applying the global bifurcation theorem of Rabinowitz [26] such a smooth curve of positive
solutions is actually an unbounded branch of positive solutions since there is only one simple eigenvalue for
the problem (5.7). O

6. Existence of solutions for the degenerate case

We are now concerned with the case in which a; = 0 and as = 0 in some open subdomains of {2; and (2;
that is, we assume spatial heterogeneities such that 25 # 0 and 252 # 0.
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Definition 6.1. We say that U is a nonnegative subsolution (respectively U is a nonnegative supersolution)
to Eq. (2.3) if U > 0 and

L_m-apr—1U <0 (resp. >) in £,
U<0 (resp. =), on 012,
% < p(ug —uy —Oup < p(ug — uy) on I', (resp. >).

ony ony

Theorem 6.2. Let 05" # 0, 25> # 0. Then, Problem (2.3) admits a unique positive solution U € C3"(12)
if and only if
0 <A <A< Ao, (6.1)

where \* is given by (5.1) and Ao is given by (4.6).

Remark 6.3. Analogously to Remark 5.2, condition (6.1) is equivalent to
X [L,,\M; Q] <0< X [L,)\M; .Qo] . (62)

Indeed, the function X'(\) := X [L_m; O], for any domain O, is continuous and decreasing in A, so that
there exists a unique value for the parameter A, say A, for which ¥(\) = 0. Thus, if X()\) stands for the
principal eigenvalue of the problem L_\p®@ = Y(A\)® in O, we will find that X(A) > 0if A < A and
Z(X\) < 0if A > X Using now, 2 and 2 instead of O we arrive at condition (6.1). Recall that for 2 we
have characterised \ as Aso In Section 4.

Proof. Let us assume that U € C2"(12) is a positive solution of problem (2.3). Thanks to the uniqueness
of the principal eigenvalue we have

E [L_)\M_;’_AUP—I; .Q] — 0

Then, applying the monotonicity of the principal eigenvalue with respect to the potential,
Z [Lf)\M; Q] < 2 [LiAM+AUp—1; Q} - 0

Moreover, due to the monotonicity of the principal eigenvalue with respect to the domain and the spatial
configuration of a; it follows that

0=2 [L_ypmpaur1; 2] < Z[L_oxm; Q).

Note that, depending on the order of the eigenvalues given by (4.8) or (4.9), the value of A, might be
different. However, we are not distinguishing those cases here. It is just the smallest one.

On the other hand, if (6.1) holds we obtain the existence of positive solutions for problem (2.3) applying
the method of sub and supersolutions.

First we choose the supersolution and to do so, let us consider for sufficiently small § > 0, the sets (2;"
defined in (4.12). By the continuous dependence with respect to the domains, see [15],

li J[—-A— X\ i;.QaiZE—A—)\ i;Qai.
lim 5[4~ hmi; 03] = 5[4~ s 0]
Therefore, by assumption, for sufficiently small § > 0,

0< Z[—A = dmy; 2§7] < Z[—A — Amy; 27, (6.3)
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see (6.2). Let @5, denote the principal eigenfunction associated with X[—A — Amy; £2§7], for § fixed with
zero Dirichlet data on 0925. Now, consider ¥ = (1/1,12)7 defined as

poo={ P51 L 2 ai
i in 2\ s,

where ¢ ; is any smooth extension, positive and separated away from zero, chosen such that ¥ € C%(12).
Note that ¢ ; exists since 5 ; is positive and bounded away from zero on 8[?;;2.

Subsequently, we show that k¥ is a supersolution of (2.3) for sufficiently large k. Indeed, by construction,
kW verifies the boundary condition on I" and it is non-negative on 9{2. Moreover, since a; = 0 in Q;;Q and
k > 0, from (6.3) we have

(—A = Xmi)kps; = X[=A = Xmi; 25 ks >0 in 25,.

Finally, in (2 \ﬁ;;Q it follows that
(A = M)y i+ aik? ol >0,

for sufficiently large & > 1, since a; and ¢4 ; are positive and bounded away from zero. Therefore, k¥
provides us with a supersolution of (2.3) for sufficiently large k > 1.

As a subsolution we take €@y, for 0 < ¢ < 1, and where @, is the eigenfunction associated with the
principal eigenvalue Y'[L_yng; £2]. Indeed

e(=A = Mmy)pio = eX [Loxm; 2] pio < —ai(x)e!@ly in £,

for sufficiently small € > 0, since X' [L_xn; 2] < 0, see (6.2). On the boundary we have the equality.

Once we have a subsolution and a supersolution to problem (2.3), applying standard iteration arguments
we are provided with the existence of a positive solution for the system (2.3). Moreover, as for the
non-degenerate case, the uniqueness follows again as shown in [1, Theorem 3.7]. O

Remark 6.4. Theorem 5.3 holds in the case we are considering in this section since the monotonicity with
respect to the potential used in (5.6) only requires a; to be different from zero in sets of positive measure;
see [28] for a discussion on that matter.

Next we analyse the asymptotic behaviour of the solution Uy when the parameter A is in the interval
(A*, Aso) but approximates to Aso, both inside the sets 25! and £25% and outside them.

We have already seen in Theorem 5.3 that Uy is strictly increasing for A € (A\*, \), see also Remark 6.4.
However, we shall prove that positive solutions actually blow-up when A\ approaches A\, in the respectively
vanishing domains 25! and §25? and depending on (4.8) or (4.9).

Theorem 6.5. For any fized A € (\*, \so) let Uy = (u1 n,u2\)T be the unique positive solution of (2.3).
Then, as A = Aoo

o If Ao = A™M[—A, 251] < X™2[— A, 02?] then uy y tends to infinity uniformly on every compact subset of
0251, while up \ = 0.

o If doo = A™2[—A, 252] < X™1[—A, 2] then uz ) tends to infinity uniformly on every compact subset of
025% while uy x = 0.

o If Ao = N™M[=A, 0] = N2[—A, 25?] then uy \ and ug y tend to infinity uniformly on every compact
subset of 5% and 5%, respectively.
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Proof. Let us consider a sequence {\,} converging from below to Ay as n — oo and the corresponding
unique solutions Uy, , which we denote, for simplicity, U,. Take two compact subsets K; C (2. Now,
for a fixed \,, let @, be the principal eigenfunction associated with the principal eigenvalue A, of (4.1).
Furthermore, thanks to the convergence of the linear problem (4.1) shown in Section 4, it follows that

P, = I in HY(K)) x H(K>),

as n — 00, where @, is a solution of (4.5) and @1 oo Or 2 o might be identically 0, depending on (4.8), (4.9)
or (4.10). Hence, without loss of generality, let us assume that Ao = A"1[—A, 5] < A"2[— A, 25?]. The
other two cases are handled analogously.

It is straightforward to see that, if U = ab T P, then u, satisfies

oy

—Auy — Aymau; —auf <0 forx e 2y, Uylzer; =0, — p(uy — uy)|zer = 0.

6111

Moreover, if C' is a big enough constant, then C'yps is a supersolution in K5 to

—Av—Aymav =0, v= sup ugn,(z).
z€0Ko

Since ¢1,00 > 0 in K; and @3 = 0 in Ko, by comparison we find that

1

Uy p > ab™! 1., — o0 uniformly in K, and wug, < Cyps, — 0 uniformly in K.

Moreover, due to the convergence of the eigenfunctions proved in Section 4 it follows that ug , — 0 uniformly
in 25. To conclude the proof we must prove convergence up to the boundary of 025" for the component
U1, The proof consists on a geometric construction based upon an argument shown in [29] and argues by
contradiction.

Since A\, > 0 for all n > 1 we have that —Au;,, = A\ymyui, > 0in 7', Then, due to the maximum
principle it is enough to prove

U1, (xy) == min uy ,(x) = 00, as n— oo,
092,

where x,, = x), € 01;*. Assume, by contradiction that there is a subsequence such that
urn(z,) <k forallm>1and x, € 005", (6.4)

with k a positive constant.
Due to the smoothness of 9", there exists R > 0 and a map y : 925* — 27, such that for every
z € !
Br(y(x)) C 25", Br(y(x)) Nogs" = {x}. (6.5)

Indeed, the map y provides us with the centre of the balls in 25" satisfying (6.5). Observe that 925 C 2,
and the boundaries do not touch, 92; N 9" = 0. In particular,

u1 5 (2) > ug p(z,) for each z € Br(y(z,)).

Define Ar(y(zy)) = Br(y(zn)) \ Br/2(y(zy)) and consider the problem

—Au = A\,miu in Agr(y(xn)),
u = ul,n(xn) +cn (€_6R2/4 - 6_5R2> on 8BR/2(:U(.Z‘”)), (66)
u = uypn(Tn) on  9Bgr(y(zn)),
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where .
mmERm(y(rn)) Un () = w10 (2n)

e—0R%/4 _ o—6R2

Cpn =

It is clear that uy ,(xn) + cn emOR%/4 e“m2> < uppn(x), for all @ € Brya(y(z,)). Hence, uypn(z) is a
supersolution of the problem (6.6).

Similarly, if we define for 6 > 0 and x € Ag(y(x,)) the barrier function of exponential type (as in the
proof of the Hopf-Oleinik boundary lemma)

2 2
wn(x) — 676|a:7y(zn)\ _ 676R ,

we can see that u,(z,) + ¢,wy, is a subsolution of (6.6). Indeed, a simple computation gives
(A = Xymy) wy(z) = (25N —48%|x — y(zn)])* — )\nml(xn)) e~dle=y(@n)l® | )\mle_‘SR2.
Thus, for n > 0, there exists § > 0 large enough such that
(A =Xymp)wp(z) <—n<0 in Ar(y(z,)).
Therefore, due to the comparison principle for (6.6), we have
U1 (2) > U1 p(T0) + cowy,  for every x € Ag(y(zy,)). (6.7)

Finally, choose a compact set K CC §25" such that U2 Br/s(y(zn)) C K. Since uy »(x) — oo uniformly
in K and, by assumption, u; ,(x,) < & for all n, we have that

¢n — 00, as m — oo (in other words, when )\, goes to As). (6.8)

Furthermore, setting the normalised direction

n, = y(n) — zn’

R

it follows, using (6.7), that the partial derivative in that direction yields

%Ul,n (mn) _ hH(l) Ul,n(fﬁn + tn:) - Ul,n(xn) Z Cn hII(l) Wn(xth+ tnn)
n, t— t—
676|mn+tnn7y(azn)|2 o 675R2

= ¢y, lim
t—0 t
—§|tnp—npR|? _ —6R? —8§(t—R)?2 _ _—6R?
= ¢, lim ¢ ¢ > ¢, lim ¢ ¢ = cn25R67‘SRQ.
t—0 t t—0 t
Consequently, due to (6.8),
aul n
li —(x,) = oo. 6.9
A o (@) =00 (6.9)
On the other hand, we claim that
aUl n
— <C 6.10
o, (xn) ) ( )

contradicting (6.9) and proving that u; ,, — oo uniformly in 125"
We deal now with the proof of the claim (6.10). To this aim, we consider the auxiliary problem

— Au = Aymy (2)u — ay(@)uP  in 02\ 25, (6.11)

22



P. Alvarez-Caudevilla and C. Brindle Nonlinear Analysis: Real World Applications 73 (2023) 103918

with boundary conditions

0
u=uyn,(z,) on 0N, u=0 on I, 8—u+uu:C on [ (6.12)
n;
where C' > 0 depends on ug . Problem (6.11)—(6.12) admits a unique positive solution, vy, for every A\, < Ao
sufficiently close, see [30]. Thus, if C is chosen so that min(us ) on I' is bigger than C', then u, , is a positive
strict supersolution for (6.11)—(6.12) and, by comparison

vn(z) < uppn(x), forany =€ 21\ 02". (6.13)
Moreover, let v, be the unique positive solution of
—Au = Mooy (2)u — ay(z)uP in 2\ 25"

and
Ou

u=~k on 00, u=0 on Iy, +pu=0 on I,

ony
which is, again by comparison, a supersolution to (6.11)—(6.12), with s as the upper bound of w, in (6.4).
By comparison we have v, < vo and, in particular, ||v,|| Lo (@\021) has a bound independent of n. Due
to the LP estimates and the Sobolev embedding theorem we have that {v,} is a bounded sequence in
Chn(2y \ £25) and, hence, HanHLoo(ﬁl\le) < C, for a positive constant C. Finally, due to (6.13) and
since vy, (zy,) = u1 n(zn), we conclude that

8u1,n

which proofs the claim (6.10) and contradicts (6.9). O

Next, we analyse what happens outside the sets ;' and ;2. We deal first with the case A\ =
A=A Q] = N72[— A, £25?]. To this aim we consider the problem

— Auy = Moo (@)u; — ai(z)u? in 2\ 2, (6.14)

with boundary conditions

0 0
a—;ﬁza—;ﬁ:u(ug—ul) on I u; =0 on I} (6.15)

and
u; =00 on 96", (6.16)

As is common in the literature, by u; = co on 962;% we mean that u;(z) — oo as dist(z, 92;?) — 0.
Lemma 6.6. For any A € (—o00,00), Problem (6.14)—(6.16) has a minimal positive solution.

Proof. The proof of this result follows the same argument as in [29]. O

Theorem 6.7. For any fixed A\ € (A, ) let Uy be the unique positive solution of (2.3). If Aoo =
NP A Q5] = A™2[— A, 052], then Uy — Ux,, uniformly on compact subsets of 2\ (2," U 125°), as

A = oo, where Uy is the minimal positive solution of (6.14)—(6.16).

23



P. Alvarez-Caudevilla and C. Brindle Nonlinear Analysis: Real World Applications 73 (2023) 103918

Proof. Consider an increasing sequence {\,,} which converges to Ao, as n — oo and let U, := U,,, be the
corresponding unique positive solutions to (2.3).

First, we first show that the sequence {U,,} is uniformly bounded on every compact subset of 2\ (ﬁgl U
532). For a sufficiently small e > 0 consider the e-neighbourhoods

Qi ={x e 2\ 0y ; dist(z, 25") > €},

which are smooth and non-empty.
For a positive constant c., such that a;(z) > ¢, in ;. we consider, for a fixed n, the problem

—Au; = Aoom;(z)u; — ccul! in £,
8U1 8u2
— 22 _ — I 6.17
anl anl /J('LLQ Ul) on ? ( )
u; =0 on I;.
together with the boundary condition
U =Ujp on O . (6.18)

Thanks to Theorem 6.2, Problem (6.17)—(6.18) possesses a classical solution which is actually unique.
Moreover, by construction, U, is a subsolution for problem (6.17)—(6.18).

Next, we look for a supersolution to (6.17)—(6.18). To do so, consider Z, the unique solution to the
auxiliary problem (6.17), see [29], and replace the boundary condition (6.18) by

zi=o00 on Of..

It is straightforward to see that Z is a subsolution to (6.17)—(6.18). Therefore, due to the comparison
principle

z¢2ui,n m Qi,s~

Moreover, since Z is bounded in ﬁiﬁgg, see [29], we have that there exists a positive constant such that
U, < Cin ﬁme, for every n > 1. This implies, since € > 0 is arbitrary, that U, is in fact uniformly
bounded on compact sets of 12\ (25" U 125°).

Now, since U, are uniformly bounded and monotone (see Theorem 5.1 and Remark 6.3) we have that U,
converges to a limit function Uy in 12\ (25" U 2,°). Furthermore, by regularity we can pass to the limit
in problem (1.1) and (1.3) to get that Uy, actually verifies (6.14)—(6.15). So, we only have to verify that
the limit function U, verifies (6.16).

Indeed, since U, increases to Uy, as n — oo, we have that Uy > Uy, for any £ > 1. Now suppose that

lim Ui a,, =00, uniformly for z € ;)\ 0257,
dist (2,892, %) —0
is not true. Then, there exists a sequence z, € f2; \ .Qg" such that u; x (%) < C for any n > 1 and some
constant C' > 0. So that we have u; x(x,) < C for all n > 1 and k£ > 1. On the other hand, owing to
Theorem 6.5 we also know that w; ;(rs) — 00 as k — oo, uniformly for any n > 1, zo, € 942;*. Thus, there

exists ko sufficiently large such that u; x, () > 3C for all n > 1. Since w; j, is uniformly continuous we
deduce that |u; 1, (n) — ik (T )| = 0. In other words,

Wi, kg (75) > Ui kg (z0) — C > 3C,

which is a contradiction since we were assuming that u; y(x,) < C foralln > 1 and k > 1.

Finally, to see that Uy is actually the minimal positive solution of (6.14) we choose any solution U Ao Of
(6.14) and by comparison, U, < fj)\oo in 2\ (25" U125%). Thus, letting n — oo we deduce that Uy, < ﬁAoo,
and, hence, Uy, is the minimal positive solution of (6.14). O
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Finally we consider the non-symmetric case in which the limit behaviour is given by Ay = A™1[—A, 2]
< A"2[—A, 25?]. To do so, we consider again problem (6.14)—(6.15), but now coupled with the boundary
condition

up =00 ondfgt, and wuy =0 on 922, (6.19)

Theorem 6.8.  For any fired A € (A", ) let Uy be the unique positive solution of (2.3). If Aoo =
NP A Q5 < A™2[= A, 052], then Uy — Ux,, uniformly on compact subsets of 2\ (2" U 125°), as
A = Ao, where Uy, is the minimal positive solution of (6.14)—(6.15) and (6.19).

Proof. The proof follows the same idea as the one performed to prove Theorem 6.7 and we omit it. We
only want to remark that, when passing to the limit we get for us o

—Aug = N =A, 0 ma(z)ug — az(z)ul in 2 \ﬁgQ.

This problem has a unique positive solution, since A™1[—A, 251] < A™2[—A, 2], see [29]. O
7. Conclusions and further work

In this work, we characterise the solutions of a steady-state model of population migration through
a membrane in terms of the intrinsic growth rate of the populations when crowding effects for those
populations are considered. Our strategy relies on the previous analysis of related linear problems, some
of them studied in [9] and [5] and applying afterwards the sub and supersolutions technique, [1], and the
results in [25], [29] and [26] to fully characterise the behaviour of positive solutions to the system.

A very interesting direction both from the biological and mathematical point of view, could be coupling
the system with a third equation, representing a population that inhabits everywhere and acts as either prey
or predator of the other two species. Moreover, we could also consider, following [9], different permeability
conditions on the membrane, not only from one side to the other side of the domain, i.e. non symmetric
conditions, but also a permeability that depends on the region of crossing from one side to the other. We
think that this would be a realistic approach to model, for instance, problems assuming geographical barriers
with different types of permeability terms.

Finally, our interest in analysing the existence of such stationary solutions comes from the fact that
this analysis is imperative as the first necessary step towards ascertaining the dynamics of the associated
parabolic problem. Although such a dynamical analysis has not been carried out in this work we plan to
perform it shortly.
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