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Abstract

We consider a generalization of the classical logistic growth model introducing more than

one inflection point. The growth, called multi-sigmoidal, is firstly analyzed from a deterministic

point of view in order to obtain the main properties of the curve, such as the limit behavior, the

inflection points and the threshold-crossing-time through a fixed boundary. We also present an

application in population dynamics of plants based on real data. Then, we define two different

birth-death processes, one with linear birth and death rates and the other with quadratic rates,

and we analyze their main features. The conditions under which the processes have a mean of

multi-sigmoidal logistic type and the first-passage-time problem are also discussed. Finally, with

the aim of obtaining a more manageable stochastic description of the growth, we perform a scaling

procedure leading to a lognormal diffusion process with mean of multi-sigmoidal logistic type. We

finally conduct a detailed probabilistic analysis of this process.

Keywords: Logistic model, Multi-sigmoidal model, Time-non-homogeneous birth-death process,

Quadratic birth-death process, First-passage-time problem, Lognormal diffusion process

2010 MSC: 92D25, 60J85, 60J70

∗Corresponding author – Email: adicrescenzo@unisa.it – Orcid: 0000-0003-4751-7341
†Email: pparaggio@unisa.it – Orcid: 0000-0002-3308-7937
‡Email: proman@ugr.es – Orcid: 0000-0001-7752-8290
§Email: fdeasis@ugr.es – Orcid: 0000-0001-6254-2209

1

Manuscript latex - For Review Click here to view linked References

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

                  



1 Introduction

The logistic model is a sigmoidal growth model characterized by an initial slow growth followed by an

explosion of exponential-type which flattens up to an equilibrium status (known as carrying capacity).

It is a growth curve particularly useful to describe evolution phenomena in restricted environments. In

literature, there are many growth models with an S-shape, such as Gompertz, Korf or mixed models

(see Brauer and Castillo-Chavez [1]). The applications of sigmoidal curves are various and they involve

several contexts of interest which go from biology to medicine, from ecology to software reliability.

For example, in the recent works of Rajasekar et al. [2, 3], the authors analyze a stochastic version of

SIR model for the diffusion of the COVID-19 pandemic, by supposing that the number of susceptible

individuals follows a logistic-kind growth. Moreover, regarding software reliability, in their recent work

Erto and Lepore [4] define a new kind of S-shaped curve which, under suitable choices of the involved

parameters, has got more than one inflection point. Indeed, it is possible that a population reaches

its limit value after various successive steps. This is the reason why recent investigations address their

interest to a generalization of the sigmoidal models by the introduction of multiple inflection points.

Such generalizations are the so-called multi-sigmoidal models (see for example Román-Román et al.

[5]). The multi-sigmoidal logistic model, in particular, is appropriate to describe the maturation of

some fruit species (such as peaches or coffee berries) which shows a trend with multiple fluctuations

(see, for example Fernandes et al. [6]). Another different application of the multi-sigmoidal model can

be found in Cairns et al. [7], where a double sigmoidal fitting is considered to compare fatigue profiles

obtained with different stimulation protocols in isolated slow-twitch soleus and fast-twitch extensor

digitorum longus (EDL) muscles of mice. Furthermore, in the study of energy resources, in particular

oil, there are models associated with logistic growth, such as the Hubbert model, which is used to

determine the peak of oil production. However, in recent years it has been observed how the behavior

of oil production shows various peaks, which is related to the presence of various inflection points in

the underlying logistics models (see Maggio and Cacciola [8], and Saraiva et al. [9]).

All the afore-mentioned curves are deterministic, in the sense that they are described by precise

differential equations (see, for example Section 2.2 of Banks [10]). Even if they are useful models, they

do not take into account random fluctuations which characterize the real world. For this reason, many

efforts have been realized in order to introduce dynamic models related to these curves. Among them,

stochastic diffusion processes stand out. These processes are governed by a stochastic differential

equation obtained by adding to the deterministic equation a noise term which is represented, most

of the times, by a Wiener process (see, as a reference, Øksendal [11]). They are constructed in

such a way that their mean is equal to the growth curve under analysis. The choice of the noise

type which is added to the deterministic equation depends on the context. For instance, Scholman

[12] suggests to modify the differential equation which describes the logistic growth, by adding a

random term represented by a Poisson process, this being more suitable for the description of growth

phenomena with random catastrophes. Otherwise, other investigations propose to introduce the

random environment by defining particular birth-death processes with a mean identical to the growth

curve (see Di Crescenzo and Paraggio [13], Di Crescenzo and Spina [14] and Ricciardi [15]). Other

diffusion approximations of the logistic growth have been performed by Campillo et al. in [16] where

the author studies the corresponding stochastic growth model with extinction, by Kink in [17], by

Nobile and Ricciardi in [18, 19]. See also Di Crescenzo et al. [20] for a method to construct tractable

diffusion processes suitable for describing populations subject to rapid growth.
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The need of constructing stochastic processes whose mean follows a given trend emerges in several

applications in which the intrinsic random fluctuations cannot be neglected and require the construc-

tion of appropriate random dynamic systems. Hence, stimulated by the above mentioned research

lines, in the present paper we dedicate attention to both the described strategies. Indeed, we define a

linear and time-inhomogeneous birth-death process and a diffusion process, both processes possessing

a mean of multi-sigmoidal logistic type. We also address our attention to a particular birth-death

process with quadratic rates from which we derive the diffusion process, as the limit under a suitable

scaling. In literature, the analysis of quadratic birth-death processes is a quite hard task and thus not

amply discussed. In particular, Lenin and Parthasarathy [21] and Parthasarathy and Vijayashree [22]

studied the Markovian queues with finite capacity in which the arrivals and the service completions

are governed by quadratic functions. The probability generating function has been analyzed using

suitable properties of tridiagonal matrices. The probabilities of quadratic birth-death processes can

be also determined by means of Laplace transform as done by Lenin and Parathasarathy in [23, 24].

We follow the approach of Letessier and Valent [25], Roehner and Valent [26] and Valent [27] and thus

we study the probability generating function deriving from it a differential equation for the mean. We

also consider the first-passage-time (FPT) problem both for the birth-death process with linear rates

and for the approximating diffusion process through special boundaries as done in Giorno and Nobile

[28] and Gutiérrez et al. [29].

Let us describe the contents of the paper. In Section 2 the multi-sigmoidal logistic curve is

defined and its main features, such as the limit behavior and the inflection points, are described.

The threshold crossing time problem is also discussed. In Section 3 we consider a real data set

concerning the maturation of coffee fruits and an approximation of multi-sigmoidal logistic type is

performed. The choice of the best fit is based on the minimization of the cumulative square error.

Section 4 is devoted to the introduction of the linear birth-death process. We find a sufficient and

necessary condition to have a mean of multi-sigmoidal logistic type and we analyzed the FPT problem

through a fixed boundary. The quadratic birth-death process is introduced in Section 5: we study

the probability generating function and the corresponding partial differential equation from which we

obtain an ordinary differential equation solved by the mean of the process. After a discussion regarding

the asymptotic behavior of the process, we perform a scaling with diffusive approximation that leads

the birth-death process to a lognormal diffusion one. In Section 6 we study its main properties and

the corresponding FPT problem. We also point out that both the unconditional and conditional mean

of the aforementioned diffusion process are of multi-sigmoidal logistic type.

2 The multi-sigmoidal logistic function

The classical logistic equation is expressed as

d

dt
l(t) = rl(t)

[
1− η

C
l(t)
]
, t ≥ t0,

where r > 0 is the intrinsic growth rate, and η/C > 0. In more general instances the rate r may be

taken as time-varying. When r is replaced by a polynomial P (t), the solution of the corresponding

ordinary differential equation (ODE), with initial condition l(t0) = l0 > 0, is

l(t) =
l0e

Q(t)−Q(t0)

1− η

C
l0

(
1− eQ(t)−Q(t0)

) , t ≥ t0,

3
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Table 1: Some features of the multi-sigmoidal logistic function where, for coinciseness, we set Q
(i)
β (t) =

Qβ(t)|βi=0 = Qβ(t)− βiti, and P
(i)
β (t) = Pβ(t)|βi=0 = Pβ(t)− iβiti−1.

t→∞ η → 0 η →∞ βi → 0 βi →∞ βi → −∞, i 6= p

lm(t) C/η CeQβ(t) 0
C

η + e
−Q(i)

β
(t)

C/η 0

d
dt
lm(t) 0 CPβ(t)e

Qβ(t) 0
CP

(i)
β (t)e

−Q(i)
β

(t)

(
η + e

−Q(i)
β

(t)
)2

0 0

where Q(t) −Q(t0) =
´ t

t0
P (τ)dτ . In this case, if Q(t) → +∞ for t → +∞, then the limit of l(t) for

t→ +∞ is given by C
η , so that the carrying capacity is independent on the initial value l0.

Aiming to construct a similar generalization of the logistic growth model in which the carrying

capacity depends on the initial value, now we focus on the following equation:

d

dt
lm(t) = hθ(t)lm(t), t ≥ t0, (1)

with

hθ(t) :=
Pβ(t)e−Qβ(t)

η + e−Qβ(t)
, (2)

for η > 0, θ = (η, βT )T with βT = (β1, . . . , βp), and where Qβ and Pβ are polynomial defined as

Qβ(t) =

p∑

i=1

βit
i, βp > 0 (3)

and

Pβ(t) =
d

dt
Qβ(t). (4)

Under the given assumptions, the solution of the ODE (1) with initial condition lm(t0) = l0 > 0 is

given by

lm(t) = l0
η + e−Qβ(t0)

η + e−Qβ(t)
, t ≥ t0. (5)

The curve given in (5) is named multi-sigmoidal logistic curve, since it exhibits various kinds of shapes

characterized by multiple inflection points. Indeed, assuming that l0 and t0 are fixed, suitable choices

of the parameters η, β1, . . . , βp lead to a model with multiple fluctuations. The approach based on

the use of polynomials to construct flexible growth curves has been successful exploited in [5] for a

Gompertz-type model. Recalling the assumption βp > 0, one has the limit

lim
t→∞

lm(t) = l0
η + e−Qβ(t0)

η
=
C

η
, (6)

with C = C(l0, η, β, t0), so that the carrying capacity C/η depends on the relevant parameters.

Various characteristics of the curve (5) are provided in Table 1. Even if the curve (5) is positive and

bounded, with initial value l0 and limit value C/η, its monotonicity intervals cannot be established

in general, since they depend on the values of the parameters θ = (η, βT )T . Some plots of the multi-

sigmoidal logistic function lm for special choices of the parameters are given in Figure 1, whereas

Figure 2 shows some plots of the derivative of lm.

We remark that, due to Eq. (1), the function given in (2) plays the role of a time-dependent growth

rate. In general, specific choice of hθ(t) allow to construct suitable growth models. In this framework
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Figure 1: The multi-sigmoidal logistic function for (a) p = 2 and (b) p = 3. The values of the

parameters are η = e−0.5, e−1, e−2 (from bottom to top), l0 = (η+1)−1 and (a) Qβ(t) = −0.1t+0.09t2,

(b) Qβ(t) = 0.1t− 0.009t2 + 0.0002t3.
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Figure 2: The derivative of the multi-sigmoidal logistic function for (a) p = 2 and (b) p = 3. The

values of the parameters are η = e−0.5, e−1, e−2 (from bottom to top), l0 = (η + 1)−1 and (a)

Qβ(t) = −0.1t+ 0.09t2, (b) Qβ(t) = 0.1t− 0.009t2 + 0.0002t3.

we mention the recent contributions by Asadi et al. [30] and Chakraborty et al. [31]. It is easy to see

that the function (2) is continuous, bounded, and positive on the intervals in which lm is increasing.

Some plots of the function hθ are given in Figure 3.

Remark 2.1 The analysis of the multi-sigmoidal logistic growth model (5) can be performed, without

loss of generality, by taking t0 = 0. Indeed, by setting t′ = t− t0 we obtain the similar model

lm(t)|t0=0 = l0
η + 1

η + e−Qβ(t)
= l0

η̃ + e−Q̃γ(0)

η̃ + e−Q̃γ(t′)
=: l̃m(t′), t′ ≥ 0,

since Qβ(0) = 0, for η̃ := ηe−β0 and Q̃γ(t − t0) := Qβ(t) + β0, where β0 =
∑p
k=1 γk(−t0)k and the

parameters γT = (γ1, . . . , γp) can be obtained from βi =
∑p
k=i

(
k
i

)
γk(−t0)k−i, i = 1, . . . , p.

Remark 2.2 With the purpose of obtaining a more flexible growth model, the multi-sigmoidal logistic

model lm can be properly generalized to the case in which one or more exponents of the polynomial Qβ

5
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Figure 3: The function hθ for (a) p = 2 and (b) p = 3. The values of the parameters are η = e−0.5,

e−1, e−2 (from bottom to top for large t) and (a) Qβ(t) = −0.1t+ 0.09t2, (b) Qβ(t) = 0.1t−0.009t2 +

0.0002t3.

are rational or real. In this way the application to real data leads to a better goodness-of-fit, as will be

shown in Section 3. However, the number of parameters to estimate become larger and this can cause

a higher computational cost.

2.1 Inflection points

The investigation about the inflection points of a multi-sigmoidal logistic function is of great interest

in applications, since, as we will see in Section 3, some populations show a growth pattern of multi-

sigmoidal type. Noting that

d2

dt2
lm(t) =

l0e
−Qβ(t)

(
η + e−Qβ(t0)

)

(η + e−Qβ(t))3

[
d

dt
Pβ(t)

(
η + e−Qβ(t)

)
− P 2

β (t)
(
η − e−Qβ(t)

)]
,

and recalling (4), the inflection points solve the following equation in the unknown t ≥ t0

d2

dt2
Qβ(t) =

(
d

dt
Qβ(t)

)2
η − e−Qβ(t)

η + e−Qβ(t)
, (7)

where Qβ is given in Eq. (3). If the function Qβ attains a minimum and a maximum for t = t1 and

t = t2, respectively, then there exists τ ∈ [min{t1, t2},max{t1, t2}] which solves eq. (7). Hence, due to

the transcendental nature of equation (7), in general it is not possible to give an explicit expression of

the inflection points, so that one is forced to adopt numerical methods. See Figure 4 for some plots

of the second derivative of the multi-sigmoidal logistic function.

We can also analyze the curve in proximity of its inflection points by means of a linear approx-

imation, as already done in [13] and [14]. Considering an inflection point t∗, we denote by µ∗ the

so-called maximum specific growth rate defined as follows

µ∗ =
d

dt
lm(t)

∣∣∣∣
t=t∗

,

which represents the slope of the line tangent to the curve in the point t∗. Moreover, we denote by

λ∗ the corresponding lag time, that is defined as the intersection between the x-axis and the above

mentioned tangent. We recall that the lag time provides useful information for the description of the
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Figure 4: The function l′′m for (a) p = 2 and (b) p = 3. The values of the parameters are η = e−0.5,

e−1, e−2 (from bottom to top near the origin), l0 = (η + 1)−1 and (a) Qβ(t) = −0.1t + 0.09t2, (b)

Qβ(t) = 0.1t− 0.009t2 + 0.0002t3.

growing processes that exhibit lag, growth, and asymptotic phases (see, for instance, Zwietering et al.

[32]). Indeed, the lag time corresponds to the initial time that would allow an ideal population, growing

with constant maximum rate, to reach the same size of the previous population at the inflection point.

Taking into account the expression of the derivative of the curve lm, it follows that

µ∗ =
l0
(
η + e−Qβ(t0)

)
e−Qβ(t∗)Pβ(t∗)

(
η + e−Qβ(t∗)

)2 , λ∗ = t∗ − 1

hθ(t∗)
,

where the function hθ has the expression given in (2). Note that µ∗ can be either positive or negative

according to the sign of Pβ(t∗). If βi → ±∞, for i = 1, . . . , p − 1 or βp → +∞ or η → +∞, then µ∗

tends to 0 and thus the tangent line tends to be parallel to the x-axis. Indeed, in these limit cases the

curve lm degenerates into a horizontal line (see Table 1).

2.2 Threshold crossing problem

In this section, we aim to analyze the time that a population modeled by the multi-sigmoidal logistic

function (6) spends below (or above) an upper (or lower) constant threshold. These boundaries may

represent critical values related to the dynamics of the modeled population evolution. In both cases,

the thresholds are taken as a function of the initial value l0, since in various applications it is interesting

to investigate the first time when the population reaches a specific depending on the known initial

value.

Considering an upper boundary BU with BU > l0 > 0, we can express it as a multiple of the initial

value l0, that is

BU = nl0, n > 1.

We define θU as the first time instant in which the function lm crosses the boundary BU , that is

θU = min {t ≥ t0 : lm(t) = BU} .

Clearly, for some choices of the parameters βi the set {t ≥ t0 : lm(t) = BU} may be empty. In this case,

we set θU = +∞. Otherwise, from the definition of θU , it immediately follows that lm(θU ) = BU = nl0

and thus

−Qβ(θU ) = log

[
η + e−Qβ(t0)

n
− η
]
,

7
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Figure 5: The threshold crossing times for η = 0.01 and (a) θU , for Qβ(t) = −t + 0.01t2, Qβ(t) =

−2t+ 0.02t2, Qβ(t) = −3t+ 0.03t2 (for top to bottom), and (b) θL (for the same choices of Qβ(t), in

reversed order).

with (1− n)η + e−Qβ(t0) > 0 and n > 1.

Since the function lm may be decreasing in some intervals, we can analyze the time spent by the

function lm above a lower boundary BL with 0 < BL < l0. In analogy with the previous case, the

threshold BL can be expressed as a submultiple of the initial value l0, i.e.

BL =
1

n
l0, n > 1.

We denote by θL the first time instant in which the function lm passes through the lower boundary

BL, that is

θL = min {t ≥ t0 : lm(t) = BL} .

Also in this case, when the set {t ≥ t0 : lm(t) = BL} is empty, we consider θL = +∞, otherwise, when

the set {t ≥ t0 : lm(t) = BL} is not empty, it easily follows from the definition of θL that lm(θL) =

BL = 1
n l0 and thus

−Qβ(θL) = log
[
n
(
η + e−Qβ(t0)

)
− η
]
,

with n > 1. The threshold crossing times θU and θL are plotted in Figure 5 for some choices of the

parameters.

3 An application

In this section we consider an application of the previous results in the context of population dynamics

of plants. The analysis involves real data for which the multi-sigmoidal logistic function (5) provides

a good fit. Specifically, we determine the values of the parameters involved in the definition of (5) in

order to minimize the square error.

It is well known that some fruits show a growth with a multi-sigmoidal pattern, for this reason

their development can be modeled by a particular multi-sigmoidal logistic curve. The data provided

in Figure 6 are taken from da Cuhna and Volpe [33] and are concerning the accumulated fresh mass of

coffee berries Obatã IAC 1669− 20. Since the development of coffee fruits depends on solar radiation,

the authors consider particular positions of the plants based on the apparent trajectory of the sun

and we refer to the alignment 51o − 231o (azimuth). In order to avoid numerical problems, according

8
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Figure 6: Average of weight of fresh coffee berries regarding (a) North face and (b) South face.

p 2 3 4 4 + r, r ∈ R
Sp(θ̃) 0.07120 0.03020 0.01995 0.01628531

β1 +0.07160 +1.00193e− 01 +9.59056e− 03 3.617818e− 02

β2 −0.00018 −7.31372e− 04 +2.30393e− 03 1.589287e− 03

β3 - +2.05499e− 06 −2.89567e− 05 −3.074182e− 05

β4 - - +1.01056e− 07 1.294385e− 06

η +0.01357 +1.12144e− 02 1.34994e− 02 1.316042e− 02

r 0 0 0 −4.498494e− 01

Table 2: The values of Sp(θ̃) and of the coefficients regarding coffee berries of North face.

to Remark 2.1 we perform a time shifting so that the first instant is 0. The fit of the data by

means of multi-sigmoidal logistic function is given in Figure 7. More in detail, we have performed an

optimization method (Nelder-Mead) to minimize the function Sp defined as follows

Sp(θ) =

n∑

i=1

(yi − lm(ti))
2, θ =

(
η, βT

)T

where yi are the real data, ti are the shifted time instants for i = 1, 2, . . . , n and p is the degree of the

polynomial Qβ . Since the optimization method requires the assignment of an initial solution, we now

illustrate the strategy used to obtain it. More in detail, we note that from Eq. (5) one has

Qβ(t) + log η = − log

(
l0
η + e−Qβ(t0)

ηlm(t)
− 1

)
,

where the initial value is taken as the first observed value, i.e. l0 = y1. Hence, we fit the pairs(
ti,− log

(
yn
yi
− 1
))

, i = 1, 2, . . . , n − 1, by polynomial regression. The corresponding estimated

coefficients provide the initial values of the parameters β1, . . . , βp and log η. We analyze the data

given in Figure 6 by using three different degrees of the polynomial Qβ , i.e. p = 2, 3 and 4. The values
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Figure 7: Fitted multi-sigmoidal logistic curve for the coffee berries of (a) North face and (b) South

face.

p 2 3 4 4 + r, r ∈ R
Sp(θ̃) 0.05916 0.02155 0.00799 0.007781179

β1 +0.06886 +9.79400e− 02 +1.41920e− 02 1.457478e− 02

β2 −0.00017 −7.17050e− 04 +1.97302e− 03 2.012716e− 03

β3 - +2.03178e− 06 −2.44525e− 05 −2.606065e− 05

β4 - - +8.30482e− 08 1.333322e− 07

η 0.01392 1.15167e− 02 1.35809e− 02 1.373760e− 02

r 0 0 0 −7.357789e− 02

Table 3: The values of Sp(θ̃) and of the coefficients regarding coffee berries of South face.

of Sp(θ) corresponding to the chosen degrees are provided in Tables 2-3. The best fit, based on the

minimization of Sp(θ), is attained for p = 4.

In order to improve the goodness-of-fit of the proposed model, according to Remark 2.2 the last

term of the polynomial Qβ can be modified in order to have a real exponent. Until now the best fit

is attained for p = 4, so that hereafter we consider the following generalized model

l̃m(t) = l0
η + eQ̃β(t0)

η + eQ̃β(t)
, t ≥ t0,

where

Q̃β(t) = β1t+ β2t
2 + β3t

3 + β4t
4+r, r ∈ R.

Hence, the aim is to find the best set of parameters θ̃ =
(
θT , r

)T
, i.e. the set which minimizes the

function

S4+r(θ̃) =
n∑

i=1

(
yi − l̃m(ti)

)2

, θ̃ =
(
θT , r

)T
,

10
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Figure 8: Fitted generalized multi-sigmoidal logistic model for coffee berries of (a) North and (b)

South face.

where yi and ti, i = 1, . . . , n, are respectively the real data and the shifted observation times, and

l0 = y1. We use again the Nelder-Mead optimization method with initial solutions given by r = 0 and

the same choices for θ used in the case of integer exponents. The corresponding results, given in the

last column of Tables 2-3, show that in both cases the goodness-of-fit increases since S4(θ) > S4+r(θ̃).

Moreover, this is confirmed by the plots of the fitted models given in Figure 8.

4 Analysis of a linear birth-death process

Birth-death processes are often adopted to describe stochastic dynamics in various fields of biomath-

ematics, in ecology, genetics, and evolution. Indeed, they are appropriate to model the random

evolution of the number of particles or individuals in a system. In many cases a complete description

of the probability law of such processes is not easy obtainable, and thus one is forced to resort to

computational methodologies (see, for instance, the contributions by Crawford and Suchard [34] and

Ho et al. [35]). In this section, in order to incorporate random influences in the model described by

Eq. (1), we introduce a special time-inhomogeneous birth-death process whose conditional mean is of

multi-sigmoidal logistic type, following the same strategy of [13] and [14]. The advantage of this ap-

proach is that the birth and death rates are linear in the size of the population and are time-dependent

in the coefficients. This allows to obtain the mean of the process in closed form, as well as the variance

in special instances.

Specifically, we consider a time-inhomogeneous birth-death (BD) process {N(t); t ≥ 0} with state

space N0 and linear birth and death rates given respectively by

bn(t) = nλ(t), n ∈ N0,

dn(t) = nµ(t), n ∈ N, d0(t) = 0,
(8)

where the individual birth and death rates λ and µ are integrable and positive functions in any set
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(0, t) with t ≥ 0, N denotes the set of the positive natural numbers, whereas N0 = N ∪ {0}. Denoting

by pn(t) = P [N(t) = n] the probability that the process is in the state n at the time t, one has that

d

dt
pn(t) = dn+1(t)pn+1(t) + bn−1(t)pn−1(t)− (bn(t) + dn(t))pn(t), n ∈ N

d

dt
p0(t) = d1(t)p1(t)− b0(t)p0(t).

(9)

The equations of the system (9) are known as Chapman-Kolmogorov equations (see, for instance [35]).

As in several previous works, such as in [14], we develop a probability generating function approach.

Indeed, assuming that P [N(0) = n0] = 1 with n0 ∈ N, we consider the probability generating function

G(z, t) = E[z[N(t)|N(0)=n0]] =

∞∑

n=0

P [N(t) = n|N(0) = n0] zn, 0 < z < 1, t > 0,

with initial condition G(z, 0) = zn0 . Using a result proved in Tan [36], one has that

G(z, t) =
{

1− (z − 1) [(z − 1)φ(t)− ψ(t)]
−1
}n0

,

where

ψ(t) = exp

{
−
ˆ t

0

[λ(τ)− µ(τ)] dτ

}
, φ(t) =

ˆ t

0

λ(τ)ψ(τ)dτ. (10)

Let us now denote the conditional mean and conditional variance by E(t) = E [X(t)|X(0) = n0] and

V ar(t) = V ar [X(t)|X(0) = n0], respectively. From basic properties of a linear birth-death process,

we have that the conditional mean function satisfies a generalization of the classical Malthusian

differential equation which is known also as exponential differential equation (see, for instance, [14]),

given by
d

dt
E(t) = ξ(t)E(t), t ≥ 0, (11)

where ξ is the net growth rate of the process. It is defined as the difference between the birth and

death rate pro capite, i.e.

ξ(t) = λ(t)− µ(t). (12)

It is easy to point out that the ODE (11) is formally identical to the multi-sigmoidal logistic equation

(1). Taking into account this analogy between the two aforementioned equations, similarly as in

Proposition 2 of [14], one can obtain the following

Proposition 4.1 The linear birth-death process N(t) with rates specified by (8) has conditional mean

of multi-sigmoidal logistic type if, and only if, the net growth rate (12) is given by

ξ(t) = hθ(t), t ≥ 0 (13)

where hθ(t) is defined in (2).

From the previous result, we have that the conditional mean of the birth-death process and the multi-

sigmoidal logistic function (5) are governed by the same ODE when the assumption (13) holds. Some

plots of the expected value Ey(t) are provided in Figure 9 for some choices of the parameters.

Example 4.1 Let the net growth rate be given as in (13). We consider two suitable choices for λ.

They are not linked together, but allow us to find a manageable expression of the variance.
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Figure 9: The conditional mean E(t) for Qβ(t) = 0.1t− 0.009t2 + 0.0002t3 and (a) η = e−0.5, n0 = 5,

n0 = 4, n0 = 3 (from top to bottom); (b) n0 = 5, η = e−0.5, e−1, e−2 (from bottom to top for large

t).

(a) Let λ(t) =
APβ(t)e−Qβ(t)

η+e−Qβ(t) , with A ≥ 0. With this assumption, the ratio between the birth and

death rates is a positive constant. Considering that the conditional variance of the process is

given by (cf. Proposition 2 of [14])

V ar(t) = n0
ψ(t) + 2φ(t)− 1

ψ2(t)
,

with ψ(t) and φ(t) specified in (10), we have

φ(t) = A
1− e−Qβ(t)

η + 1
,

so that

V ar(t) =
y(η + 1)(2A− 1)

(
1− e−Qβ(t)

)
(
η + e−Qβ(t)

)2 .

(b) If we assume λ(t) = Pβ(t), after some calculations it is easy to note that

φ(t) =
ηQβ(t) + 1− e−Qβ(t)

η + 1
,

from which we obtain the following expression for the variance

V ar(t) = n0(η + 1)
1− e−Qβ(t) + 2ηQβ(t)

(
η + e−Qβ(t)

)2 .

See Figure 10 for some plots of the conditional variance. Note that it is a monotic function.

4.1 First-passage-time problem

The FPT problem is relevant in several applications in population dynamics, since the first reaching

of a critical high (low) level can be viewed as the rising of an overpopulation (extinction). Hereafter

we adopt an approach able to disclose the FPT densities for the birth-death process treated in this

section.
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Figure 10: The conditional variance V ar(t) in the cases (a) and (b) of Example 4.1, for n0 = 5,

Qβ(t) = 0.1t+ 0.009t2 + 0.0002t3, A = 2 and η = e−0.5, e−1, e−2 (from bottom to top).

For a fixed threshold n ∈ N, the FPT of the process N(t) through the state n starting from

N(0) = y is defined as follows

Tn0,n = inf {t ≥ 0: N(t) = n} , N(0) = n0.

Let us denote by gn0,n the corresponding probability density function (pdf), i.e.

gn0,n(t) =
d

dt
P (Tn0,n ≤ t) , t ≥ 0.

Considering the matrices A1 =
(
a

(1)
i,j

)
and A2 =

(
a

(2)
i,j

)
defined in such a way

a
(1)
i,j =





−i, j = i+ 1

i, j = i

0, otherwise

for i = 1, . . . , n− 2 and

a
(2)
i,j =





−i, j = i− 1

i, j = i

0, otherwise

for i = 2, . . . , n− 1, the function gn := [g1,n, . . . , gn−1,n]
T

can be expressed as follows (cf. Section 3 of

[36])

gn(t) = λ(t) exp {− [A1Λ(t) +A2M(t)]}A1 · In−1,1, (14)

where Λ(t) =
´ t

0
λ(τ)dτ , M(t) =

´ t

0
µ(τ)dτ and In−1,1 is a column of all 1 of dimension n−1. Clearly,

any row gn0,n(t) of the vector (14) is dependent from the initial state n0 ∈ {1, . . . , n− 1} of the process

N(t).

It is easy to note that both A1 and A2 are diagonalizable, more in detail

A1 = P1DP
−1
1 , A2 = P2DP

−1
2 ,

where

D = diag(1, . . . , n− 1),

14
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Figure 11: The FPT pdf for λ(t) = 2hθ(t), µ(t) = hθ(t), Qβ(t) = 0.1t + 0.009t2 + 0.0002t3, n0 = 1

(solid), 2 (dashed), 3 (dotted), 4 (dot-dashed) and (a) n = 4, (b) n = 5.

and for any j ∈ {1, . . . , n− 1}, the j − th column of the matrix P1, namely P
(j)
1 has entries given by

x
(1)
i,j =

{
(−1)m

(
j−1
m

)
, i = j −m

0, otherwise

for any m ∈ {0, 1, . . . , j − 1} and the j − th column of the matrix P2, i.e. P
(j)
2 has entries given by

x
(2)
i,j =

{(
j+m
m

)
, i = j +m

0, otherwise

for any m ∈ {0, 1, . . . , n− j − 1}.
Therefore, taking into account that if A = PDP−1 with D diagonal, then eA = PeDP−1, from

(14) one has

gn(t) = λ(t)
(
P1e

DP−1
1

)−Λ(t) (
P2e

DP−1
2

)−M(t)
P1DP

−1
1 In−1,1.

The latter formula provides a matrix-form expression for the FPT pdf of N(t) that is computationally

effective. Some plots of the FPT pdf through n are provided in Figure 11.

5 A non linear birth-death process

In several applications in biomathematics the systems under investigation are subject to dynamics

regulated by linear transitions where rates are allowed to be nonlinear. Various examples emerges from

the analysis of one-dimensional birth-death processes with quadratic rates or from two-dimensional

processes with rates allowing interaction between the components of the process (see, for instance,

[35]). The analysis of cases that are not solvable in closed form can be performed by adopting numerical

approximation of the transitions probabilities. A different approach is based on a suitable scaling and

limiting procedure that leads to continuous approximating processes, namely diffusion processes.

Along this line, in this section we start from a special time-inhomogeneous birth-death process

having quadratic rates. The analysis is first centered on the determination of the mean of the process,

15
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which is multi-sigmoidal logistic. Then we obtain the asymptotic distribution of the process in terms

of the Gauss hypergeometric function. Finally, we perform a diffusive approximation leading to a

non-homogeneous lognormal diffusion process with mean of multi-sigmoidal logistic type, that will be

analyzed in the next section.

Let {N(t); t ≥ 0} be an inhomogeneous non-linear BD process having N0 as state space and birth

and death rates given by

bn(t) = λ1(t) + λ2(t)n+ λ3(t)n2, n ∈ N0,

dn(t) = µ1(t) + µ2(t)n+ µ3(t)n2, n ∈ N, d0(t) = 0,
(15)

where λ1 and µ1 are non-negative and integrable functions and λi and µi for i = 2, 3 are positive

and integrable functions on any set (0, t). Note that the state 0 can be an absorbing or a reflecting

endpoint.

Clearly, the Eqs. (9) hold also in this special case in which the functions bn and dn are expressed

by (15). In [27], Ismail et al. [37] and Van Assche et al. [38], it is shown that the probability function

pn has a particular spectral representation in terms of orthogonal polynomials also in the case of

quadratic rates.

With the aim of determining the mean of the process, for 0 < z < 1 and t ≥ 0, we consider the

probability generating function G(z, t) =
∑∞
n=0 z

npn(t), with initial condition G(z, 0) = zn0 where

n0 ∈ N0 is such that

pn(0) = δn,n0 =

{
1, n = n0

0, n 6= n0.

Taking into account Eqs. (9) the probability generating function G needs to verify the following PDE

∂

∂t
G(z, t) = (1− z)

[
−µ1(t)p0(t)

z
+ L

(
z,

∂

∂z

)
G(z, t)

]
, (16)

where L
(
z, ∂∂z

)
is a functional operator defined as follows:

L

(
z,

∂

∂z

)
=
µ1(t)− λ1(t)z

z
+ (µ2(t) + µ3(t)− z(λ2(t) + λ3(t)))

∂

∂z
+ z (µ3(t)− λ3(t)z)

∂2

∂z2
.

We point out that the equation (16) is a generalization of the one given in [25], [26] and [27] that can

be recovered by setting bn = α
(
n2 + bn+ c

)
and dn = α

(
n2 + b̃n

)
.

The moments of N(t) are defined by

mk(t) = E[(N(t))k|N(0) = n0] =

∞∑

n=0

nkpn(t), k ∈ N,

and we suppose their existence. From Eq. (16), by performing the derivative with respect to z and

taking z → 1, one can easily obtain the following differential equation:

d

dt
m1(t) = µ1(t)p0(t) + (λ1(t)− µ1(t)) + (λ2(t)− µ2(t))m1(t) + (λ3(t)− µ3(t))m2(t), (17)

with m1(0) = n0. If we set µ1(t) = 0 and µ3(t) = λ3(t), Eq. (17) becomes

d

dt
m1(t) = λ1(t) + (λ2(t)− µ2(t))m1(t)

16
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whose solution, taking into account the initial condition m1(0) = n0, is given by

m1(t) = e−A(t)

[
n0 +

ˆ t

t0

λ1(τ)eA(τ)dτ

]
,

where A(t) =
´ t

t0
(λ2(τ)− µ2(τ))dτ .

Clearly, when λ1(t) = µ1(t) = 0 and λ3(t) = µ3(t), Eq. (17) can be rewritten as

d

dt
m1(t) = (λ2(t)− µ2(t))m1(t).

Since this is a Malthusian equation similar to Eq. (1), introduced for the multi-sigmoidal logistic

curve, in order to obtain a mean of multi-sigmoidal logistic type, the following condition is required:

λ2(t)−µ2(t) = hθ(t). Indeed, with this choice, the function m1, with m1(0) = n0 can be expressed as

m1(t) = n0
η + e−Qβ(t0)

η + e−Qβ(t)
.

It worth noting that m1(t) is identical to the multi-sigmoidal logistic curve given in (5) if l0 = n0 and

t0 = 0. Note that the position t0 = 0 in (5) does not affect the generality, as noted in Remark 2.1.

Remark 5.1 Let us assume that λi and µi are constant, so that the rates in (15) are constant in

time. Recalling the results given in [26], the problem (9) admits an unique solution if the series

∞∑

n=0

n∏

i=0

di
bi

(18)

diverges. Using the ratio criterion, the series (18) diverges if µ3 > λ3, and converges if µ3 < λ3. In

the case λ3 = µ3, by means of Raabe’s test of convergence, it is easy to prove that the series (18)

diverges when µ2 + µ3 > λ2, and converges when µ2 + µ3 < λ2. Indeed, for an =
∏n
i=0

di
bi

, by basic

computations one has

l = lim
n→∞

n

(
an
an+1

− 1

)
= lim
n→∞

n

(∏n
i=0

di
bi∏n+1

i=0
di
bi

− 1

)
= lim
n→∞

n

(
bn+1

dn+1
− 1

)

= lim
n→∞

n

(
λ1 + λ2(n+ 1) + λ3(n+ 1)2

µ1 + µ2(n+ 1) + µ3(n+ 1)2
− 1

)
=
λ2 − µ2

µ3
.

So, the series converges if l > 1, that is µ2 +µ3 < λ2. Further on, for µ2 +µ3 = λ2, by the Bertrand’s

test the series converges since

lim
n→∞

[
n

(
an
an+1

− 1

)
− 1

]
log n = 0.

Hence, the condition of existence and uniqueness is fulfilled when µ3 > λ3 or when µ3 = λ3 with

µ2 + µ3 ≥ λ2.

5.1 Asymptotic behavior

Now, let us focus on the asymptotic behavior of the BD process N(t). By setting qn = limt→+∞ pn(t)

and by supposing that the functions bi and di are constant with respect to t for i = 1, 2, 3, the system

(9) becomes

0 = bn−1qn−1 − (bn + dn) qn + dn+1qn+1, n ∈ N

0 = −b0q0 + d1q1,
(19)
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whose solutions are linked by the following iterative formula qn+1 = bn
dn+1

qn, n ∈ N0. Hence, by

considering the potential coefficients defined by πn = bn−1

dn

bn−2

dn−1
. . . b0d1 , n ∈ N with π0 = 1, we finally

have (see also Section 1.1 of Callaert and Keilson [39])

qn =
πn∑∞
n=0 πn

, n ∈ N0. (20)

The numerical series below converges when µ3 > λ3 or when µ3 = λ3 with µ2 + µ3 ≥ λ2.

Moreover, we can specify the behavior at the endpoint +∞. Following the notation given in

Callaert and Keilson [40], we consider

A :=

∞∑

n=0

1

bnπn
, B :=

∞∑

n=0

πn =
∞∑

n=0

n∏

i=1

bi−1

di
,

C :=
∞∑

n=0

1

bnπn

n∑

i=0

πi, D :=
∞∑

n=0

1

bnπn

∞∑

i=n+1

πi.

By using the ratio criterion, if λ3 < µ3 (λ3 > µ3) it results A = ∞ (A < ∞), B < ∞ (B = ∞) and

D =∞ (C <∞). Recalling the terminology introduced by Feller (see, Feller [41]), the endpoint +∞
is natural non-attracting and unattainable when λ3 < µ3, instead it is an exit boundary (absorbing,

attracting, attainable) when λ3 > µ3. As pointed out in Giorno and Nobile [42], the forward equation

admits an unique solution when +∞ is a natural boundary. For this reason, when λ3 < µ3 the

existence and uniqueness of the solution of the forward equation is ensured.

Example 5.1 With the aim of studying a case in which qn can be obtained explicitly, let us now

consider proportional birth and death rates, i.e. αλi = µi, for i = 1, 2, 3 and α > 0, so that αbn = dn

for all n ∈ N0. Let us now consider two cases.

(i) Let α = 1. By setting an = bnqn, Eqs. (19) become linear with general solution an = s + nt,

for s, t ∈ R. Considering the initial conditions a0 = b0q0 = s and a1 = s + t = b1q1 = b1
b0
d1
q0 = b0q0

with q0 = 1∑∞
n=0 πn

(as in Eq. (20)), one obtains t = 0 and thus

qn =
an
bn

=
b0q0

bn
=

λ1

bn
∑∞
n=0 πn

. (21)

In order to determine the asymptotic distribution qn, we suppose α ≥ 1 because the series B converges

only in this case. Assuming that ∆ := λ2
2 − 4λ1λ3 > 0, we denote by a and b the roots of bn, so that

bn = λ1 + λ2n+ λ3n
2 = λ3(n− a)(n− b), with a > b. In this case, we have

∞∑

n=0

πn = λ1

∞∑

n=0

1

bn
= λ1

∞∑

n=0

1

λ3(n− a)(n− b) =
λ1

λ3(a− b)
∞∑

n=0

(
1

n− a −
1

n− b

)
.

The last series can be expressed in terms of the digamma function ψ(z) := Γ′(z)
Γ(z) , where Γ(z) =

´∞
0
xz−1e−xdx is the Gamma function. Indeed, recalling the series expansion of ψ given in Eq. 6.3.16

of Abramowitz and Stegun [43] one has

∞∑

n=0

πn =
λ1

λ3(a− b) (ψ(−b)− ψ(−a)).

Hence, from (21) we obtain

qn =
λ1

λ3(n− a)(n− b)∑∞n=0 πn
=

√
λ2

2 − 4λ1λ3

λ3(n− a)(n− b) (ψ(−b)− ψ(−a))
, n ∈ N0.
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Figure 12: The asymptotic distribution qn for (a) α = 1.1, λ1 = 1.1, λ2 = 1.89, λ3 = 0.8 and (b)

α = 1, λ1 = 2, λ2 = 6.1, λ3 = 1.

(ii) Let α > 1. In this case, with a similar reasoning it can be shown that

qn =
λ1

√
λ2

2 − 4λ1λ3

αnλ2
3(n− a)(n− b)

[
−b 2F1

(
1,−a, 1− a, 1

α

)
+ a 2F1

(
1,−b, 1− b, 1

α

)] , n ∈ N0,

where 2F1 is the Gauss hypergeometric function defined as

2F1(x, y, z, t) =
∞∑

k=0

(x)k(y)kt
k

(z)kk!
, |t| < 1

with (x)k = x(x+ 1) . . . (x+ k − 1) for k > 0 and (x)0 = 1. We remark that

lim
α→1

2F1

(
1,−a, 1− a, 1

α

)
= −a

∞∑

k=0

1

k − a,

so that it is not hard to check the correspondence between the expressions of qn given in the two cases.

Some plots of the asymptotic distribution are given in Figure 12 for some choices of the parameters.

5.2 A diffusive approximation

Considering the time-inhomogeneous BD process N(t) with rates (15), we now perform a diffusive

approximation leading to a non-homogeneous lognormal diffusion process with mean of multi-sigmoidal

logistic type. With the intention to obtain a more manageable description of the growth phenomenon,

we introduce a suitable scaling procedure based on a scaling parameter ε. More in detail, let us

consider the scaled birth-death process Nε(t) = εN(t) whose probability pεn(t) solves the system (9).

Moreover, for ε ' 0, we have pεn(t) ' f(x, t)ε with x = nε and where f is the density function of the

approximating process. The initial condition is pεn0
(0) = 1 with x0 = n0ε. Performing the derivative

of f with respect to t, taking into account Eqs. (9) and expanding f as Taylor series around x, it thus

19
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results

∂

∂t
f(x, t) =

[
µ1(t) + µ2(t)(x+ ε) + µ3(t)(x+ ε)2

](
f(x, t) + ε

∂

∂x
f(x, t) +

1

2
ε2 ∂

2

∂x2
f(x, t)

)

+
[
λ1(t) + λ2(t)(x− ε) + λ3(t)(x− ε)2

](
f(x, t)− ε ∂

∂x
f(x, t) +

1

2
ε2 ∂

2

∂x2
f(x, t)

)

−
[
λ1(t) + λ2(t)x+ λ3(t)x2 + µ1(t) + µ2(t)x+ µ3(t)x2

]
f(x, t)

which is equivalent to

∂

∂t
f(x, t) =

[
(µ2(t)− λ2(t))ε+ 2x(µ3(t)− λ3(t))ε+ (λ3(t) + µ3(t))ε2

]
f(x, t)

+
[
(µ1(t)− λ1(t))ε+ x(µ2(t)− λ2(t))ε+ (λ2(t) + µ2(t))ε2

+ x2(µ3(t)− λ3(t))ε+ 2x(µ3(t) + λ3(t))ε2 + (µ3(t)− λ3(t))ε3
] ∂
∂x
f(x, t)

+
1

2

[
(µ1(t) + λ1(t))ε2 + x(µ2(t) + λ2(t))ε2 + (µ2(t)− λ2(t))ε3

+ x2(µ3(t) + λ3(t))ε2 + 2x(µ3(t)− λ3(t))ε3 + (λ3(t) + µ3(t))ε4
] ∂2

∂x2
f(x, t).

(22)

We consider the positions

λ1(t) =
α

ε
+ a1(t), µ1(t) =

α

ε
+ a2(t),

λ2(t) =
β + r(t)

ε
+ b1(t), µ2(t) =

β

ε
+ b2(t),

λ3(t) =
1

2

σ2

ε2
+
γ

ε
+ c1(t), µ3(t) =

1

2

σ2

ε2
+
γ

ε
+ c2(t),

where a1 and a2 are non-negative and integrable functions, and r, b1, b2, c1 and c2 are positive and

integrable functions on any set (0, t). Hence, the following limits hold for ε→ 0

(µ1(t)− λ1(t))ε→ 0, (µ2(t)− λ2(t))ε→ −r(t), (µ3(t)− λ3(t))ε→ 0

(µ1(t) + λ1(t))ε2 → 0, (µ2(t) + λ2(t))ε2 → 0, (µ3(t) + λ3(t))ε2 → σ2.

And it follows from (22) that f satisfies the following equation

∂

∂t
f(x, t) = − ∂

∂x
[r(t)xf(x, t)] +

1

2

∂2

∂x2

[
σ2x2f(x, t)

]
,

which corresponds to the Fokker-Plank equation for a diffusion process {X(t); t ≥ 0} with infinitesimal

moments

A1(x, t) = r(t)x, A2(x) = σ2x2. (23)

The initial condition pn0
(0) = 1 becomes

lim
t→0

f(x, t) = δ(x− x0), (24)

where δ is the Dirac delta function. In Eq. (23), we set r(t) = hθ(t), where hθ is defined in Eq. (2).

Under this assumption, the process X(t) will be analyzed accurately in the next section, where in

particular we show that it has a multi-sigmoidal logistic mean.
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6 A diffusion process with multi-sigmoidal logistic mean

In literature, there are many stochastic differential equations used for modeling the logistic function

and most of the times, although they have a solution, the resulting diffusion process is difficult to study

since it is hard to find the solutions of the associated Kolmogorov equations. When the transition

density function cannot be obtained, it is not useful to adopt the process for real applications. For this

reason, we address our attention to a new solvable diffusion process. More in detail, in this section

we study a diffusion process whose mean is of multi-sigmoidal logistic type, following the strategy

introduced in Román-Román and Torres-Ruiz [44, 45].

We consider a diffusion process {X(t); t ∈ I} with I = [t0,+∞) (t0 ≥ 0), whose state space is

given by (0,+∞) and whose infinitesimal moments are defined as

A1(x, t) = hθ(t)x, A2(x) = σ2x2, (25)

where hθ(t) is given by (2), for θ =
(
η, βT

)T
and σ > 0. Hence, X(t) is a lognormal diffusion process

with a time-varying drift. Below we show that the mean of the process is a multi-sigmoidal logistic

function.

The process is determined by the following stochastic differential equation

dX(t) = hθ(t)X(t)dt+ σX(t)dW (t), X(t0) = X0, (26)

where W (t) is a Wiener process, independent from the initial condition X0 = X(t0), for any t ≥ t0,

i.e. a stochastic process characterized by the following properties: (i) P[W (t0) = 0] = 1, (ii) W

has independent increments, (iii) W (t) −W (s) ∼ N (0, t − s). The equation (26) is the stochastic

counterpart of the ODE (1) and it can be easily solved by means of Itô’s formula in which we consider

the variable transformation f (X(t)) = log (X(t)). In this way we obtain

d (log(X(t))) =

(
hθ(t)−

σ2

2

)
dt+ σdW (t),

whose solution, taking into account the initial condition X(t0) = X0 is given by

X(t) = X0 exp [Hξ(t0, t) + σ (W (t)−W (t0))] , t ≥ t0

where, for t > s,

Hξ(s, t) =

ˆ t

s

hθ(τ)dτ − σ2

2
(t− s) = log

η + e−Qβ(s)

η + e−Qβ(t)
− σ2

2
(t− s),

and ξ =
(
θT , σ2

)T
. In Figure 13 some simulated sample paths of the multi-sigmoidal diffusion process

X(t) are provided.

We can also obtain the probability distribution of the process, developing the strategy of Román-

Román and Torres-Ruiz [46]. More in detail, if X0 is distributed according to a lognormal distribution

Λ1

(
µ0;σ2

0

)
, or X0 is a degenerate variable (i.e. P[X0 = x0] = 1), the finite dimensional distributions

of the process are lognormal (note that the second case is a particular case of the former by con-

sidering µ0 = lnx0 and σ2
0 = 0). Concretely, given n ∈ N time instants t1 < . . . < tn, the vector

(X(t1), . . . , X(tn))T follows an n-dimensional lognormal distribution Λn(ε,Σ), where the entries of

the vector ε are given by

εi = µ0 +Hξ(t0, ti) = µ0 + log
η + e−Qβ(t0)

η + e−Qβ(ti)
− σ2

2
(ti − t0), i = 1, . . . , n,
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Figure 13: Simulated sample paths of the multi-sigmoidal logistic process X(t) for x0 = 5, η = e−1,

Qβ(t) = 0.1t− 0.009t2 + 0.0002t3, (a) σ = 0.01 and (b) σ = 0.05. The black line represents the mean.

and the components of the matrix Σ are given by

σi,j = σ2
0 + σ2 (min (ti, tj)− t0) , i, j = 1, . . . , n.

Taking into account the 2-dimensional distributions (X(s), X(t))
T

, with s < t, the transition

distribution of the process is also lognormal. More in detail, we have

[X(t)|X(s) = x] ∼ Λ1

(
log x+ log

η + e−Qβ(s)

η + e−Qβ(t)
− σ2

2
(t− s), σ2(t− s)

)
, s < t.

The fact that the previous distributions are lognormal allows obtaining some of the main characteristics

associated with the process. Indeed, the n-th moment of X(t), for t > t0, is given by

E[X(t)n] = E[Xn
0 ]

[
η + e−Qβ(t0)

η + e−Qβ(t)

]n
exp

(
n(n− 1)σ2

2
(t− t0)

)
, t ≥ t0 (27)

whereas the n-th moment of X(t) conditioned on X(s) = x (t0 ≤ s < t) becomes

E[X(t)n | X(s) = x] =

[
x
η + e−Qβ(s)

η + e−Qβ(t)

]n
exp

(
n(n− 1)σ2

2
(t− s)

)
, t ≥ s. (28)

From (27) and (28), the mean and conditional mean of the process can be calculated, resulting in

m(t) = E[X(t)] = E[X0]
η + e−Qβ(t0)

η + e−Qβ(t)
, t ≥ t0 (29)

and

m(t | s) = E[X(t) | X(s) = x] = x
η + e−Qβ(s)

η + e−Qβ(t)
, t ≥ s. (30)

Note that the mean (29) and the conditional mean (30) are of multi-sigmoidal logistic type, as can

been seen in Figure 14, in the sense that they solve the multi-sigmoidal logistic equation (1).
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Figure 14: For η = e−1, Qβ(t) = 0.1t − 0.009t2 + 0.0002t3 and t0 = 0, (a) the conditional mean

m(t|t0) with x = 4, 5, 6 (from bottom to top), (b) the expected value m(t) with X0 ∼ Λ1(µ0, σ
2
0), for

µ0 = 1.25, 1.5, 1.75 (from bottom to top) and σ2
0 = 10−4.

Other characteristics of interest are the mode function, whose expression is given by

Mode[X(t)] = Mode[X0]
η + e−Qβ(t0)

η + e−Qβ(t)
exp

(
−3

2
σ2(t− t0)

)
, t ≥ t0,

and the α-quantile function

Cα[X(t)] =
η + e−Qβ(t0)

η + e−Qβ(t)
exp

(
µ0 −

σ2

2
(t− t0) + zα

√
σ2

0 + σ2(t− t0)

)
, t ≥ t0

from which the median function is obtained:

med[X(t)] = med[X0]
η + e−Qβ(t0)

η + e−Qβ(t)
exp

(
−σ

2

2
(t− t0)

)
, t ≥ t0.

We recall that zα is the α-upper quantile of a standard normal distribution. For the conditional

version of the above functions, by considering the distribution of [X(t) | X(s) = x], t > s, we have

Mode[X(t) | X(s) = x] = x
η + e−Qβ(s)

η + e−Qβ(t)
exp

(
−3

2
σ2(t− s)

)
,

Cα[X(t) | X(s) = x] = x
η + e−Qβ(s)

η + e−Qβ(t)
exp

(
−σ

2

2
(t− s) + zα

√
σ2(t− s)

)
,

med[X(t) | X(s) = x] = x
η + e−Qβ(s)

η + e−Qβ(t)
exp

(
−σ

2

2
(t− s)

)
,

respectively.

6.1 First-passage-time problem

Let us now focus on the FPT problem for the diffusion process X(t) with infinitesimal moments given

by (25) in analogy with the analysis of the threshold-crossing problem of Section 2.2.

Given a continuous function S defined on I = [t0,+∞), we define the FPT of the process X(t)

through the boundary S(t), t ∈ I, conditioned on x0 as

Tx0
=

{
inf {t ≥ t0 : X(t) > S(t) |X(t0) = x0} , x0 < S(t0),

inf {t ≥ t0 : X(t) < S(t) |X(t0) = x0} , x0 > S(t0).
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Figure 15: For x0 = 5, η = e−1, Qβ(t) = 0.1t − 0.009t2 + 0.0002t3, A = 2.5, B = −0.015, t0 = 0 (a)

the boundary S(t) (upper curve near the origin) and the conditional expected value m(t|t0) of the

process (lower curve near the origin), (b) the pdf of the FPT through S(t) with σ = 0.1, 0.15, 0.2

(from bottom to top near the origin).

Denoting by

g (S(t), t|x0, t0) =
dP(Tx0

≤ t)
dt

the corresponding pdf, it is well known that g satisfies the following Volterra integral equation (cf.

[28] and [29])

g (S(t), t|x0, t0) = ρ

{
−q (S(t), t|x0, t0) + 2

ˆ t

t0

g (S(τ), τ |x0, t0) q (S(t), t|S(τ), τ) dτ

}
, t ≥ t0 (31)

with ρ = sgn (S(t0)− x0) and

q (S(t), t|x0, τ) =
1

2
f (S(t), t|x0, τ)

[
S′(t)− S(t)hθ (t) +

3

2
σ2S(t)

]

+
1

2
σ2S(t)2 ∂

∂x
f (x, t|x0, τ)

∣∣∣∣
x=S(t)

,

where f is the transition pdf of the process X(t) and hθ is defined in (2).

In general, the solutions of Eq. (31) cannot be expressed in a closed form but it is possible only

in certain special cases. For example, considering a lognormal process having constant infinitesimal

moments, it is possible to determine a closed form for the FPT pdf g in the presence of a constant

threshold S(t) = n. Unfortunately, in our case study, because of the time-dependent drift, a closed

form for the FPT pdf in the presence of a constant threshold cannot be obtained easily. However, in

this case a suitable transformation leads to a time homogeneous process in the presence of a time-

dependent threshold, for which the FPT pdf can be obtain explicitly. More in detail, taking into

account the results given in the Example on p. 630 of [29], we can obtain a closed-form expression for

the FPT pdf when

S(t) = exp

[
A+Bt+

ˆ

hθ(t)dt

]
=

eA+Bt

η + e−Qβ(t)
,

with A,B ∈ R. The boundary S and the FPT pdf of the process X(t) through S are plotted in Figure

15. Precisely, in this case the pdf of the FPT is given by
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g (S(t), t|x0, t0) =

∣∣∣log
(

x0

S(t0)

)∣∣∣
√

2πσ2(t− t0)3
exp



−
(

log S(t)
x0
− log η+e−Qβ(t0)

η+e−Qβ(t) + σ2

2 (t− t0)
)2

2σ2(t− t0)


 , t > t0,

with S(t0) 6= x0.

Otherwise, when S is a different boundary, the reader is referred to Buonocore et al. [47] and

Román-Román et al. [48], where the problem is studied by means of numerical methods. The analysis

of the first-passage-time problem by means of this numerical approach will be the object of a future

investigation.

7 Conclusions

In recent years, sigmoidal curves have been used in many fields of applications and in order to include

random fluctuations, typical of real world, various stochastic processes have been defined. The present

paper has been devoted to a generalization of the classical logistic growth including more than one

inflection point. This curve, called multi-sigmoidal logistic function, has been studied both from a

deterministic and stochastic point of view. An application involving real data has been also performed

to point out the usefulness of the aforementioned curve. Further on, in order to improve the goodness-

of-fit of the proposed model, we added a term with rational non-integer greater than one exponent to

the polynomial. Moreover, two different birth-death processes have been introduced, with linear and

quadratic birth and death rates. In both cases, we have investigated the conditions under which they

present a mean of multi-sigmoidal logistic type. Finally, with the aim of obtaining a more manageable

stochastic description of the growth, we have performed a suitable diffusion scaling leading to a special

lognormal diffusion process with multi-sigmoidal logistic mean. Many features of the approximating

diffusion process have been analyzed and also the FPT pdf through particular boundaries has been

obtained. Clearly, in order to use the stochastic model in real applications, an estimation study is

needed. This will be the object of the next investigation, where this kind of problem will be analyzed

in detail by means of statistical tools and numerical methods.
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[48] Román-Román, P.; Serrano-Pérez, J.J.; Torres-Ruiz, F. (2012) An R package for an efficient approxi-

mation of first-passage-time densities for diffusion processes based on the FPTL function. Appl. Math.

Comput., 218, 8408-8428. https://doi.org/10.1016/j.amc.2012.01.066

28

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

                  


