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Abstract

This paper presents a family of methods for locating/fitting hyperplanes with respect to a given
set of points. We introduce a general framework for a family of aggregation criteria, based on
ordered weighted operators, of different distance-based errors. The most popular methods found
in the specialized literature, namely least sum of squares, least absolute deviation, least quantile
of squares or least trimmed sum of squares among many others, can be cast within this family as
particular choices of the errors and the aggregation criteria. Unified mathematical programming
formulations for these methods are provided and some interesting cases are analyzed. The most
general setting give rise to mixed integer nonlinear programming problems. For those situations
we present inner and outer linear approximations to assess tractable solution procedures. It is also
proposed a new goodness of fitting index which extends the classical coefficient of determination
and allows one to compare different fitting hyperplanes. A series of illustrative examples and
extensive computational experiments implemented in R are provided to show the applicability of
the proposed methods.

Keywords: Fitting Hyperplanes, Mathematical Programming, Location of Structures, Robust
Fitting, Linear Regression.
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1. Introduction

The problem of locating hyperplanes with respect to a given set of point is well-known in
Location Analysis (LA) [49]. This problem is closely related to another common question in Data
Analysis (DA): to study the behavior of a given set of data with respect to a fitting body expressed
with an equation of the form f(x) = 0, with x = (X1, . . . , Xd) ∈ Rd. This last problem reduces to
the estimation of the ‘best’ function f that expresses the relationship between the data or, in the
jargon of LA, to the location of the surface f(x) = 0 that minimizes some aggregation function
of the distances to these points (see [1, 15, 16]). In many cases the family of functions where f
belongs to is fixed and then, the parameters defining such an optimal function must be determined.
The family of linear functions is the most widely used. This implies that the above equation is of
the form f(x) = β0 +

∑d
k=1 βk Xk = 0 for β0,β1, . . . ,βd ∈ R.

To perform such a fitting, we are given a set of points {x1, . . . , xn} ⊂ Rd, and the goal is to
find the vector β̂ = (β̂0, β̂1, . . . , β̂d) that minimizes some measure of the deviation of the data

with respect to the hyperplane it induces, H(β̂) = {z ∈ Rd : β̂0 +
∑d

k=1 β̂kzk = 0}. For a given
point x ∈ Rd, we define the residual with respect to a generic x as a mapping εx : Rd+1 → R+,
that maps any set of coefficients β = (β0, . . . ,βd) ∈ Rd+1, into a measure εx(β) that represents
the deviation of the given point x from the hyperplane with those parameters. The problem of
locating a hyperplane for a given set of points {x1, . . . , xn} ⊆ Rd consists of finding the coefficients
minimizing an aggregation function, Φ : Rn → R, of the residuals of all the points. Different
choices for the residuals and the aggregation criteria will give, in general, different optimal values
for the parameters and thus different properties for the resulting hyperplanes. This problem is not
new and some of these criteria, as the minisum, minimax and some other alternatives, have been
widely analyzed from a LA perspective (see [13, 34, 46, 47, 48, 49], among other).

A first approach to locate a hyperplane is to consider that residuals, with respect to given points,
are individual measures of error and thus, each residual should be minimized independently of the
remaining [12, 38]. It is clear that this simultaneous minimization will not be possible in most
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of the cases and then several strategies can be followed: one can try to find the set of Pareto
fitting curves [12] or alternatively, to apply an aggregation function that incorporates the holistic
preference of the Decision-Maker on the different residuals [55]. This last choice is very difficult
and it is usual to apply an approach of complete uncertainty (i.e., it is assumed that it is known
the set of possible outcomes, but there is no information about the probabilities of those outcomes
or about their likelihood ranking) leading to additive aggregations.

The most popular methods to compute the coefficients of an optimal hyperplane consider that
the residuals are the differences from one of the coordinates of the space (which are usually known
as vertical/horizontal distances). In this paper we present a framework that generalizes previous
contributions for optimally locating/fitting hyperplanes to a set of points. It introduces a family of
combinations residuals-criteria that allows for a great flexibility to accommodate hyperplanes to a
set of points [33, 40]. One of the contributions of our proposal is the use of modern mathematical
programming tools to solve the problems which are involved in the computation of the parameters of
the fitting models. In addition, it can be combined with some of the mathematical programming
techniques for feature selection [6], with classification schemes [5], or with constraints on the
coefficients of the linear manifold. This unified framework is also able to accommodate general
forms of regularization, as upper bound on the ℓ2-norm of the coefficients [27], since it would only
mean to add additional constraints to the mathematical programming formulations proposed in the
paper, at the price of increasing the computational complexity needed for solving the problems.
Many of the formulations described in this paper have been implemented in R in order to be
available for data analysts.

In our framework, errors are measured as shortest distances, based on a norm, between the
given points and the fitting surface. This makes the location problem geometrically invariant
which is an interesting advance with respect to vertical/horizontal residuals. We observe that this
framework subsumes as particular cases the standard location methods that consider residuals
based on vertical distances (commonly used in Statistics); as well as most of the particular cases
of fitting linear bodies using vertical distances but different aggregation criteria described in the
literature, as ℓp fitting (ℓp-norm criterion), least quantile of squares [6, 44], least trimmed sum of
squares [2, 43], etc. The use of nonstandard residuals is common in the area of LA and other areas
of Operations Research. However, it is not that usual in the field of regression analysis although
orthogonal (ℓ2) residuals have been already used, see, e.g., Euclidean Fitting [4, 14, 42] or Total
Least Squares [52], mainly applied to bidimensional data; and the more general geodesic distance
residuals are applied in geodesic regression [21]. Quoting the reasons for that fact given by Giloni
and Padberg in 2002 [24]: “we have left out a summary of linear regression models using the more
general ℓτ -norms with τ ̸∈ {1, 2,∞} for which the computational requirements are considerably
more burdensome than in the linear programming case (as they generally require methods from
convex programming where machine computations are far more limited today).”

In order to compare the goodness of the fitting for the different models, we have developed a
new generalized measure of fit. This proposal is based on a generalization of the classical coefficient
of determination for least squares fitting, that will allow one to measure how good is an optimal
hyperplane with respect to the best constant model, Xd = β0.

The paper is organized as follows. In Section 2 we introduce the new framework for fitting
hyperplanes as well as some results that allow us to interpret the obtained solutions for practical
purposes. Next, in Section 3, a residual-aggregation dependent goodness of fitting index is defined
and an efficient approach for its computation is presented. Two types of residuals are analyzed in
more detail, namely those induced by polyhedral-and-ℓτ norms for rational τ ≥ 1. In Section 4, we
present new methods for the location of hyperplanes assuming that the residuals are measured as
the shortest norm-based distance between the given points (data set) and the linear fitting body
using polyhedral norms. The results of this section are instrumental. They constitute the basis
to address the more general problems in Section 5, since they will permit to develop inner and
outer linear approximations for more general Mixed Integer Non Linear Programming (MINLP)
problems that result in the general case. Section 5 analyzes the location of hyperplanes using
ℓτ norms. Since in this case non convex problems are derived, we also present outer and inner
linear approximations that reduce, the corresponding MINLP problems with ℓτ -norms residuals, to
problems with polyhedral norm residuals. Section 6 is devoted to the computational experiments.
We report results for synthetic data and for the classical data set given in [17]. In addition, we
include an illustrative example of the scalability of the methodology with several thousands of
points. The paper finishes with some concluding remarks and future research.
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2. A flexible methodology for the location of hyperplanes

Given is a set of n observations or demand points (depending that we use the jargon of data
analysis or location analysis, respectively) in a (d+1)-dimensional space, {x1, . . . , xn} ⊂ {1}×Rd

(we will assume, for a clearer description of the models, that the first, the 0−th, component of xi is
the one that account for the intercept, being x10 = · · · = xn0 = 1). Next, we analyze the problem
of locating a linear form (hyperplane) to fit these points minimizing different forms of measuring
the residuals and their aggregation. For any y ∈ Rd+1, we shall denote y−0 = (y1, . . . , yd), i.e., the
vector with the last d coordinates of y excluding the first one. First, we assume that the point-to-
hyperplane deviation is modeled by a residual mapping εx : Rd+1 → R+, εx(β) = D(x−0,H(β)),
being D a distance measure in Rd. This residual represents how “far” is the point (observation)
x ∈ Rd+1 with respect to the hyperplane H(β) = {y ∈ Rd : (1, yt)β = 0}. At times, for the sake of
brevity, we will write the hyperplane as βtX = 0, with β = (β0,β1, . . . ,βd)t ∈ Rd+1. In addition,
to simplify the presentation, we will refer, whenever no possible confusion occurs, to the residual
with respect to the point xi as εi.

An overall measure of the deviations of the whole data set with respect to the hyperplane
induced by β is obtained by using an aggregation function of the residuals, Φ : Rn → R. With this
setting, one tries to minimize such an aggregation function and the Fitting Hyperplane Problem
(FHP) consists of finding β̂ ∈ Rd+1 such that:

β̂ ∈ arg min
β∈Rd+1

Φ(ε(β)), (1)

where ε(β) = (ε1(β), . . . , εn(β))t is the vector of residuals.
Note that the difficulty of solving Problem (1) depends on both the expressions for the residuals

and the aggregation criterion Φ. If Φ and εx are linear, the above problem becomes a linear
programming problem. In this paper, we consider a general family of aggregation criteria that
includes as particular cases most of the classical ones used in the literature [6, 24, 45, 55].

Let λ1, . . . ,λn ∈ R and let ε ∈ Rn be the vector of residuals of all of the points in the given
data set. We consider aggregation criteria Φ : Rn → R+ defined as:

Φ(ε) =
n∑

i=1

λi ε
p
(i), 1 ≤ p < +∞, (2)

where ε(i) ∈ {ε1, . . . , εn} is such that ε(1) ≤ · · · ≤ ε(n). Observe that this operator defines a
multiparametric family (called ordered median functions [40]) that depending on the choice of the
λ-weights captures many of the models proposed in the literature.

Most classical models assume that the residuals are defined as the vertical distance (with respect
to the last coordinate) from the points to the hyperplane:

εx(β) =

∣∣∣∣∣xd −
d−1∑

k=0

βk

βd
xk

∣∣∣∣∣ , (3)

(assuming that βd ̸= 0).
Therefore, the difference between them comes from the choice of the aggregation criterion Φ.

We show below how some classical methods can be accommodated to our framework.

1. The Least Sum of Squares (LSS) method, credited to Gauss [23], is the most widely used
approach to estimate the coefficients of a linear model due to its simplicity (a closed form
for the optimal coefficients is obtained) and its theoretical implications for the inference over
the total population. However, somehow restricting hypotheses are required in order to be
applied (see, e.g., [24]). The LSS criterion is defined as the sum of the squares of the residuals,

that is: ΦLSS(ε1, . . . , εn) =
n∑

i=1

ε2i , where the residuals εk are given by (3). The reader may

observe that LSS corresponds to Problem (1) with λt = (1, . . . , 1), p = 2 and ε the vertical
distance.

2. The Least Absolute Deviation (LAD) method (introduced by Edgeworth [18]) consists of min-
imizing the sum of the absolute value of the vertical residuals. Therefore, ΦLAD(ε1, . . . , εn) =∑n

i=1 |εi|. Note that LAD corresponds to the model in (1) for λt = (1, . . . , 1) and p = 1.
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3. The Least Quantile of Squares (LQS), recently introduced by Bertsimas and Mazumder [6], is
a generalization of the Least Median of Squares (LMS) introduced by [26]. It also considers
vertical distances as residuals, but they are aggregated to minimize the r-quantile of its
distribution (r ranges in {1, . . . , n}). Hence, ΦLQS(ε1, . . . , εn) = r − quantile(ε21, . . . , ε

2
n) :=

ε2(r).
This method also fits to the general form of the aggregation criteria considered in this paper.
In this case, following the notation introduced in (2), the LQS hyperplane can be obtained

for p = 2 and λ = (

(r−1)
︷ ︸︸ ︷
0, . . . , 0, 1,

(n−r)
︷ ︸︸ ︷
0, . . . , 0). (Observe that LMS hyperplane is also obtained

within the same scheme when p = 2 and λ = (

⌊n
2 ⌋

︷ ︸︸ ︷
0, . . . , 0, 1,

⌊n
2 ⌋

︷ ︸︸ ︷
0, . . . , 0).)

4. The Least Trimmed Sum of Squares (LTS) method was introduced by Rousseeuw [44] as a
robust alternative to the LSS method, in that it has a high breakdown point. Recall that,
intuitively, the breakdown point of an estimator is the proportion of incorrect observations
(e.g., arbitrarily large observations) an estimator can handle before giving an incorrect (e.g.,
arbitrarily large) result. With our notation, it corresponds to choose again as residuals the

vertical distance, p = 2, and the aggregation criterion ΦLTS(ε1, . . . , εn) =
∑h

i=1 ε
2
(i) where

ε(i) ∈ {ε1, . . . , εn} with ε(i) ≤ ε(i+1) for i = 1, . . . , n − 1, and h ∈ {1, . . . , n}. The most

common choice for h is ⌊
n

2
⌋, considering the best 50% square residuals.

In the following, we denote by LTS(α) the LTS method when 100 − α% of the data is
discarded, i.e., the percentage of the data that may be considered as outliers.

The function Φ, introduced in (2), is invariant against permutations of its components (some-
times called symmetric in the related literature) and, for non negative lambda weights, a monotone
function, ensuring that the ordering of the individual residuals do not affect the overall goodness
of the fitting. Moreover, it also implies that a componentwise smaller vector of residuals gives rise
to a more accurate fitting.

The natural implication of the assumption made about the definition of residuals is that, as
expected, the response (projection) of a point on a given hyperplane differs from the classical
evaluation. In this setting the response is the closest point, with respect to the distance D, to
the hyperplane H(β). For the sake of readability, we include the following result which follows
applying [32, Theorem 2.1] to the definition of the residual mapping εz = miny∈H(β) ∥z−0 − y∥.

Lemma 2.1. For a given point zt = (1, z1, . . . , zd) and the hyperplane H(β) the response ẑ con-

sistent with the residual εz = miny∈H(β) ∥z−0 − y∥ is given by ẑ = z−0 − βtz
∥β

−0∥
∗
k(β), where

∥y∥∗ = max
z∈Rd:∥z∥≤1

zty is the dual norm to ∥y∥ and k(β) = arg max
∥x∥=1

βt
−0x. Moreover,

εz =
|βtz|

∥β−0∥∗
. (4)

From the above result, the response for a point with a unknown coordinate (without loss of
generality, the last component, d), namely z = (1, z1, . . . , zd−1, 0)t, will be given by:

ẑd = −
βtz

∥β−0∥∗
k(β)d.

Hence, differentiating ẑ with respect to each zj , j = 1, . . . , d− 1, we get

∂ẑd
∂zj

= −
βj

∥β−0∥∗
k(β)d,

which may be interpreted as the marginal variation of the d-th coordinate with respect to the j-th
coordinate whenever the other dimensions remain constant.

Explicit expressions for such projections, namely, ℓ1, ℓ∞ and ℓτ -norms, for τ > 1 are described
in the following lemma.

Lemma 2.2. Let z = (1, z1, . . . , zd)t, then

1. If D is the ℓ1- distance,

ẑk =

⎧
⎪⎨

⎪⎩

zk if |βk| ̸= max{|βj| : j = 1, . . . , d},

zk −
βtz

∥β
−0∥∞

vk, if βk = max{|βj| : j = 1, . . . , d},

zk +
βtz

∥β
−0∥∞

vk, if βk = −max{|βj | : j = 1, . . . , d},
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for k = 1, . . . , d, and for some v1, . . . , vd ≥ 0 such that
∑

j

vj = 1.

2. If D is the ℓ∞- distance,

ẑk =

⎧
⎨

⎩
zk −

βtz
∥β

−0∥1
, if βk > 0,

zk +
βtz

∥β
−0∥1

, if βk < 0,
k = 1, . . . , d.

3. If D is the ℓτ - distance with 1 < τ < +∞ then

ẑk = zk −
βtz

∥β−0∥ν
kτ (β)k, k = 1, . . . , d

and

kτ (β)k =

{
sign(βk)|βk|

ν/τ

(
∑d

j=1 |βj |
ν)1/τ

if βk ̸= 0

0 if βk = 0,
k = 1, . . . , d,

being ν such that 1
τ
+ 1

ν
= 1.

Proof. The proof of items 1. and 2. can be found in [32]. The proof of item 3. follows from
the Lagrangian optimality condition applied to max

∥z∥τ=1
β−0 z. First, we observe that a Lagrange

multiplier exists since the problem is regular at any point of the ℓτ unit ball (Note that the
gradient of the unique constraint is always linearly independent.). Next, the Lagrangian function is

L(z,λ) = β−0 z−λ
∑d

k=1 |zk|
τ . Therefore, its partial derivatives are: ∂L

∂zk
= βk−λτ |zk|τ−1sign(zk),

for all k = 1, . . . , d. Hence, equating to zero the partial derivatives, it follows that for any index k
such that z∗k ̸= 0

λ∗ =
βk

τ |z∗k|
τ−1

sign(z∗k). (5)

Let us define the sets I = {k : βk > 0}, J = {k : βk < 0}, K = {k : βk = 0}. Now from
equation (5), and taking into account that ∥z∥τ = 1, we obtain:

|z∗k|
τ =

{
(sign(z∗

k)βk)
ν

(
∑d

j=1 sign(z∗

j )βj)ν
if k ∈ I ∪ J,

0 otherwise.

Moreover, the Hessian of L is diagonal and all its entries are negative, namely ∂2L
∂z2

k
= −λτ(τ −

1)|z∗k|
τ−2. This implies that z∗ and λ∗ are local maxima.

In the particular case of τ = 2, one can check that k2(β)k = βk which simplifies the above
expression.

We note in passing that εx = D∥·∥(x−0,H(β)) and thus, according to Lemma 2.1

D∥·∥(x−0,H) =
|βtx|

∥β−0∥∗
. (6)

Observe also that when the points in the data set lie exactly on a hyperplane, H, this hyperplane
is always optimal for all versions of Problem (1), although for some specific choices of λ the solution
may not be unique and different hyperplanes may be alternative optima.

Remark that the standard residual (vertical distance) is a distance measure that is not induced
by a norm, but its expression can be written in a analogous form and so it fits to the shape of the
distances that are considered in this paper. In particular, the vertical distance (with respect to

the last coordinate) may be defined as DV (x,H) =

∣∣∣∣∣βdxd −
d−1∑

i=1

βixi − β0

∣∣∣∣∣ /|βd|.

The above aggregation criteria (2) and residual functions (4) are rather general and exhibit
good structural properties. On the one hand, they accommodate most of the already considered
fitting methods in the literature. On the other hand, one can always exploit its properties and
different representations in order to solve Problem (1). In the following we prove some structural
properties that imply the possibility of applying different methodologies to solve (1).

We note, without proof (it can be found in a extended version of this paper [9]), that our
globalizing criterion Φ(εx(·)) is a difference of convex (D.C.) functions. This fact allows one
to apply all the available results on the optimization of this class of functions (see, e.g., [51]).
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Alternatively, we can give a more efficient representation that helps latter in the resolution of
the problem. This representation is based on simpler functions which replace ϕ by more friendly
classes of functions (with regards to the optimization phase) and that permit to get a manageable
form of a mathematical program. In the following we include a first mathematical programming
formulation for the generalized fitting Problem (1), for any choice of Φ and εx.

Theorem 2.3. Let {x1, . . . , xn} ⊆ Rd+1 be a set of points, λ ∈ Rn
+, ∆k = λk − λk−1, for

k = 2, . . . , n, p =
r

s
∈ Q and ∥ · ∥ a norm in Rd. Problem (1) is equivalent to the following

mathematical programming problem:

min λ1

n∑

i=1

zi +
{ ∑

k:∆k>0

∆k

(
(n− k + 1)tk +

n∑

i=1

zik
)
+

∑

k:∆k<0

(∆k)
n∑

i=1

ωik

}
(7)

s.t. εi ≥
|βtxi|

∥β−0∥∗
, ∀i = 1, . . . , n, (8)

zsi ≥ εri , ∀i = 1, . . . , n, (9)

tk + zik ≥ zi, i = 1, . . . , n, k = 2, . . . , n, ∆k > 0 (10)
n∑

i=1

γik = n− k + 1, k = 2, . . . , n : ∆k < 0 (11)

ωik ≤ Mγik, i = 1, . . . , n, k = 2, . . . , n : ∆k < 0 (12)

ωik ≤ zi, i = 1, . . . , n, k = 2, . . . , n : ∆k < 0 (13)

γik ∈ {0, 1},ωik ≥ 0, ∆k < 0,

zik, tk ≥ 0, i, k = 1, . . . , n, ∆k > 0

β ∈ Rd+1, εi ≥ 0, i = 1, . . . , n,

where M > 0 is a suitable large constant.

Proof. Applying the result in [25, Theorem 3.6] the aggregation function Φ can be equivalently
written as

Φ(ε(β)) = λ1

n∑

i=1

εi(β)
p +

n∑

k=2

∆kθk(β), (14)

where θk(β) = max
{
εi1(β)

p+. . .+εin−k+1(β)
p : for all {i1, . . . , in−k+1} ⊂ {1, . . . , n} such that i1 <

i2 < . . . < in−k+1

}
. (The reader may observe that the functions θk are usually called (n− k + 1)-

centrum in the specialized literature of optimization [40].) The z-variables in the formulation
represent the residuals raised to the power of p = r

s
. The objective function (7) has three terms.

The first one corresponds to the first one in (14). The terms (n − k + 1)tk +
∑n

i=1 zik together
with the constraints (10) provide valid representations for the (n− k+1)-centrum functions of the
elements of the vector z = (z1, . . . , zn)t whenever ∆k is positive. On the other hand, if ∆k is neg-
ative the expression

∑n
i=1 ωik together with (12), (13) and γik ∈ {0, 1} give a valid representation

for the (n − k + 1)-centrum functions of the elements of the vector z = (z1, . . . , zn)t. Finally, (8)
and (9) ensure that zi = εpi , for all i = 1, . . . , n in the optimal solution of the problem.

Note that the above problem is a MINLP problem, whose continuous relaxation is in general non
convex due to the set of constraints (8). Apart from the mathematical programming formulation
above, one may use alternative (in some cases better) formulations for the ordering problems as
those provided in [19]. In particular, some important special ordered median aggregation criteria
permit to have a simpler formulation that avoids the use of binary variables. The following result
shows a better formulation for the fitting problem under the assumption that 0 ≤ λ1 ≤ . . . ≤ λn.
We call this setting for lambda the monotone case.

Proposition 2.4. Let {x1, . . . , xn} ⊂ Rd+1 be a set of demand points, λ ∈ Rn, such that 0 ≤ λ1 ≤

· · · ≤ λn, p =
r

s
∈ Q with r > s ∈ N, gcd(r, s) = 1 and ∥ · ∥ a norm in Rd. Then, Problem (1) is

equivalent to the following mathematical programming problem:
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min
n∑

j=1

vj +
n∑

i=1

wi

s.t. (8), (9),

vj + wi ≥ λizj , ∀i, j = 1, . . . , n,

zi, θi ≥ 0, v, w ∈ Rn,β ∈ Rd+1.

Proof. The proof follows by the representation of the ordering between the residuals by permutation
variables, which for 0 ≤ λ1 ≤ · · · ≤ λn, allows one to write the objective function in Problem
(1) as an assignment problem which is totally unimodular. Therefore, it can be equivalently
rewritten using its dual problem. The interested reader is refereed to [8] for further details on this
transformation.

The reader may observe that the nonlinear constraints zsi ≥ εri for all i = 1, . . . , n can be
transformed into a set of second order cone constraints using a simplified version of Lemma 1 in
[8]. This implies that those constraints can be efficiently handled by nowadays nonlinear solvers
since they are convex and friendly for the optimization.

Remark 2.5. Let r, s ∈ N \ {0} with gcd(r, s) = 1, and k = ⌊log2(r)⌋. Then, there exist variables
u1, . . . , uk−1 ≥ 0 such that each constraint zs ≥ εr in (8) can be equivalently written as constraints
in the form: u2

j ≤ u
aj

l zbjεcj , ε2 ≤ uhu
dh
h−1z

fhεgh , uj ≥ 0, with j = 1, . . . , k − 1 and such that
1 ≤ aj + bj + cj ≤ 2 for given aj , bj, cj ∈ Z+ and dh, fh, gh ∈ Z+ such that dh + bh + ch = 1.

By the above remark, the nonlinear constraints in the form zs ≥ εr are written as second order
cone constraints in the form X2 ≤ Y Z or X2 ≤ Y (for some choices of the variables X , Y and Z
in our model).

Hence, the difficulty of solving Problem (7)-(13), depends essentially on the choice of the
residuals since all except constraints (8) are linear or second order cone constraints which can
be efficiently handled with nowadays modern optimization techniques. In the next sections we
analyze different choices for the residuals.

Remark 2.6 (Subset Selection and Regularization). In the case where the number of points (n)
is much smaller than the dimension of the space (d), it is common in Statistics to compute fitting
hyperplanes over a smaller dimension space. The new space is determined by those components
that, after projecting, permits a good fitting in a lower dimension space. Several methods have
been proposed in the recent literature to perform such a computation. If the dimension of the new
space, q < d, is given, a constraint in the form ∥β−0∥0 ≤ q (here ∥ · ∥0 stands for the support
function or nuclear norm, i.e., the number of nonzero components of the vector) may be included
in the mathematical programming formulation (see [7, 35]), which gives rise to the so called Subset
Selection Problem. If such a dimension is not known, regularization methods that penalize the
number of nonzero elements or the size of β−0 can be applied to solve the Feature Selection Problem
(see [37]). Note that both types of approaches can be incorporated in our models although this will
increase its computational complexity.

3. Goodness of Fitting

After addressing the problem of locating/fitting a hyperplane with respect to a set of points,
we will analyze the goodness of this fitting extending the well-known coefficient of determination,
R2, in Regression Analysis. (Recall that the coefficient of determination is the proportion of the
variance in the dependent variable that is predictable from the independent variable(s).) For the
sake of presentation, we assume that the variable that needs to be analyzed as dependent to the
others is the last coordinate Xd, or in other words Y = Xd. The goodness of fitting index, GoF, is
defined as:

GoFΦ,ε = 1−
Φ∗

Φ∗
0

,

where Φ∗ is the optimal value of (1), namely Φ(εx(β̂)), and Φ∗
0 is the optimal value of Problem (1)

when it is additionally required that β is in the form β = (β0,

d−1︷ ︸︸ ︷
0, . . . , 0,−1), i.e., the hyperplane

is forced to be constant (Xd = β0). Note that the components 1, . . . , d − 1 do not appear in the
model. Hence, Φ∗

0 measures the global error assumed by the best fitting horizontal hyperplane;
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whereas GoFΦ,ε measures the improvement of the model that considers all the dimensions with
respect to the one that omits all (except one) of them. Observe that this coefficient coincides with
the classical coefficient of determination provided that the aggregation criterion is the overall sum
and the residuals are the squared vertical distances: in that case β̂0 = x·d (the sample mean of the
dependent variable). Note that GoF is well defined if Φ∗

0 ̸= 0.
The GoF clearly verifies one of the important properties of the standard coefficient of deter-

mination, 0 ≤ GoFΦ,ε ≤ 1. Furthermore, one may interpret the coefficient as a measure of how
good is the best possible hyperplane under certain criterion and residual choice with respect to
the best horizontal hyperplane. When GoF is close to 0, it is because Φ∗ ≃ Φ∗

0, so not appreciable
improvement is given by the complete model (which considers all the components) with respect to
the simple constant model; whenever GoF is close to 1, it means that Φ∗ ≪ Φ∗

0, being the proposed
model significatively better than the constant model (note that GoF = 1 iff Φ∗ = 0, i.e., when the
model perfectly fits the demand points). Hence, the closer the GoF to one, the better the fitting;
whereas the closer to zero, the better is the constant model with respect to the full model.

Observe that the above definition coincides with some of the alternatives to measure the good-
ness of fitting for robust approaches to the least sum of squares methodology (see [36]).

To obtain the GoF, apart from solving Problem (1) to get Φ∗, we must also solve the problem:

Φ∗
0 = min

β0∈R
Φ(D(x1,H0), . . . ,D(xn,H0)), (15)

where H0 = {y ∈ Rd : yd = β0} for some β0 ∈ R.

Lemma 3.1. Let the residual mapping εx : Rd+1 → R+ be induced by a norm ∥ ·∥. Then, Problem
(15) is equivalent to

Φ∗
0 = min

β0∈R

Φ(κε|x1d − β0|, . . . ,κε|xnd − β0|), (16)

where

κε =
1

max
z∈Rd:∥z∥≤1

zd

Proof. For the point xk in the data set, the residual under the assumption Xd = β0 is εk(β0) =
D(xk,H0) = miny∈H0 ∥xk − y∥, where H0 = {y ∈ Rd : yd = β0} for some β0 ∈ R. Then, by (4) in
Lemma 2.1

εk(β0) =
|xkd − β0|

∥(0, . . . , 0,−1)∥∗

with ∥ · ∥∗ the dual norm of ∥ · ∥. By definition of the dual norm ∥y∥∗ = max
z∈Rd:∥z∥≤1

zty. Hence,

applying such a definition to y = (0, . . . , 0,−1) the result follows.

From the above result it is easy to see that κε = 1, provided that εx is induced by any ℓτ norm,
even for the ℓ1 and the ℓ∞ cases. However, as we will see in Section 4, not all the norms have the
same κε constant.

Let us introduce the function fλ,p(β) :=
n∑

i=1

λi εp(i). Next, with our specifications for Φ, the

problem to be solved to obtain Φ∗
0 is:

Φ∗
0 = κε min

β0∈R

fλ,p(β) (17)

where εi = |xid − β0| for i = 1, . . . , n.
Solutions to Problem (17) for a given β0 ∈ R motivate the introduction of the concept of ordered

median point. Indeed, β0 is a (λ, p)-ordered median point ((λ, p)-omp in short) if it is an optimal
solution to (17).

Some special cases of (λ, p)-omp are well-known and widely used in the so-called Location
Analysis literature. If λi = 1 for all i = 1, . . . , n, the (λ, 1)-omp is known to coincide with the
median, median(x1d, . . . , xnd), of {x1d, . . . , xnd}; while the (λ, 2)-omp is the arithmetic mean of
the x.d-values.

In the general case, i.e., for arbitrary λ and p, the ordered median points do not have closed
form expressions [19, 20], although they have been around in the field of LA for several years
[39, 40]. Moreover, they can be obtained, as shown below, to be used in the computation of the
goodness of fitting index.
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Method Line GoF (Rα)

LSS y=-0.4133 x + 6.7934 0.0442
LAD y= -0.6931 x + 8.1492 0.0065
LMS y = 4 x -12.76 0.0765

LTS(50) y=3.0461 x -8.50 0.3531 (0.1141)
LTS(75) y= 3.0461 x -8.50 0.4927 (0.2484)
LTS(90) y = 2.8028x -7.4035 0.4436 (0.4008)

3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9
4

4.5

5

5.5

6

6.5

LSS
LAD
LMS

LTS(50)=LTS(75)
LTS(90)

Figure 1: Optimal Lines with the classical methods for the stars data set.

In the following we show how to solve (17) for general choices of non-negative vectors λ and
p ∈ [1,+∞). Without loss of generality we assume that x1d ≤ x2d ≤ . . . ≤ xnd. Let us denote
further by αik := xid+xkd

2 the solution of the equation ε
p
i (β) = ε

p
k(β) for all i < k, i, k = 1, . . . , n

in the range (x1d, xnd). Let A be the set containing all the x.d and α points and denote by zk the
k-th point in A sorted in non-decreasing sequence. By construction, in the interval Ik = (zk, zk+1)
all the functions ε

p
i (β) are monotone for all i = 1, . . . , n. Let us denote by Ac the set of all the

critical points of the function fλ,p in the interval (x1d, xnd) for p ∈ (1,+∞).

Theorem 3.2. For any non-negative vector λ and p ∈ (1,∞) the set A ∪ Ac always contains a
(λ, p)-omp. For p = 1 the set A always contains a (λ, 1)-omp.

Proof. For all β ∈ Ik, the function fλ,p for p ∈ (1,+∞) is a non-negative linear combination of
monotone functions. Therefore, its derivative can vanish in at most one point. This implies that
the minimum of fλ,p is always attained on A ∪ Ac. If p = 1 then fλ,p is a non-negative linear
combination of linear functions; and thus the minimum in the interval Ik is attained in one of its
extreme points. Hence, the minimum of fλ,1 is attained on A.

The reader may observe that the implication of the above theorem is that β̂0 can be always
obtained by a simple enumeration of the set A ∪ Ac (Observe that the cardinality of this set is
O(n2)). Then, Φ∗

0 = κε

∑n
i=1 λi|xid− β̂0|

p
(i). Thus, the complexity of computing GoF is essentially

the same that the resolution of Problem (1), which must be solved to obtain Φ∗.

Example 3.3. The data considered in this example consists of 47 points in R2 about stars of the
CYG OB1 cluster in the direction of Cygnus [29]. The first coordinate, X1, is the logarithm of the
effective temperature at the surface of the star and the second one, X2, is the logarithm of its light
intensity. This data set has also been analyzed in [45] and [55], among others.

We run the LSS, LAD, LMS and LTS(α) with α ∈ {50, 75, 90}. The obtained lines and the
goodness of fitting indices (GoFΦ,ε) are shown in Figure 1.

Observe that the LSS and LAD models were not able to adequately fit the the data while the
others (which are somehow similar) show their better performance against the outliers. Note also
that GoF reflects this fact, although it is not clear whether LTS(75) (the one with the largest GoF)
is better than the others.

In order to show the behavior of the LTS models and which are the results of their optimal
fitting lines, Figure 2 shows the fitting lines that minimize the 50%, 75% or 90% of the residuals
and the points that the corresponding optimization problems discard (filled dots in the subfigures)
to reach the fitted lines.

Observe that the percentage of discarded data (1 − α) is a key point in LTS models. Several
measures are available to determine breakdown points. One of the most widely used measures is
the Rα-index (see [2, 28]), which is defined as:

Rα =
Φ∗

LTS(α)

Φ∗
LSS

·
n− d

⌊αn⌋ − d

In Figure 3, we show the Rα index as a function of α, for the stars dataset. A big slope change in
such a function indicates the adequacy of using the corresponding α for the LTS model. As can be
observed, Rα has a high-breakdown point in α = 90% as detected by GoF. Actually, although both
indices measure different characteristics of the model (GoF measures the convenience of using the
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Figure 2: Estimated models and discarded points (filled dots) in LTS models.

model against the simple constant one and Rα the detection of outliers data in the sample), they
have a similar behavior (Rα is similar to 1 − GoFLTS(α)). Moreover, the index Rα for the three
LTS models can be seen in the table of Figure 1.

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

GoFLTS(α)

Rα

Figure 3: Rα index for the stars dataset.

4. Fitting Hyperplanes with block-norm residuals

In this section, we present models to compute the parameters of the fitting hyperplanes when
distances are assumed to be measured by a block-norm between the points and the closest point in
the hyperplane; and the aggregation criterion is considered in the general form given by Problem
(1). Recall that a block norm is a norm such that its unit ball is a polytope symmetric with respect
to the origin and with non empty interior. Block norms, also referred to as polyhedral norms, play
an important role in the measurement of distances in many areas of Operations Research and
Applied Mathematics as for instance in Location Analysis or Logistics. They are often used to
model real world situations (like measuring highway distances) more accurately than the standard
Euclidean norm.

The results in this section will be instrumental to address the general problem of finding hyper-
planes with general norms (see Section 5). Using block norms induce linear programming problems
and moreover, by its denseness property, any norm can be arbitrarily approximated by block ones
[54].

We denote by ∥ ·∥B the norm in Rd whose unit ball is given by a symmetric with respect to the
origin, with non empty interior polytope B, i.e., B = {x ∈ Rd : ∥x∥B ≤ 1}. Let Ext(B) = {bg :
g = 1, . . . , G} be the set of extreme points of B and B0 the polar set of B which is defined as:

B0 = {v ∈ Rd : vtbg ≤ 1, g = 1, . . . , G}
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and Ext(B0) = {b01, . . . , b
0
G0}.

It is well-known [53, 54] that the evaluation of a block norm can be done in terms of the extreme
points of the polar set of the polytope B:

∥x∥B = max{|xtb0g| : g = 1, . . . , G0}, for all x ∈ Rd. (18)

The above expression is a linear program, whose complexity depends on the number of extreme
points of B0. In the case of exponentially many extreme points, one can always resort to column
generation techniques to improve the performance of its computation. Special cases of block norms
are the Manhattan (ℓ1) and the Chebyshev (ℓ∞) norms for adequate choices of the extreme points
of the unit balls. Any block norm ∥ · ∥B in Rd induces a distance between vectors x, y ∈ Rd given
by DB(x, y) = ∥x− y∥B.

Given a set of points {x1, . . . , xn} ⊆ Rd and a polyhedral unit ball B, our goal is to obtain the
hyperplane H(β) = {y ∈ Rd : (1, yt)β = 0} such that the overall distance DB(·, ·) from the sample
to H(β) is minimized according to the aggregation function Φ (for 1 ≤ p = r

s ∈ Q). That is:

min
β∈Rd+1

n∑

i=1

λiε
p
(i), (RMB)

where for any x ∈ Rd, εx = DB(x,H(β)), is the “∥ ·∥B-projection” of x onto the hyperplane H(β),
and ε(i) denotes the element in {ε1, . . . , εn} which is sorted in the i-th position (in nondecreasing
order).

We recall that according to equation (4) in Lemma 2.1, for any polytope B symmetric with
respect to the origin and with non empty interior, and H(β) = {yt ∈ Rd : (1, yt)β = 0} then

DB(x−0,H(β)) =
|βtx|

∥β−0∥B0
, where B0 is the polar set of B and xt = (1, X1, . . . , Xd) ∈ Rd+1 is a

given point.
The following is a simpler valid formulation for the hyperplane location problem with block norm

residuals. For a set of linear equations atjx = bj , for j = 1, . . . ,m, we denote by
∨m

j=1[a
t
jx = bj ] the

disjunctive constraint that requires that at least one of the equations atjx = bj (for j = 1, . . . ,m)
is satisfied by x.

Theorem 4.1. Let {x1, . . . , xn} ⊂ Rd+1 be a set of points and let B ⊂ Rd be a polytope with
Ext(B) = {b1, . . . , bG}. Then, RMB is equivalent to the following disjunctive programming problem

ρ∗(B) :=min
n
∑

j=1

λjθj (19)

s.t. (9)− (13)

εi ≥ β
txi,∀i = 1, . . . , n, (20)

εi ≥ −β
txi, ∀i = 1, . . . , n, (21)

β
t
−0bg ≤ 1, ∀g = 1, . . . , G, (22)

G
∨

g=1

[

β
t
−0bg = 1

]

, (23)

γik ∈ {0, 1},ωik ≥ 0, ∆k < 0,

zik, tk ≥ 0, i, k = 1, . . . , n, ∆k > 0

β ∈ R
d+1, εi ≥ 0, i = 1, . . . , n.

Proof. Let us denote by εi = DB(xi,H(β)). By Lemma 2.1, εi =
|βtxi|

∥β−0∥B0
. Let β∗ ∈ Rd+1 be an

optimal solution of RMB with β∗
−0 ̸= 0. Then, β′ =

β∗

∥β−0∥B0
is also an optimal solution of RMB

with ∥β′
−0∥B0 = 1. Thus, there is an optimal solution of RMB, β, that verifies DB(x−0,H(β)) =

|βtx| for any xt = (1, x1, . . . , xd) ∈ Rd+1. Therefore, we can assume that ∥β−0∥B0 = 1, hence

εi = |βtxi| (constraints (20) and (21)). Since (B0)0 = B then ∥β−0∥B0 = max{|
d∑

i=1

βibgi| : g =

1, . . . , G}. Hence, there exists g0 ∈ {1, . . . , G} such that ∥β−0∥B0 = 1 (disjunctive constraint (23))

and thus
d∑

k=1

βkbgk ≤
d∑

k=1

βkbg0k = 1 (constraint (22)). (Note that absolute values do not need to

be taken explicitly into account since if bg ∈ Ext(B), then −bg ∈ Ext(B).)
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The above problem can be equivalently written as a Mixed Integer Second Order Cone Op-
timization (MISOCO) problem once constraints (9) are transformed, using the result in Remark
2.5, and binary variables are added to decide which g0 is chosen to verify constraint (23). By the
same token, this problem can be also equivalently rewritten as G (recall that G is the cardinality
of Ext(b)) different Second Order Cone Programming Problems (SOCP) (each of them fixed to
verify one of the disjunctive constraints). Furthermore, mixed integer non linear disjunctive pro-
gramming techniques (see, e.g., [3], [30]) may be used to solve the corresponding problem. Based
in the above discussion, the following is another valid MINLP formulation for RMB.

Corollary 4.2. Let {x1, . . . , xn} ⊂ Rd+1 be a set of points and let B ⊂ Rd be a polytope with
Ext(B) = {b1, . . . , bG}. Then, (19) is equivalent to the following problem:

ρ∗(B) :=min
n
∑

j=1

λjθj (24)

s.t. (9)− (13)

εi ≥ β
t
hxi,∀i = 1, . . . , n, h = 1, . . . , G, (25)

εi ≥ −β
t
hxi,∀i = 1, . . . , n, h = 1, . . . , G, (26)

β
t
−0hbg ≤ 1, ∀g = 1, . . . , G, h = 1, . . . , G, (27)

β
t
−0hbh = ξh, h = 1, . . . , G, (28)

G
∑

h=1

ξh = 1, (29)

βh ∈ R
d+1, ξh ∈ {0, 1}, ∀h = 1, . . . , G,

γik ∈ {0, 1},ωik ≥ 0, ∆k < 0,

zik, tk ≥ 0, i, k = 1, . . . , n, ∆k > 0

εi ≥ 0, i = 1, . . . , n.

Some special cases for the aggregation function Φ allow us even simpler formulations reducing
considerably the computational complexity of the problems. In particular, when λi = 1 for all
i = 1, . . . , n, the integer variables representing ordering (wij) can be removed from the above
formulation.

The following result permits to consider polyhedral norms which are dilations of other polyhe-
dral norms, i.e., polyhedral norms ∥ · ∥µB for some bounded polyhedron B and µ > 0 (µB = {µ z :
z ∈ B}). It will be very useful in the next section when we approximate the problem of locating
hyperplanes with general norms by problems with polyhedral ones.

Lemma 4.3. Let B be a polytope and µ > 0. Then, if β∗ is an optimal solution for Problem (24)
for B = B, β̂ = 1

µ
β∗ is an optimal solution for (24) when B = µB. Moreover, ρ∗(µB) = 1

µp ρ∗(B).

Proof. It is sufficient to observe that for any β ∈ Rd+1:

∥(β1, . . . ,βd)∥µB0 = max{|µbtgβ
t| : g = 1, . . .G}

= µmax{|btgβ
t| : g = 1, . . .G} = µ∥(β1, . . . ,βd)∥B0 .

Since ΦµB(ε1, . . . , εn) =
1
µpΦB(ε1, . . . , εn), we get the relation between the optimal values. Let

β∗ be an optimal solution of (24). Then,
1

µ
β∗ is clearly a feasible solution to Problem (24) when

B = µB since ∥(
1

µ
β∗
1 , . . . ,

1

µ
β∗
d)∥µB0 = ∥(β∗

1 , . . . ,β
∗
d)∥B0 = 1.

In order to compute GoF for solutions to problems with block-norm residuals, note that the
one dimensional Problem (16) does depend on Φ and also on the residuals through κε. Let us
denote by κB the constant κε when the residuals εx are defined as the block-norm projection with
unit ball given by the polytope B.

Corollary 4.4. Let B ⊂ Rd be a polytope. The Goodness of Fitting index, GoF, when the residuals
are defined as the block-norm distance with unit ball B, can be computed as:

GoFΦ,ε = 1−
Φ∗

n∑

i=1

|xid − ((λ, p) − omp(x·d))|
p

· max
g=1,...,G

|bgd|,
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where (λ, p)-omp(x·d) is the solution to the Problem (16) with residuals measured with the polyhedral
norm with unit ball B.

Proof. By Lemma 3.1 the goodness of fitting index GoFΦ,ε can be computed as:

GoFΦ,ε = 1−
Φ∗

minβ0∈RΦ(κB |x1d − β0|, . . . ,κB|xnd − β0|)
, (30)

where κB = 1
max
z∈B

zd .

Observe that since B is a polytope then the above maximum is attained in an extreme point
of B and thus κB = 1

max
g=1,...,G

bgd
.

Next, Problem (16) in this case can be expressed as:

κB · min
β0∈R

n∑

i=1

λi|x·d − β0|
p
(i).

Recall that this is a (λ, p) Ordered median problem and that its optimal solution, a (λ, p)-omp, can
be easily obtained by the result in Theorem 3.2. Replacing the optimal solution to this problem
in (30) it results in:

GoFΦ,ε = 1−
Φ∗

n∑

i=1

|xid − ((λ, p) − omp(x·d))|
p

· max
g=1,...,G

|bgd|.

Note that for λ = (1, . . . , 1) the (λ, 1)-omp is the standard median point and thus the expression
n∑

i=1

|xid −median(x·d)| is what it is usually called the mean absolute deviation with respect to the

median.
The same dataset used in Example 3.3 allows us to show the expressions of the optimal fitting

hyperplanes when different block-norm residuals are considered:

Example 4.5. We consider again the stars data used in Example 3.3. In this case, we run our
implementation in R for ℓ1-norm, ℓ∞-norm and hexagonal norm (as the one used in [40] with
Ext(B) = {±(2, 0),±(2, 2),±(−1, 2)}) residuals. This last choice is included only for illustrative
purposes of the presented methodology and by its applicability in LA, although its statistical meaning
may need further investigation. We also note in passing that the use of different metrics, based
on geodesic of the considered space, is natural in geodesic regression [21]. We use four different
criteria: overall SUM (λ = (1, . . . , 1) and p = 1), MAXimum (λ = (1, 0, . . . , 0) and p = 1), K-

centrum (λ = (

K︷ ︸︸ ︷
0, . . . , 0,

n−K︷ ︸︸ ︷
1, . . . , 1)) for K = ⌊0.75n⌋ (the model will minimize the sum of the 25%

greatest residuals) and anti-K-centrum (λ = (

K︷ ︸︸ ︷
1, . . . , 1,

n−K︷ ︸︸ ︷
0, . . . , 0)) for K = ⌊0.5n⌋ (the model will

minimize the sum of the 50% smallest residuals). The results for all the combinations and the
graph for the K-centrum lines are shown in Figure 4.

Note that different situations may happen when running the different models: in the case of
the SUM criterion the models for ℓ1 and hexagonal residuals coincide; for the MAX criterion the
three optimal lines are the same, and for the K-centrum and anti-K-centrum the three models are
different. Furthermore, even in the case when the models coincide, one may have different goodness
of fitting indices due to the different way of measuring distances (see the ℓ1 and hexagonal residuals
for the MAX criterion).

From the above, we observed that the GoF are not comparable when different residuals are used
in the models since the value given to the residuals (both with respect to the best model and with
respect to the simplified model with only intercept) is different. Thus, the generalized coefficient
allows us to compare the goodness of fitting between models provided that the distance (to measure
the residuals) and the aggregation criterion are fixed.
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Method (Φ, ε) Optimal Line GoFΦ,ε

(SUM, ℓ1) y = 7x− 25.81 0.6505853
(SUM, ℓ∞) y = 5.25x+−18.1425 0.7009688
(SUM, Hex) y = 7x− 25.81 0.6505853
(MAX, ℓ1) y = −3.230769x+ 18.77577 0.5336373
(MAX, ℓ∞) y = −3.230769x+ 18.77577 0.6438685
(MAX, Hex) y = −3.230769x+ 18.77577 0.6438685

(kC, ℓ1) y = −4.307692x+ 23.03346 0.4628481
(kC, ℓ∞) y = −2.493333x+ 15.67113 0.5921635
(kC, Hex) y = 7.642857x+−28.67929 0.8317972
(AkC, ℓ1) y = 5.6x− 19.804 0.8443055
(AkC, ℓ∞) y = 4.869565x− 16.41565 0.8426523
(AkC, Hex) y = 5.473684x− 19.28316 0.6431602
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ℓ∞
Hex
LSS

Figure 4: Optimal lines obtained with block-norm residuals for the stars data set.

5. Fitting Hyperplanes with ℓτ distances

In this section we deal with the general problem of locating a hyperplane with respect to a
set of points and we present a suitable mathematical programming formulation for computing the
optimal hyperplanes when the residuals are defined as ℓτ , τ ≥ 1, distances. Recall that for any
z = (z1, . . . , zd)t ∈ Rd the ℓτ -norm, τ ≥ 1, is defined as:

∥z∥τ =

⎧
⎪⎪⎨

⎪⎪⎩

(
d∑

k=1

|zk|
τ

) 1
τ

ifτ < ∞,

max
k=1,...,d

{|zk|} if τ = ∞.

From this norm we denote by Dℓτ (z, y) = ∥z − y∥τ the ℓτ -distance between the points z, y ∈ Rd.
The well-known Euclidean distance, that measures the straight line distance between points, is
the ℓ2-norm in this family. Note that the extreme cases of ℓ1 and ℓ∞ represent both block and
ℓτ -norms, since their unit balls are polytopes but also fit within the family of ℓτ -norms.

We recall that according to equation (4) in Lemma 2.1, for any τ = r
s
∈ Q with r ≥ s ∈ Z+,

gcd(r, s) = 1 and H(β) = {yt ∈ Rd : (1, yt)β = 0}, then Dτ (z,H(β)) =
|βtz|

∥β−0∥ν
,where ν is such

that 1
τ + 1

ν = 1 (for τ = 1, ν = ∞ while for τ = ∞, ν = 1).
In this section we assume that the residuals are defined as the shortest distance from the

points to the fitted hyperplane, namely, for a given point x̂ = (1, x̂1, . . . , x̂d)t the residual is:
εx̂(β) = Dτ (x̂−0,H(β)).

Let {x1, . . . , xn} ⊂ Rd+1 be a given set of points, λ ∈ Rn, τ = r
s
∈ Q with r > s ∈ N and

gcd(r, s) = 1, and ∥ · ∥τ , a ℓτ -norm in Rd. It follows from the discussion above that under these
hypotheses, Problem (1) is equivalent to the following mathematical programming problem:

Φ∗
ℓτ

:= min
n∑

j=1

λjθj (31)

s.t. (8)− (13), (20)− (21),

∥β−0∥ν = 1, (32)

γik ∈ {0, 1},ωik ≥ 0, ∆k < 0,

zik, tk ≥ 0, i, k = 1, . . . , n, ∆k > 0

β ∈ Rd+1, εi ≥ 0, i = 1, . . . , n.

Note that the above problem is nonconvex for 1 < τ < ∞ because of the binary variables
and constraint (32). One could try to solve Problem (31) using algorithms available in different
nonlinear optimization solvers, although no guarantee of optimality is provided (e.g., NLOPT,
BARON, Minotaur, ...). In what follows we describe an accurate approximation alternative based
on the results in Section 4.

Let P be a polyhedron such that P ⊂ B = {z ∈ Rd : ∥z∥ν ≤ 1}, and denote by rP =
sup∥z∥P=1 ∥z∥ν (note that by construction rP ≤ 1). Observe that rP is the radius of the smallest
ℓν-ball containing P . In addition, let Q be a polyhedron such that B ⊂ Q, and denote by RQ =
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inf∥z∥Q=1 ∥z∥ν (note that by construction RQ ≥ 1). In this case RQ is the radius of the largest
ℓν-ball contained in Q.

For a generic polyhedron P , let εP = (ε1,P , . . . , εn,P )t, with εi,P = DP (xi,−0,H), i = 1, . . . , n.
Analogously, let εℓτ = (ε1,ℓτ , . . . , εn,ℓτ )

t, with εi,ℓτ = Dℓτ (xi,−0,H), i = 1, . . . , n. Let δ = r
s
∈ Q

with r, s ∈ Z\{0} with gcd(r, s) = 1.
The following result states the relationship between the objective values obtained when using

either ℓτ or the block-norms induced by P and Q to define the residuals in our models.

Theorem 5.1. Let λ1, . . . ,λn ≥ 0 and the aggregation function Φ(ε1, . . . , εn) =
n∑

i=1

λiε
δ
(i) then:

Φ(εP ) ≤ Φ(εℓτ ) ≤
1

rδP
Φ(εP ) (33)

1

Rδ
Q

Φ(εQ) ≤ Φ(εℓτ ) ≤ Φ(εQ) (34)

Proof. By the relations between the norms, it is clear that ∥z∥P ≥ ∥z∥ν ≥ rP ∥z∥P . Let H(β) =
{z ∈ Rd : (1, zt)β = 0}. Then, for any x ∈ Rd, the above relationships imply the following
inequalities relating the distances with respect to ∥ · ∥P 0-residuals and ∥ · ∥τ -residuals:

DP 0(x−0,H(β)) =
|βtx|

∥β−0∥P
≤

|βtx|

∥β−0∥ν
≤ Dτ (x−0,H(β))

and

Dτ (x−0,H(β)) =
|βtx|

∥β−0∥ν
≤

|βtx|

rP ∥β−0∥P
≤

1

rP
DP 0(x−0,H(β))

Let us consider the aggregation criterion Φ(ε1, . . . , εn) =
n∑

i=1

λiε
δ
(i). Its evaluation with respect

to the residuals computed with the polyhedral norm with unit ball P and the ℓτ -norm, namely
εi,P = DP (xi,−0,H(β)) and εi,ℓτ = Dτ (xi,−0,H(β)) for all i = 1, . . . , n, satisfies:

Φ(εP ) ≤ Φ(εℓτ ) ≤
1

rδP
Φ(εP ).

This equation proves (33).
Next, by definition of Q, it is clear that ∥z∥Q ≤ ∥z∥ν ≤ RQ∥z∥Q. Now, using an argument

similar to the one above we conclude that

DQ(x−0,H(β)) =
|βtx|

∥β−0∥Q
≥

|βtx|

∥β−0∥ν
≥ Dτ (x−0,H(β))

=
|βtx|

∥β−0∥ν
≥

|βtx|

RQ∥β−0∥ν
≥

1

RQ
DQ(x−0,H(β)).

From these inequalities it clearly follows (34).

Let PN be a symmetric with respect to the origin polytope with N vertices, {p1, . . . , pN},
inscribed in the ℓν hypersphere B = {z ∈ Rd : ∥z∥ν = 1} and let rPN be the radius of the
smallest ℓν ball centered at the origin containing PN . Let RQN = 1

rPN
and denote by QN the

RQN -dilation of PN . By construction PN ⊂ B ⊂ QN . Hence, for the globalizing function

Φ(ε1, . . . , εn) =
n∑

i=1

λiε
δ
(i), by the Theorem 5.1, we get that:

max{Φ(εPN ),
1

Rδ
QN

Φ(εQN ))} ≤ Φ(εℓτ ) ≤ min{Φ(εQN ),
1

rδPN

Φ(εPN )}

Furthermore, by Lemma 4.3, since QN is a dilation of PN , both problems have the same optimal
solutions and Φ(εPN ) = rδPΦ(εQN ). Hence,

Φ(εPN ) ≤ Φ(εℓτ ) ≤
1

rδPN

Φ(εPN ).

It is clear from its definition that rPN determines the approximation error whenever a ℓν-norm
is replaced by a polyhedral norm with unit ball PN and it can be explicitly computed.
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Lemma 5.2. Let P = {z ∈ Rd : aix ≤ bi, i = 1, . . . , N} be a polytope, then:

rP = max
i=1,...,N

bi
∥ai∥τ

.

Proof. First, note that rP = sup∥z∥P=1 ∥z∥ν = max
∥z∥P=1

∥z∥ν by the compactness of P . Thus, rP is

the ℓν-inradius of P . Next, by [32], the radius of a ℓν ball centered at the origin and reaching the

facet {x ∈ Rd : atix ≤ b} of P is the ℓν projection of the origin onto that facet, namely
|bi|

∥ai∥τ
.

Hence, rP is the maximum of those distances among the N facets defining P .

Next, we can obtain from the above discussion a lower bound for Φ∗
ℓτ
, the optimal value of

Problem (31). Indeed, it follows that

ρ∗ ≤ Φ∗
ℓτ ≤

1

rpP
ρ∗, (35)

where

ρ∗ :=min
n∑

j=1

λjθj (36)

s.t. (8)− (13)

εi ≥ |βtxi|, ∀i = 1, . . . , n, (37)

∥β−0∥PN = 1, (38)

γik ∈ {0, 1},ωik ≥ 0, ∆k < 0,

zik, tk ≥ 0, i, k = 1, . . . , n, ∆k > 0

β ∈ Rd+1, εi ≥ 0, i = 1, . . . , n.

For a given finite set of input points, the proposed polyhedral approximation of a ℓτ -norm may
be exact for an adequate choice of the block-norm. Indeed, this norm must have as fundamental
directions the vectors defining the optimal ℓτ -projections of each input point onto the optimal
hyperplane.

Corollary 5.3. For any data set {x1, . . . , xn} ⊂ Rd+1 and any ℓτ -norm with 1 < τ < +∞ there
exists a polyhedral norm ∥ · ∥B whose unit ball B has at most 2n extreme points and such that the
optimal values of the problems (31) and (24) coincide.

In [31] the authors propose a measure of the quality of the approximation of a given norm
by another norm. This measure was defined in order to quantify the approximation errors when
modeling road distances between cities. We adapt this measure to evaluate the approximation
errors induced whenever the ℓτ -norm is replaced by the polyhedral norm with unit ball the polytope
P :

SDτ,P (β; {x1, . . . , xn}) =
n∑

i=1
Dτ (xi,β)>0

(Dτ (xi,β)−DP (xi,β))2

Dτ (xi,β)

Example 5.4. Let us consider again the stars data from Example 3.3. We run now the models
using as aggregation criterion the overall sum of the residuals (Φ = SUM) and the errors are
the ℓτ projections of the points onto the optimal line, for τ ∈ {1.5, 2, 3}. The estimations for the
aggregation criterion Φ = SUM and their goodness of fitting (GoFΦ,ε) are shown in Table 1. The
lines are drawn in Figure 5.

Observe that for this data set, getting high accuracy for the ℓτ -norm residual problems is pos-
sible using small number of vertices (N) in the approximation by polyhedral norms. As expected,
increasing the number of vertices improves the accuracy, at the price of increasing the computation
times.

We also computed the optimal lines for different aggregation criteria (Φ ∈ {SUM, MAX, kC, AkC})
with ℓτ residuals, τ ∈ {1.5, 2, 3}, using the polyhedral approximation approach with N = 480 ver-
tices. The results are shown in Table 2. The reader may observe from these results that the
approximation error, although tiny, depends both of the chosen residuals and aggregation criteria.

Finally, we compare our approximation scheme for ℓτ residuals, on this data set, with other
available implementations. Orthogonal Distance Regression (ODR) is a particular case of our
general framework where ℓ2 residuals are chosen and Φ is the sum of squares criterion (note that
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Table 1: Estimated models with minisum criterion in Example 3.3.

τ N β̂ Φ∗ GoF RP rP Time SD

1.5
16 (36.87, -1, 0.14) 77.1857 0.6505 0.9848 1.015 1.0 7.26× 10−5

80 (36.84, -0.99, 0.14) 77.1324 0.6508263 0.9993 1.0006 1.97 6.06× 10−6

320 (36.83, -0.99, 0.14) 77.1117 0.6509203 0.9999 1.0000 14.16 9.41× 10−9

2
16 (36.87, -1, 0.14) 77.1857 0.6505 0.9807 1.0195 1.04 7.87× 10−3

80 (36.19, -0.98, 0.14) 76.3703 0.654276 0.9922 1.0007 2.01 1.91× 10−7

320 (36.19, -0.98, 0.14) 76.3700 0.654277 0.9999 1.0000 16.53 1.64× 10−7

3
16 (34.35, -0.96, 0.16) 74.7283 0.6617 0.9801 1.0202 1.07 4.56× 10−3

80 (34.09, -0.95, 0.16) 74.1627 0.66427 0.9992 1.0007 2.04 3.50× 10−6

320 (34.08, -0.95, 0.16) 74.1468 0.6643 0.9999 1.0000 17.48 4.68× 10−10

Figure 5: Estimated lines for the data in Example 3.3 approximating by a {16, 80, 320}-gon.
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both approaches coincide when the coefficient of the dependent coordinate is non zero while such
an assumption is not imposed in our models). The package pracma in R permits to compute ODR
by using an approximated iterative procedure (see [10]). The models obtained with both approaches
are shown in the following table. We observe that, for this data set, our approach to approximate
ℓτ distances by polyhedral norms (with N = 320 vertices) has a better performance on the global
error measure of the models (although the models obtained by both methods are almost the same):

ODR SOS-ℓ2 (SD=9.93× 10−11)
Model y = −7.05736x+ 35.42935 y = −7.098062x+ 35.60477

Global Residuals 3.959383 3.662783

6. Experiments

In this section we report the computational results of the proposed methodology. We combine
several aggregation criteria and norm-based residuals to find different optimal hyperplanes. Our
aim is to show the powerfulness of modern mathematical programming in its application to the
considered problem and to compare the behavior of different models rather than gaining insights
into their statistical meaning, which is beyond the scope of this paper. Our formulations have been
coded in Gurobi 6.0 under R and executed in a PC with an Intel Core i7 processor at 2x 2.40 GHz
and 4 GB of RAM. Overall, we compared 42 methods which results from: 1) the combination of
7 aggregation criteria: SUM (summation), MAX (maximum), MED (median), kC (summation of
the k largest), AkC (summation of the k smallest), SOS (sum of squares) and 1.5SUM (sum of
residuals raised to the power of 3

2 ); and 2) six different modes to measure the residuals: V (vertical
distance) and ℓτ (ℓτ -norm distance for τ = 1, 3

2 , 2, 3, +∞). See Table 3.
All experiments were run with a CPU time limit of one hour. The necessary computing times

depend very much of the chosen model and, for our instances, range from a few seconds, for the
simplest ones, to close to one hour, for the most difficult ones.

We tested the models on two different types of datasets: randomly generated data and a real-
word benchmark dataset. The first one will allows us to analyze the performance of the different
models in terms of their ability to detect the trend of the dataset. The second one permits to check
whether the use of different aggregation criteria and residuals is useful in practice.

6.1. Synthetic Experiments

The first set of results is built on randomly generated points following a similar scheme to those
proposed in [6]. We generated n = 100 data points in dimension d ∈ {2, 4}, {x1, . . . , xn} ⊆ Rd+1
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ℓ1.5 ℓ2 ℓ3

SUM
Line y = 5.92x − 21.1016 y = 6.75x − 24.6975 y = 7x − 25.81
GoF 0.6643 0.6542 0.6509
SD 3.36 × 10−10 1.73 × 10−10 1.65 × 10−9

MAX
Model y = −3.2307x + 18.7757 y = −3.2307x + 18.7757 y = −3.2307x + 18.7757
GoF 0.5805 0.5544 0.5381
SD 4.07 × 10−14 1.90 × 10−12 3.85 × 10−13

kC
Model y = −2.8133x + 16.9367 y = −3.1756x + 18.5100 y = −4.3076x + 23.0334
GoF 0.5111 0.4790 0.4650
SD 3.51 × 10−13 7.53 × 10−10 9.70 × 10−10

AkC
Model y = 6.75x − 25.0875 y = 6.5555x − 24.1533 y = 5.175x − 17.7146
GoF 0.8092 0.82512 0.8217
SD 7.15 × 10−10 2.10 × 10−9 5.49 × 10−10

Table 2: Optimal lines for different criteria and ℓτ residuals of Example 5.4.

Aggregation criteria Residuals

SUM
n∑

i=1

εi V

MAX max
i=1,...,n

εi ℓ1

MED median(ε1, . . . , εn) ℓ∞

kC

⌊0.5n⌋∑

i=1

ε(i) ℓ 3
2

AkC
n∑

i=⌊0.5n⌋+1

ε(i) ℓ2

SOS
n∑

i=1

ε2i ℓ3

1.5SUM
n∑

i=1

ε
3
2
i

Table 3: Combinations of chosen aggregation criteria and residuals.

as follows. Each xik follows an independent and identically distributed Gaussian distribution with
mean 0 and standard deviation 100. We fix βt = (0, 1, . . . , 1) ∈ Rd+1. The last coordinate, xd, is
chosen as the response and we generate it as:

xid = −
d−1∑

k=1

xik + ui, ∀i = 1, . . . , n,

where ui is also generated as a Gaussian distribution with mean 0 and standard deviation 10.
Then, 15% of the data are now corrupted by adding an extra Gaussian term (with mean 0 and

standard deviation 500) to: (1) all the components except the last one or (2) to the last coordinate.
We get the fitting model for each one of the considered combinations (overall 42 models). Due

to limitation of space in this paper, the complete results are available as a supplementary electronic
material (see Appendix A). For each model we report: 1) the goodness of fitting index GoF, 2) the
percentage of the sample data which are contained in a strip delimited by two parallel hyperplanes
to y = β̂x with (orthogonal) distance ε = 10 (%), and 3) the width of the strip that is necessary
to include 90% of the data (ϵ90).

We conclude from these results that, in general, a better performance is observed in all the
methods when the corrupted coordinate is the dependent one (Y ), as compared with introducing
the perturbation on the independent coordinate (X). In particular, the use of the SUM, the
1.5SUM and the kC criteria (for vertical distance residuals) empirically implies better models in the
Y -corrupted case. Although slightly better, almost similar results were obtained for models based
on AkC, MEDIAN and kC (for ℓτ residuals) due to their stability against extremal observations.
Finally, we also point out that for the X-corrupted case, all models (except the AkC) coincide
under the use of residuals measured by V, ℓ1 and ℓ∞. This is not the case for the results with
Y -corrupted data, where equal or similar models were obtained for all the ℓτ -residuals.

Similar conclusions can be derived from the multivariate case (d = 4), except that in this
situation there are no coincidences between the models obtained with different combinations of
criteria and residuals. Furthermore, the convenience of using goodness of fitting measures which
are not criterion/residual dependent is confirmed.
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Table 4: Estimations for the bidimensional Durbin-Watson’s dataset.

V ℓ1 ℓ∞
SUM (4.0898,−1.1454,−1) (10.8840,−4.6184,−1) (8.9764,−3.6797,−1)
MAX (1.6986,−0.0196,−1) (1.6986,−0.0196,−1) (−0.5963, 1.1530,−1)
SOS (2.9993,−0.6309,−1) (13.5934,−6.0703,−1) (7.0978,−2.7353,−1)

1.5SUM (4.0730,−1.1566,−1) (10.6113,−4.5067,−1) (7.9926,−3.1851,−1)
kC (5.5288,−1.9236,−1) (8.7033,−3.5303,−1) (7.6654,−2.9977,−1)
AkC (2.7467,−0.4031,−1) (17.1272,−7.6311,−1) (18.4349,−8.2833,−1)
MED (2.4167,−0.2310,−1) (28.0156,−13.0469,−1) (23.4462,−10.7748,−1)

ℓ1.5 ℓ2 ℓ3
SUM (10.8840,−4.6184,−1) (10.8746,−4.6138,−1) (9.8917,−4.1344,−1)
MAX (1.6986,−0.0196,−1) (−0.5963, 1.1530,−1) (−0.5963, 1.1530,−1)
SOS (13.1400,−5.8376,−1) (10.9561,−4.7162,−1) (8.7832,−3.6006,−1)

1.5SUM (10.4466,−4.4233,−1) (9.6868,−4.0399,−1) (8.9821,−3.6851,−1)
kC (8.0130,−3.1750,−1) (8.0455,−3.1914,−1) (8.5389,−3.4427,−1)
AkC (13.9827,−6.0670,−1) (21.0745,−9.6064,−1) (20.6955,−9.4349,−1)
MED (24.0656,−11.0819,−1) (6.4510,−2.4601,−1) (28.0150,−13.0466,−1)

Table 5: Marginal variations for each of the models.

V ℓ1 ℓ∞ ℓ1.5 ℓ2 ℓ3
SUM -1.1455 0 -0.7863 -0.0464 -0.2070 -0.4395
MAX -0.0196 -0.0196 0.5355 -0.0196 0.4949 0.5151
SOS -0.6309 0 -0.7322 -0.0291 -0.2029 -0.4597

1.5SUM -1.1566 0 -0.7610 -0.0505 -0.2332 -0.4564
kC -1.9236 0 -0.7498 -0.0961 -0.2853 -0.4660
AkC -0.4032 0 -0.8922 -0.0270 -0.1029 -0.3147
MED -0.2310 0 -0.9150 -0.0081 -0.3488 -0.2711

6.2. Data: Durbin-Watson

We also performed some experiments over the classical real data sample used in [17]. The data
aims to analyze the annual consumption of spirits from 1870 to 1938 (n = 69) from the incomes
and the relative price of spirits (deflated by a cost-of-living index). Hence, the variables observed in
this data sets are the logarithms (the coefficients are then interpreted in terms of percent change)
of the following measures: X1 (Real income per head), X2 (Relative price of spirits) and X3

(Consumption of spirits per head).
For illustrative purposes, we analyze both the global model with the three variables (d = 3)

and the bivariate model considering X1 and X3 and obviating X2 (d = 2).

6.2.1. Bivariate model
For the case d = 2, the obtained hyperplanes are detailed in Table 4 and they are drawn in

Figure 6. Note that the methods that use vertical distance residuals (V) were not able to capture
the actual behavior of the consumption with respect to the incomes. Furthermore, the MAX
criterion seems to fail for any choice of residuals, since it tries to accommodate the unique outlier
point that exists in the data set. The rest of the hyperplanes have a similar behavior. In order to
analyze the differences between these models we also report, in Table 5, the marginal variations of
each one of the models (according to Lemma 2.1).

Observe that, when the ℓ1 residuals are considered, all except the MAX criterion provide a 0
marginal variation. This pattern can be explained as a result of Lemma 2.2 and the fact that the
ℓ1-norm unit ball in R2 has extreme points {±(0, 1),±(1, 0)}. Hence,

k(β) =

⎧
⎨

⎩

1 if β3 = max{|β1|, |β3|},
−1 if β3 = −max{|β1|, |β3|},
0 otherwise.

.

Thus, the marginal variation of X1 with respect to X3 is zero iff |β1| = max{|β1|, |β3|}, being
then |β3| < |β1|. Observe that the latest implies that if the fitting line is rewritten in the form
X3 = γ0 + γ1X1, the absolute value of the slope of the line, |γ1|, is greater than 1, being then
the percent decreasing (or increasing) of the consumption (X3) in term of the incomes (X1), more
than 100%.

In order to validate and analyze the stability of the computed hyperplanes we perform a k-fold
cross validation scheme [50] to the data set. Such a method consists of randomly partitioning the
sample into k folds of similar size, S1, . . . , Sk. For each j ∈ {1, . . . , k}, each optimal hyperplane
is computed using the points in

⋃
i̸=j Si and Sj is used to validate the results. In our case, we

partitioned the data into k = 7 folds, each of them with 10 data, except one with 9 points. In Table
6 we summarize the results obtained with this experiment. We report: the maximum, minimum,
median and mean width of the strips that are necessary to cover the 90% of the (validation) data
for the seven runs.
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Figure 6: Estimated lines for the data in [17] .
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Table 6: Summary of k-fold cross validations experiments for the bidimensional Durbin-Watson’s dataset.

V ℓ1 ℓ∞ ℓ1.5 ℓ2 ℓ3

SUM

min ε90 0.1590 0.0560 0.0702 0.0491 0.0459 0.0560
max ε90 0.3049 0.1645 0.1444 0.1477 0.1480 0.1480

medianε90 0.2366 0.0983 0.0923 0.0881 0.0828 0.0983
ε̄90 0.2330 0.1027 0.0982 0.0958 0.0959 0.1021

MAX

min ε90 0.1262 0.1274 0.1262 0.1262 0.1262 0.1274
max ε90 0.3955 0.3955 0.3663 0.3663 0.3663 0.3955

medianε90 0.3664 0.3664 0.3621 0.3621 0.3621 0.3664
ε̄90 0.3337 0.3338 0.3222 0.3222 0.3222 0.3338

SOS

min ε90 0.1372 0.0844 0.0566 0.0568 0.0633 0.0793
max ε90 0.4072 0.1264 0.1163 0.1202 0.1235 0.1253

medianε90 0.2878 0.0962 0.0983 0.0879 0.0961 0.0961
ε̄90 0.2980 0.1005 0.0973 0.0900 0.0905 0.0983

1.5SUM

min ε90 0.1437 0.0476 0.0488 0.0524 0.0499 0.0478
max ε90 0.3091 0.1353 0.1199 0.1254 0.1308 0.1334

medianε90 0.2260 0.0834 0.0852 0.0910 0.0885 0.0841
ε̄90 0.2349 0.0922 0.0872 0.0869 0.0884 0.0917

kC

min ε90 0.1236 0.0414 0.0655 0.0495 0.0480 0.0412
max ε90 0.2843 0.1220 0.1147 0.1163 0.1185 0.1219

medianε90 0.1281 0.0837 0.0837 0.0851 0.0851 0.0855
ε̄90 0.1511 0.0827 0.0834 0.0800 0.0809 0.0821

akC

min ε90 0.4482 0.0421 0.0429 0.0367 0.0892 0.0484
max ε90 0.6677 0.2039 0.1853 0.2122 0.4654 0.1981

medianε90 0.5162 0.1722 0.1296 0.1605 0.1534 0.1466
ε̄90 0.5282 0.1434 0.1338 0.1417 0.1914 0.1373

MED

min ε90 0.4275 0.1182 0.1147 0.0979 0.1182 0.0615
max ε90 0.6375 0.2170 0.4612 0.2203 0.2137 0.2101

medianε90 0.5503 0.1712 0.1761 0.1701 0.1393 0.1565
ε̄90 0.5406 0.1651 0.2093 0.1614 0.1501 0.1478
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Figure 7: Responses in the dependent variable by residuals for the bivariate case (SUM: red, MAX: blue, SOS:
green, 1.5SUM: yellow, kC: black, AkC: orange, MEDIAN: gray) .
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From the above results, we observe that the models that use vertical distance residuals need,
in general, larger strips to cover the 90% of the points. The strips are particulary large for the
MEDIAN criterion, where the widest strips were obtained. This conclusion is justified since the
quantile criteria accommodate a single point, but do not take into account the deviations to the
remaining elements in the data (apart from the ordering in the residuals). Also, for the same
reason, the conservative MAX criterion makes the models to require wider strips. The residuals
that produce the smallest range between the maximum and minimum length of the strips, are the
ℓ1, ℓ1.5, and ℓ3; and for these type of residuals the K-centrum (kC) criterion gets the best results.

To illustrate the quality of the optimal hyperplanes, in Figure 7 we show the values of the
consumptions versus the actual consumptions for the first random fold in the experiments (in the
validation sample that was not used to compute the hyperplanes).

The conclusions are that the models that use V and ℓ∞-based residuals do not fit well to the
actual trend of the validation data. The same conclusion also applies to the models that use the
MAX criterion. On the other hand, all the models based on ℓτ -residual seem to fit quite-well to
the data. As expected the kC and AkC criteria, which are known to be robust against extremal
observations, actually capture the main information about the trend.

6.2.2. Complete models
We also performed the same experiments using all the variables: X1 (incomes), X2 (prices) and

X3 (consumptions). The optimal hyperplanes are shown in Table 7 (since the coefficients are non
zero they were divided by −β3 resulting in simplified models in the form X3 = β0+β1X1+β2X2.)

The summary of the results of the k-fold cross validation scheme (where the dataset was par-
titioned exactly as in the bivariate case) is shown in Table 8. Figure 8 shows the values of the
consumptions versus the actual consumptions for the first random fold in the experiments. From
the results, one can observe that including all the variables in the model reduces the differences
among the different methods. In this case, the consumption seems to be well linearly described by
the incomes and prices. This conclusion is supported both by the projection and by the summary
of k-cross validation experiments. The exceptionally bad performance of the MAX criterion in the
bivariate case, is now as good as the rest of the criteria. In addition, the inclusion of prices in the
model fixes the, in most cases, senseless signs of the coefficients in the bivariate models in Table
5. One can observe that in those cases an increase of the incomes would predict a decrease of the
consumptions.

6.3. Scalability

Finally, we would like to add some comments on the scalability of the proposed methods. As
observed from the computational experiments, our formulations work well in the range of several

21



Table 7: Estimations for the Durbin-Watson’s dataset.

V ℓ1 ℓ∞
SUM (4.4817, 0.0696, −1.3374, −1) (4.555, 0.0587, −1.3623, −1) (4.1367, 0.3502, −1.4305, −1)
MAX (4.5227, 0.0646, −1.3519, −1) (4.6159, −0.013, −1.3273, −1) (4.1355, 0.5086, −1.5758, −1)
SOS (3.9725, 0.0331, −1.0692, −1) (4.404, 0.1369, −1.3881, −1) (4.404, 0.1369, −1.3881, −1)

1.5SUM (4.404, 0.1369, −1.3881, −1) (4.404, 0.1369, −1.3881, −1) (4.404, 0.1369, −1.3881, −1)
kC (4.4159, 0.0288, −1.2753, −1) (4.4905, 0.0635, −1.3425, −1) (4.3334, 0.1325, −1.3317, −1)

AkC (4.4355, 0.0655, −1.3183, −1) (4.4521, 0.0585, −1.3197, −1) (4.4688, 0.0535, −1.323, −1)
MED (4.4288, 0.0488, −1.2979, −1) (4.5075, 0.0634, −1.3476, −1) (4.3559, 0.1431, −1.3489, −1)

ℓ1.5 ℓ2 ℓ3
SUM (4.4445, 0.0698, −1.3242, −1) (4.472, 0.0633, −1.331, −1) (4.4922, 0.0619, −1.3386, −1)
MAX (4.4155, 0.0352, −1.2797, −1) (4.3938, 0.1107, −1.3377, −1) (4.2655, 0.1691, −1.3326, −1)
SOS (4.3498, 0.1131, −1.3201, −1) (4.3498, 0.1131, −1.3201, −1) (4.3498, 0.1131, −1.3201, −1)

1.5SUM (4.2123, 0.4308, −1.5386, −1) (4.0853, 0.4429, −1.4891, −1) (3.6048, 0.7761, −1.5744, −1)
kC (5.2647, −0.6758, −1.0312, −1) (3.5719, 1.1094, −1.8642, −1) (3.4912, 1.0623, −1.7796, −1)

AkC (4.1061, 0.5015, −1.551, −1) (4.1579, 0.467, −1.5434, −1) (4.2963, 0.3239, −1.4761, −1)
MED (4.3576, 0.2689, −1.4559, −1) (4.0772, 0.4066, −1.4415, −1) (76.3635, 25.0913, −61.4268, −1)

Table 8: Summary of k-fold cross validations experiments for the Durbin-Watson’s dataset.

V ℓ1 ℓ∞ ℓ1.5 ℓ2 ℓ3

SUM

min ε90 0.0369 0.0388 0.0315 0.0380 0.0346 0.0347
max ε90 0.0735 0.0741 0.0832 0.0743 0.0743 0.0732

medianε90 0.0629 0.0627 0.0647 0.0625 0.0625 0.0626
ε90 0.0573 0.0598 0.0616 0.0580 0.0567 0.0593

MAX

min ε90 0.0562 0.0515 0.0515 0.0515 0.0515 0.0515
max ε90 0.0807 0.0762 0.0760 0.0760 0.0760 0.0762

medianε90 0.0701 0.0607 0.0644 0.0644 0.0607 0.0607
ε90 0.0678 0.0624 0.0641 0.0641 0.0624 0.0624

SOS

min ε90 0.0255 0.0362 0.0310 0.0321 0.0327 0.0327
max ε90 0.0656 0.0683 0.0691 0.0678 0.0675 0.0675

medianε90 0.0586 0.0583 0.0568 0.0586 0.0581 0.0582
ε90 0.0547 0.0541 0.0537 0.0543 0.0528 0.0529

1.5SUM

min ε90 0.0262 0.0342 0.0292 0.0308 0.0314 0.0316
max ε90 0.0685 0.0709 0.0713 0.0691 0.0703 0.0703

medianε90 0.0617 0.0563 0.0587 0.0559 0.0556 0.0558
ε90 0.0553 0.0547 0.0546 0.0527 0.0531 0.0532

kC

min ε90 0.0269 0.0368 0.0265 0.0251 0.0272 0.0272
max ε90 0.0650 0.0700 0.0698 0.0709 0.0709 0.0700

medianε90 0.0588 0.0564 0.0559 0.0559 0.0569 0.0571
ε90 0.0514 0.0549 0.0536 0.0534 0.0538 0.0535

akC

min ε90 0.0349 0.0338 0.0360 0.0305 0.0256 0.0604
max ε90 0.1042 0.1041 0.1017 0.3524 0.1100 0.1303

medianε90 0.0906 0.0888 0.0820 0.0885 0.0676 0.0931
ε90 0.0815 0.0799 0.0778 0.1115 0.0713 0.0923

MED

min ε90 0.0342 0.0329 0.0346 0.0332 0.0429 0.0270
max ε90 0.1064 0.0994 0.0997 0.1102 0.3410 0.3266

medianε90 0.0709 0.0872 0.0894 0.0649 0.0844 0.0714
ε90 0.0738 0.0784 0.0794 0.0671 0.1215 0.1012

Figure 8: Responses in the dependent variable by residuals for the d = 3 case (SUM: red, MAX: blue, SOS: green,
1.5SUM: yellow, kC: black, AkC: orange, MEDIAN: gray) .
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Figure 9: Estimations for the instance of Example 6.1.

β Φ∗ CPUTime
V (0.4909, 0.9841, 1.0000) 77541.55 214.816
ℓ1 (−0.6013, 1.0000, 1.0000) 4343.721 175.463
ℓ2 (-0.8166, 0.7103, 0.7038) 3041.330 1118.200

hundreds of points regardless of the dimension of the space (within a reasonable limit). This
is partly induced by the use of sortings in the aggregation criteria. Moving up to the range of
thousands requires some further extensions by aggregation techniques (see [22]) that are beyond
the scope of this manuscript. In spite of that, we have included an illustrative example with several
thousands of points. Technical details on the accuracy of these techniques will be the subject of a
forthcoming paper.

Example 6.1. We have randomly generated 2000 points in R2 with the same setting that in Sub-
section 6.1, by corrupting the last coordinate (X2). The points are drawn in the right picture of
Figure 9 and are available at bit.ly/data2000. In order to show the scalability of the proposed
methodology we have implemented a randomized aggregation technique based on [22] to the compu-
tationally hardest models, i.e., those where the aggregation criterion is Φ ≡ AkC (with k = ⌊0.5n⌋)
and residuals measured with vertical distance V , ℓ1-norm and ℓ2-norm. We report in Figure 9 (left
table) the estimated coefficients for the three models as well as the best objective values found and
the computation times (in seconds) needed to obtain these solutions. As can be observed in Figure
9 (right), the solutions that result with the aggregation technique have a good performance in terms
of the geometric fitting. These techniques have been proved to find accurate solutions in reasonable
computing times, so the models proposed in this paper are applicable to real-world datasets.

7. Conclusions and Further Research

This paper generalizes previous attempts for modeling the problem of fitting hyperplanes to a
given set of points. This approach allows for the combination of distance-based residuals aggregated
by generalized ordered weighted averaging criteria. In addition, we provide unified mathematical
programming formulations for all those models that allow one to use off-the-shelf solvers to handle
the resulting problems. Two important particular cases of residuals are analyzed in more detail,
namely those induced by block-and-ℓτ norms for τ ≥ 1. A new goodness of fitting measure is
also introduced for this framework, which extends the classical coefficient of determination in least
sum of squares fitting with vertical distances. Some illustrative computational experiments run in
Gurobi under R are reported in order to illustrate and validate the new methodology for computing
optimal fitting hyperplanes.

The results in this paper admit several extensions, still applying similar tools. Among them,
we mention the study of the statistical analysis of the generalized noise terms, on the original data,
that induce general norms residuals. In particular, we have conducted some preliminary tests to
analyze the empirical distribution of hexagonal (see Example 4.5) and ℓ2-norm based errors used
in some of our computational experiments. We have compared whether the errors induced by the
LSS criterion with the usual vertical distance and the sum criterion with the hex-and-ℓ2-norms
come from the same statistical distribution. Using the Mann-Whitney U test, to compare if two
samples are identically distributed, we conclude that the three types of residuals come from the
same distribution (the three null hypotheses cannot be rejected at a significance level of 5%). We
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have also raised the issue of regularization, i.e., adding constraints to overcome ill-posed data set,
as well as the simultaneous computation of several (more than one) hyperplanes to a given data
set such that each single point is “allocated” to its closest model, as in [11]. Another interesting
extension is the use of mathematical programming tools to fit hyperplanes to binary data. The
usual techniques to estimate those models are based on likelihood estimation since least squares
estimation is known to get poor results on this type of data. Here our proposal will fit in a natural
way and will deserve further attention.
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Appendix A. Supplementary electronic material

Table A.9: Results for bidimensional experiments corrupting the X variables.

V ℓ1 ℓ∞

SUM

β̂ (−1.9587, 0.3011, 1) (1.9587,−0.3011,−1) (0.4240,−0.9403,−1)
GoF 0.1456 0.1456 0.5342
% 8% 8% 65%
ϵ90 141.2995 141.2995 87.0871

MAX

β̂ (10.9038, 0.1571, 1) (10.9038, 0.1571, 1) (10.9038, 0.1571, 1)
GoF 0.1484 0.1484 0.2641
% 10% 10% 10%
ϵ90 158.9295 158.9295 158.9295

SOS

β̂ (−3.1753, 0.1860, 1) (3.1753,−0.1860,−1) (−1.8549, 0.2858, 1)
GoF 0.2261 0.2261 0.4925
% 8% 8% 9%
ϵ90 157.7177 157.7177 143.1279

1.5SUM

β̂ (−3.5386, 0.2112, 1) (3.5397,−0.2112,−1) (0.3967,−0.4136,−1)
GoF 0.1812 0.1812 0.4499
% 8% 8% 8%
ϵ90 152.361 152.3626 127.4389

kC

β̂ (−3.0188, 0.2328, 1) (−3.0188, 0.2328, 1) (0.3503, 0.9091, 1)
GoF 0.1226 0.1226 0.4275
% 8% 8% 60%
ϵ90 150.5599 150.5599 85.1974

AkC

β̂ (5.8180, 0.7718, 1) (2.2956, 0.7734, 1) (2.6795, 0.9874, 1)
GoF 0.6735 0.9040 0.9758
% 29% 34% 70%
ϵ90 77.4723 74.8420 92.8187

MED

β̂ (6.1846, 0.7795, 1) (6.1842, 0.7795, 1) (1.3314, 0.9890, 1)
GoF 0.7021 0.8690 0.9741
% 31% 31% 70%
ϵ90 78.4775 78.4772 91.9773

ℓ1.5 ℓ2 ℓ3

SUM

β̂ (−0.2603,−0.9299,−1) (−0.2603,−0.9299,−1) (−0.2603,−0.9299,−1)
GoF 0.4133 0.3417 0.2615
% 62% 62% 62%
ϵ90 86.7791 86.7791 86.7791

MAX

β̂ (−10.9038,−0.1571,−1) (−10.9038,−0.1571,−1) (10.9038, 0.1571, 1)
GoF 0.1821 0.1588 0.1495
% 10% 10% 10%
ϵ90 158.9295 158.9295 158.9295

SOS

β̂ (2.4728,−0.2391,−1) (−2.8551, 0.2102, 1) (−3.1181, 0.1903, 1)
GoF 0.3163 0.2552 0.2295
% 8% 8% 8%
ϵ90 149.8204 151.9362 156.6873

1.5SUM

β̂ (3.4138,−0.2225,−1) (3.0670,−0.2704,−1) (1.4864,−0.3260,−1)
GoF 0.1853 0.2145 0.2799
% 8% 9% 7%
ϵ90 149.6913 145.969 135.7776

kC

β̂ (−2.6422, 0.2474, 1) (−0.2632,−0.9011,−1) (−0.3503,−0.9091,−1)
GoF 0.1263 0.1913 0.2791
% 9% 57% 60%
ϵ90 147.9623 84.4867 85.1974

AkC

β̂ (−0.0741, 0.9357, 1) (2.2028, 1.0126, 1) (−0.9506, 0.9930, 1)
GoF 0.9468 0.9576 0.9645
% 64% 70% 65%
ϵ90 86.9840 94.2569 91.5147

MED

β̂ (1.5779,−0.9545,−1) (2.9207, 1.0139, 1) (0.2899, 0.9792, 1)
GoF 0.9530 0.9611 0.9655
% 63% 69% 65%
ϵ90 88.5178 94.8548 90.5271
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Table A.10: Results for bidimensional experiments corrupting the Y variables.

V ℓ1 ℓ∞

SUM

β̂ (−0.4324,−1.0070,−1) (−2.7476,−1.1156,−1) (−0.8817,−1.0333,−1)
GoF 0.5226 0.5464 0.7637
% 72% 57% 73%
ϵ90 158.3495 144.4862 154.9621

MAX

β̂ (164.40, 1.95,−1) (−131.52,−7.30,−1) (−131.52,−7.30,−1)
GoF 0.0109 0.7575 0.7867
% 5% 6% 6%
ϵ90 266.337 144.6019 144.6019

SOS

β̂ (−19.4780, 0.9765, 1) (24.3778,−3.9704,−1) (−21.8989, 2.4558, 1)
GoF 0.2459 0.8055 0.8896
% 24% 12% 14%
ϵ90 176.2108 119.0515 108.3728

1.5SUM

β̂ (2.2257,−0.9993,−1) (8.1241,−2.8635,−1) (4.2013,−1.5531,−1)
GoF 0.3894 0.6583 0.8111
% 72% 15% 24%
ϵ90 161.1331 114.1084 107.9904

kC

β̂ (−0.6995,−0.9989,−1) (4.8095,−1.6540,−1) (−1.0107,−1.0744,−1)
GoF 0.4422 0.4969 0.7265
% 71% 23% 67%
ϵ90 159.1129 100.6695 150.2014

AkC

β̂ (10.0084,−0.9838,−1) (−1.3062,−1.0398,−1) (−1.2815,−0.9942,−1)
GoF 0.7526 0.9914 0.9961
% 53% 70% 72%
ϵ90 168.5344 153.9189 159.2534

MED

β̂ (8.6545,−0.9641,−1) (−0.8028,−1.0379,−1) (−4.3252,−1.0113,−1)
GoF 0.8478 0.9894 0.9947
% 57% 73% 69%
ϵ90 170.0131 154.4849 155.1026

ℓ1.5 ℓ2 ℓ3

SUM

β̂ (−0.9890,−1.0403,−1) (−0.9890,−1.0403,−1) (−0.9890,−1.0403,−1)
GoF 0.6250 0.6658 0.7023
% 70% 70% 70%
ϵ90 154.0857 154.0857 154.0857

MAX

β̂ (−131.52,−7.30,−1) (−131.52,−7.30,−1) (−131.52,−7.30,−1)
GoF 0.7577 0.7598 0.7654
% 6% 6% 6%
ϵ90 144.6019 144.6019 144.6019

SOS

β̂ (24.0474,−3.7686,−1) (23.2040,−3.2532,−1) (22.5246,−2.8381,−1)
GoF 0.8077 0.8195 0.8412
% 13% 13% 13%
ϵ90 118.4519 119.827 115.0321

1.5SUM

β̂ (8.2797,−2.4830,−1) (5.8395,−1.9194,−1) (4.7010,−1.6953,−1)
GoF 0.6667 0.6976 0.7384
% 14% 19% 23%
ϵ90 114.0191 102.4955 97.65193

kC

β̂ (−1.0107,−1.0744,−1) (−1.0107,−1.0744,−1) (−0.8903,−1.0744,−1)
GoF 0.5665 0.6135 0.6556
% 67% 67% 66%
ϵ90 150.2014 150.2014 150.2834

AkC

β̂ (−2.6754,−1.0658,−1) (−2.7011,−0.9640,−1) (−3.9149,−1.0070,−1)
GoF 0.9901 0.9910 0.9915
% 69% 68% 69%
ϵ90 150.0206 161.8515 155.8964

MED

β̂ (−0.8019,−1.0319,−1) (−2.6799,−1.0009,−1) (−1.5141,−1.0345,−1)
GoF 0.9911 0.9924 0.9928
% 74% 70% 70%
ϵ90 155.184 157.4707 154.3846
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Table A.11: Results for Experiments for d = 4 and corrupting the X variables.

V ℓ1 ℓ∞

SUM

β̂ (8.7754, 0.2361, 0.1242, −0.0645, 1) (−167.9861, 32.8678, −11.1472, −15.3593, 1) (19.6624, 1.9411, 1.4336, −2.6949, 1)
GoF 0.0369 0.3527 0.7030
% 8% 9% 15%
ϵ90 285.1339 172.616 166.2396

MAX

β̂ (11.2676, −0.8055, 0.4093, 0.3802, 1) (95.4943, −2.3074, −2.7088, 4.5984, 1) (76.9688, −2.1455, −2.9597, 4.6480, 1)
GoF 0.1200 0.5037 0.7852
% 2% 9% 6%
ϵ90 243.9038 160.86 164.3572

SOS

β̂ (2.7637, 0.1306, 0.06391, −0.0111, 1) (−35.0079, −17.4180, 5.1138, 8.8243, −1) (14.4492, 2.3985, 1.8254, −3.4712, 1)
GoF 0.0409 0.5787 0.9085
% 6% 9% 8%
ϵ90 285.0815 170.37 165.6255

1.5SUM

β̂ (3.1382, 0.1714, 0.0663, −0.03521) (21.9152, −18.9245, 5.5144, 9.6284, −1) (−20.1562, −2.0728, −1.5407, 2.9444, −1)
GoF 0.0418 0.4776 0.8349
% 7% 8% 14%
ϵ90 282.7383 167.7096 165.9725

kC

β̂ (−6.8937, 0.1108, 0.0744, −0.0183, 1) (−34.1432, −15.4977, 4.3066, 7.9523, −1) (5.0421, 2.0898, 1.4381, −2.8638, 1)
GoF 0.0258 0.3487 0.6984
% 8% 8% 15%
ϵ90 276.4327 168.3023 169.65

AkC

β̂ (−29.5486, 0.5489, 0.2119, 0.2342, 1) (11.5813, 2.8055, −0.1579, 0.1805, 1) (2.7269, 1.0225, 0.9985, 1.0072, 1)
GoF 0.1544 0.8716 0.9950
% 12% 5% 82%
ϵ90 304.1316 306.9669 496.6216

MED

β̂ (11.3163, 0.5095, 0.5018, 0.0667, 1) (15.2913, −1.38181, −0.1062, 9.6624, 1) (2.3001, 1.0447, 1.0149, 1.0033, 1)
GoF 0.3706 0.8308 0.9941
% 9% 11% 80%
ϵ90 283.331 251.5948 497.3323

ℓ1.5 ℓ2 ℓ3

SUM

β̂ (−25.3339, 7.2803, 0.3850, −6.5208, 1) (−25.3339, 7.2803, 0.3850, −6.5208, 1) (−48.9741, −2.5251, −1.5173, 3.4889, −1)
GoF 0.3973 0.4630 0.5446
% 12% 12% 11%
ϵ90 167.1534 167.1534 163.8287

MAX

β̂ (−76.9688, 2.1455, 2.9597, −4.6480, −1) (−76.9688, 2.1455, 2.9597, −4.6480, −1) (−76.9688, 2.1455, 2.9597, −4.6480, −1)
GoF 0.5510345 0.6096547 0.677138
% 6% 6% 6%
ϵ90 164.3572 164.3572 164.3572

SOS

β̂ (−19.8365, −24.1780, −1.6843, 23.0309, −1) (−37.1798, −20.6518, −4.8914, 22.4924, −1) (16.2930, 4.1351, 2.2042, −5.3890, 1)
GoF 0.6391 0.7149 0.7921
% 9% 9% 4%
ϵ90 159.013 160.1321 165.3201

1.5SUM

β̂ (27.4692, 14.0582, 1.0081, −12.9659, 1) (27.4555, 14.0608, 1.0082, −12.9683, 1) (−20.4048, −3.2308, −1.6763, 4.1796, −1)
GoF 0.5314 0.6059 0.6909
% 10% 10% 5%
ϵ90 162.8882 162.8875 164.1443

kC

β̂ (31.8219, 41.5015, −5.2288, −30.4070, 1) (2.4227, 14.3655, 4.4768, −15.4827, 1) (6.6713, −3.7849, −1.5627, 4.3751, −1)
GoF 0.3916 0.4629 0.5440
% 5% 7% 4%
ϵ90 165.793 168.1855 165.9668

AkC

β̂ (7.9530, −1.6065, 0.3482, 0.8960, −1) (−25.2618, −1.0371, −1.4553, 0.7368, −1) (40.7617, −1.6662, −0.5106, 0.5624, −1)
GoF 0.7403 0.8148 0.8817
% 7% 11% 9%
ϵ90 180.9401 244.0442 231.9954

MED

β̂ (−28.1536, −1.9062, −0.5785, 0.5246, −1) (−51.5261, 1.9897, 1.0285, −0.5282, 1) (6.9522, 1.2873, 1.0511, −0.1044, 1)
GoF 0.8278 0.8575 0.8941
% 9% 8% 14%
ϵ90 237.8898 305.539 350.0691
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Table A.12: Results for Experiments for d = 4 and corrupting the Y variables.

V ℓ1 ℓ∞

SUM

β̂ (1.9468, 0.9648, 0.9899, 1.0058, 1) (−1.9158, −1.1083, −0.8751, −3.3186, −1) (1.6655, −1.0083, −1.0530, −1.0446, −1)
GoF 0.5999 0.6538 0.9006
% 78% 14% 76%

ϵ90 123.5456 149.6274 121.8106

MAX

β̂ (1 − 04.7766, −1.0780, −2.8506, −0.8355, −1) (120.6153, −1.4207, −5.5268, −0.7782, −1) (54.3395, 2.3207, 6.0411, 3.4977, 1)
GoF 0.3357 0.8267 0.9078
% 12% 7% 12%

ϵ90 151.6067 147.4952 138.4277

SOS

β̂ (−12.1432, −0.8507, −1.0758, −1.1049, −1) (25.1165, −1.2149, −5.4326, −1.1199, −1) (−5.4787, −1.8048, −2.3397, −2.0389, −1)
GoF 0.4247 0.9015 0.9801
% 45% 13% 15%

ϵ90 124.0456 135.9287 102.1587

1.5SUM

β̂ (−2.1265, −0.9557, −0.9984, −1.0235, −1) (34.3751, −1.0783, −5.2458, −1.0619, −1) (−0.6651, −1.3869, −1.5549, −1.5790, −1)
GoF 0.5106 0.8044 0.9485
% 77% 11% 22%

ϵ90 124.3694 139.4734 95.54551

kC

β̂ (−0.3095, −0.9816, −1.0017, −1.009643, −1) (2.1980, −0.8680, −0.9950, −3.4086, −1) (−0.6929, −1.0211, −1.0606, −1.0666, −1)
GoF 0.5275 0.6525 0.8835
% 80% 10% 74%

ϵ90 123.0891 145.6142 120.8033

AkC

β̂ (−7.2126, −0.9981, −1.2345, −0.9988, −1) (−1.7307, −0.9801, −1.0396, −1.0121, −1) (0.1128, −0.9847, −1.0149, −1.0013, −1)
GoF 0.8785 0.9933 0.9981
% 57% 77% 80%

ϵ90 105.7586 120.4785 121.9634

MED

β̂ (−8.4437, −1.0328, −1.1891, −0.9958, −1) (−3.0605, −0.9660 − 1.0175, −1.0366, −1) (−1.7471, −0.9713, −0.9881, −1.0144, −1)
GoF 0.9011 0.9921 0.9980
% 58% 76% 79%

ϵ90 105.9371 123.0289 123.8959

ℓ1.5 ℓ2 ℓ3

SUM

β̂ (0.5934, −1.0202, −1.0588, −1.0264, −1) (0.6616, −1.0203, −1.0584, −1.0270, −1) (0.9775, −1.0098, −1.0563, −1.0343, −1)
GoF 0.7489 0.8006 0.8418
% 80% 80% 78%

ϵ90 119.4431 119.5293 120.6788

MAX

β̂ (120.6153, −1.4207, −5.5268, −0.7782, −1) (−54.3395, −2.3207, −6.0411, −3.4977, −1) (−54.3395, −2.3207, −6.0411, −3.4977, −1)
GoF 0.8267 0.8384 0.8643
% 7% 12% 12%

ϵ90 147.4952 138.4277 138.4277

SOS

β̂ (−14.4853, 1.5436, 4.4201, 1.5950, 1) (−0.3904, 1.7361, 2.9264, 2.0617, 1) (4.7620, 1.9721, 2.5444, 2.0415, 1)
GoF 0.9022 0.9272 0.9514
% 13% 10% 12%

ϵ90 131.3351 114.7621 106.4697

1.5SUM

β̂ (15.7120, −1.1641, −2.6186, −1.8366, −1) (−0.8627, −1.4497, −1.6239, −1.9098, −1) (−0.6434, −1.4056, −1.5798, −1.5348, −1)
GoF 0.8079 0.8565 0.8965
% 21% 22% 20%

ϵ90 114.939 97.67539 97.29497

kC

β̂ (−1.0976, −1.0234, −1.0643, −1.0656, −1) (−1.0942, −1.0234, −1.0641, −1.0656, −1) (−0.7613, −1.0216, −1.0617, −1.0665, −1)
GoF 0.7053 0.7661 0.8144
% 74% 74% 74%

ϵ90 120.25 120.262 120.6901

AkC

β̂ (0.8072, −0.9319, −1.1111, −1.0901, −1) (−1.5573, −0.9672, −0.9991, −1.0184, −1) (2.4443, −1.0165, −0.9923, −1.0147, −1)
GoF 0.9929 0.9954 0.9930
% 64% 77% 82%

ϵ90 124.0139 123.7847 123.5452

MED

β̂ (−0.6735, −0.9887, −1.0180, −0.9497, −1) (0.4156, −0.9995, −1.0147, −1.0116, −1) (−1.1572, −0.9753, −1.0309, −0.9853, −1)
GoF 0.9945 0.9949 0.9964
% 75% 81% 78%

ϵ90 118.3319 121.9701 120.0091
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