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ConventionalMediterranean vineyards from theMontes deMálaga (Axarquía region, Spain) are characterized by
high average temperatures, extreme rainfall events during autumn and winter, elevated stoniness and steep
slopes (20–50°). Traditionally, several problems of high soil loss, rill and ephemeral gully generation, and elevat-
ed runoff are observed by farmers, which are increasing land degradation processes and a decrease of the
productivity.
According to this, themain aims of this paper were: i) to quantify the initial soil loss, surface flow and infiltration
processes; ii) to characterize and describe the hydrological and geomorphological dynamics; iii) to detect the key
factors, which control the soil erosion processes.
For this purpose, a combinedmethodologywas applied, using soil analysis, a small portable rainfall simulator and
a Guelph permeameter on one experimental plot cultivated with vineyards with steep slopes. Results showed a
high variability of soil erosion and permeability processes. Soil analysis showed an elevated concentration of silt
particles and stoniness, with higher contents of sand particles between 0 and 5 cm, and clays from 5 cm. With a
Guelph permeameter, high average of permeability and saturated hydraulic conductivity with elevated standard
deviationwere observed. Furthermore, an increase of these parameters from the upper to the foot slopewas reg-
istered. By using rainfall simulations, on the upper and the foot slope positions the highest runoff coefficient and
soil losswere registered. Themost elevated peak of sediment concentrationwas obtained on themiddle slope. In
general, high infiltration coefficients between 66.5 and 100% were observed.
In conclusion it was observed that the activation of the soil erosion processes was due to the distribution of the
surface soil components (high roughness, several cracks and high stoniness and silt content), the steep slopes and
the impact of the soil traditional tillage practices. These Mediterranean hillslope vineyards registered a mixed
Hortonian-Hewlettian model, which combines surface and sub-surface flow conditioned by the micro-topo-
graphical changes and its saturation degree.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Mediterranean hillslope vineyards are one of the most altered eco-
geomorphological systems in south Europe. Vaudour et al. (2015) re-
ported that in the last ten years several studies have been carried out
to evaluate soil erosion processes in traditional European viticulture
areas of France, Spain or Italy. Numerous authors claimed that the ex-
treme rainfall events, the steep slopes, the intensive soil tillage practices
and the soil surface components could be the most relevant indicators
to analyse and classify actual soil erosion processes for these areas. In
some Mediterranean vineyards, due to extreme land degradation has
ino).

et al., High variability of soil er
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been registered an increase of the risk of catastrophic floods combining
high surface flows and sediment transports (Ramos and Martínez-
Casasnovas, 2006).

Along the Mediterranean pluviometric gradient from Murcia region
to Andalusian southeast coast (Spain) the climatic conditions (high av-
erage temperature and evapotranspiration values, and extreme rainfall
events) can be more extreme and extend this erosive dynamic
(Ruiz-Sinoga et al., 2011; Ruiz-Sinoga et al., 2010; Ruiz-Sinoga and
Romero-Diaz, 2010; Ruiz-Sinoga and Martinez-Murillo, 2009a, 2009b).
The vineyards of the Axarquía region in the Montes de Málaga (Málaga,
Spain), where the recognized Moscatel and Pedro Ximénez grapes are
produced (Haba, 1997; Padilla-Monge, 2001), are one of the most pop-
ular agricultural activities developed in this semiarid environmental
context.
osion and hydrological processes inMediterranean hillslope vineyards
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In this area, the degradation of soil chemical and physical properties,
the soil erosion rates and the hydrological dynamics had been reported
by photography, parametrical techniques as USLE (Universal Soil Loss
Equation) or GIS by regional studies and were supposed to be very
high (Blanco-Sepúlveda and Gómez Moreno, 2006; Blanco-Sepúlveda
and Larrubia-Vargas, 2008; Blanco-Sepúlveda and Senciales-González,
2001a, 2001b; Justicia-Segovia, 1988; Martínez-Murillo and
Senciales-González, 2003; Ruiz-Sinoga, 1987; Senciales-González and
Rodrigo-Comino, 2011); however they were not measured directly in
situ. Regarding to this bibliography, it is clear that there is missing a se-
rious data base on soil erosion processes with field measures of this re-
gion. In situmeasurements are really necessary to knowexactly how the
land management agents and farmers must proceed against the land
degradation processes. Following these researches, the land degrada-
tion processes are due to principally four causes: i) concentrated
heavy rainfall events within no N30 days per year; ii) steep slopes
(26–76%); iii) high stoniness (N40%); iv) traditional soil tillage of the
wine growers, composed by the removing vegetation cover under and
around the vines. As a consequence of these tillage practices and the ex-
treme environmental conditions, soil erosion problems have been ob-
served since the Muslim ages in the Middle Age (Padilla-Monge, 2001;
Quintana-Toret, 1985; Ruiz-Sinoga, 1987). Nowadays, there is an ele-
vated awareness of the decreasing of the grape production, the develop-
ment of cheap protection measures, the problems by soil losses after
extreme rainfall events or the difficulties in soil water retention capacity
by public organisms, local press and farmers.

Historically, in some places vine growers have takenmeasures against
soil erosion, such as building rills, in order to canalize the surfaceflow and
small walls of stones to reduce soil loss. However, often, these traditional
protection measures are not enough, because nowadays the high soil
losses and excess surface flow continue the land degradation processes.
The combination between rural techniques and newmethods on soil sci-
encemust become indispensable. So, this researchwas carried out follow-
ing a main quantitative aim and two concrete qualitative purposes: i) to
quantify the initial soil loss, surface flow and infiltration processes; ii) to
characterize anddescribe the hydrological and geomorphological dynam-
ics; iii) to detect the key factors, which control the soil erosion processes.
Fig. 1. Study area and location of the
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2. Material and methods

2.1. Study area

The experimental study site is located (Fig. 1) in the village of
Almáchar,which is situated in theAxarquía region in theMontes deMá-
laga relief (Andalucía, Spain).

2.1.1. Geological context
From a geological point of view, the study area is located in the

“Benamocarra unit” within the Internal Zone of the Betic Cordillera
(Estévez-González and Chamón, 1978). Tectonically this unit is located
on materials of the Alpujarride complex and under materials of the
complex Malaguide. In general, this monotonous unit is composed of
Palaeozoic dark schists, with approximately 700 m thickness. Estévez-
González and Chamón (1978) describe two different facies: i) mica
schistswithwell-developed schistosity, small garnets (1–2mm) and in-
tercalations of lenticular levels of white quartz and; ii) quartz mica
schists without garnets, which have less developed the schistosity,
showing higher resistance than the first facies. These types of rocks
are predominant along the eastern part of the studied area, especially
in its upper part, characterized by a large number of rocky outcrops
and slights. In general, these rocks have been subjected to intense defor-
mation as testifies the axial schistosity axial-plane linked to isoclinal
folds and the abundant fractures of different scales.

The schistosity shows an orientationwhich varies between N-Swith
dips of 40°–55° W and N140–165E with dips of 40–65° SW. Fractures
have a variable orientation: i) N/NE to S/SW with dips between 55
and 85°E; ii) NW-SE with dips of 66–75°SW; iii) little signals of E-W
with dips of 70–80°S.

2.1.2. Climatic and land management contexts
The annual average rainfall depth is 520mmand its highest concen-

tration is distributed between October and January (78%) in a few ex-
treme events, but with a high inter-annual variability. For example,
since September until November in 2014 was collected a total rainfall
of 343.6 mm, which 200.6 mm were obtained in only one event of
measurements and experiments.
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two days. In 2015, since September until November, the total amount
was reduced arranging 189.4 mm. In summer, between June and Au-
gust, only a 4% of the total average rainfall depth is registered. In the
study area, during May, June, July and August (in 2014 and 2015) did
not register any precipitation. The annual average temperature is
17.2 °C, with maximum average values in July and August (24.5–24.9 °
C) and minimum average values in December, January and February
(11.3–11.5 °C).

The experimental plot is characterized by a conventional and tradi-
tional grape production with an irregular distribution of the marc of
plantation along with high hillslopes (20–50°). Several changes have
been registered in the actual landscape due to the economic crisis of
the viticulture sector, increasing abandoned lands and, with the inser-
tion of new plantations of mango (Mangifera indica) and avocado
(Persea americana) (Rodrigo-Comino, 2014; Rodrigo-Comino and
Senciales-González, 2015).

The main variety of grape is Muscat of Alexandria, registered by a
Spanish DO (Designation of Origin) with the name: “Málaga, Sierras
deMálaga and Pasas deMálaga”. The 2014 and 2015harvestwas carried
out at the beginning of July, due to the highest temperatures and the fast
maturation of the grapes.

The land management is characterized by: i) soil tillage with hoes
and shovels before (April–May) and after vintage (October–December);
ii) the application of herbicides to avoid the competence of water with
another plants (November–December); iii) the utilisation of animals to
recollect the grape production; and iv) the application of natural and or-
ganic soil amendments of domestic cows and goats (February–March).

Historically, due to the steep soil erosion problems by the concen-
trated rainfall events and the steep slopes, the vine growers have devel-
oped rudimental protection measures in some places. The first
protection measure is the “sangría” or “desaguadero”, composed by an-
thropic handmade rills, which collect and interrupt the surface flow and
canalize the water directly to another principal rill. The second tradi-
tional technique are stony walls (“albarrada” or “balate”) situated
along the upper slope to contain the soil across the slope. This second
protectionmeasure is included in the experimental area of this research.

2.2. Soil analysis

The soil samples were collected during July and August of 2014 on
the experimental area from three different slope positions (upper, mid-
dle and foot), two depths (0–5 cm and 5–15 cm) along inter-rows and
under the vines and with three replicates (in total 36 samples, taking
about 3–4 kg per sample). After sieving (b2 mm), different parameters
were analysed in the laboratory in order to determine: texture, bulk
density, total organic carbon, carbonates, electrical conductivity, pH
and soil water content.
Fig. 2. Guelph permeameter
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Grain particle size between 0.004mmand 2mmwasmeasuredwith
a Coulter LS230, by combining different diffraction patterns of a light
beam. 1 cm3 steel cylinders were used to calculate the bulk density
with undisturbed soil samples.

The total of organic carbon was measured by weight difference, ap-
plying 430 °C (24 h) in a muffle furnace (Davies, 1974; Rosell et al.,
2001). Electrical conductivity was measured by a digital conductivity-
meter and carbonates with a Bernard calcimeter. pH was obtained in
distilled water and KCl with a digital pH-meter with a relation of 1:5.
Differences bigger than 1 between values of pH with H20 and pH with
KCl show the soil acidification trend. All these chemical parameters
were analysed by their relations with salinity, texture, clay mineralogy,
moisture content, ionic strength, temperature and bulk density proper-
ties (Gruber and Kosegarten, 2002; Jackson, 2014; Lesch and Corwin,
2003; Taylor et al., 2009).

Water-holding characteristics were calculated with a pressure plate
extractor, corresponding to the field capacity (%) and the permanent
wilting point (%), respectively.

Finally, three soil profiles were described to classify the type of
pedon, using the methodology of FAO-WRB (IUSS Working Group
WRB, 2014, 2007, 2006) and regional bibliography (Aguilar-Ruiz et al.,
1993; Rodrigo-Comino, 2014).

2.3. Field-measures of permeability, saturated hydraulic conductivity and
soil matrix flux potential

Several authors claimed that field measurements of the infiltration,
the permeability and the hydraulic conductivity (Kfs) providemore rep-
resentative data than the laboratory measures (Kumar et al., 2010;
Rienzner and Gandolfi, 2014). This is related to the possible influence
of the small cracks and macro-pores of the soil aggregates
(Bodhinayake and Cheng Si, 2004; Buczko et al., 2006).

A large number of instruments and methods are available to mea-
sure the infiltration, the permeability and Kfs (Archer et al., 2013;
Bagarello et al., 2014; Cerdà, 1997; Gupta et al., 2006, 1993; Gwenzi et
al., 2011; Huang et al., 2016, 2014; Jačka et al., 2014; Kodešová et al.,
2010; MacDonald et al., 2012; Peter and Ries, 2013; Wu et al., 1992).
In this research, a Guelph permeameter (GP) was applied. Through a
modified Mariotte bottle device, the GP (Fig. 2.1) sends a constant
water level discharge three-dimensionally into a small cylindrical bore-
hole (Elrick et al., 1989; Elrick and Reynolds, 1992; Reynolds and Elrick,
1987; Reynolds and Lewis, 2012). Each experiment in the field was car-
ried out by following the designed protocol by (Rodrigo-Comino et al.,
2016b): i) the standard procedure to prepare the permeability well
was performed by following the recommendations of the Guelph
permeameter manual (Soil moisture Equipment Corp, 2008); ii) two
measurements for the same borehole (between 10–25 cm depth and
and rainfall simulator.
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Table 1
Soil analysis.

ID* = U: upper slope; M: middle slope; F: foot slope; 0–5: cm depth; 5–15: cm depth; V: under vines. BK: bulk density; TOC: total organic content; CaCo3:
carbonates content; EC: electrical conductivity; Dif: difference between pH (H2O) and pH (KCl); SWC (FC): soil water content (field capacity); SWC (WP): soil
water content (wilting point). In black color, the cells with the most relevant values were indicated.

ID* (n = 3)
Gravel

(%)
Sand
(%)

Silt
(%)

Clay
(%)

BK
(gcm–3)

TOC
(%)

CaCO3
(%)

EC
(dS/m)

pH
(H2O)

pH
(KCl) Dif.

SWC
(FC)

SWC
(WP)

U 0–5 55.7 ± 2.4 25.7 ± 0.2 68.2 ± 0.5 6.1 ± 0.5 1.5 ± 0.1 3.4 ± 0.3 1 ± 0.3 0.1 ± 0.01 7.3 ± 0.03 5.5 ± 0.01 1.8 21.9 ± 0.7 7.8 ± 0.5

U 5–15 49.9 ± 0.6 26 ± 0.4 67.9 ± 0.4 6 ± 0.3 1.5 ± 0.1 3.0 ± 0.5 0.8 ± 0.3 0.04 ± 0.01 7.4 ± 0.01 5.2 ± 0.01 2.2 22.3 ± 0.7 7.7 ± 0.3

UV 0–5 62.4 ± 1.9 19.5 ± 0.5 75.4 ± 0.9 5.5 ± 0.2 1.5 ± 0.1 2.4 ± 0.4 0.8 ± 0.4 0.1 ± 0.01 7.2 ± 0.03 5.2 ± 0.01 1.9 22.7 ± 0.6 7.6 ± 0.7

UV 5–15 53 ± 0.7 19.5 ± 0.4 74.4 ± 1.2 6 ± 0.2 1.4 ± 0.1 2.6 ± 0.5 0.9 ± 0.2 0.1 ± 0.04 7 ± 0.01 5.2 ± 0.01 1.8 23.2 ± 1 8.0 ± 0.6

M 0–5 53.9 ± 0.4 14.9 ± 0.2 79.5 ± 0.4 5.8 ± 0.3 1.5 ± 0.1 3.2 ± 0.4 0.7 ± 0.3 0.2 ± 0.03 6.8 ± 0.03 5.4 ± 0.01 1.4 25.0 ± 1.6 7.6 ± 0.8

M 5–15 50.9 ± 0.6 12.5 ± 0.2 81.6 ± 0.3 6 ± 0.2 1.5 ± 0.04 2.9 ± 0.6 1 ± 0.3 0.1 ± 0.01 6.9 ± 0.02 5 ± 0.01 1.9 23.7 ± 1.2 8.7 ± 0.3

MV 0–5 63.5 ± 2 31.2 ± 0.5 63.9 ± 1.3 4.8 ± 0.2 1.5 ± 0.1 3.9 ± 0.2 0.7 ± 0.2 0.1 ± 0.02 7 ± 0.03 5.5 ± 0.01 1.5 25.3 ± 1.3 8.4 ± 0.5

MV 5–15 58.3 ± 1.5 30.3 ± 1.4 64.6 ± 1.2 5.1 ± 0.4 1.5 ± 0.03 3.7 ± 0.3 0.7 ± 0.1 0.1 ± 0.02 6.9 ± 0.01 5.1 ± 0.01 1.8 24.9 ± 0.7 8.3 ± 0.6

F 0–5 52.8 ± 1.9 29.1 ± 1.4 66.0 ± 2.4 4.8 ± 0.3 1.5 ± 0.1 3.0 ± 0.5 0.9 ± 0.3 0.1 ± 0.1 7.1 ± 0.03 5.7 ± 0.01 1.4 26.9 ± 0.5 7.2 ± 0.3

F 5–15 49.2 ± 0.9 20.8 ± 0.8 73.7 ± 1.8 5.6 ± 0.5 1.4 ± 0.1 2.9 ± 0.5 0.9 ± 0.3 0.1 ± 0.01 7.2 ± 0.02 5.3 ± 0.01 1.9 26.9 ± 0.5 7.2 ± 0.4

FV 0–5 51.4 ± 1.3 23.6 ± 0.9 70.8 ± 1.4 5.6 ± 0.3 1.5 ± 0.1 3.1 ± 0.4 0.9 ± 0.1 0.1 ± 0.02 7 ± 0.03 5.5 ± 0.01 1.5 24.7 ± 1.6 6.6 ± 0.2

FV 5–15 51.8 ± 1.1 13.3 ± 0.2 80.8 ± 0.6 5.9 ± 0.3 1.5 ± 0.2 2.7 ± 0.5 0.9 ± 0.2 0.1 ± 0.01 7.3 ± 0.01 5.2 ± 0.01 2.1 23.7 ± 1.7 6.9 ± 0.2
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4–10 cm radius) were carried out, the first was with 5 cmwater level in
well and the secondonewith 10 cm; iii) the total duration for eachmea-
surement was 30 min or when the principal reservoir reached the total
emptying (76 mm); iv) the observations must be recollected every
2 min, measuring the time with a digital stopwatch; v) steady rates
(cm min−1) were calculated with the average of the total measure-
ments. Final results with the GP will show the hydrodynamic processes
between 10 and 25 cm depth of soil in mm h−1.

Nine experiments were realized with three repetitions at different
slope positions of the studied area (upper, middle and foot). Finally,
with the obtained results were calculated the permeability rate (1),
the Kfs (2) and the soil matrix flux potential (3) (Reynolds, 1986;
Reynolds and Elrick, 2002; Rodrigo Comino et al., 2016b; Zhang et al.,
1998):

Permeability rate ¼
y � Q1
1000

2π α �H1ð Þ

0
B@

1
CA � 60 mm h−1

h i
ð1Þ
Fig. 3. Soil profiles along the experimental plot
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Kfs ¼ C1 � Q1

2πH12 þ πa2C1þ 2π
H1
α

� �
0
BB@

1
CCA � 600 mm h‐1

h i
ð2Þ

Φ ¼ C1 � Q1

2πH12 þ πa2C1
� �

αþ 2π H1ð Þ

0
@

1
A � 6000 mm2 h−1

h i
ð3Þ

C1 = shape factor
y = area of the combined reservoir (35.22 cm2)
Q1 = quasi-steady flow rate out of the permeameter and into the

soil (cm min−1)
H1 = the first head of water established in borehole (cm)
α = macroscopic capillary length parameter
a = borehole radius (cm).
: upper (1), middle (2) and foot (3) slope.
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Table 2
Spearman's rank correlations coefficient for all the soil samples.

Gravel Sand Silt Clay BK TOC CaCO3 EC
pH

(H2O)
pH

(KCl)
Dif.

SWC
(FC)

SWC
(WP)

Gravel 0.36 –0.33 –0.36 0.1 0.35 –0.44 0.6* –0.3 0.2 –0.37 –0.05 0.38

Sand –0.99** –0.47 –0.21 0.64* –0.34 0.35 0.16 0.38 –0.3 0.25 0.15

Silt 0.43 0.27 –0.65* 0.32 –0.34 –0.13 –0.36 0.34 –0.25 –0.18

Clay 0.46 –0.16 0.49 –0.5 0.26 –0.41 0.47 –0.77** 0.13

BK –0.02 0.32 –0.17 0.48 0.04 0.43 –0.68* –0.18

TOC –0.25 0.6* –0.25 0.28 –0.46 0.22 0.36

CaCO3 –0.22 0.2 0.17 0.02 –0.33 –0.17

EC –0.6* 0.63* –0.88** 0.43 0.08

pH (H2O) 0.12 0.64* –0.34 –0.48

pH (KCl) –0.62* 0.42 –0.48

Dif. –0.57 –0.1

SWC (FC) –0.21

SWC (WP)

* = p < 0.05; ** = p < 0.01. BK: bulk density; TOC: total organic content; CaCo3: carbonates content;
EC: electrical conductivity; Dif: difference between pH (H2O) and pH (KCl);SWC (FC): soil water content
(field capacity); SWC (WP): soil water content (wilting point). In black color, the cells with the highest
values were indicated.
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2.4. Rainfall simulations

Soil loss, runoff, sediment concentration and infiltration rates were
calculated using a small portable rainfall simulator. Rainfall simulations
(Fig. 2.2) is a nozzle type simulator, based on the one designed by Cerdà
(1998a, 1998b, 1999), Lasanta et al. (2000) and calibrated by Ries et al.
(2009). Finally, it has been modified and described in detail by Iserloh
et al. (2012). The major parts of the rainfall simulator are a square metal
frame (0.45 m × 0.45 m) with one nozzle (Lechler 460 608), four tele-
scopic aluminium legs in order to position the nozzle at a height of two
meters above the plot. During rainfall experiments, the aluminium link-
age is covered by a rubber tarpaulin to avoid wind influences. The test
plot is circular, with a diameter of 60 cm and an area of approximately
0.28 m2. The plot outlet is V-shaped and placed at the deepest point of
the plot at surface level. With a flow control and a 12 V low-pressure
bilge pump, a controlled and reproducible simulated rainfall can be ad-
justed. The rainfall simulator was calibrated by Iserloh et al. (2013a,
2013b) for a rainfall intensity of 40 mm h−1.

Test duration per rainfall simulationwas 30min on upper, middle and
foot slope. Before the beginning of the experiments, slope (°), vegetation
and stone cover (%) and, roughness (%) with the chain method (Saleh,
1993) were measured. During the experiment, runoff with eroded mate-
rial was collected in plastic bottles. The 30 min of the different experi-
ments were partitioned into six measuring intervals of five minutes
duration. At the beginning of a new interval, the bottles were changed.
The amount of runoff was measured gravimetrically for each bottle.

The collected water with sediments in each bottle was filtrated sepa-
rately with circular fine-meshed filter papers (Munktell©, Prod.-Nr.
3.104.185, b2 μmmesh-width). The filters were dried to constant weight
at 105 °C and weighted thereafter for determining suspended sediment
load (SSL). Finally it is possible to calculate runoff, suspended sediment
concentration (SSC) and infiltration rate.
Table 3
Localisations and sizes of the bore holes, and final steady rates.

Slope position Slope (°) Depth hole

Upper 6 23
6 18.5
12 21

Middle 21 17.5
18 16
12 15.5

Foot 5 15
14 15
8 11

⁎ 5 cm of the head of water.
⁎⁎ 10 cm of the head of water.
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3. Results

3.1. Soil analysis

The results of chemical and physical analysis are shown in Table
1. Although the average values are similar, materials bigger than
2 mm were predominant along the upper and middle slope
(N55%), under the vines (56.7%) and between 0 and 5 cm depth
(56.59%). The textural analysis of the fine earth fraction showed
that the highest percentage of size particles was the silt fraction
(72.2%). All the studied samples have a texture silt loam, except
the samples on the inter-rows of the middle slope and under the
vines between 5 and 15 cm depth, whose texture is silt. The other
registered fractions were 22.2% (sand) and 5.6% (clays). The
maximum content of silt (≈80%) was noted along the middle and
foot slope (under vines and between 5 and 15 cm). The highest
concentration of sand particles was located along the middle slope
and under vines (≈30%). Electrical conductivity values were very
low (0.1 dS m−1), not showing problems by salinity content. Bulk
density and carbonates not showed any differences in all the study
area (about 1.5 g cm−3 and b1% respectively).

A total organic content of 2.9% for the upper and foot slopes were
determined. 2.4% for the upper slope and 2.6% for the under vines
were the lowest percentage in the study area. On the other part,
the highest values (3.4%) were observed in the middle slope.

For all the samples, the differences of pH showed a high trend of
soil acidification. The highest values could be observed along the
upper slope (between 1.8 and 2.2). On the other hand, the middle
and the foot slopes registered the lowest values (between 1.4 and
2.1).

The highest points of field capacity were measured at the foot
slope (26.9%) and the lowest on upper slope (21.9–23.2%). The
permanent wilting point varied with minimal differences: i) 6.6
and 6.9% along the foot slope under the vines and; ii) maximum
values between 8.3% and 8.7% for the middle slope under the vines.

Finally, Leptosol eutric was classified using the methodology of
FAO-WRB classification (Fig. 3). The Leptosol was characterized by
AR stoniness horizon type with maximum depths of 30 cm. The
eutric WRB qualifier was confirmed after revising the regional soil
maps and bibliography (Aguilar-Ruiz et al., 1993; Rodrigo-Comino,
2014).

Finally, the Spearman's rank correlation coefficients for all
collected soil samples, on the inter-rows and rows, and at 0–5 and
5–15 cm depth were added.

In general (Table 2), high correlations at the 0.01 statistical
significance level were observed between the sand and silts content
(−0.99), electrical conductivity with differences of pH, and SWC
(FC) with clay particles (−0.77). Relationships at the 0.05 level
were noted between the bulk density and the soil water content in
field capacity (−0.68), and the sand and the silt particles with the
total organic content (0.64 and −0.65 respectively).
Radius (cm) R1 (cm min−1)⁎ R2 (cm min−1)⁎⁎

6.5 0.06 (0.05) 0.07 (0.07)
5.5 0.07 (0.08) 0.42 (0.08)
8 0.02 (0.04) 2.63 (1.24)
6.5 0.14 (0.06) 2.34 (0.71)
4 0.08 (0.02) 0.46 (0.56)
7 0.07 (0.25) 0.76 (0.2)
5 0.08 (0.24) 3.87 (0.93)
5 0.03 (0.04) 2.12 (0.42)

12 0.25 (0.3) 5.28 (0.26)
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Table 4
Results of measurements using the Guelph permeameter.

Slope position Inf. rate (mm h−1) Kfs (mmh−1) Φ (mm2 h−1)

Upper 26.05 (26.75) 9.01 (9.52) 4.17 (4.41)
Middle 37.75 (26.03) 11.62 (9.96) 5.38 (4.61)
Foot 94.54 (36.19) 32.32 (10.63) 14.96 (4.92)
Total average (n = 9) 52.78 (36.6) 17.65 (14.07) 8.17 (6.52)
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3.2. Field-measurements of permeability rate, saturated soil hydraulic
conductivity and soil matrix flux potential

Nine measurements using the GP were performed at three different
parts of the experimental area: upper, middle and foot slope. The regis-
tered inclination was between 5 and 21° and the soil moisture between
0.5 and 1.5%.

Firstly, the steady rates into the Guelph permeameter for 5 cm (R1)
and 10 cm (R2) of the head of water were obtained (Tables 3 and 4).
This value only indicates the velocity of the water inside the GP in
cmmin−1. This initial data will be themost important value to calculate
the final rates, saturated hydraulic soil conductivities and soil matrix
flux potentials. Results showed several differences for each point with
high standard deviations. Values arranged between 0.02 cm min−1 to
0.25 cm min−1 with 5 cm of the head of water, and between 0.07 ±
0.704 cmmin−1 and 5.28 cm min−1 for 10 cm of the head of water.

Permeability rates (mm h−1) were calculated in the study area per
intervals of 2 min for 5 cm, 10 cm and their average of the head of
water. Results were represented using box plot graphics (Fig. 4).

The highest peaks were observed in the measurements with 10 cm
of head ofwater. It can be registered that themost variable permeability
rates were founded between the intervals 2 and 4 min. From this point,
Fig. 4. Permeability rates (mm h−1) for 5cm, 10 cm, total average of
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the steady rate starts to decrease to the final of the measurement. Fur-
thermore, in five out of nine measurements using 10 cm, the GP was
empty before 30 min (between the intervals of 14–28 min), showing
peaks N200 mm h−1.

Total average values showed a decrease from 81.8 mm h−1 (at the
beginning) to 11.8 mm h−1 (last interval), with a linear trend of R2 =
0.95.

In general, all measurements obtained a high standard deviation due
to the great variability of the final results. The GP measures showed an
increasing of the permeability rates and Kfs along the slope: i) upper:
26.05 mm h−1 and 9.01 mm h−1; ii) middle: 37.75 mm h−1 and
11.62 mm h−1 and; iii) foot: 94.54 mm h−1 and 32.32 mm h−1. The
Φ increased parallel to the Kfs. The results showed the highest values
along the foot slope (14.96 mm2 h−1) and a total average of
8.17 mm2 h−1.

3.3. Rainfall simulations

Fourteen rainfall simulations were performed at three different
heights of the study area (Table 5 and Fig. 5): i) upper slope: n=5;mid-
dle slope: n = 4 and; foot slope: n = 5.

Environmental plot characteristics showed slope values between 15°
and 42°, a vegetation cover lower than 10%, a high stone cover (N80%),
and a roughness between 2% and 7%.

In general, just any runoff during the first five minutes was not
obtained (it occurred only on the foot slope position). After that, the
values were increasing until the last interval. According to this, high in-
filtration coefficients close to 100% were registered. Furthermore, the
highest soil loss (4.8 g) and sediment concentration (66.95 g L−1)
values were obtained during the last two intervals (both on the upper
slope), coinciding with the most elevated peaks of runoff (72.4%).
head of water and linear trend of the average permeability rates.
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Fig. 5. Rainfall simulation results per intervals on different slope positions.

Table 5
Results of rainfall simulations experiments per slope position.

Slope position Runoff SSL SSC Infiltration Runoff
coefficient

Infiltration
coefficient

Slope Vegetation
cover

Stone
cover

Roughness

L L m−2 g g m−2 g L−1 mm h−1 % % ° % % %

Upper 0 0 0 0 0 31.29 0 100 26 5 95 5.3
1.27 4.53 8.94 31.93 7.05 22.47 33.6 66.5 38 0 93 3.7
0.03 0.12 0.20 0.73 6.19 32.88 0.7 99.3 15 3 85 6.7
0.51 1.83 2.44 8.70 4.77 42.75 8.2 91.8 39 3 95 2.5
0.49 1.76 4.34 15.48 8.78 40.24 8.4 91.6 34 10 80 2

Average 0.5 ± 0.5 1.6 ± 1.8 3.2 ± 3.7 11.4 ± 13.1 6.9 ± 3.3 33.9 ± 8 10.2 ± 13.7 89.8 ± 13.7 30.4 ± 10 4.2 ± 3.7 89.6 ± 6.8 4 ± 2
Middle 0 0 0 0 0 40.71 0 100 31 5 85 3.5

0.39 1.39 3.44 12.28 8.84 27.75 9.5 90.5 36 2 95 8
0 0 0 0 0 29.14 0 100 42 3 95 3
0.03 0.1 1 3.59 34.41 31.18 0.7 99.3 30 3 85 6.8

Average 0.1 ± 0.2 0.37 ± 0.7 1.11 ± 1.6 3.97 ± 5.8 10.62 ± 16.3 32.2 ± 5.8 2.6± 4.7 97.5 ± 4.7 34.75 ± 5.5 2.6 ± 0.5 90 ± 5.8 5.3 ± 2.4
Foot 0.81 2.9 2.5 8.94 3.08 32.67 16.3 83.7 29 7 85 5.4

0.17 0.62 1.54 5.49 8.8 29.02 4.2 95.8 25 5 90 3.3
0.8 2.86 0.66 2.34 0.82 36.57 14.5 85.5 35 2 90 4.6
0.4 1.43 2.6 9.28 6.5 41.43 6.7 93.3 16 3 95 2.2
1.21 4.33 9.33 33.33 7.7 28.24 26.6 73.4 30 3 85 6.8

Average 0.7 ± 0.4 2.4 ± 1.4 3.3 ± 3.5 11.9 ± 12.3 4.89 ± 3.3 33.6 ± 5.5 13.6 ± 8.8 86.4 ± 8.8 30.4 ± 7.1 4.3 ± 2 90 ± 4.2 3.9 ± 1.8
Total average 0.4 ± 0.4 1.6 ± 1.6 2.6 ± 3.1 9.4 ± 11 6 ± 8.6 33.3 ± 6.1 9.2 ± 10.4 90.8 ± 10.4 30.4 ± 8 3.7 ± 2.5 89.5 ± 5.2 4.6 ± 2
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On the upper slope, any surface flow was not observed during the
first 5 min (infiltration of 100%). After that, runoff coefficients per inter-
vals increased with maximum values of 72.4%. Total average soil loss
was 3.2 g (11.4 g−1 m−2) and the runoff ranged 0.5 L (1.6 L−1 m−2).
The mean value of sediment concentration was 5.4 g L−1 and the infil-
tration rates arranging 33.9mmh−1,which supposed a total average in-
filtration coefficient of 89.8%.

On the middle slope, neither any surface flow during the first inter-
val was observed. From this point, low values of runoff and soil loss
were reported. Total average soil loss during the experiments ranged
to 1.11 g (3.97 g−1 m−2). On the other hand, total average runoff was
the lowest ranged0.1 L (0.37 L−1m−2). However, the sediment concen-
tration was higher than in the upper slope with an average of
10.81 g L−1. 32.2 mm h−1 was the total registered average infiltration
rate, supposing an increasing respect to the upper slope position
(97.5% of infiltration coefficient).

Runoff on the foot slope position started since the first interval until
reachingmaximumvalues of 57.1%, registered at the interval from 20 to
25 min. The total average of suspended sediment load was 3.3 g
(11.9 g−1 m−2) and the runoff 0.7 L (2.4 L−1 m−2). According to this,
the sediment concentration obtained the lowest values arranging
4.9 g L−1. Finally, infiltration rates showed high values
(33.6 mm h−1), which supposed 86.4% of infiltration coefficient.

4. Discussion

High variability of hydrological and soil erosion processes have been
showedduring this research for one experimental area at three different
slope positions. A combinedmethodology between soil analysis, Guelph
permeameter and rainfall simulations confirmed to be a useful tool to
measure these different variations. It is important to highlight the
combination of rainfall simulations and Guelph permeameter results
to measure the permeability, the infiltration, the runoff and the soil
erosion processes, which is not common in the scientific literature
(Gupta et al., 2006, 1993; Leonard and Andrieux, 1998). Small portable
rainfall simulator could demonstrate the high superficial infiltration,
due to the elevated stoniness and roughness (severalmicro-topograph-
ical changes), cracks and high silt content, joined to the constant soil
Fig. 6. Runoff generation model under Medite
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tillage practices by the farmers and the Guelph permeameter could
show a hydrological connectivity on depth showing a decrease of the
values between the upper and foot slope. Therefore, this study can con-
tribute as a valuable part of new studies about land degradation of viti-
culture regions (Corbane et al., 2012; Likar et al., 2015; López-Piñeiro et
al., 2013; Martínez-Casasnovas et al., 2005; Novara et al., 2011;
Prosdocimi et al., 2016a; 2016b; Ramos et al., 2015; Rodrigo-Comino
et al., 2016a, 2016b; Salome et al., 2014).

Several authors confirmed that the pedological characteristics and
human influences are directly connected with a high hydrological and
soil erosion variabilities, which generate several intra-plot differences
(Arnáez et al., 2007; Follain et al., 2012; Govers, 1985; Govers et al.,
1994; Imeson and Lavee, 1998; Novara et al., 2013; Ortigosa and
Lasanta 1984; Quiquerez et al., 2014; Ruiz-Sinoga and
Martinez-Murillo, 2009a, 2009b). According to this, by using theGuelph
permeameter, repeated steady rates and permeability rates were ob-
served during almost all of the experiments, but at the same time the
values were different in each of them. Therefore, the final averages can-
not show a universal value for the steady rate in the study area, because
all the data obtained a high standard deviation. Rodrigo-Comino et al.
(2016b) noted the same high variability (with similar pedological and
topographical characteristics) after applying the same method in Ger-
man vineyards with steep slopes. On the upper slope, they obtained
42.5 ± 44.7 mm h−1, on the middle 20.1 ± 16.2 mm h−1 and on the
foot slope 16.8 ± 27.4 mm h−1. Therefore, it would be accurate to af-
firm: i) the existence of different permeability rates along different
slope positions and depths or, on the contrary; ii) the several difficulties
to find a universal permeability rates with the Guelph permeameter.

Related to the rainfall simulations, the highest values of soil loss and
runoff were registered on the upper and foot slope, which showed also
more concentration of silt particles and the lowest organic matter con-
tent in the soil. On the contrary, in the middle slope with the highest
concentration of sand particles and organic matter content, the runoff
and soil loss decreased. The importance of the role of the organicmatter,
the fine textural organisation (Le Bissonnais et al., 1998; Ortigosa and
Lasanta 1984; Salome et al., 2014), the soil tillage and the rock frag-
ments (Biddoccu et al., 2013; Follain et al., 2012; Govers et al., 1994;
Poesen et al., 1997, 1994) was reflected in these irregularities of the
rranean conditions in hillslope vineyards.
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spatial distribution of the rainfall simulation results. In themost of cases,
runoff activated the soil erosion processes with an increase of the soil
loss. In this line, Rodrigo-Comino et al. (2016a), comparing eight Euro-
pean vineyards from France, Germany and Spain, obtained a high corre-
lation between an increase of the SSL and an increase in runoff
coefficient (0.607).

To put in a general context the obtained results of this research, we
can compare these results with other studies, which have used the
same small portable rainfall simulator in other vineyards. For example,
Rodrigo-Comino et al. (2015a, 2015b) showed lower average values for
German vineyards in Ruwer-Mosel valley with also high infiltration
rates and sub-surface processes, a total average runoff of 0.62 L−1 m−2

and a soil loss of 1.05 g−1 m−2. These results supposed a high sediment
concentration of 6.17 g L−1. On the contrary, different initial soil erosion
processeswasobservedbyRodrigoComino et al., (2016c),who compared
ecological and conventional vineyards in Saar-Mosel valley. For this case,
higher runoff (5.19 L−1 m−2) and soil loss (29.67 g−1 m−2) than in the
Montes de Málaga were obtained in the conventional vineyards. Howev-
er, respect to the ecological vineyards, only 0.48 L−1 m−2 of runoff and
0.52 g−1 m−2 were registered. Finally, this research can be compared
with other studied, which was carried out in Valencia using barley
straw soils. In this study, the runoff ranged 3.52 L−1 m−2 and the soil
loss 20.59 g−1 m−2 (Prosdocimi et al., 2016a, 2016b; Rodrigo-Comino
et al., 2016a).

To understand the initial soil erosion processes in this study area, fol-
lowing the investigations carried out in Germany or Spain, it can be ob-
served that one of the most important key factor was the high
susceptibility to sealing, caused by raindrop impact (Lassu et al., 2015;
Marzen et al., 2015; Montenegro et al., 2013; Xiao et al., 2015) related
to the high silt content. In this line, Ramos et al. (2000) confirmed that
the elevated silt values, the inexistence of vegetation cover and the high
stone cover are able to generate a natural sieving and the consequent
transport of the fine material in down slope direction. However, our re-
sults indicated the highest silt and total organic carbon contents occurred
on middle slopes, contrarily to the traditional soil erosion theory, which
expected to find depleted upper and middle slopes and heavily enriched
foot slopes. This situation can be due to the high variability of the distribu-
tion of the soil surface components, which generates several different
micro-topographical situations along the slope modifying its natural be-
haviour. These geomorphological and hydrological variabilities were rep-
resented in the Fig. 6. The irregularities due to the high roughness and the
schistosity of the rocks facilitate the weathering of the materials, which
acquire a laminar morphology and high angularity. This aspect of the
rock fragments can offer greater resistance to move the sediments along
the slope and cause high micro-topographical variabilities. So, a possible
mixed Hortonian-Hewlettian model, combining surface and sub-surface
flow, irregular sediment transport and different impacts of the rainfall
on the soil at micro-scale could be possible to obtain (Imeson and
Lavee, 1998). The study site showed clear mechanisms of connectivity
continuously appears and disappears the infiltration, the surface and the
sub-surface flow processes. All together perform a pattern from the
upper to the foot slope, which develop a continuous feedback system.

This alteration of the natural hydrological dynamic can carry out en-
vironmental problems of solute transport, nutrients and soil losses,
slides by piping processes, formation of rills and ephemeral gullies, deg-
radation of the roots and decrease of the productivity (Bienes et al.,
2016; Bruggisser et al., 2010; De Baets et al., 2011; Galati et al., 2015;
García-Díaz et al., 2016; Martínez-Murillo et al., 2013; Morvan et al.,
2014; Novara et al., 2013; Poesen et al., 1997; Richter, 1980). In this
line in the future, it would be interesting to look deeper in a relevant
high intra-plot temporal variabilities along the inter-rows and rills
(Bryan et al., 1989; David et al., 2014; Govers et al., 1994; Poesen et
al., 1990; Ramos and Martínez-Casasnovas, 2006; Rodrigo-Comino et
al., 2015b; Wirtz et al., 2013, 2010). It would be useful to compare soil
erosion and hydrological processes before and after harvesting, be-
tween different years and under different rainfall intensities.
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5. Conclusions

Differences of hydrological and soil erosion processes have been
measured for one study area at three different slope positions in a Span-
ish viticulture area (Montes de Málaga, Spain).

The main obtained pedological and topographical characteristics of
the studied vineyardswere: i) steep slopes between 15° and 42°, several
tillage signals on the soil profile by the vine grower, high gravel content
(between 49% ad 64%); ii) silty loam texture with higher sand content
between 0 and 5 cm (the highest was registered in the middle), and
clay content between 5 and 15 cm; iii) inexistence of vegetation
cover; iv) high stone cover and roughness. Due to these parameters sev-
eral differences of the permeability measured with a Guelph
permeameter between slope positions were registered. An increase of
the rates was founded from the upper slope to the foot slope. The final
averages could not show a universal value for the steady rate in the
study area, because all the data obtained a high standard deviation.

On the other hand, applying a small portable rainfall simulator, re-
sults did not show the highest soil loss from the upper to the middle
slope, contrarily to a natural soil erosion trend. This situation was due
to the high variability to the soil surface components, which generate
different micro-topographical situations along the slope modifying the
natural behaviour through a mixed Hortonian-Hewlettian model. This
eco-geomorphological system is sensible to irregular variations of sur-
face and sub-surface flow, sediment transport and different impacts of
the rainfall drops on the soil at micro-scale.
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