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This work focuses on the improvement of a multispectral imaging sensor based on transverse field detectors (TFDs). 
We aimed to achieve a higher color and spectral accuracy in the estimation of spectral reflectances from sensor 
responses. Such an improvement was done by combining these recently developed silicon-based sensors with color 
filter arrays (CFAs). Consequently, we sacrificed the filter-less full spatial resolution property of TFDs to narrow down 
the spectrally broad sensitivities of these sensors. We designed and performed several experiments to test the influence 
of different design features on the estimation quality (type of sensor, tunability, interleaved polarization, use of CFAs, 
type of CFAs, number of shots), some of which are exclusive to TFDs. We compared systems that use a TFD with 
systems that use normal monochrome sensors, both combined with multispectral CFAs as well as common RGB filters 
present in commercial digital color cameras. Results showed that a system that combines TFDs and CFAs performs 
better than systems with the same type of multispectral CFA and other sensors, or even the same TFDs combined with 
different kinds of filters used in common imaging systems. We propose CFA+TFD-based systems with one or two 
shots, depending on the possibility of using longer capturing times or not. Improved TFD systems thus emerge as an 
interesting possibility for multispectral acquisition, which overcomes the limited accuracy found in previous studies.  

 
1. Introduction 

Spectral science has been receiving gradually increased 

attention in the last few decades. New applications come up 

on a daily basis, offering an interesting range of possibilities 

[1
–
3]. Industrial, medical, military, remote sensing, and 

many more fields of research, focus nowadays on the use of 

spectral sciences for their new technological advances. One 

of the outstanding disciplines in the spectral science field is 

spectral imaging. It is mainly concerned with the problem of 

obtaining pixel-wise spectral information in an image. Many 

types of systems are found in the literature for this purpose. 

We could divide the spectral imaging devices into two main 

groups: measuring devices and estimating devices. The first 

group is made up mainly of hyperspectral devices, which 

acquire full spectral information during the capturing 

process. In this group, we can find systems formed by 

monochrome cameras attached to tunable filters [4], such as 

acousto-optic tunable filters (AOTFs) [5,6] or liquid-crystal 

tunable filters (LCTFs) [7]. We also find Bragg-grating-

based systems [8], or snapshot systems [9] used in spectral 

microscopy [10]. The clear disadvantage of this group of 

systems is either their bulky size (usually coupled to long 

capture times, since they require as many shots as spectral 

bands), or else a reduced spatial resolution, which is clearly 

not enough for most applications. In the second group, we 

find numerous systems that can acquire three or more 

spectral bands (commonly termed multispectral imaging 

devices), which are used for estimation. These systems 

usually have a lower number of bands than those in the first 

group and their spectral sensitivities are not so spectrally 

narrow-banded. Such devices acquire the sensor responses 

and then require different techniques to map these responses 

onto spectra [11]. The quality of the estimated spectra 

depends critically on the number of channels, their spectral 

shape, and the algorithms used to obtain the mapping from 

sensor responses to full spectra. Within estimation capturing 

systems, we find as representative instances: monochrome 

cameras with a color filter wheel with few filters [12], multi-

sensor cameras [13
–
15], color filter array (CFA)-based 

cameras [16,17], and hybrid systems [18]. Some of these 

systems suffer from relatively long capture times and need 

the mechanical movement of parts that might cause 

misalignment problems (e.g., filter wheel devices). Others 

have expensive hardware, including many sensors and light 

splitting optical components, which suffer from lowlight 

throughput, increased exposure times, limited portability, 

etc. Given all these problems, it is clear that the question of 

how to design a capturing system that is portable, 

nonexpensive, easy to use, and capable of acquiring full 

spectral information, pixelwise, in real-time is still far from 

solved. In this study, we present a proposal for a 

multispectral imaging system based on a recently developed 

technology as a potential answer to this question. The 

transverse field detector (TFD) technology definitely has the 



  

advantage of allowing for the capture of multiple channels at 

a pixel with full spatial resolution. However, the TFD by 

itself does not provide enough accuracy in the estimated 

spectra [19
–
21]. In [22] we pointed out the hypothesis that 

one of the main causes of this decrease in accuracy is the 

width of the spectral response functions typical of TFDs. 

This width is such that we deem that conventional 

sharpening techniques are not enough to solve the problem 

[23]. Instead, in this paper, we propose combining the TFD 

sensors with a specifically designed CFA [17] to obtain the 

required accuracy in the spectral estimation. The filters 

narrow down the spectral sensitivities of TFDs and improve 

their color and spectral estimation performance, trading off 

their full spatial resolution property. We carried out different 

experiments to check if the improvement of performance is 

due to combining TFDs and CFAs. We also checked whether 

our method for selecting the filters to be used was effective 

for selecting the combinations of filter time sensitivities 

(what we call channels). 

Using simulated sensor responses, we compared this 

system with several others. We present convincing evidence 

in Section 5 of the advantages of such a design, even 

allowing for the inevitable need to sacrifice the full spatial 

resolution feature of conventional TFD-based systems over 

the ones presented in previous works [21,22]. We offer some 

alternative designs depending on the requisites that each 

individual application may require, regarding capturing 

times, colorimetric, and spectral accuracy. The remainder of 

this paper is organized as follows: in Section 2 we present 

the TFD sensors. Section 3 describes all the systems 

simulated and compared in this study. In the methods section 

(4), we clarify the filter selection procedure, the 

computations of sensor responses, the estimation procedure 

and the experiments performed. In Section 5 we provide the 

results found in the different experiments. Finally, Section 6 

draws relevant conclusions from these results. 

2. TFD Sensors 

In silicon sensors, light is absorbed following an exponential 

intensity decrease, described by the Beer
–
Lambert law. 

Electron-hole pairs are photogenerated with different depth 

profiles, according to the material and the radiation energy 

(or wavelength). In a typical pn-junction-based CMOS pixel, 

photogenerated electrons are collected by the same well, 

regardless of the generation depth [24]. Thus, for each pixel, 

only one value is read in a single exposure. In contrast to 

these normal sensors, others, such as filter-less sensors like 

Foveon X3 [25] or TFDs [19], account for the fact that 

photons are able to penetrate deeper into the silicon as their 

wavelength increases. Therefore, electrons generated at 

different depths can be separated by junctions built at 

different depths (as in the case of Foveon sensors), or by 

suitable transverse electric fields (as in the case of TFDs). 

Understanding this principle makes it possible to set the 

collection of generated electrons at different depths within 

the silicon, so that in a single pixel, and in a single exposure, 

we can retrieve information from three (Foveon) and up to 

five (TFDs) spectral bands or channels. Usually, in a 3-

channel configuration, the responsivities have peaks in the 

short, middle, and long wavelength ranges, similar to 

standard RGB sensors; however, they are spectrally wider 

since there is no sharpening filter in front of the sensor. 

Furthermore, TFDs also offer the capability of modifying the 

collection depth of photons by modifying the applied 

transverse electric field via a tunable biasing voltage. Thus, 

using a given biasing voltage, the sensor presents a set of 

three sensitivities with certain spectral shape and maxima 

positions, and setting a different value for this voltage, the 

spectral shapes and positions of the sensitivities change. We 

can see this in system number 8 (Fig. 2). In this figure, we 

present eight different sets of RGB sensitivities 

corresponding to eight different values of biasing voltage. 

The difference in the spectral shapes and peaks is quite clear. 

The possibilities offered by this technology are many, and 

few studies have so far been done to examine the capability 

of TFDs for multispectral imaging [21,22]. As pointed out 

before, TFD sensitivities are too spectrally broad to provide 

satisfactory accuracy in the estimated spectra within the 

context of 3-channel noisy systems. This is a drawback when 

trying to use them for spectral imaging [26], because even 

when adding more shots corresponding to different biasing 

voltages (up to 8, with a total of 24 channels), the results 

were equaled or outperformed by a simple RGB system 

based on CFAs [22], where spectral sensitivities were much 

narrower in comparison. 

In previous studies, many authors have reported good 

estimation accuracies obtained with both simulated and real 

camera responses from narrow spectral responsivities [27] 

and, more recently, some have proposed the possibility of 

increasing this accuracy by using tunability of the channels
’ 

peak response positions and widths with simulated camera 

responses of Gaussian-shaped channels [28]. Nevertheless, 

narrow-band tunable responses are not so far achievable in 

practice without the use of external filters. Nonetheless, 

TFDs have the advantage of not needing any demosaicking 

process to get the full spatial information for every spectral 

band. This prompted an idea. Does adding filters embedded 

in the TFD sensor matrix (and so combining CFAs with 

TFDs) boost the estimation accuracy of the system? We 

present in the next sections a set of experiments comparing 

the color and spectral accuracy of different capturing system 

designs, to provide clear evidence on these points. We have 

assessed the color and spectral reconstruction accuracy of a 

set of reflectance samples with no spatial information 

present. Therefore, we did not study the effect of varying the 

spatial arrangement of the different transmittances present in 

the CFA pattern. This factor has been shown to influence 

image quality [29]. Other studies have been made using 

similar multispectral CFAs with up to seven channels, 

providing methods to design their spatial arrangement, as 

well as the demosaicking techniques used to retrieve 

multispectral information with good image quality [30,31]. 

TFDs offer the possibility of either being full polarized (all 

pixels with the same state of polarization), or bi-polarized 

(the sensor is biased in an interleaved configuration [19] with 



different bias voltage). Hence, some pixels can have an RGB 

set of sensitivities, and others can have different ones being 

biased by a different voltage. We also checked the effect of 

using this property. We compared a system taking advantage 

of this property to reduce the number of shots against a 

system taking more shots with different full-polarized 

biasing conditions. This second system had a larger number 

of channels, but also needed a longer capturing time. 

As pointed out before, TFDs offer the capability of 

retrieving up to five channels out of a pixel in a single shot 

[32], but two of them would be in the nearinfrared range 

(NIR) of the spectrum. Getting NIR information is an 

advantage in many applications. 

However, as a starting point for our study, we have decided 

to use the three channels within the visible range. This 

matches a general-purpose application. We have left the 

remaining two channels for future studies that target a more 

specific field of research, for which the NIR content might 

be critical. Including data beyond the limits of the visible 

range of the spectrum would make the simulations closer to 

the real behavior of the imaging systems in those channels 

close to the red and blue limits of the visible range. However, 

no spectral data was available for the set of spectral 

reflectances used (explained in Subsection 4.A) out of the 

visible range, so we restricted our camera response 

simulation to the limits of the visible range. Moreover, 

common imaging systems use a hot mirror to get rid of 

crosstalk effects between visible and NIR ranges of the 

spectrum [33], and most common optics components block 

naturally the UV components of radiation, to a certain extent. 

3. Systems Simulated for Study and Comparison TFDs are 

still under development and only prototype sensors exist so 

far. Nonetheless, their physical properties are very well 

characterized. The simulations of sensor response 

calculations are very realistic with the physical model 

provided by the developers (explained in Subsection 4.B). 

All systems studied in this work are silicon-based systems. 

Despite the architecture of each system in particular, the 

light acquisition process of them all can be realistically 

described with the CMOS capture model used for simulating 

camera responses. Therefore, sensor responses for every 

system studied in this work have been calculated using the 

same model for signal and noise generation. We can thus be 

sure that a higher or lower noise level is not the reason for 

better or worse performance. The average signal-to-noise 

ratio (SNR) of sensor responses is shown for each system in 

the last column of Table 1. As it will be explained in 

Subsection 4.B, the noise model accounts for exposure time 

and quantum efficiency. Therefore, even though the values 

of exposure time were different for different systems, this 

difference was taken into account when computing the noise. 

The calculation of SNR is also explained in Subsection 4.B. 

All systems result in similar SNR values. To demonstrate the 

performance of the designed system, we have created four 

experiments (explained in Subsection 4.D), in which its 

features are tested across other imaging systems. In Fig. 1, 

we can see a representation of the 11 different systems 

simulated in this study and used to complete the four 

different experiments. In each system, there is a filter layer 

and a sensing layer. The number of different transmittances 

in the filter layer determines the spatial resolution. A CFA 

with 3 filters provides 1∕3 of spatial resolution and, with 6 

filters, 1∕6. If the TFDs are bi-polarized (as explained in 

Section 2) and use no filters, then the spatial resolution 

reduces to 1∕2. The characteristics of each system are 

explained and summarized in 

Table 1. Figure 2 shows the spectral sensitivities of all 

systems, which are described in detail in the following 

paragraphs. 

1. This is the proposed system. The filter 

layeris a CFA made up of six bandpass optical 

filters selected from a real database (see Subsection 

4.A). The sensing layer is a TFD sensor full-

polarized where two different biasing conditions 

were used in two shots. Three channels are 

retrieved per pixel; thus, without the need of any 

moving mechanical optical component, we get 

information from 36 channels in two shots. 

2. Same CFA used as in system 1. The 

sensinglayer, however, was a bi-polarized TFD 

from which we only take the information from one 

channel per pixel. The channel that was operative 

for each pixel was selected as explained in 

Subsection 4.A. This system is similar to the 

 

Fig. 1. Schemes for the 11 system configurations studied. Filter layer with blue caption, sensing layer with red caption. The number in each pixel determines 

the number of channels retrieved in one shot out of it. 



  

proposed one, but it has been designed to compare 

fairly its performance with other systems under the 

same conditions, in terms of number of channels. 

3. The sensing layer is a normal 

monochromesilicon sensor like the one from a 

commercial scientific camera model Retiga SRV 

(QImaging Corp., Canada), equipped with a NIR 

cut-off filter. In the filter layer we set a CFA that has 

been optimized for the monochrome sensor, using 

the same technique as in our proposed system (see 

Subsection 4.A). This system has been designed to 

test if including a TFD sensor with its tunability 

property in a CFAbased system helps to improve its 

performance. 

4. In the sensing layer, we used the spectral 

responsivities of the RGB scientific camera Retiga 

1300C (QImaging Corp., Canada). In the first shot, 

we set no filter in the filter layer, and in the second 

shot we added an IR
–
UV cut-off filter (Coff) in front 

of the lens, which sharpened down the sensitivities 

in the extremes of the spectrum. This system has 

been designed to test the performance of TFDs plus 

CFAs against other types of systems and was 

proven to work well in a previous work [22]. 

5. In the sensing layer, we used the RGB 

cameraagain. This is also a 2-shot system. In each 

shot, a different ideally custom-made comb-shaped 

optical filter (Comb1 and Comb2) was placed in the 

filter layer. These filters divided by half the 3 

sensitivities into 6. This idea of splitting the spectral 

sensitivities of single channels into two by using a 

comb-shaped filter has been used by other authors 

in the literature, as well [13,34,35]. 

6. The sensing layer used here was the same 

as insystem 2, but the filter layer used was 

composed of an RGB Bayer filter like the one from 

 

Fig. 2. Normalized spectral sensitivities of all systems versus wavelength in nanometers. Normalization was done just for displaying. 
  

   
 

   
 

 
 
 

          
          

          
             

                 
          

          
          
          
          

          



the scientific camera Retiga 1300C (QImaging 

Corp., Canada) used in this study as representative 

of a standard RGB CCD camera. This system has 

been designed to test the effect of the selected CFA 

versus other kinds of narrow bandpass filters 

present in common color imaging systems. 

7. The filter layer was left empty in this 

system.The sensing layer used was a bi-polarized 

TFD sensor. Only one shot was taken. This system 

and the next one were designed to test if adding a 

CFA to a TFD sensor improves its performance. 

8. The same as the previous configuration but 

wetook 4 shots with 4 different bi-polarization 

conditions. We wanted to push the number of 

channels to the extreme using all the biasing 

conditions that the developers provided. 

9. The filter layer was the same CFA used in 

system number 1, but the sensing layer was a single 

shot full-polarized TFD sensor. This system has 

been designed to test the effect of bi-polarization 

property of the TFD sensor versus full-polarization 

state. 

10. The filter layer was the same CFA used in 

system number 1. The sensing layer in this case was 

a one-shot bi-polarized TFD. This system is also 

proposed as an alternative to system number 1 if the 

application requires shorter capturing times (since 

it only uses one shot instead of two). In addition, 

this system has been compared with system number 

9 to check the effect of using the bi-polarization 

property of TFD sensors. 

11. This system has been designed exactly 

thesame as the proposed system. However, its 

channels were randomly selected from the available 

ones instead of using voting principal feature 

analysis (VPFA) [36,37], as explained in 

Subsection 4.A. Ten reasonable combinations were 

simulated, in which the channels were selected to 

cover the whole visible range with some overlap. 

We selected the one with best results. This system 

was simulated to check whether selecting the 

channels using VPFA effectively increases the 

performance of our system or not. 

We have specifically selected these configurations to 

better isolate the effect of the feature that we wanted to test 

in our proposed system. To sum up: system numbers 2, 3, 4, 

and 5 were designed to prove, under the same conditions in 

terms of number of channels, that using a TFD sensor 

improves the accuracy of the results over common 

monochrome sensor systems. System numbers 2, 6, 7, and 8 

were designed and compared to test whether combining the 

CFA with the TFD also helps to improve its performance. 

System numbers 9 and 10 were designed to test if using the 

bi-polarization property of TFDs is better than not using it. 

System number 1 evolved from system number 10, pushing 

up the number of channels retrieved with only two biasing 

conditions adding one shot to the capturing process. System 

number 11 was designed to test the advantages of using 

VPFA to select the spectral channels. 

4. Data, Methods, and Experiments In this section, we 

explain the methods used to calculate the simulated sensor 

responses, select the set of sensors and filters, estimate the 

reflectances from sensor responses, and evaluate the 

performance of each system. 

A. Spectral Data, Sensors and Filters Selection The illuminant 

used for the simulations was the CIE standard D65 

illuminant, and the spectral reflectances were 1700 samples 

from the Natural Color System (NCS) [38,39], since they 

represent natural colors found in common scenes and are 

well-used for general-purpose color correction. 

The TFD developers [40] provided a set of 8 different 

RGB sensitivities corresponding with 8 different biasing 

voltages (24 sensitivities in total). We can see them in Fig. 2 

(system number 8). We used a set of 13 real filter 

transmittances from the Andover Corp. website [41]. These 

transmittances were selected so that they all covered the 

whole visible range of the spectrum, with certain overlap 

between them. We carefully chose different bandwidths and 

maxima positions. The commercial references of these 13 

selected filters are: 400FS40, 400FS70, 450FS40, 450FS80, 
500FS40, 500FS80, 550FS20, 550FS40, 550FS80, 600FS40, 
600FS80, 650FS40, and 

650FS80. 

Combining all sensitivities with all filters, we obtained a 

total of 312 channels. Out of them we wanted to select six, 

corresponding to only two different biasing conditions 

(which are the limits of bi-polarization, as mentioned in 

Section 2) that could best recover the spectral information of 

the samples imaged in the visible range. 

Basically, the VPFA method employed for this selection 

consisted of taking the sensor responses from all 312 

channels of the 1700 NCS [39] color samples used, and 

perform principal component analysis on them. Then, we 

selected a reduced number of projections of the data onto the 

principal component vectors (half of them) and clustered 

them into 6 clusters (which was the number of channels we 

aimed to find) using the k-means clustering method [42]. We 

calculated the mean point (center) of each cluster, and then 

selected the filters corresponding to the vectors closest to 

each of the cluster centers. Due to the random initialization 

of k-means clustering, the clustering step is repeated over 

several iterations (50) and the selected vectors are voted. 

Finally, the most voted ones that correspond to only two 

biasing conditions are selected. Since each pixel of the TFD 

still gives us 3 channels, even though we only accounted for 

the 6 best performing ones (system number 2), we also 

studied the possibility of using the other two channels per 

pixel (system number 10), since results showed that there is 

a slight improvement when adding all of them. Furthermore, 

a two-shot system was also designed using the two full 

polarizations of the TFD resulting from VPFA and retrieving 

the information from all resulting channels (system number 

1). After this process, the spectral sensitivities of the 

channels selected were the ones shown in Fig. 2 (upper left). 



  

As this figure shows, they span the whole visible range with 

some overlap. Overlap is important, so as not to leave a gap 

in the spectrum without retrieved information. However, too 

much overlap could cause bad performance as well, due to 

the consequent stronger effect of cross talk between 

channels. We also simulated other systems with the same 

characteristics, but selecting randomly the combination of 

filters and sensors to get a set of sensitivities that visually 

looks good (covering the spectrum, relatively narrow, and 

with some spectral overlap). The one with the best results 

was chosen (system number 11) and compared with the one 

resulting from the VPFA. The metrics used for evaluation of 

the performance were spectral (goodness-of-fit coefficient 

GFC [22,43], also known as complementary Pearson 

distance [44], and root mean square error, RMSE [22,45]), 

and colorimetric (ΔE00 also called CIEDE2000 [46]). If GFC 

> 0.999, then the estimation was considered quite good, and 

if GFC > 0.9999, then the estimation was almost an exact fit 

[47]. Regarding CIEDE2000 colorimetrics, differences of 

less than 1ΔE00 units were considered acceptable. 

B. Sensor Responses Simulation 

As mentioned before, TFDs are still a technology under 

development, from which only prototype sensors exist and 

there is no implementation of a complete imaging system 

available yet. We were provided by the developers [40] with 

a physical model that well describes the opto-electronic 

behavior of such sensors. They are based on CMOS 

technology. The first step was to calculate the power spectral 

density (PSDiλ) of the color signal incident on a pixel, 

composed by the illuminant (D65) spectral photon flux per 

unit time and area (SPFD65
λ
), and the sample spectral 

reflectance of the ith color sample (Riλ), as Eq. (1) shows: 

  

Afterwards, we calculated the photocurrent Iik and the 

output voltage Voki generated in each channel f for each 

sample i, as Eqs. (2) and (3) show:  

where q is the elementary charge, Alight is the illuminated 

area on the TFD surface, Qekλ is the spectral quantum 

efficiency of channel k, Tint is the exposure time, and Cf is the 

pixel feedback capacitance. After calculating the noiseless 

output voltage (Voki) and before quantifying the signal into 

digital counts, the additive noise component (ησ) is added to 

get the noisy output voltage (Vηoki). This noise was Gaussian 

and its total variance σtot was composed by kTC noise (σT), 

and dark current and shot noise (σDCS). These

 calculations are shown in 

Eqs. (4)
–
(7): 

where K is the Boltzmann constant, T is the absolute 

temperature (300°K  26.85°C), Jd is the dark current density, 

and Atot is the overall sensor area. As a last step, we quantify 

the noisy voltage signal to get the noisy sensor response in 

digital counts (ρki) using B bits, as shown in Eq. (8): 

 

where Vdd is the pixel maximum output range. The values of 

all TFD-specific parameters were extracted from Finite 

Elements Simulation using the Dessis software, as described 

in [19]. Typical biasing voltages of the TFD anodes range 

between 0.5 V and 8 V. The simulations of all systems 

compared in this study were done using the same model for 

sensor responses calculations. As it would happen in reality, 

including filters on top of the sensor reduces their quantum 

efficiency (Qekλ). Moreover, in some sysQekλtems, the 

difference in magnitude between of different channels would 

cause low dynamic range problems. The exposure time 

selected for each system was the one exposing most of the 

samples within the sensor range between noise floor and 

saturation level. This means that in all cases, some samples 

were underexposed and some overexposed, but in all cases 

this is taken into account for computing the results, which 

reflect all these realistic limitations of imaging systems. Due 

to the fact that the noise model used accounts for different 

Qekλ levels and exposure time values, the resulting levels of 

noise in all systems were similar, as mentioned in Section 3. 

The calculation of SNR was done by calculating the ratio in 

logarithmic units between the noiseless output voltage signal 

(Voki) calculated in Eq. (3) over the total noise variance (σtot) 

calculated in Eq. (6). 



C. Spectral Reflectance Estimation and Evaluation The 

estimation method used was regularized 

inhomogeneous polynomial kernel regression [48,49], 

which was the one found to perform best in previous 

studies [22]. The model used for the estimation needs 

to set two free parameters, the degree of the 

polynomial (d) and the regularization term (λr), and 

these values need to be optimized. Then, a double 10-

fold cross validation method was used, one nested 

inside the other. In the outer loop, we randomly 

separated the 1700 NCS samples into optimization and 

evaluation sets. The former was used to find the 

optimal values of the two parameters of the 

mathematical model, and the latter to evaluate the 

estimation of reflectances. In each iteration of the outer 

10-fold, the optimization set was used in the inner 10-

fold loop. A grid of parameters was built and every 

possible combination of both parameters was tested 

with the testing set corresponding to each loop of the 

inner 10-fold. For the parameter optimization, we used 

the CIEDE2000 color difference formula as a cost 

function (ΔE00). Using a color difference formula for 

parameter optimization gives to colorimetric 

performance of the results a slight advantage over 

spectral performance, compared with using a spectral 

metric. The opposite happens using a spectral metric as 

a cost function. In this work, we aimed for a general 

color correction application via spectral estimation. 

Therefore, the metric we chose for our application 

domain was CIEDE2000. After the 10 iterations of the 

inner loop, the average of the parameters found was 

calculated, and those were used for evaluation in the 

outer loop. The standard deviation was also calculated 

to check if the distributions of the best parameters 

found were stable. Table 2 shows the means and 

standard deviations (in parenthesis) of both kernel 

parameters found in every system out of each of the 

100 folds in total (10 times 10 folds). Since the 

regularization parameter was optimized, looking for 

the value that performed best in different orders of 

magnitude, the mean and standard deviation calculated 

for it are shown in logarithmic scale. After the 10 

iterations of the outer loop, the average error metrics 

were calculated, and these were the values with which 

we compared the different systems. By doing things 

this way, we ensured that samples used for training 

would never be used for testing, which could lead to 

over-fitting and, thus, to overestimating the quality of 

the recovered samples obtained from the camera 

responses of our system. 

D. Experiments 

In this study, four experiments were conducted to test the 

following four hypotheses: 

1. The proposed system performs better than systems 

based on other types of sensors, such as monochrome 

sensors or multi-shot systems based on RGB scientific 

cameras, plus some filters. 

2. The proposed system performs better than systems 

based on TFDs that do not use the designed CFA. Therefore, 

this CFA helps to improve the performance of TFDs. 

3. Using the bi-polarization property of a TFDsensor, 

the performance can be improved without the need to 

increase the number of shots taken. 

4. The proposed system performs better than asimilar 

system in which the channels selection was not done by 

VPFA. 

Hypothesis 1 demonstrates the capabilities of the 

proposed design. Hypotheses 2 and 3 try to go deeper into 

the reasons justifying the superiority of our TFD-based 

proposed system. Hypothesis 4 demonstrates that using 

VPFA for selecting candidate filters and channels is worthy. 

The results for these four experiments are shown in the 

following 

Section 5. 

5. Results and Discussion 

In this section, results from the four experiments are shown 

in tabular format in Table 3, and then commented on. 

A. Experiment 1: Superiority of TFDs This experiment was 

performed to check whether our proposed system 

yields better accuracy in spectral reflectance estimation 

than systems based on other types of sensors using the 

same kind of CFAs, and other different ones. We 

included the 2-shot system made up of a RGB Retiga 

camera and a cut-off filter, studied in previous work 

[50], and we also designed a new system, in which we 

divided each of the R, G, and B sensitivities of the 

Retiga camera into two halves (see Fig. 2, system 5) 

with theoretical customdesigned comb-shaped optical 

filters. The results are shown in Table 3 for system 

numbers 2, 3, 4, and 5. 

We see that system number 2 performed better both for 

spectral and color metrics than system numbers 3 and 4. The 

system formed by a monochrome silicon sensor plus the CFA 

 Table 2. Means and Standard Deviations of Polynomial Degree (d) and Regularization Term (λr) Kernel Parameters Values a 

System # 1 2 3 4 5 6 7 8 9 10 11 

d 2.68 5.70 5.9 7.08 3.47 7.00 5.41 4.13 4.46 4.30 4.60 

 (0.58) (0.48) (1.37) (0.80) (1.14) (0.00) (1.31) (0.83) (0.59) (0.48) (0.52) 

log10λr −
2.85 

(0.43) 

−
6.06 

(0.13) 

−
4.29 

(1.06) 

−
5.81 

(0.87) 

−
4.15 

(1.94) 

−
4.93 

(0.22) 

−
8.19 

(1.19) 

−
4.39 

(0.64) 

−
3.17 

(0.68) 

−
4.23 

(0.42) 

−
4.43 

(0.50) 
aThe regularization term values are shown in logarithmic scale. Values of d are not integers because they are the computed mean. 



  

performed worst. This means that the good results obtained 

by system 2 were not only due to the CFA, but also that the 

tunability and bi-polarization property of TFD sensor helped 

to improve the performance. The systems formed by RGB 

Retiga camera plus filters yielded good results, especially the 

one with the two combshaped filters which worked best. This 

is in agreement with previous studies [22,50]. This 

comparison was made in the same conditions as far as the 

number of channels is concerned. However, when we 

simulated system number 2, we were neglecting the 

information from 2 channels from each pixel. This meant 

that we were not using 12 channels, which we achieved 

anyway in the capturing process. If we add this available 

information to the recovery (system number 10), then the 

results improved, and were closer to system number 5 

colorimetrically and better spectrally, and we would not need 

to add a second shot. Besides, there is no need to 

mechanically move any filter in and out. Moreover, we went 

further and designed a two-shot fully-polarized system, and 

we retrieved the information from all channels under each 

pixel, increasing the number of channels to up to 36 in just 

two shots. This was the strategy of system number 1. In this 

case, we used two shots, which were sequentially captured 

just by switching the biasing voltage of the TFD. These 

results outperformed the ones from system 5. Practice 

systems 1 and 5 have the same number of shots. For system 

number 5, the capturing process cannot be real-time since the 

filters need to be switching all the time. In the case of the 

proposed system, even though it is also a 2-shot system, the 

switching of the biasing voltage occurs so fast (electronically 

controlled) that it can be considered as a snapshot system in 

practice, as long as the lighting conditions in the scene being 

imaged allow short exposure times. We thus propose system 

number 10 as a good and convenient option to be used in 

applications requiring fast capturing times. If we could 

afford longer capturing times, then system number 1 is our 

proposal to enhance performance by increasing the number 

of shots. 

B. Experiment 2: Superiority of a CFA-Based System 

In this experiment, we wanted to assess whether including 

the CFA in the TFD-based system is the key factor leading 

to the superior performance of 

the system shown in the first experiment. For this, we 

simulated different systems using TFD sensors. One of them 

used no filters in front (system number 7). The other used the 

filters present in a common RGB scientific color camera 

(system number 6). This was done as we had found out that 

the RGB Retiga camera was working very well and that 

these filters drastically narrowed down raw sensitivities. The 

results of this experiment are shown in Table 3 for system 

numbers 2, 6, and 7. We see that the system we propose 

performs best for both spectral and color metrics. Including 

other kinds of filters, such as RGB color filters (system 

number 6), yielded reasonable results, but still far from the 

ones reached by system number 2. The system using only 

two TFD polarizations, such as the proposed one, but with 

no CFA (system number 7), yielded quite bad results, in 

comparison. Even pushing this strategy to the limit of taking 

many shots with different polarizations (up to 4 shots with 

bi-polarized TFD, as in system number 8), the performance 

was far from our proposed system. Therefore, it did not 

outperform a system with only one shot, two TFD 

polarizations, and a CFA. If the difference is clear when the 

experiment is performed for systems with the same number 

of channels, then the difference is still more evident if we use 

the system number 10 or 1, the advantages of which were 

pointed out in Subsection 5.A. Therefore, we can conclude 

that adding in a TFD-based system and a CFA that has been 

calculated to be the best choice out of a set of available color 

filters, helps improve the performance for spectral 

reflectance estimation beyond systems without CFA, or with 

other filters that are not specially selected. 

C. Experiment 3: Bi-Polarization versus Full-Polarization 

In this experiment, we wanted to assess whether using the 

capability of bi-polarizing the TFD sensor helps with its 

performance. The easiest way to test this was by comparing 

system numbers 9 and 10. The results are shown in Table 3. 

We see how using two polarization states of the TFD 

improved the system performance slightly for both color and 

spectral metrics. Therefore, it is worth adding a second 

biasing voltage since, in practice, the acquisition process is 

the same. Apparently, the use of sensitivities from different 

biasing voltages perform better than the use of all 

sensitivities from the same biasing condition. 

D. Experiment 4: VPFA Performance This last experiment 

was carried out to check whether it makes sense to 

invest time in selecting the filters using VPFA, or to 

simply choose any combination of them randomly to 

cover the visible range of the spectrum and having 

some little overlap between bands, to yield better 

results. Out of ten random combinations, we selected 

 Table 3. Results for All Systems Studied (Mean and STD) 

System # 1 2 3 4 5 6 7 8 9 10 11 

ΔE00 0.23 0.51 1.26 0.66 0.27 0.96 3.15 1.89 0.41 0.38 0.35 

 (0.16) (0.35) (1.3) (0.47) (0.18) (0.73) (2.27) (1.32) (0.34) (0.26) (0.24) 

GFC 0.9997 0.9987 0.9992 0.9982 0.9992 0.9986 0.9976 0.9982 0.9991 0.9996 0.9994 

 (0.0028) (0.0043) (0.0022) (0.0030) (0.0030) (0.0079) (0.0038) (0.0033) (0.0010) (0.0012) (0.0021) 

RMSE 0.0064 0.0101 0.0094 0.0103 0.0083 0.0113 0.0169 0.0143 0.0082 0.0064 0.0067 

 (0.0063) (0.0087) (0.0082) (0.062) (0.0099) (0.034) (0.0092) (0.008) (0.004) (0.0043) (0.0053) 

 



the one that produced the best results (system 11) and 

compared it with our proposed system (number 1). 

Results show that the VPFA procedure improves the 

filter selection 

 

Fig. 3. Color and spectral error metrics for all systems. The bars show the 
mean value and the lines the standard deviation centered on the mean. 

process. As a final summary of results, we present the quality 

indexes for all systems compared in this study in Fig. 3. 

6. Conclusions 

Two different approaches for a multispectral imaging system 

have been proposed, based on a novel technology still under 

development. TFDbased systems, which exploit the 

tunability and bi-polarization properties of this new type of 

sensor, are coupled with a CFA whose filter transmittances 

have been selected via VPFA method out of a set of real 

available color filters from a commercial database. Four 

simulation experiments have been conducted to demonstrate 

whether the proposed systems outperform others with 

similar characteristics, but using other design strategies. We 

aimed to assess whether the combination TFD plus 

CFAworks better than any of them separately. We also 

studied whether we could use different architectures, 

depending on the requirements of particular applications. We 

found that the proposed systems perform both 

colorimetrically and spectrally as well as or better than the 

other systems while offering an easier and more elegant 

solution to the problem of spectral imaging. Some systems 

give close spectral results, and only one of them comes 

significantly close in the color metrics. However, this system 

is made up of a scientific RGB color camera plus two ideal 

filters that are placed in front of it, alternatively, such that 

each capture would need two shots and the mechanical 

switch between filters from one shot to the next. This would 

make the real-time capture unsuitable. One of our proposed 

systems (system number 1) is also a two-shot system, but the 

tuning of the sensitivities is so fast and easy that we could 

still use it for real-time spectral imaging if the conditions of 

the amount of light in the scene being imaged allowed it. 

Otherwise, we offer a single-shot alternative system (system 

number 10), which would reduce drastically the time needed 

for capturing and would still give good colorimetric and 

spectral results. This study demonstrates the potential of 

TFD sensors as candidates to be part of spectral imaging 

systems that are portable, real-time, versatile, and low cost, 

as soon as they can be implemented as part of a real capturing 

system. 

This work was funded by the Spanish Ministry of 

Economy and Competitiveness through the research project 

DPI2011-23202. We thank our colleague A. L. Tate for 

revising our English text. 
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