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1 Introduction

Minimax inequalities are normally associated with the game theory –they arose in this framework–

although they have turned out to be a powerful tool in other fields: see, for instance, [3, 4, 10, 11,

13, 14, 15, 16, 17]. One of them, the classical minimax inequality of von Neumann–Fan, will be

our starting point for characterizing the existence of a solution for a certain system of variational

inequalities.

The class of systems we are going to analyze arises in many situations. To evoke one of them,

let us recall that the study of variational equations with constraints emerges naturally, among others,

from the context of the elliptic boundary value problem, when their essential boundary conditions

are treated as constraints in their standard variational formulation. This leads one to its variational
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formulation, which coincides with the system of variational equations:

find x0 ∈ X such that

{
z ∈ Z ⇒ f(z) = a(x0, z)

y ∈ Y ⇒ g(y) = b(x0, y)
,

for some Banach spaces X and Y , a closed vector subspace Z of X, some continuous bilinear forms

a : X × X −→ R and b : X × Y −→ R, and f ∈ X∗ and g ∈ Y ∗ (“∗” stands for “topological dual

space”): see the details, for instance, in [9, Section 4.6.1]. In a more general way, we deal with the

following problem –indeed we will consider this question in a larger class of normed spaces: let X be

a real reflexive Banach space, N ≥ 1, and suppose that for each j = 1, . . . , N , Yj is a real Banach

space, y∗j ∈ Y ∗j , Cj is a convex subset of Yj with 0 ∈ Cj , and aj : X × Yj −→ R is a bilinear form

satisfying yj ∈ Cj ⇒ aj(·, yj) ∈ X∗; then

find x0 ∈ X such that


y1 ∈ C1 ⇒ y∗1(y1) ≤ a1(x0, y1)

· · ·
yN ∈ CN ⇒ y∗N (yN ) ≤ aN (x0, yN )

. (1.1)

This kind of variational system is so general that it includes certain mixed variational formulations

associated with some elliptic problems, those in the so-called Babuška–Brezzi theory (see, for instance

[2, 8] and some of its generalizations [7]).

The paper is organized as follows. In Section 2 we state, making use of the von Neumann–Fan

minimax inequality, a characterization of the existence of a solution for the variational inequalities

system under consideration, in terms of that of a positive constant. In particular, such a charac-

terization guarantees the stability of numerical schemes of the Galerkin type for approximating the

solution, which is developed in Section 3. The corresponding finite dimensional subspaces are gener-

ated from adequate Schauder bases satisfying certain restrictions on their dimensions and depend on

the concrete problem. Finally, in Section 4, we illustrate our results with some numerical examples.

2 Variational equations in dual normed spaces

In this section, we focus on deriving an extension of the Lax–Milgram theorem, a characterization of

the solvability of a system of variational equations. In the reflexive case, the system under consider-

ation leads us to the system (1.1).

We first evoke the minimax inequality of von Neumann–Fan, a particular case of [5, Theorem

2]:

Theorem 2.1 Suppose that C and D are convex subsets of two vector spaces in such a way that

C is endowed with a topology for which it is compact, and that Φ : C × D −→ R is concave and
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upper-semicontinuous on C and convex on D. Then

max
x∈C

inf
y∈D

Φ(x, y) = inf
y∈D

max
x∈C

Φ(x, y).

Let us notice that if the system of variational inequalities (1.1) admits a solution x0 ∈ X, then,

for all (y1, . . . , yN ) ∈
N∏
j=1

Cj we have that (add the N equations and take γ := ‖x0‖)

N∑
j=1

y∗j (yj) ≤ γ

∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥ .
In the following result we prove that this necessary condition is also sufficient.

As usual, + denotes “positive part”.

Theorem 2.2 Let N ≥ 1 and let E,F1, . . . , FN be real normed spaces. Assume that for each

j = 1, . . . , N , y∗j ∈ F ∗j , Cj is a convex subset of Fj with 0 ∈ Cj , and that aj : E∗ × Fj −→ R is a

bilinear form such that

yj ∈ Cj ⇒ aj(·, yj) ∈ E.

Then, there exists x∗0 ∈ E∗ satisfying
y1 ∈ C1 ⇒ y∗1(y1) ≤ a1(x∗0, y1)

· · ·
yN ∈ CN ⇒ y∗N (yN ) ≤ aN (x∗0, yN )

if and only if, for some γ ≥ 0, the inequality

(y1, . . . , yN ) ∈
N∏
j=1

Cj ⇒
N∑
j=1

y∗j (yj) ≤ γ

∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥
is valid.

In addition, if one of these equivalent statements is satisfied, then we can choose a solution

x∗0 ∈ X∗ of the system of variational inequalities with

‖x∗0‖ =

sup



n∑
j=1

y∗j (yj)∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥
: (y1, . . . , yN ) ∈

N∏
j=1

Cj ,
N∑
j=1

aj(·, yj) 6= 0




+

. (2.1)
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Proof. Let C :=
N∏
j=1

Cj and let BE∗ stand for the closed unit ball of the Banach space E∗. Then,

taking into account that 0 ∈
N⋂
j=1

Cj ,

there exists x∗0 ∈ E∗ such that


y1 ∈ C1 ⇒ y∗1(y1) ≤ a1(x∗0, y1)

· · ·
yN ∈ CN ⇒ y∗N (yN ) ≤ aN (x∗0, yN )

m

there exists γ ≥ 0, x∗0 ∈ γBE∗ : (y1, . . . , yN ) ∈ C ⇒
N∑
j=1

y∗j (yj) ≤
N∑
j=1

aj(x
∗
0, yj)

that is,

there exists γ ≥ 0 : max
x∗∈γBE∗

inf
(y1,...,yN )∈C

 N∑
j=1

aj(x
∗, yj)−

N∑
j=1

y∗j (yj)

 ≥ 0.

But if we apply the minimax theorem, Theorem 2.1, to the function Φ : γBE∗ × C −→ R defined at

each (x∗, (y1, . . . , yN )) ∈ γBE∗ × C as

Φ(x∗, (y1, . . . , yN )) :=
N∑
j=1

aj(x
∗, yj)−

N∑
j=1

y∗j (yj),

(it is linear on its second variable and affine and weak∗ continuous on its first variable) then, the

former assert is equivalent to

there exists γ ≥ 0 : inf
(y1,...,yN )∈C

max
x∗∈γBE∗

 N∑
j=1

aj(x
∗, yj)−

N∑
j=1

y∗j (yj)

 ≥ 0,

i.e.,

there exists γ ≥ 0 such that (y1, . . . , yN ) ∈ C ⇒
N∑
j=1

y∗j (yj) ≤ γ

∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥ ,
which is the equivalent to the statement that we wanted to prove.

Let us notice that the preceding minimax reasoning guarantees us that for some solution x∗0 of

the system, ‖x∗0‖ ≤ γ. Since the inequality

N∑
j=1

y∗j (zj) ≤

sup



n∑
j=1

y∗j (yj)∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥
: (y1, . . . , yN ) ∈ C,

N∑
j=1

aj(·, yj) 6= 0




+

∥∥∥∥∥∥
N∑
j=1

aj(·, zj)

∥∥∥∥∥∥
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is clearly satisfied for all z ∈ C, then there exists a solution x∗0 of the variational system such that

‖x∗0‖ ≤

sup



n∑
j=1

y∗j (yj)∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥
: (y1, . . . , yN ) ∈ C,

N∑
j=1

aj(·, yj) 6= 0




+

.

But for such a solution x∗0, adding up the inequaities and in view of the continuity of the linear

functionals aj(·, yj), j = 1, . . . , N , we arrive atsup



n∑
j=1

y∗j (yj)∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥
: (y1, . . . , yN ) ∈ C,

N∑
j=1

aj(·, yj) 6= 0




+

≤ ‖x∗0‖,

and so we have stated the announced control of the norm (2.1) of one solution. 2

If we consider not only some fixed functionals y∗1, . . . , y
∗
N but also any functionals on F1, . . . , FN ,

we arrive at the following characterization:

Corollary 2.3 Suppose that E is a real normed space, N ≥ 1, F1, . . . , FN are real Banach spaces,

and that for each j = 1, . . . , N , Cj is a convex subset of Fj with 0 ∈ Cj , and aj : E∗ × Fj −→ R is a

bilinear form in such a way that

yj ∈ Cj ⇒ aj(·, yj) ∈ E.

Then, the following assertions are equivalent:

(i) For all y∗1 ∈ F ∗j , . . . , y∗N ∈ F ∗j there exists x∗0 ∈ E∗ such that
y1 ∈ C1 ⇒ y∗1(y1) ≤ a1(x∗0, y1)

· · ·
yN ∈ CN ⇒ y∗N (yN ) ≤ aN (x∗0, yN )

. (2.2)

(ii) For some ρ > 0

(y1, . . . , yN ) ∈
N∏
j=1

Cj ⇒ ρ
N∑
j=1

‖yj‖ ≤

∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥ .
Moreover, the validity of one of these equivalent statements guarantees that some solution x∗0 ∈ E∗

of the system of variational inequalities satisfies the control

ρ‖x∗0‖ ≤ max
j=1,...,N

‖y∗j ‖.
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Proof. According to Theorem 2.2 and the continuity of the linear functionals y∗1, . . . , y
∗
N , the impli-

cation (ii)⇒(i) is obvious. For the other one, (i)⇒(ii), let us endow the product space F :=
N∏
j=1

Fj

with the sum norm, i.e., for y = (y1, . . . , yN ) ∈ F

‖y‖ :=
N∑
j=1

‖yj‖.

Let us first notice that, in view of the hypothesis (2.2), we have

N∑
j=1

aj(·, yj) = 0 ⇒ y = 0, (2.3)

for any y = (y1, . . . , yN ) ∈ C :=

N∏
j=1

Cj , since given y∗1 ∈ F ∗1 , . . . , y
∗
n ∈ F ∗N , there exists x∗0 ∈ E∗

satisfying (2.2) and then
N∑
j=1

y∗j (yj) ≤ 0,

therefore, any continuous and linear functional on F is non-positive at y, or in other words, y = 0.

As a consequence
(y1, . . . , yN )∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥
: (y1, . . . , yN ) ∈ C,

N∑
j=1

aj(·, yj) 6= 0


‖

(y1, . . . , yN )∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥
: (y1, . . . , yN ) ∈ C, (y1, . . . , yN ) 6= 0


,

and, thanks to (2.2), Theorem 2.2 and the uniform boundedness principle, we conclude that this

subset of F is bounded, that is, there exists ρ > 0 such that

(y1, . . . , yN ) ∈ C ⇒ ρ

N∑
j=1

‖yj‖ ≤

∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥ . (2.4)
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Finally, Theorem 2.2 implies the existence of a solution x∗0 ∈ E∗ of the system of variational

inequalities in such a way that

‖x∗0‖ =

sup



n∑
j=1

y∗j (yj)∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥
: (y1, . . . , yN ) ∈ C,

N∑
j=1

aj(·, yj) 6= 0




+

,

and so, from this, (2.3) and (2.4), we deduce that

‖x∗0‖ ≤ sup



N∑
j=1

‖yj‖
∥∥∥∥∥∥∥
N∑
j=1

aj(·, yj)

∥∥∥∥∥∥∥
: (y1, . . . , yN ) ∈ C,

N∑
j=1

‖yj‖ 6= 0


max

j=1,...,N
‖y∗j ‖

≤ 1

ρ
max

j=1,...,N
‖y∗j ‖.

2

The uniqueness of solution for system (2.2) is an easy algebraical question when the convex

sets Cj are balanced (Cj = −Cj): if that system admits a solution, it is unique if, and only if, each

x∗ ∈ E∗ is null, whenever

(y1, . . . , yN ) ∈
N∏
j=1

Cj ⇒
N∑
j=1

aj(x
∗, yj) = 0.

Let us emphasize that when the dual space E∗ is reflexive, i.e., E is also it, then the weak∗

continuity condition

j = 1, . . . , N, yj ∈ Fj ⇒ aj(·, yj) ∈ E

becomes a norm (or weak) continuity assumption. Moreover, if the convex sets coincide with the

whole spaces, then they contain 0 and the inequalities are, in fact, equalities; that is, the system

adopts the form:

find x∗0 ∈ E∗ such that


y∗1 = a1(x

∗
0, ·)

· · ·
y∗N = aN (x∗0, ·)

.

Example 2.4 Given a, b, µ ∈ R and f ∈ Lp(0, 1) with 1 < p <∞, let us consider the boundary value

problem: {
−z′′ + µz = f on (0, 1)

z(0) = a, z(1) = b
. (2.5)
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If one takes x := z′, then this problem is equivalent to
x = z′ on (0, 1)

−x′ + µz = f on (0, 1)

z(0) = a, z(1) = b

. (2.6)

Then, multiplying its first equation by a test function y ∈ W 1,q(0, 1), where q is the conjugate

exponent of p, and integrating by parts, we arrive at∫ 1

0
z′y = 〈tr(y), (b,−a)〉 −

∫ 1

0
zy′,

〈·, ·〉 being the usual inner product in R2 and tr : W 1,q(0, 1) −→ R2 the trace operator in W 1,q(0, 1).

On the other hand, when multiplying the second equation of (2.6) by a test function w ∈ Lq(0, 1),

we write it as ∫ 1

0
x′w − µ

∫ 1

0
zw = −

∫ 1

0
fw.

Therefore, if we take the reflexive Banach spaces

X := W 1,p(0, 1), Y := W 1,q(0, 1), Z := Lp(0, 1), W := Lq(0, 1),

the continuous bilinear forms a : X×Y −→ R, b : Y ×Z −→ R, c : X×W −→ R and d : Z×W −→ R
defined for each x ∈ E, y ∈ F, z ∈ G and w ∈ H as

a(x, y) :=

∫ 1

0
xy,

b(y, z) :=

∫ 1

0
y′z,

c(x,w) :=

∫ 1

0
x′w

and

d(z, w) := −µ
∫ 1

0
zw,

and the continuous linear forms y∗0 ∈ Y ∗ and w∗0 ∈W ∗ given by

y∗0(y) := 〈tr(y), (b,−a)〉, (y ∈ Y )

and

w∗0(w) := −
∫ 1

0
fw, (w ∈W ),

then we have derived this variational formulation of the problem (3.2): find (x0, z0) ∈ X × Z such

that {
y ∈ Y ⇒ a(x0, y) + b(y, z0) = y∗0(y)

w ∈W ⇒ c(x0, w) + d(z0, w) = w∗0(w)
.
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But this system adopts the form of (2.2) with N = 2, the dual (reflexive) real space E := (X × Z)∗,

the Banach spaces F1 := Y , F2 := W , the convex sets C1 := F1, C2 := F2, the continuous bilinear

forms a1 : E∗ × F1 −→ R and a2 : E∗ × F2 −→ R defined at each (x, z) ∈ E∗, y ∈ F1 and w ∈ F2 as

a1((x, z), y) := a(x, y) + b(y, z)

and

a2((x, z), w) := c(x,w) + d(z, w),

and the continuous linear forms y∗1 := y∗0 and y∗2 := w∗0.

We are going to prove that this variational formulation admits a unique solution (x, z) ∈ E∗ =

X × Z, provided that |µ| < 0.5, or in other words, we will show that when endowing, for instance,

the linear spaces X × Z and Y ∗ ×W ∗ with the complete product norms

‖(x, z)‖ := max{‖x‖, ‖z‖}, (x ∈ X, z ∈ Z)

and

‖(y∗, w∗)‖ := ‖y∗‖+ ‖z∗‖, (y∗ ∈ Y ∗, w∗ ∈W ∗),

then the continuous and linear operator T : X × Z −→ Y ∗ ×W ∗ defined at each (x, z) ∈ X × Z as

T (x, z) := (a(x, ·) + b(·, z), c(x, ·) + d(z, ·))

is a one-to-one and onto operator. The fact that it is injective (uniqueness of solution) is an easy

and straightforward issue, so let us deal with the surjectivity of T (existence of solution), applying

Corollary 2.3. To conclude that the assumptions in such a result are valid, let us define the auxiliary

continuous (the same product norms) and linear operator S : X × Z −→ Y ∗ ×W ∗ by

S(x, z) := (a(x, ·) + b(·, z), c(x, ·)), ((x, z) ∈ X × Z).

This operator is bijective, as was stated in [7, Example 3.8] via a particular case of Corollary 2.3, and

it follows from that reasoning that

‖S−1‖ ≤ 2. (2.7)

Let us notice that
‖T − S‖ = sup{‖T (x, z)‖ : ‖(x, z)‖ = 1}

= sup{‖d(z, ·)‖ : ‖(x, z)‖ = 1}
= sup{|µ|‖z‖ : ‖z‖ = 1}
= |µ|,

therefore, acoording to [1, Theorem 2.3.5], the inequality (2.7) and the fact that |µ| < 0.5, we

deduce the surjectivity of T , i.e., our variational problem admits a unique solution. In particular, our

continuous bilinear forms satisfy the hypothesis of Corollary 2.3. 2
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It is worth mentioning that the preceding example does not fall into the scope of the Babuška–

Brezzi theory, or even the more general one of [7], where the analysis of Corollary 2.3 is done by

means of independent conditions of the involved bilinear forms.

3 The Galerkin method

Now we deal with stating a Galerkin scheme for the system of inequalities under study. More specif-

ically, we consider the case in which the convex sets Cj coincide with the space Fj and the bilinear

forms are continuous; in that way, as in Example 2.4, the inequalities become continuous equalities.

To this end, we discretize Corollary 2.3 instead of Theorem 2.2, since the abstract uniformity in that

result means numerical stability:

Corollary 3.1 Let E be a real normed space, N ≥ 1, F1, . . . , FN real Banach spaces, and for each

j = 1, . . . , N , let aj : E∗ × Fj −→ R be a continuous bilinear form. Assume that for all k ≥ 1,

E∗k, F k1 , . . . , F
k
N are finite-dimensional vector subspaces of E∗, F1, . . . , FN , respectively. Then, given

k ≥ 1, for any y∗1 ∈ F ∗1 , . . . , y∗n ∈ F ∗N , the existence of a unique x∗k ∈ E∗
k such that

y1 ∈ F k1 ⇒ y∗1(y1) = a1(x
∗
k, y1)

· · ·
yN ∈ F kN ⇒ y∗N (yN ) = a1(x

∗
k, yN )

(3.1)

is equivalent to that of ρk > 0 with

(y1, . . . , yN ) ∈
N∏
j=1

F kj ⇒ ρk

N∑
j=1

‖yj‖ ≤

∥∥∥∥∥∥
N∑
j=1

aj(·, yj)|E∗k

∥∥∥∥∥∥ ,
and the fact that if x∗ ∈ E∗k satisfies

(y1, . . . , yN ) ∈
N∏
j=1

F kj ⇒
N∑
j=1

aj(x
∗, yj) = 0,

then x∗ = 0.

In the case that these statements are satisfied, then

min{‖x∗k‖ : x∗k ∈ E∗
k is a solution of (3.1)} ≤ 1

ρk
max

j=1,...,N
‖y∗j ‖.

Proof. It is a straightforward consequence of Corollary (2.3). 2

By assuming a certain uniformity in the infsup conditions in the previous result, one arrives at

the main result regarding the numerical method for solving the system of variational equations under

consideration:
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Corollary 3.2 Let E be a real normed space, N ≥ 1, F1, . . . , FN real Banach spaces, and for each

j = 1, . . . , N , let y∗j ∈ F ∗j and aj : E∗ × Fj −→ R be a continuous bilinear form. Let us also

assume that for all k ≥ 1, E∗k, F k1 , . . . , F
k
N are finite-dimensional vector subspaces of E∗, F1, . . . , FN ,

respectively, and ρk > 0, such that the corresponding system of variational equations
y1 ∈ F k1 ⇒ y∗1(y1) = a1(x

∗
0, y1)

· · ·
yN ∈ F kN ⇒ y∗N (yN ) = a1(x

∗
0, yN )

admits a unique solution x∗0 ∈ E∗, the inequality

ρk

N∑
j=1

‖yj‖ ≤

∥∥∥∥∥∥
N∑
j=1

aj(·, yj)|E∗k

∥∥∥∥∥∥
is valid for any (y1, . . . , yN ) ∈

∏N
j=1 F

k
j , and

ρ := inf
k≥1

ρk > 0.

Suppose that if x∗ ∈ E∗k

(y1, . . . , yN ) ∈
N∏
j=1

F kj ⇒
N∑
j=1

aj(x
∗, yj) = 0,

then x∗ = 0.

If for all k ≥ 1, x∗k ∈ E∗
k is the unique solution of the discrete system

y1 ∈ F k1 ⇒ y∗1(y1) = a1(x
∗
k, y1)

· · ·
yN ∈ F kN ⇒ y∗N (yN ) = a1(x

∗
k, yN )

,

then, for some δ > 0, there holds

k ≥ 1 ⇒ ‖x∗0 − x∗k‖ ≤ δ dist(x∗0, E
∗k).

Proof. Let k ≥ 1 and let x∗k ∈ E∗k. Since x∗k − x∗k is the unique solution of the problem: find

x̃∗k ∈ E∗
k such that 

y1 ∈ F k1 ⇒ y∗1
k(y1) = a1(x̃

∗
k, y1)

· · ·
yN ∈ F kN ⇒ y∗N

k(yN ) = a1(x̃
∗
k, yN )

,

where for all j = 1, . . . , N ,

y∗j
k := aj(x

∗
0 − x∗k, ·)|Fj

k ,

11



we conclude, in view of Corollary 3.1 and the assumption on ρk, that

‖x∗k − x∗k‖ ≤
1

ρk
max

j=1,...,N
‖y∗j

k‖

≤ 1

ρ
max

j=1,...,N
‖aj‖‖x∗0 − x∗k‖.

The announced inequality follows from the triangle inequality and the arbitrariness of x∗k ∈ E∗
k, with

δ = 1 +
1

ρ
max

j=1,...,N
‖aj‖.

2

We conclude the section by illustrating these results with the discretization of Example 2.4 in

two cases:

Example 3.3 Let us consider the boundary value problem in Example 2.4{
−z′′ + µz = f on (0, 1)

z(0) = a, z(1) = b
, (3.2)

with a, b, µ ∈ R and f ∈ Lp(0, 1) (1 < p <∞) in the two following cases:

1. We take a := 0, b := 0, µ := 1
3 and the function f ∈ L5/4(0, 1) defined for t ∈ (0, 1) as

f(t) :=
1

3

(
25

14
− 25

14
(1− t)7/5 − 25

14
t

)
+

1

(1− t)3/5
.

Let us notice that f /∈ L2(0, 1). The Banach spaces in Example 2.4 considered in this case are

X = W 1,5/4(0, 1), Z = L5/4(0, 1), E = (X × Z)∗, F1 = W 1,5(0, 1) and F2 = L5(0, 1).

2. Now a := 0, b := 225
238 , µ := 1

5 and take the function f ∈ L3/2(0, 1)\L2(0, 1) defined for t ∈ (0, 1)

as

f(t) :=
−113− 125(1−

√
t)3/5 − 75

√
t+ 5(−37 + 34(1−

√
t)3/5)t+ 95t3/2 + 40t2

238(1−
√
t)3/5

,

so the corresponding Banach spaces are X = W 1,3/2(0, 1),Z = L3/2(0, 1), E = (X × Z)∗,

F1 = W 1,3(0, 1) and F2 = L3(0, 1).

In order to generate the finite dimensional subspaces of the real Banach spaces above, let us recall

the well-known fact that for any 1 ≤ p < ∞, the Haar system {hk}k≥1 in Lp(0, 1) is a basis for this

Banach space that satisfies the orthogonality property∫ 1

0
hihj = δij ,
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where δij , the Kronecker symbol, takes the value 1 when i = j and 0 elsewhere. Let {gk}k≥1 be the

sequence of real-valued functions defined for each t ∈ [0, 1] as

g1(t) := 1

and for all i > 1,

gi(t) =

∫ 1

0
hi−1(s) ds.

As proven in [6, Proposition 4.8], the sequence {gk}k≥1 is a basis for the Banach space W 1,p(0, 1)

with 1 ≤ p < ∞. We now introduce, for each k ≥ 1, the finite-dimensional subspaces of E∗, F1 and

F2, respectively:

Xk := span{g1, g2, . . . , gk+1}, F k1 := Xk,

Zk := span{h1, h2, . . . , hk}, F k2 := Zk,

and

E∗k := Xk × Zk.

Then, the corresponding discrete problem is: find (xk, zk) ∈ E∗k, the unique solution of the discrete

system {
y1k ∈ F k1 ⇒ a1((xk, zk), y1k) = y∗1(y1k)

y2k ∈ F k2 ⇒ a2((xk, zk), y2k) = y∗2(y1k)
.

We show, in the following tables, the numerical results obtained in both cases for k = 16, 32, 64.

The value (x0, z0) denotes the exact solution of the continuous problem (2.4) with a, b, µ given above.

For the first case we have

k = 16 k = 32 k = 64

‖xk − x0‖L5/4(0,1) 2.53× 10−2 1.10× 10−2 4.76× 10−3

‖zk − z0‖L5/4(0,1) 9.56× 10−3 4.46× 10−3 2.11× 10−3

while, for the second one,

k = 16 k = 32 k = 64

‖xk − x0‖L3/2(0,1) 4.81× 10−2 2.29× 10−2 1.09× 10−2

‖zk − z0‖L3/2(0,1) 2.10× 10−2 9.71× 10−3 4.46× 10−3

2

Let us emphasize to conclude that, in the reflexive case, the numerical treatment of some inverse

problems related to the systems of variational equalities under consideration has been developed in

[12].
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