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Summary. Justifying ridge regression from a geometrical perspective is
one of the main contributions of this paper. To the best of our knowledge,
this question has not been treated previously. This paper shows that ridge
regression is a particular case of the raising procedures that provides
greater flexibility by transforming the matrix X associated with the model.
Thus, the raising procedures, based on a geometrical idea of the vectorial
space associated with the columns of matrix X, lead naturally to ridge
regression and justify the presence of the well-known constant k on the
main diagonal of matrix X′X. This paper also analyzes and compares
different alternatives to raising with respect to collinearity mitigation. The
results are illustrated with an empirical application.
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1. Introduction

In the presence of collinearity, the ordinary least square (OLS) estimator
is unstable and often causes several problems with the estimator such
as in�ated variances and covariances, in�ated correlations, in�ated
prediction variance, and the concomitant di�culties in interpreting the
signi�cance values and con�dence regions for parameters, Willan and
Watts (1978). The ridge estimator (RE), Hoerl and Kennard (1970a,b),
is an alternative methodology formalized for a multiple linear model as:

y = Xβ + u, (1)

for n observations and p independent variables, where it is assumed that
E[u] = 0, E[uu′] = σ2I† according to the following expression:

β̂R(k) =
(
X′X + kI

)−1
X′y, k ≥ 0, (2)

where β̂R(k) is biased for k > 0 and coincides with the OLS estimator
when k = 0. They showed that ridge estimators satisfy the mean square
error (MSE) admissibility condition to improve OLS for some k ∈ (0,∞)
and characterized by the ridge trace. Thus, ridge regression (RR) solves
the problem of the ill-conditioned matrix X′X by introducing a constant
k in the diagonal.
Based on ridge estimator, other alternative techniques have been
developed to remedy the consequent symptoms resulting from data
collinearity, such as the Stein estimator (Stein et al., 1956) and the
contraction estimator (Liu, 1993; Mayer and Willke, 1973). This last one
combines the Stein estimator with the ridge estimator but still depending
on OLS estimator which will be unstable. To overcome this situation,
Liu (2003) proposed the Liu-type estimator, Sakall�o§lu and Kaç�ranlar
(2008) presented the k-d class estimator using the ridge estimator. They
showed that the k-d class estimator is a general estimator which includes
the OLS estimator, the ridge estimator (RE) and the Liu estimator.
By combining the RE and the Liu estimator, Chang and Yang (2012)
proposed the two parameter estimator which includes the OLS, RE
and Liu estimators as special cases and Liu et al. (2013) proposed the
improved ridge estimator (IRE). All these estimators are founded on the

†Throughout the article, 0 denotes a vector of zeros and I denotes the identity
matrix, both, of adequate dimensions in each case.
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RE (Hoerl and Kennard, 1970a,b) and the Stein estimator (Stein et al.,
1956) and all try to improve the ill-conditioned matrix X′X by adding a
constant k as small as possible to reduce the bias.
Apart from the development of alternatives techniques based on ridge
regression, another research line is to �nd a theoretically optimal basis
for the ridge procedure. As stated by Piegorsch and Casella (1989) it
�has been a lengthy process (Rolph (1976), Strawderman (1978); Casella
(1980)) and it is still not fully developed�. The ad-hoc solution of
Hoerl and Kennard (1970a,b) to overcome the collinearity problem of
the design matrix (and consequently the singularity of matrix X′X) has
been motivated posteriorly. A review of all the contributions made in
this regard since 1970 is an enormous task and beyond the scope of our
work.
Although the geometric interpretation of collinearity is evident, none of
the justi�cations for the ridge estimator are motivated from a geometrical
perspective. Some early attempts to geometrically interpret (but not
motivate or justify) the ridge estimator can be found in Marquardt
and Snee (1975); Swindel (1981). García et al. (2011) introduced the
metric number to measure the e�ect of adding the last column to the
other columns in the matrix X. Something similar can be found in
Wichers (1975). The basic idea is to measure the angle formed by the
vector X(p) associated with column p and the vectorial space generated
by the rest of the columns X[p] of matrix X. For our purposes, we
consider the perspective of Besley (1991): �k variables are collinear or
nearly dependent, if one of them lies almost in the space spanned by
the remaining (k − 1) variables, that is, if the angle between one and its
orthogonal projection on the others is small�, which is further emphasized
by Alin (2010): �In more technical terms, multicollinearity occurs if k
vectors lie in a subspace of dimension less than k. This is the de�nition
of exact multicollinearity or exact linear dependence. It is not necessary
for multicollinearity to be exact in order to cause a problem. It is enough
to have k variables nearly dependent, which occurs if the angle between
one variable and its orthogonal projections onto others is small�. In our
opinion, this means that collinearity can be treated from a geometric
perspective.
Raise regression was presented by García et al. (2011) and developed
by García et al. (2016) as an alternative to ridge regression (RR)
to estimate models with collinearity. Posteriorly, other raising



4 García et al.

procedures have been developed such as the simultaneous raise
(SiR), García et al. (2014), and the successive raise regression (SuR),
García and Ramirez (2016). None of these procedures lead to RR. In
this paper, we present the total successive raise regression (TSuR) as the
unique raising procedure that can yield RR. Thus, this raising procedure
serves as the geometric and ex ante justi�cation for ridge estimation that
di�ers from the ad hoc justi�cations presented previously. We also show
that successive rather than simultaneous raising is the appropriate means
of raising the columns of matrix X.
The paper is structured as follows. In Section 2, we present three
alternative raising procedures for a standardized model with two
standardized independent variables, assuming that collinearity is not
su�ciently mitigated after raising the �rst variable. Section 3 presents
the multivariate case and how to obtain the ridge regression from
the raising procedures. Section 4 analyzes the connection between
TSuR and the generalized ridge regression. In Section 5, some
results on the e�ect of raising on the matrix that contains the independent
variables are discussed, showing that successive raising appears to be
preferable. Finally, an empirical application is performed in Section 6,
and the main conclusions are summarized in Section 7.

2. Raise regression: types of raising

For the sake of simplicity, we begin by examining the following
standardized model with n observations and two standardized exogenous
variables:

y = β1x1 + β2x2 + u, (3)

where it is veri�ed that the matrix X′X =

(
1 ρ
ρ 1

)
is the correlation

matrix of the exogenous variables and X′y =

(
γ1
γ2

)
is the correlation

vector of the endogenous variable with every exogenous variable.
Raise regression was initially presented by García et al. (2011) to estimate
a model with near-collinearity, relating the problem of collinearity with
the angle between vectors x1 and x2; that is, if the angle between the
two vectors is small, then the collinearity is higher. To mitigate the
collinearity problem, the authors suggest raising variable x1 taking into
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account the relation x̃1 = x1 + λe1, where λ ≥ 0, x̃1 is the raised vector
of x1 and e1 is the residual vector obtained from the regression of x1 on
variable x2. That is, e1 = x1 − ρx2 being ρ the correlation coe�cient
between x1 and x2. Then, x̃1 = x1 + λ (x1 − ρx2). Note that the
correlation between vectors x̃1 and x2 is weaker than the correlation
between vectors x1 and x2 because the angle is higher. Hence, the
collinearity problem has been mitigated (see Figure 1). If the collinearity
has not been mitigated after raising the �rst variable, it is possible
to raise the second variable. This results in di�erent types of
raising. With the main purpose of geometrically justifying the
ridge regression, the following subsections analyze the di�erent
possibilities of raising.

x1

e1
x2

x̃1 = x1 + λe1

λe1 θ2

θ1

Fig. 1. Representation of raise method

2.1. Simultaneous Raise Regression (SiR)
From model (3), it is possible to simultaneously raise both exogenous
variables in the following way: x̃j = xj + λjej (for j = 1, 2), where ej
is the residual vector obtained from the regression of xj on the other
exogenous variable and λj is the raising factor. In this case, we obtain
that x̃1 = x1 + λ1 (x1 − ρx2) and x̃2 = x2 + λ2 (x2 − ρx1).

By considering variables x̃1 and x̃2, the transformed model is de�ned as
follows:

y = β1x̃1 + β2x̃2 + w. (4)

Denoting X̃SiR as the matrix containing the vector obtained from
simultaneous raise regression (SiR), the associated matrices are given by
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the following:

X̃′SiRX̃SiR =

(
1 + (λ21 + 2λ1)

(
1− ρ2

)
ρ− λ1λ2ρ(1− ρ2)

ρ− λ1λ2ρ(1− ρ2) 1 + (λ22 + 2λ2)
(
1− ρ2

) ) ,
(5)

X̃′SiRy =

(
γ1 + (γ1 − γ2ρ)λ1
γ2 + (γ2 − γ1ρ)λ2

)
. (6)

where γi, for i = 1, 2 is the correlation coe�cient between the explained
variable and explanatory variables.

2.2. Successive Raise Regression (SuR)
The �rst step of successive raise regression (SuR) is the same as that of
SiR. In the second step, from x̃1 = x1+λ1e1 = x1+λ1 (x1 − ρx2), x2

is raised taking x̃2 = x2+λ2e2, where e2 is the residual obtained from the
regression x2 = αx̃1 + v. Taking into account that α̂ = ρ

1+λ1(λ1+2)(1−ρ2)
we have that:

x̃2 = x2 + λ2 (x2 − α̂x̃1)

=
− (λ1 + 1)λ2ρ

1 + λ1 (λ1 + 2) (1− ρ2)
x1

+
(1 + λ1)

2(1 + λ2)− (2 + λ1 + λ2 + λ1λ2)λ1ρ
2

1 + λ1 (λ1 + 2) (1− ρ2)
x2.

Denoting X̃SuR as the matrix containing the vector obtained from SuR,
the associated matrices are given by:

X̃′SuRX̃SuR =

(
1 + λ1 (λ1 + 2)

(
1− ρ2

)
ρ

ρ 1 + (λ1+1)2λ2(λ2+2)(1−ρ2)
1+λ1(λ1+2)(1−ρ2)

)
,

(7)

X̃′SuRy =

(
(1 + λ1)γ1 − γ2ρλ1

γ2(λ1+1)2(λ2+1)−γ1(λ1+1)λ2ρ−γ2λ1(λ2λ1+λ1+λ2+2)ρ2

1+λ1(λ1+2)(1−ρ2)

)
. (8)

2.3. Total Successive Raise Regression (TSuR)
This subsection shows how to obtain the ridge estimator as a particular
case of the raise estimator. Hoerl and Kennard (1970a,b) proposed the
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following transformed matrices:

X′X + kI =

(
1 + k

∑n
i=1 x1ix2i∑n

i=1 x1ix2i 1 + k

)
=

(
1 + k ρ
ρ 1 + k

)
, (9)

X′y =

(∑n
i=1 x1iyi∑n
i=1 x2iyi

)
=

(
γ1
γ2

)
. (10)

The simultaneous raising (SiR) method leads to expressions (5) and (6),
and it is evident that these expressions only coincide with expressions (9)
and (10) when λ1 = λ2 = 0, that is, only when OLS is applied. Hence, it
is possible to conclude that SiR is fundamentally di�erent from RR.
In relation to successive raise regression (SuR), it is possible to obtain
the relation between (7) and the information matrix of RR, selecting
λ1 and λ2 to obtain k1 = k2 = k with k1 = λ1 (λ1 + 2)

(
1− ρ2

)
and k2 =

(λ1+1)2λ2(λ2+2)(1−ρ2)
1+λ1(λ1+2)(1−ρ2) . Thus, it is possible to obtain X′X + kI.

However, (10) does not coincide with (8), and hence, it is not possible to
obtain the ridge estimator with this procedure.
On the other hand, taking into account that:

X̃SuR = (x̃1 x̃2) = (x1 + λ1e1 x2 + λ2e2) , (11)

it is evident that if e′jy = 0, then X̃′SuRy = X′y. For this reason, the
procedure of Subsection 2.2 has been modi�ed to include the dependent
variable as an exogenous variable in the auxiliary regression of the raise
methodology. The steps of the procedure are as follows:

• The �rst variable, x̃1 = x1 + λ1e1, is raised, where:

e1 = x1 − x̂1 = x1 −
(
ρ− γ1γ2
1− γ22

x2 +
γ1 − ργ2
1− γ22

y

)
,

is the residual vector obtained from regression x1 = δ1x2+δ2y+u1.
In this case, we obtain the following:

x̃1 = (1 + λ1)x1 − λ1
(
ρ− γ1γ2
1− γ22

x2 +
γ1 − ργ2
1− γ22

y

)
. (12)

• From the residual vector e2 of regression x2 = θ1x̃1 + θ2y + u2,
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where x̃1 is (12), x̃2 is obtained as follows:

x̃2 = x2 + λ2e2 (13)

= (1 + λ2)x2 − λ2
(

ρ− γ1γ2
1 + k1 − γ22

x̃1 +
γ2(1 + k1)− ργ1

1 + k1 − γ21
y

)
,

where k1 =
(1−ρ2−γ2

1+2γ1γ2ρ−γ2
2)(2λ1+λ2

1)
1−γ2

2
= (1−ρ2)(1−R2)(2λ1+λ2

1)
1−γ2

2
.

Denoting X̃TSuR as the matrix containing vectors x̃1 and x̃2 given by
expressions (12) and (13), respectively, we obtain the following:

X̃′TSuRX̃TSuR =

(
1 + k1 ρ
ρ 1 + k2

)
, (14)

X̃′TSuRy =

(
γ1
γ2

)
, (15)

where k2 =
Ax1+Bx2+Cy

(1−γ2
1)(1−γ2

2)+(2λ1+λ2
1)(1−ρ2)(1−R2) and:

A = (λ1 + 1)
(
1− γ22

)
(γ1γ2 − ρ) ,

B =
(
1− γ21

) (
1− γ22

)
+
(
2λ1 + λ21

) (
1− ρ2

) (
1−R2

)
+ λ1 (γ1γ2 − ρ)2 ,

C = ργ1 − γ2 − ργ1γ22 + γ32 + ργ1λ1 − γ2λ21
(
1−R2

) (
1− ρ2

)
−

−γ2λ1
[
2
(
1−R2

) (
1− ρ2

)
+ ρ2 − ργ1γ2 + γ21

]
,

being R2 =
γ2
1−2γ1γ2ρ+γ

2
2

1−ρ2 the coe�cient of determination of model (3).
From these results, it is possible to conclude that total successive
raise regression (TSuR) leads to the matrices of RR since

X̃′TSuRX̃TSuR = X′X + K with K = diag(k1, k2) and X̃′TSuRy = X′y.
Hence, in the case of two standardized variables, TSuR is the only
model that allows one to obtain RR from a raise estimator when
adequately selecting λ1 and λ2 to obtain k1 = k2 = k.

3. The multivariate case. A new justification for ridge regression

Given the standardized version of model (1), the following transformed model
is considered to obtain the ridge estimator from the raise estimator:

y = X̃β + w, (16)
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where the matrix X̃ contains the raised vectors x̃j = xj + λjej , with j =
1, 2, . . . , p. Raise estimator is obtained from the ordinary least squares
(OLS) estimation of model (16). This section shows how to select
the residual vector ej and λj such that raise estimator coincides with
ridge estimator of model (1), that is:(

X̃′X̃
)−1

= (X′X + kI)
−1
, (17)

X̃′y = X′y. (18)

From these expressions, the following conditions are required:

x̃′jx̃j = x′jxj + k, j = 1, . . . , p, (19)

x̃′ix̃j = x′ixj , i, j = 1, . . . , p, i 6= j, (20)

x̃′jy = x′jy, j = 1, . . . , p. (21)

In Section 2, we demonstrated that in the case of two standardized
variables, total successive raise regression (TSuR) is the only raising approach
that leads to RR. In the following subsections we generalize for p ≥ 2
the di�erent types of raising with the main purpose of this paper for
geometrically justifying ridge regression.
The main idea to develop all the raising procedures is to de�ne
the raising matrix, X̃, where the set of initial vectors {x1,x2, . . . ,xp}
is replaced by the set of raising vectors {x̃1, x̃2, . . . , x̃p} being x̃j =
xj + λjej.

3.1. Simultaneous Raise Regression (SiR)
In the Simultaneous Raise Regression (SiR), the residual ej is
obtained from the regression of xj over {x1,x2, . . . ,xj−1,xj+1, . . . ,xp},
∀j ∈ {1, 2, . . . , p}. In this case, it is veri�ed that ej ⊥ xi for i 6= j,
x′jej = e′jej and

• x̃′jx̃j = x′jxj + kj with kj = 2λje
′
jej + λ2je

′
jej .

• x̃′ix̃j = x′ixj + λiλje
′
iej .

• x̃′jy = x′jy + λje
′
jy.

Then, the estimation of model (16) by OLS allows to show that
relations (17) and (18) are not veri�ed since e′jej 6= 0 and e′jy 6= 0.
Thus, expressions (20) and (21) are not veri�ed. The relation (19)
will be veri�ed selecting λj to obtain k1 = k2 = · · · = kp = k.
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However, it is possible to state that the span {x1,x2, . . . ,xp} coincides
with the span generated by {x̃1, x̃2, . . . , x̃p}. Consequently, the
coe�cient of determination of both models (expressions (1) and (16))
will coincide.

3.2. Total Simultaneous Raise Regression (TSiR)
Total Simultaneous Raise (TSiR) is based on the raising of every
vector considering the residual ej obtained from the regression of
xj, ∀j ∈ {1, 2, . . . , p}, over vectors {x1,x2, . . . ,xj−1,xj+1, . . . ,xp,y}. On
contrary to SiR, the endogenous variable is considered joint to the
p − 1 exogenous variables. Thus, it is veri�ed that ej ⊥ xi for i 6= j,
x′jej = e′jej, ej ⊥ y, ∀i, and consequently

• x̃′jx̃j = x′jxj + kj with kj = 2λje
′
jej + λ2je

′
jej .

• x̃′ix̃j = x′ixj + λiλje
′
iej .

• x̃′jy = x′jy.

In this case, from the estimation of model (16) by OLS, the relation
(20) is not veri�ed since e′jej 6= 0. That is, relation (17) is not veri�ed
but the relation (18) is veri�ed. Relation (19) will be veri�ed selecting
λj to obtain k1 = k2 = · · · = kp = k.
Since the vector y was introduced in the regression to raise every
vector, the span {x1,x2, . . . ,xp} does not coincide with the span
generated by {x̃1, x̃2, . . . , x̃p}. This conclusion is relevant, since the
coe�cient of determination of model (1) will be di�erent to the
coe�cient of determination of model (16).

3.3. Successive Raise Regression (SuR)
The steps of this procedure for any value of p are as follows:

• Step 1. First, the regression of x1 is obtained over the set of vectors
{x2,x3, . . . ,xp} obtaining the residual e1 that allows to describe the raise
vector x̃1 = x1 + λ1e1 where e1 ⊥ xi with i ≥ 2 and x′1e1 = e′1e1. The
raise vector will be used instead of x1.

• Step 2. The regression of x2 is obtained over the set of vectors
{x̃1,x3, . . . ,xp}, obtaining the residual e2 that allows to raise the second
variable x̃2 = x2 + λ2e2 where it is veri�ed that e2 ⊥ x̃1, e2 ⊥ xi with
i ≥ 3 and x′2e2 = e′2e2.

• Step j. The regression of variable xj is obtained over the set of vectors
{x̃1, x̃2, . . . , x̃j−1,xj+1, . . . ,xp} obtaining the residual ej that veri�es
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ej ⊥ x̃i, ∀i ≤ j − 1, ej ⊥ xi, ∀i ≥ j + 1 and x′jej = e′jej . Then,
the variable xj is replaced by x̃j = xj + λjej .

• Step p. Finally, the regression of variable xp is obtained over the set of
vectors {x̃1, x̃2, . . . , x̃p−1} obtaining the residual ep. It is veri�ed that
ep ⊥ x̃i ∀i ≤ p − 1. Then, the vector xp is replaced by the raise vector
x̃p = xp + λpep.

The following results are obtained with the estimation of model (16)
by OLS after the application of the successive raise regression:

• x̃′jx̃j = x′jxj + kj with kj = 2λje
′
jej + λ2je

′
jej .

• x̃′ix̃j = x̃′i (xj + λjej) = x̃′ixj + λjx̃
′
iej = x̃′ixj = (xi + λiei)

′
xj =

x′ixj + λie
′
ixj = x′ixj .

• x̃′jy = x′jy + λje
′
jy.

Thus, when the model (16) is estimated by OLS, the relation (17) is
veri�ed but not the relation (18) since e′jy 6= 0. To verify the relation
(17) will be required to adequately select λj to obtain k1 = k2 = · · · =
kp = k.
However, it is veri�ed that the span {x1,x2, . . . ,xp} coincides with the
span generated by {x̃1, x̃2, . . . , x̃p}. Consequently, the coe�cient of
determination of both models (expressions (1) and (16)) will coincide.

3.4. Total Successive Raise Regression (TSuR)
Total successive raise regression (TSuR) consists in successively
raising every independent variable of model (1) but including the
dependent variable in the auxiliary regressions to obtain the residual
vector ej .

• Step 1. First, the regression of x1 is obtained over the set of vectors
{x2,x3, . . . ,xp,y} obtaining the residual e1 that allows to describe the
raise vector x̃1 = x1 + λ1e1 where it is veri�ed that e1 ⊥ xi for i ≥ 2,
e1 ⊥ y and x′1e1 = e′1e1. The raise vector will be used instead of x1.

• Step 2. The regression of x2 is obtained over the set of vectors
{x̃1,x3, . . . ,xp,y}, obtaining the residual e2 that allows to raise the
second variable x̃2 = x2 + λ2e2 where it is veri�ed that e2 ⊥ x̃1, e2 ⊥ xi
with i ≥ 3, e2 ⊥ y and x′2e2 = e′2e2.

• Step j. The regression of variable xj is obtained over the set of vectors
{x̃1, x̃2, . . . , x̃j−1,xj+1, . . . ,xp,y} obtaining the residual ej that veri�es
ej ⊥ x̃i, ∀i ≤ j − 1, ej ⊥ xi, ∀i ≥ j + 1, ej ⊥ y and x′jej = e′jej . Then,
the variable xj is replaced by x̃j = xj + λjej .
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• Step p. Finally, the regression of variable xp is obtained over the set of
vectors {x̃1, x̃2, . . . , x̃p−1,y} obtaining the residual ep. It is veri�ed that
ep ⊥ x̃i, ∀i ≤ p − 1, ep ⊥ y and x′pep = e′pep. Then, the vector xp is
replaced by the raise vector x̃p = xp + λpep.

In this case, it is veri�ed that:

• x̃′jx̃j = x′jxj + kj with kj = 2λje
′
jej + λ2je

′
jej .

• x̃′ix̃j = x′ixj .

• x̃′jy = x′jy.

Thus, the relations (17) and (18) are veri�ed if k1 = k2 = · · · = kp = k.
In summary, after the application of the total successive raise regression the
matrix X̃TSuR is obtained and the model (16) is estimated by OLS. In this

situation, the estimator β̂TSuR of model (1) is given by:

β̂TSuR =
(
X̃′TSuRX̃TSuR

)−1
X̃TSuRy = (X′X + K)

−1
X′y, (22)

where K = diag(k1, k2, . . . , kp). From expression kj = 2λje
′
jej + λ2je

′
jej , we

obtain that k1 = k2 = · · · = kp = k considering

λj = −1 +
√
1 +

k

e′jej
, (23)

and then
β̂TSuR = (X′X + kI)

−1
X′y, (24)

that is, β̂TSuR coincides with the expression of the classical ridge estimator.

In conclusion, the expression associated with the ridge estimator β̂R(k) =

(X′X + kI)
−1

X′y has been obtained from TSuR with the appropriate choice of
raising factors λj . The RR is a particular case of the various possibilities
that the raising procedure provides.

3.5. Anomalies of the ridge regression
From the geometrical interpretation given when the ridge regression
is obtained from TSuR, it is possible to show that the span generated
by TSuR, {x̃1, x̃2, . . . , x̃p}, does not coincide with the original span,
{x1,x2, . . . ,xp}. Consequently, the application of TSuR, which is
the same that the ordinary ridge regression, neither maintains the
initial coe�cient of determination or the experimental F statistic;
see García et al. (2017). This generates doubts about the capacity
and integrity of the ridge estimation. In our opinion, the ridge
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estimator is questioned as an estimator in the strict sense or as a
regularization process to obtain a system solution of normal equations
when collinearity exists.
These results are in line with results found by García et al. (2017),
where it is shown that

n∑
i=1

(Yi −Y)2 =

n∑
i=1

(Ŷi(k)−Y + ei(k))
2

=

n∑
i=1

(Ŷi(k)−Y)2 +

n∑
i=1

ei(k)
2 + 2 ·

n∑
i=1

(Ŷi(k)−Y) · ei(k),

with ei(k) = Yi − Ŷi(k) = Yi − Xβ̂i(k). Contrary to OLS, in this case,
it is not veri�ed that

∑n
i=1(Ŷi(k) −Y) · ei(k) = 0 for k > 0. Then, the

sum of squares decomposition is not veri�ed. Since the coe�cient of
determination is based on this decomposition, we consider that the
coe�cient of determination has no sense in ridge regression. For this
same reason, the application of the experimental statistic F is also
questioned.

4. Relation with the generalized ridge regression (GRR)

Although the ridge regression obtained from TSuR satis�es the main
purpose of this paper for geometrically justifying ridge regression, it
is interesting to extend the analysis to the possible relation between
TSuR and generalized ridge regression (GRR).

Given the model (1), it is possible to establish the decomposition
T′X′XT = Γ where Γ = diag(γ1, γ2, ..., γp) and T, T′T = I = TT′ are the
eigenvalues and eigenvectors matrices of X′X, respectively.
The canonical version of model (1) is:

y = Zα+ u, (25)

where Z = XT and α = T′β. The OLS estimator of α is given by:

α̂OLS = (Z′Z)−1Z′y = Γ−1Z′y. (26)

Then, the OLS estimator of β is given by β̂OLS = Tα̂OLS.
In this case, by following Hoerl and Kennard (1970b), the generalized
ridge estimators are given by:

α̂R(K) = (Z′Z + K)−1Z′y, (27)
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where K = diag(k1, k2, ..., kp).
From expression (27), it is evident that the application of TSuR to
the orthogonal model (25) leads to GRR, which is the ordinary ridge
regression obtained as a particular case when adequately selecting λj
to obtain k1 = k2 = · · · = kp = k.
On the other hand, since α = T′β, it is veri�ed that the GRR
estimator in the non-orthogonal model (1) is given by:

β̂R(K) = Tα̂R(K) = (X′X + TKT′)−1X′y. (28)

Comparing this expression with the expression (22), it is evident that
the application of TSuR to the non-orthogonal model does not lead
to GRR. However, when K = kI, the estimator given by expression
(28) can be expressed as β̂R(k) = (X′X+kI)−1X′y; as shown in Section
3, the application of TSuR to the non-orthogonal model (1) also leads
to RR.
In summary, GRR is obtained by applying TSuR to the orthogonal
model, and consequently, RR is also obtained as a particular case by
only selecting adequate raising factors. However, the application of
TSuR to the non-orthogonal model does not lead to GRR although
it leads to RR only adequately selecting raising factors.
Expression (22) introduces ki in the diagonal of matrix X′X that is
supposed to be ill-conditioned. This can be considered more coherent
with the work of Marshall et al. (1979) and Piegorsch and Casella
(1989) that established the origins of ridge regression in the results
provided by Riley (1955) about the conditioning of matrices X′X and
X′X + kI.

5. Raise Regression and VIF

In this section, we will study the behaviour of the VIF in the raising methods.
García et al. (2011) showed that the VIF associated with the raised variable
diminishes when raise regression is applied. The following theorem shows that
the VIF of the remaining variables also diminishes.

Theorem 1 When A is the set of vectors determined by vectors {x1 x2 . . .xp}
and B is the set of vectors {x̃1 x2 . . .xp} where x̃1 is the raised vector of x1,
it is veri�ed that the VIF of every vector in the set of vectors B is less that or
equal to the VIF associated with the vectors of the set of vectors A.

Proof. García et al. (2011, Theorem 4.2) proved that �upon raising a variable
its VIF diminishes�; that is, the VIF of vector x1 in the set of vectors
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A = {x1 x2 . . . xp} is higher than the VIF of vector x̃1 in the set of
vectors B = {x̃1 x2 . . . xp}. The main goal of this section is to show that
the VIFs of vectors xj with j 6= 1 in the set of vectors B are lower than the
VIFs of a vector in the set of vectors A. Without loss of generality, the VIF
associated with vector x2 is obtained. Thus, we will �rst estimate vector x2 on
the rest of the set of vectors A and B and then compare the associated VIFs in
each set. The estimations of x2 in each set of vectors are as follows:

x̂2(A) = (Z′Z)
−1

Z′x2, (29)

x̂2(B) = (T′T)
−1

T′x2, (30)

where

Z =


x11 x31 · · · xp1
x12 x32 · · · xp2
...

...
. . .

...
x1n x3n · · · xpn


n×(p−1)

,

and

T =


x11 + λ1e11 x31 · · · xp1
x12 + λ1e12 x32 · · · xp2

...
...

. . .
...

x1n + λ1e1n x3n · · · xpn


n×(p−1)

.

Given the relation T′T = Z′Z + K (with K a square matrix of order p− 1 for
which the unique element di�erent from zero is in the position (1,1) where its
value is equal to k = λ21e

′
1e1+2λ1e

′
1x1 or alternatively k = λ21e

′
1e1+2λ1e

′
1e1 and

T′x2 = Z′x2 (since x2⊥e1), it is then veri�ed that x̂2(B) = (T′T)
−1

T′x2 =

(Z′Z + K)
−1

Z′x2 = x̂R2 (A). That is, the estimation of vector x2 in the set of
vectors B is the same as applying the generalized ridge estimation (with k1 = k
and ki = 0 for i 6= 1) of x2 in the set of vectors A.
However, the error sum of squares of the set of vectors are, respectively:

RSS(A) = x′2x2 − x̂2(A)′Z′x2 = x′2x2 − x′2Z (Z′Z)
−1

Z′x2,

RSS(B) = x′2x2 − x̂2(B)′T′x2 = x′2x2 − x′2T (T′T)
−1

T′x2,

the di�erence of which is as follows:

RSS(B)− RSS(A) = x′2Z
[
(Z′Z)

−1 − (T′T)
−1
]

Z′x2

= a′
[
(Z′Z)

−1 − (T′T)
−1
]

a,

where Z′x2 = a.
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To show that the VIFs associated with the vector of set of vectors B are lower
than the VIFs of the vectors of the set of vectors A, it is su�cient to check

that a′
[
(Z′Z)

−1 − (T′T)
−1
]

a is a positive quadratic form since the total sum

of squares is equal in both regressions and a greater RSS value leads to a lower
VIF value.
Using partitioned matrices, for example, write Z = (x1|Z[1]) and T = Z +
(λ1e1|0) with e1⊥X[1] and taking into consideration that it is veri�ed that
T′T = Z′Z + K, it is possible to apply the Sherman-Morrison formula for
matrix inverses (A + ww′)−1 = A−1 − 1

1+w′A−1wA−1ww′A−1 with Z′Z as A

and w′ = (
√
k|0) to conclude the following:

(Z′Z)−1 − (T′T)−1 =
1

1 + k(Z′Z)−11,1

(Z′Z)−1K(Z′Z)−1 (31)

which has the form V′V and thus is nonnegative de�nite for k ≥ 0.
In addition, the expression (31) will be equal to zero only when
a′(Z′Z)−1K(Z′Z)−1a = 0 and taking into account the form of matrix K, this
will only occur when the �rst coordinate of a′ is zero, that is, when x2 ⊥ x1.
That is, raising vector x1 by the raise regression diminishes the VIFs of the rest
of the vectors that are not perpendicular to x1. �

In conclusion, the successive raise regression (SuR) and the total successive
raise regression (TSuR) guarantee the mitigation of collinearity. However, the
simultaneous raise regression (SiR) can not guarantee this fact as will be shown
in the empirical application (see Tables 2 to 4). This information is
summarized in the following corollaries:.

Corollary 1 The VIFs associated with all variables (both raised and unraised)
diminish in every step of successive raise regression (SuR). It is to say, the
successive raise regression guarantees that collinearity is mitigated. This fact is
also veri�ed in the Total Successive raise regression (TSuR).

Corollary 2 The case of simultaneous raise regression (SiR) and total
simultaneous raise regression (TSiR), the simultaneous raising of all vector does
not guarantees the mitigation of collinearity.

6. Application

To illustrate the contributions of this paper, an empirical application is
presented by using the Economic Report of the President cited by Wissel (2009)
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but enlarging the sample with data from 1995 to 2011. We study the linear
relationship between the variable of outstanding mortgage debt (in trillions of
dollars), y, and the independent variables of personal consumption (in trillions
of dollars), x1, personal income (in trillions of dollars), x2, and outstanding
consumer credit (in trillions of dollars), x3.
The standardized estimated model is:

ŷ = -0.4099 x1 + 0.5071 x2 + 0.8827 x3,
(0.6791) (0.3331) (0.8144)

where the coe�cient of determination is R2 = 0.92325 and Fexp = 107.3174,
and this is therefore a globally signi�cant model. Indeed, the standard deviation
indicates that all the independent variables have coe�cients not individually
signi�cant at the 95% con�dence level. Finally, the VIF con�rms the presence of
high collinearity since VIF(x1) = 154.9488, VIF(x2) = 37.2682 and VIF(x3) =
222.8143.
Considering that k = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 10, 11, 12, 13,
14, 15, 20, 50, 100, Table 1 shows the values of λi, i = 1, 2, 3 that make TSuR
coincide with RR, applying only the expression (23). From these values, Tables
2 to 4 show the values calculated for the VIFs of each independent variable in
RR (following the methodology presented by García et al. (2016)), SiR, SuR
and TSuR. Thus, note that the VIFs in RR and TSuR have been calculated for
the same values of k and the VIFs in SiR, SuR and TSuR have been calculated
for the same values of the raising factor, λi. In addition, k increases as the
raising factor increases.
From this information, it is possible to obtain the following conclusions:

• The values of VIF calculated from SuR decrease as the raising factors
increase. However, in the case of SiR, the values of the VIF decrease until
a certain value of k (k = 10 for x1 and x3 and k = 11 for x2), and
from these values, the value of the VIF increases. Therefore, SuR seems to
exhibit better behavior than SiR, as mentioned in Section 5. Indeed, since
SuR maintains the residual, explained and total sums of squares of the
original model, the coe�cient of determination and the global signi�cance
are not altered by the successive raising of the vectors.

• Given the requirement that RR and TSuR have the same values of λi, i =
1, 2, 3, using the expression (23) veri�es that X̃′TSuRX̃TSuR = X′X + kI.
Because the calculation of the VIF is based on these matrices, the obtained
values have to coincide. García et al. (2016) established that the extension
of the concept of VIF to RR is continuous, monotone decreasing and equal
to or higher than one. Consequently, the VIFs obtained from TSuR will
also automatically verify these desirable properties.
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Table 1. Values of λi, i = 1, 2, 3 that make total successive
taise (TSuR) coincide with ridge regression (RR)

k λ1 λ2 λ3
0 0 0 0
0.1 3.11073554 1.29575071 1.1093676
0.2 4.72680482 2.08811668 1.54302882
0.3 5.97814016 2.71515356 1.90555742
0.4 7.03695134 3.25067562 2.22582099
0.5 7.97166281 3.72589788 2.51635375
0.6 8.81778387 4.15751619 2.78432199
0.7 9.59655731 4.55570274 3.03435342
0.8 10.3218891 4.92719924 3.26966227
0.9 11.0034712 5.27674657 3.49259561
1 11.648378 5.60782895 3.70493207
10 38.8850181 19.6782531 13.0627471
11 40.8305646 20.685218 13.7401913
12 42.6895594 21.6474547 14.3878392
13 44.4726189 22.5704418 15.0093077
14 46.1883517 23.4586233 15.6075361
15 47.8438533 24.3156627 16.1849518
20 55.3970685 28.2262793 18.8213019
50 88.1631838 45.1944926 30.2770127
100 125.091819 64.3211863 43.2025271
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Table 2. VIFs of x1 obtained with ridge regression (RR),
the simultaneous raise method (SiR), successive raise method
(SuR) and total successive raise method (TSuR) from the values
of k and λ of Table 1

k RR SiR SuR TSuR

0 154.9488 154.9488 154.9488 154.9488
0.1 6.7663 7.6507 5.7482 6.7663
0.2 3.9217 4.3713 3.2431 3.9217
0.3 2.9195 3.1894 2.4079 2.9195
0.4 2.4088 2.2337 1.9986 2.4088
0.5 2.1003 2.3317 1.7587 2.1003
0.6 1.8943 2.0907 1.6025 1.8943
0.7 1.7476 2.0487 1.4936 1.7476
0.8 1.6380 1.7886 1.4138 1.6380
0.9 1.5533 1.6882 1.3531 1.5533
1 1.4860 1.6082 1.3056 1.4860
10 1.0150 1.1854 1.0071 1.0150
11 1.0127 1.2064 1.0059 1.0127
12 1.0109 1.2284 1.0050 1.0109
13 1.0094 1.2512 1.0043 1.0094
14 1.0082 1.2745 1.0038 1.0082
15 1.0072 1.2983 1.0033 1.0072
20 1.0042 1.4209 1.0019 1.0042
50 1.0007 2.1621 1.0003 1.0007
100 1.0002 3.3042 1.0001 1.0002
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Table 3. VIFs of x2 obtained with ridge regression (RR), the
simultaneous raise method (SiR), successive raise method
(SuR) and total successive raise method (TSuR) from the
values of k and λ of Table 1

k RR SiR SuR TSuR

0 37.2682 37.2682 37.2682 37.2682
0.1 6.1599 6.9596 5.1850 6.1599
0.2 3.7429 2.8261 3.0800 3.7429
0.3 2.8327 3.2352 2.3310 2.8327
0.4 2.3568 2.5667 1.9539 2.3568
0.5 2.0652 2.3917 1.7295 2.0652
0.6 1.8689 2.1603 1.5819 1.8689
0.7 1.7281 1.9988 1.4783 1.7281
0.8 1.6226 1.8657 1.4019 1.6226
0.9 1.5407 1.7662 1.3437 1.5407
1 1.4755 1.6863 1.2980 1.4755
10 1.0149 1.0774 1.0070 1.0149
11 1.0125 1.0773 1.0058 1.0125
12 1.0107 1.0782 1.0050 1.0107
13 1.0093 1.0800 1.0043 1.0093
14 1.0081 1.0825 1.0037 1.0081
15 1.0072 1.0854 1.0033 1.0072
20 1.0042 1.1053 1.0019 1.0042
50 1.0007 1.2652 1.0003 1.0007
100 1.0002 1.5310 1.0001 1.0002
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Table 4. VIFs of x3 obtained with ridge regression (RR),
the simultaneous raise method (SiR), successive raise method
(SuR) and total successive raise method (TSuR) from the values
of k and λ of Table 1

k RR SiR SuR TSuR

0 222.8143 222.8143 222.8143 154.9488
0.1 7.1161 9.7907 4.6014 7.1161
0.2 4.0248 4.5303 2.3020 4.0248
0.3 2.9695 3.5731 1.6768 2.9695
0.4 2.4388 1.5525 1.4155 2.4388
0.5 2.1205 2.5478 1.2813 2.1205
0.6 1.9090 2.2312 1.2031 1.9090
0.7 1.7588 2.0815 1.1536 1.7588
0.8 1.6469 1.8388 1.1202 1.6469
0.9 1.5606 1.7096 1.0967 1.5606
1 1.4921 1.6073 1.0794 1.4921
10 1.0151 1.1234 1.0009 1.0151
11 1.0128 1.1550 1.0007 1.0128
12 1.0109 1.1878 1.0006 1.0109
13 1.0095 1.2215 1.0005 1.0095
14 1.0083 1.2559 1.0005 1.0083
15 1.0073 1.2908 1.0004 1.0073
20 1.0043 1.4695 1.0002 1.0043
50 1.0007 2.5405 1.0000 1.0007
100 1.0002 4.1864 1.0000 1.0002
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Table 5. Main characteristics of different raising methods
SuR TSuR SiR

It leads to ridge regression No Yes No
The VIF diminishes in every step Yes Yes No
The R2 and the Fexp are maintained Yes No Yes

• Analogously, it is possible to impose the condition that the values of k
in SuR and TSuR coincide. In this case, we obtain that X̃′SuRX̃SuR =

X′X + kI = X̃′TSuRX̃TSuR, and for the same reason as above, the VIFs
obtained from the two methodologies coincide.

• Note that the VIFs associated with SuR are smaller than and decrease
faster than the VIFs associated with TSuR.

To conclude, Table 5 shows the main characteristics of the di�erent raising
methods.

7. Conclusions

This paper shows that the RR is obtained from the total successive
raise (TSuR), which is a particular case of the various possibilities
and �exibilities that the raising procedure provides. From this
geometrical interpretation, the span generated by the TSuR,
{x̃1, x̃2, . . . , x̃p}, is shown not to coincide with the original span,
{x1,x2, . . . ,xp}. This fact could explain the anomalies of RR in
the coe�cient of determination or the experimental F statistic.
Additionally, it is shown that in TSuR, the collinearity is mitigated
since the VIFs associated with all variables, both raised and not
raised, diminish.

Secondly, the paper discusses the simultaneous raise regression (SiR)
presented by García et al. (2014) and the successive raise regression
(SuR) presented by García and Ramirez (2016). The study concludes
that SuR is the preferred method, as it guarantees that the VIFs
associated with all variables, both raised and not raised, diminish;
that is, SuR ensures that collinearity is mitigated. At the same
time, the SuR guarantees that the span generated coincides with
the original, and consequently, it is possible to obtain the coe�cient
of determination.
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