Accepted Manuscript

Angiotensin I-converting enzyme inhibitory activity of enzymatic hydrolysates of goat milk protein fractions

F. Javier Espejo-Carpio, Cristian De Gobba, Antonio Guadix, Emilia M. Guadix, Jeanette Otte

PII: S0958-6946(13)00114-3

DOI: 10.1016/j.idairyj.2013.04.002

Reference: INDA 3500

To appear in: International Dairy Journal

Received Date: 21 December 2012

Revised Date: 25 March 2013

Accepted Date: 2 April 2013

Please cite this article as: Espejo-Carpio, F.J., De Gobba, C., Guadix, A., Guadix, E.M., Otte, J., Angiotensin I-converting enzyme inhibitory activity of enzymatic hydrolysates of goat milk protein fractions, *International Dairy Journal* (2013), doi: 10.1016/j.idairyj.2013.04.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Angiotensin I-converting enzyme inhibitory activity of enzymatic
2	hydrolysates of goat milk protein fractions
3	
4	
5	
6	
7	F. Javier Espejo-Carpio ^{a,b} , Cristian De Gobba ^b , Antonio Guadix ^a , Emilia M. Guadix ^a , Jeanette
8	Otte ^b *
9	
10	
11	^a Department of Chemical Engineering, University of Granada, 18071 Granada, Spain
12	^b Department of Food Science, Faculty of Science, University of Copenhagen,
13	Rolighedsvej 30, DK-1958 Frederiksberg C, Denmark
14	
15	
16	
17	
18	Corresponding author. Tel.: +45 35333189
19	<i>E-mail address</i> : jo@life.ku.dk (J. Otte)
20	
21	
22	

23	
24	
25	Abstract
26	
27	Casein and whey protein fractions from goat milk were hydrolysed by subtilisin,
28	and trypsin, individually and in combination, to release angiotensin converting enzyme
29	(ACE)-inhibitory peptides. Selected hydrolysates were fractionated by size-exclusion
30	chromatography (SEC) and further characterised. The highest ACE-inhibitory activity
31	was obtained from the casein fraction hydrolysed by the combination of enzymes. SEC
32	presented 4 fractions with fraction F2 containing the highest concentration of peptides
33	(< 2.3 kDa) and the highest activity. F2 contained a number of peptides not previously
34	identified from caprine caseins but with structural similarity to other ACE-inhibitory
35	peptides. The most active fraction in relation to protein content was F4 with IC_{50}
36	between 9.3 and 5.1 μ g mL ⁻¹ . This fraction contained a compound tentatively identified
37	as WY, an active dipeptide not previously reported from caseins. The high inhibitory
38	capacity of these fractions points towards the advantage of implementing a membrane
39	process to concentrate the most active peptides.
40	

Λ	1
4	т

1. Introduction

44	Bovine milk proteins have been extensively studied as a source of bioactive
45	peptides (Korhonen 2009; Meisel, 1998; Nagpal et al., 2011), and in the last years
46	proteins from sheep and goat milk also have attracted interest as sources of encrypted
47	bioactive peptides (Bernacka, 2011; Hernández-Ledesma, Recio, Ramos, & Amigo,
48	2002). The protein content of goat milk is quite similar to that of cow milk, although the
49	caseins content in goat milk is slightly higher, and there is great homology between the
50	major proteins. However, β -casein is the major protein in goat milk (50% of total
51	caseins), which is in contrast to in cow milk where β -casein and α_{S1} -casein are almost
52	equally abundant, 37% and 30%, respectively (Park, Juárez, Ramos, & Haenlein, 2007).
53	Within bioactive peptides, antihypertensive peptides are among the most well
54	studied. Hypertension is a key factor in cardiovascular diseases that are among the
55	largest health problems in the world (Whitworth, 2003). As a first step to identify
56	antihypertensive peptides, the angiotensin converting enzyme (ACE; EC 3.4.15.1)
57	inhibitory activity can be assessed in vitro. ACE is a zinc metallopeptidase acting in the
58	rennin-angiotensin-aldosterone system transforming angiotensin I into angiotensin II,
59	which is a potent vasoconstrictor. Moreover, ACE catalyses the degradation of
60	bradykinin, a blood pressure lowering nonapeptide in the kallikrein-kinin system.
61	Therefore, the inhibition of this enzyme would cause a decrease in blood pressure
62	(FitzGerald, Murray, & Walsh, 2004).
63	A number of peptides derived from goat milk proteins have shown the ability to
64	inhibit ACE in vitro (Fitzgerald & Meisel, 2000; Saito, 2008). Some of these peptides

65 have also shown antihypertensive activity in vivo, both in animals and humans

66 (Geerlings et al., 2006).

67	ACE-inhibitory peptides have been released from goat milk by fermentation,
68	e.g., in products such as cheeses and Kefir (Gómez-Ruiz, Taborda, Amigo, Recio, &
69	Ramos, 2006; Quirós, Hernández-Ledesma, Ramos, Amigo, & Recio, 2005), or by
70	enzymatic hydrolysis of goat milk protein fractions (Geerlings et al., 2006; Hernández-
71	Ledesma et al., 2002; Lee, Kim, Ryu, Shin, & Lim, 2005; Manso & López-Fandiño,
72	2003; Minervini, Algaron, & Rizzello, 2003). The enzymatic hydrolysis approach
73	makes it possible to choose both the substrate and the specific enzyme and the reaction
74	conditions, allowing optimisation of the yield of bioactive peptides, and also to
75	subsequently enrich for them.
76	Many studies have used enzymes of different origin (animal, vegetal or
77	microbial) to hydrolyse milk protein fractions (Jiang, Chen, Ren, Luo & Zeng, 2007;
78	López-Fandiño, Otte, & van Camp, 2006; Otte, Shalaby, Zakora, Pripp, & El-Shabrawy,
79	2007b; Saito, 2008), but only a few have addressed the effect of a combination of
80	enzymes (Pihlanto-Leppälä, Koskinen, Piilola, Tupasela, & Korhonen, 2000; Wang,
81	Mao, Cheng, Xiong, & Ren, 2010). Trypsin has frequently been employed in milk
82	protein hydrolysis yielding products with good ACE-inhibitory activity (Pan, Cao, Guo,
83	& Zhao, 2012; Pintado & Malcata, 2000; Tauzin, Miclo, & Gaillard, 2002). In contrast,
84	subtilisin has not been employed much to hydrolyse milk proteins (Geerlings et al.,
85	2006; Jiang et al., 2007; Mao, Ni, Sun, Hao, & Fan, 2007). Subtilisin shows low
86	specificity and preferentially cleaves at the C-terminal of hydrophobic residues.
87	Hydrophobicity is desirable in the C-terminal of peptides, since ACE inhibitors
88	generally have hydrophobic amino acids in the last three positions of the C-terminal.
89	Moreover, it has been suggested that positively charged amino acids (e.g., basic amino

90 acids as released by trypsin) in the C-terminal contribute to the inhibitory activity (Li, 91 Le, & Shi, 2004; Pripp, Isaksson, Stepaniak, & Sørhaug, 2004). Therefore, the 92 combined effect of these enzymes on the release of ACE-inhibitory peptides should be 93 investigated. ACE-inhibitory sequences have been released from both whey proteins and 94 95 caseins from goat milk; however, most have been identified in the casein fraction 96 (Geerlings et al., 2006; Lee et al., 2005; Manso & López-Fandiño, 2003; Minervini et 97 al., 2003; Quirós et al., 2005). Membrane filtration is one of the procedures most used for separation of milk protein fractions (Pouliot Pouliot, & Britten, 1996; Punidadas & 98 99 Rizvi, 1998). In contrast to fractionation using precipitation, filtration does not require a 100 second stage to dissolve the precipitated caseins; moreover an increase in the salt 101 content is avoided. Ceramic membranes have been used extensively for separating caseins (retentate fraction) from whey proteins (permeate fraction) using cut-off values 102 103 between 0.05 and 0.2 µm (Pouliot et al., 1996; Punidadas & Rizvi, 1998; Samuelsson, Dejmek, Trägårdh, & Paulsson, 1997). On the other hand, when information on the size 104 105 range of ACE-inhibitory peptides is available, membrane technology could also be 106 employed to concentrate the active peptides in the resulting hydrolysates. Indeed, an increasing number of studies are dealing with developing methods for concentrating or 107 108 purifying such peptides (Bazinet & Firdaous, 2009). 109 The purpose of this study was to investigate the release of ACE-inhibitory 110 peptides from goat milk protein fractions by use of three different enzymatic treatments. 111 We used milk, a milk permeate fraction and a milk retentate fraction as substrates to determine whether prior separation into whey proteins and caseins would increase the 112 yield of bioactive peptides. Enzymatic hydrolysis was performed with subtilisin or 113 trypsin or a mixture of both, to investigate the advantage of the latter. The hydrolysates 114

115	obtained were fractionated by size exclusion chromatography to find the size range with
116	the highest ACE-inhibitory activity. Selected hydrolysate fractions were characterised
117	by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with respect to
118	peptide profile, masses of each peptide and identification of major peptides.
119	
120	2. Materials and methods
121	
122	2.1. Substrates and enzymes
123	
124	The enzymes employed to perform the hydrolysis were subtilisin (Alcalase 2.4 L
125	FG; EC 3.4.21.62) and pancreatic trypsin (PTN 6.0 S Saltfree; EC 3.4.21.4) both from
126	Novozymes A/S (Bagsvaerd, Denmark). Semi-skimmed UHT goat milk (2.6% protein
127	and 1.6% fat) purchased from a conventional supermarket was centrifuged at 4 °C and
128	$4845 \times g$ for 45 min (Sigma Laborzentrifugen 6K15 Sartorius, Osterode am Harz,
129	Germany) to remove the fat. This skimmed milk was used as milk substrate (M).
130	A portion of the skimmed milk was microfiltered through a tubular ceramic
131	microfiltration membrane with pore size 0.14 μ m to obtain the retentate (R) and the
132	permeate (F) fractions. The microfiltration device consisted of a stainless steel supply
133	tank (2 L), a positive displacement pump (0.56 kW and Procom head, Smyrna, TN)
134	regulated by inverter (Omron Sysdrive 3G3JV, Kyoto, Japan), and a casing containing
135	the membrane of 1.2 m length, 3 channels and a filtration area of 0.045 m^2 (Inside
136	Céram 120 from TAMI, Nyons, France). The temperature was maintained with a
137	thermostated bath (Selecta, Abrera, Spain) in which the supply tank was immersed. The
138	pressure was measured with manometers (Wika, 1-60 psi, Lawrenceville, GA) at the
139	entrance of the membrane casing and was controlled by a membrane valve in the

140	retentate stream. Also in this stream, a flow meter (Badger-Meter Type Food Primo
141	V11, Neuffen, Germany) was used to measure the flow. The permeate was collected in
142	a tank and weighed (Mettler Toledo PB 1502-S, Greifensee Switzerland).
143	The process was carried out at 50 °C, with a flow of 400 L h^{-1} and a trans-
144	membrane pressure of 1 bar until a concentration factor of 3 was reached. The
145	microfiltration fractions were kept at 4 °C (no more than 3 days) until hydrolysis. After
146	filtration the membrane was cleaned with a solution of 20 g L^{-1} NaOH with 2 g L^{-1} SDS
147	at 50 °C and 400 L h^{-1} , with the purpose of recovering the filtration characteristic of the
148	membrane.
149	
150	2.2. Production of hydrolysates
151	
152	The hydrolysis reaction was carried out in a stirred-tank reactor of 250 mL
153	equipped with a heating jacket connected to a thermostated bath to maintain the
154	temperature in the reactor. Each substrate (M, R and P) was hydrolysed in three ways:

1) with subtilisin (S), 2) with trypsin (T) and 3) with a both enzymes simultaneously

156 (ST) using the same operational conditions. For each batch, 200 mL of the substrate

157 were heated in the reaction tank until the required temperature (50 $^{\circ}$ C). Then 1 M

sodium hydroxide was added to set the pH to 8. These operational conditions are

adequate for both enzymes (Adler-Nissen, 1986, Guadix, Guadix, Páez-Dueñas,

160 González-Tello, & Camacho, 2000), since subtilisin would operate within its optimal

161 conditions, and a temperature of 50 °C would enhance the catalytic capacity of trypsin

- 162 without appreciable loss of activity within a period of 3 h (Espejo-Carpio, Pérez-
- 163 Gálvez, Guadix, & Guadix, 2013; Mota et al., 2006). When the appropriate temperature
- and pH were reached, the enzyme was added to the medium (1.5, 5 and 0.5 g L^{-1} for M,

165	R and F, respectively, to reach an E/S ratio of approximately 6% for each enzyme in all		
166	reaction mixtures) and the reaction was allowed to proceed for 3 h. The pH was		
167	controlled by addition of 1 M NaOH using an automatic titrator (718 Stat Titrino,		
168	Metrohm; Herisau, Switzerland). After 3 h, the hydrolysate was immersed in boiling		
169	water for 15 min to inactivate the enzyme. Finally, the hydrolysate was lyophilised. The		
170	hydrolysates were identified with letter combinations referring to the substrate and the		
171	enzyme (i.e., R-S, R-T, and R-ST are the retentates hydrolysed with subtilisin, trypsin,		
172	and the combination of subtilisin and trypsin, respectively).		
173			
174	2.3. Degree of hydrolysis		
175			
176	The degree of hydrolysis (DH) was calculated from the amount of NaOH used		

177 during the hydrolysis reaction using to the formula proposed by Adler-Nissen (1986):

$$DH = B \times N_b \times \frac{1}{\alpha} \times \frac{1}{MP} \times \frac{1}{h_{tot}} \times 100\%$$

178

179

180 where *B* is base consumption (L), N_b is NaOH normality (1.0) and *MP* is the mass of the 181 protein. Taking the tabulated values from the author, the parameters $1/\alpha$ (the inverse of 182 the average degree of dissociation of the α -NH group) and h_{tot} (total number of peptide 183 bonds in the protein substrate) were 1.13 and 8.6 meqv g⁻¹ protein, respectively.

184

185 2.4. Fractionation by size-exclusion chromatography

(1)

186

187 Selected lyophilised hydrolysates were re-dissolved in 0.1 M ammonium

188 hydrogen carbonate and fractionated by size exclusion chromatography (SEC) using an

189 FPLC system (Pharmacia LKB Biotechnology AB, Uppsala, Sweden) mounted with a

190	column packed with SuperdexTM 30 prep grade gel filtration resin (2.6×61 cm;
191	Amersham Biosciences, Hillerød, Denmark). Five milliliters of a hydrolysate solution
192	(70 mg protein mL ⁻¹) were injected and eluted with 0.1 M ammonium hydrogen
193	carbonate, pH 8.0, at a flow rate of 2.5 mL min ⁻¹ . The effluent was monitored at 280 nm
194	and fractions of 10 mL were collected and then pooled according to the elution profile
195	and frozen until analysis.
196	The elution times of nine standards with different molecular weights (BSA,
197	Cytochrome C, Insulin, Insulin B chain oxidised, angiotensin I, Leu-Enkephalin, Gly-
198	Tyr, and L-Trp; approximately 0.25 mg mL ⁻¹ of each) were used to make a calibration
199	curve to determine the size range of the peptides in each fraction.
200	
201	2.5. Protein determination
202	
203	The Total Protein Kit, Micro Lowry, Peterson's Modification (Sigma-Aldrich,
204	St. Louis, MO, USA) was used to determine the protein content of substrates (Milk,
205	retentate and filtrate) and of the nine freeze-dried hydrolysates. The determination was
206	carried out directly with the hydrolysates re-dissolved in Milli-Q water at protein
207	concentrations within the assay range. The analysis was done in triplicate as indicated in
208	the kit instructions, and the absorbance was measured at 650 nm (Varian Cary 110 Bio,
209	Palo Alto, CA, USA).
210	The protein content of SEC fractions was determined in microtiter plates
211	(611F96, Sterilin Ltd., Newport, UK), using a BCA protein assay kit (Pierce, Rockford,
212	IL, USA) according to the kit instructions. The samples were analysed in triplicate, and
213	the absorbance was read at 562 nm using a Multiskan EX reader (Labsystems OY,

2	4	-
,		5
~	-	-

216 2.6. Determination of ACE-inhibitory activity

217

218	A variation of the method optimised by Sentandreu & Toldra (2006) was used. It
219	is based on the internally quenched fluorescent substrate o-amino-benzoylglycyl-p-
220	nitro-L-phenylalanyl-proline (ABZ-Gly-Phe(NO ₂)-Pro; Bachem, Bubendorf,
221	Switzerland), which upon cleavage by ACE releases the fluorescent group (ABZ-Gly)
222	resulting in an increased fluorescence. The assay was performed in 96-well black
223	microtiter plates (Microfluor 96-Well Black, Thermo Fisher Scientific OY, Vantaa,
224	Finland) using a TECAN GENios Plus microtiter-plate multiscan fluorometer (Tecan
225	Austria GmbH, Grödig/Salzburg, Austria). In each well were added 50 μ L of ACE
226	(purified from rabbit lung, Sigma A6778) dissolved at 6 mU mL ⁻¹ in 150 mM Tris-Base
227	buffer, pH 8.3, and 50 μ L of the sample solution. The control was prepared in the same
228	way, but with Tris buffer instead of sample solution. Blank samples (without ACE)
229	containing only substrate and substrate with sample, respectively, were also prepared.
230	The microplate was shaken and pre-incubated for 10 min at 37 °C. The reaction was
231	initiated by addition of 200 μ L of 0.45 mM ABZ-Gly-Phe(NO ₂)-Pro in 150 mM Tris-
232	base buffer (pH 8.3) containing 1.125 M NaCl. The generated fluorescence was
233	measured every minute for 30 min. Excitation and emission wavelengths were 360 and
234	415 nm, respectively. Samples were analysed in triplicate. Each of the freeze-dried
235	hydrolysates was re-dissolved in buffer (150 mM Tris-base buffer, pH 8.3) at a
236	concentration of 0.8 mg protein mL ⁻¹ . SEC-Fractions were analysed without pre-
237	treatment, since it was shown that the elution buffer (0.1 M ammonium carbonate, pH
238	8.0) did not influence the assay.

The inhibition of ACE was calculated using the slope of the control as 100% 239 240 enzyme activity using this equation:

241

242
242
243
(2)
$$\mathbf{\%}_{Inhibition} = 100 - \frac{100 \times [(Slope]_{inhib} - Slope_{ADZ+inhib})}{Slope_{control} - Slope_{ABZ}}.$$

243

(2)

244

245	where $Slope_{inhib}$ is the slope of the curve for the sample and $Slope_{control}$ is the slope
246	without sample. $Slope_{ABZ}$ and $Slope_{ABZ+inih}$ are the slopes of the blank samples
247	containing only substrate and substrate with sample, respectively.
248	The concentration of peptides that reduced the ACE activity to 50% (IC ₅₀) was
249	determined for fractions that showed ACE inhibitory percentages above 70%, by
250	diluting the original fractions with the same buffer (0.1 M ammonium hydrogen
251	carbonate, pH 8.0). The IC_{50} value was determined with the equation obtained by linear
252	regression of the linear zone around 50% from the graph representing inhibition versus
253	the logarithm of the protein/peptide concentration. For selected fractions with inhibition
254	percentages lower than 50%, 1 mL of the fraction was concentrated in a vacuum
255	centrifuge until dryness and then re-dissolved in 500 μ L of water before determination
256	of the IC ₅₀ value.
257	

259

260 Peptide profiles were revealed by LC-MS/MS analysis using an Agilent 1100 261 LCMSD Trap as described by Otte, Shalaby, Zakora, and Nielsen (2007a), except that 262 the gradient consisted of 100% A for 5 min, followed by a linear increase to 50% B in 263 75 min. Buffer A was 0.1% trifluoroacetic acid (TFA) in water, and buffer B was 0.1%

264	TFA in 90% acetonitrile. On-line AutoMS(2) spectra were recorded using the standard
265	range from 50 to 2200 m/z at the normal scan resolution and the target mass set to 1521
266	m/z.

267	The freeze dried hydrolysates were redissolved at 20 mg mL ⁻¹ in water and 5 μ L		
268	were injected. From the fractions obtained after SEC a volume of 25 μ L was injected.		
269	Identification of the main peptides of each fraction was performed using Bruker		
270	Daltonics BioTools software 3.0. Individual MS/MS spectra were compared with		
271	theoretical fragment spectra from possible peptides with the same mass that could be		
272	found in the primary sequences of the major caprine milk proteins from the Swissprot		
273	database (α_{S2} -casein P33049, α_{S1} -casein P18626, κ -casein P02670, and β -casein		
274	P33048).		
275			
276	2.8. Statistical analysis		
277			
278	Analysis of variance was carried out (Statgraphics Centurion XV.II, Statistical		
279	Graphics Corp., Rockville, MD) to determine the effect of the treatments and the		
280	substrates on the ACE inhibitory activity. If significant influence was obtained (p-value		
281	< 0.05) the experimental data were further analysed by Fisher's least significant		
282	difference (LSD) procedure, which consists of pairwise comparisons of the means,		
283	allowing to determine if two means are statistically different at the 95% confidence		
284	level.		
285	Ϋ́		
286	3. Results and discussion		

287

288 3.1. Production of milk protein fractions

289			
290	The filtration process was followed for 2 h, at which point a concentration factor		
291	of 3 was reached. The permeate flow decreased by almost 70%, but no stationary		
292	permeate flow was reached within the operation time. Despite this relatively high flux		
293	decrease, the filtration capacity of the membrane was recovered completely after the		
294	alkali cleaning. Experimental data were fitted to the fouling models proposed for		
295	fouling in cross-flow filtrations by Field, Wu, Howell, and Gupta (1995). Complete		
296	pore blocking (Fig. 1) seemed to be the most likely fouling mechanism ($R^2 = 0.9966$).		
297	As a result of the microfiltration process the protein concentration in the retentate was		
298	increased from 26 up to 74.1 g L ⁻¹ , while the protein concentration in the final permeate		
299	was decreased to 2.2 g L^{-1} .		
300			
301	3.2. Characterisation of hydrolysates from milk and MF fractions		
302			
303	When the protein fractions obtained as well as the original milk sample were		
304	treated with the two enzymes, separately and in combination, nine hydrolysates were		
305	produced as shown in Table 1. For all substrates, as expected, trypsin gave the lowest		
306	DH, since it has a narrower specificity and can break fewer bonds (only Lys-X and Arg		

307 X) than subtilisin (broad specificity with preference for large, uncharged residues).

308 When a combination of both enzymes was used, the DH was slightly increased due to a

309 higher number of bonds susceptible to cleavage. The ACE-inhibition percentages of the

resulting hydrolysates were between 30 and 65 % (Table 1).

311 In accordance with a lower DH, the permeate gave rise to significantly lower

- ACE-inhibition percentages than the other substrates (p < 0.0015 for all the treatment).
- 313 The lowest ACE-inhibition was obtained with trypsin hydrolysates, whereas the highest

inhibition was exerted by the hydrolysates made with the combination of subtilisin and trypsin. This tendency was seen for all substrates; however, for the retentate and permeate there was a statistically significant difference between the three enzymatic treatments (p = 0.004 and 0.006, respectively). With the combination of enzymes, the three substrates resulted in a percentage of inhibition of 50-65% and the highest ACEinhibitory activity was obtained with retentate as substrate, showing the usefulness of the membrane process.

321 The peptide profiles of the 9 hydrolysates are shown in Fig. 2. The permeate 322 samples had very low protein concentrations and precipitation problems appeared when 323 a solution with adequate protein concentration was prepared. Therefore, the focus will 324 be on the hydrolysates made from milk and the retentate fraction. Both of these substrates gave rise to different peptide profiles when hydrolysed with different 325 326 enzymes. However, when the same enzyme was used, the chromatograms of both 327 substrates were quite similar (compare adjacent chromatograms in Fig. 2A and 2B). This is in agreement with the similar ACE-inhibitory activity of these substrates 328 329 hydrolysed with the same enzyme (Table 1). Also, it can be noted that when subtilisin 330 and trypsin were used in combination, peptides with long elution times present in hydrolysates made with single enzymes, had been degraded. This is in accordance with 331 332 the slightly higher DH and ACE-inhibitory activity obtained with the combination of 333 enzymes.

The similarity between the retentate and milk hydrolysates indicates that the presence of whey proteins in the substrate (present in milk but not in the retentate, since they occurred in the filtrate after microfiltration of the milk), did not significantly affect the activity of the hydrolysate. This implies that the active peptides were derived mainly from the caseins, and is in accordance previous results showing higher activity from

339	casein-derived	than from	whey-derived	peptides ((FitzGerald & Meisel,	2000; Pihlanto-
					` ,	

Leppälä et al., 1998; Saito, 2008). The retentate was formed basically by caseins and

341 therefore was a simpler and more concentrated substrate than milk. Consequently,

- 342 further fractionation of the three retentate hydrolysates was performed.
- 343

344 3.3. SEC Fractionation of retentate hydrolysates and ACE-inhibition of fractions

345

360

The elution profiles obtained by SEC fractionation of the three retentate 346 hydrolysates were similar consisting basically of four peaks in each (denoted F1 to F4; 347 348 Fig. 3) of which F2 was subdivided in some profiles. As indicated by DH the two 349 hydrolysates made with single enzymes contained more large peptides (F2a and b) and less small peptides (F3 and F4) than the hydrolysate made with both enzymes. Four 350 fractions were collected from the R-S hydrolysate, eight from the R-T, and five from R-351 ST as shown by the vertical lines in Fig. 3. 352 Using a calibration curve (not shown), it was possible to determine the 353 354 approximate size ranges of peptides in each fraction. The F1 fraction contained peptides 355 of between 70 and 22 kDa, F2 contained peptides smaller than 4 kDa in the case of R-T or R-S and smaller than 1.7 kDa for R-ST. The elution volume for F3 and F4 was higher 356 357 than the total column volume suggesting that these contained peptides that interacted 358 with the stationary phase. 359 The ACE-inhibitory activities of the collected fractions are shown in Fig. 4. In

361 with the F2 fractions (or some of the subfractions from this). For the R-ST hydrolysate

all hydrolysates, the highest ACE-inhibitory activity (> 80% of inhibition) was obtained

this corresponded to range 1700 to 55 Da according to the calibration curve. However,

in the F2a fraction from the R-S hydrolysate a very low ACE-inhibition was detected,

364	so all inhibitory peptides eluted in F2b (1300 to 75 Da). For the R-T hydrolysate, the
365	ACE-inhibitory peptides were concentrated in F2b, F2c, F2d and F2e (2300 to 55 Da).
366	The fractions F3 and F4 had lower percentages of inhibition in all the cases, however,
367	they also contained less protein. Especially F4 had very good values for ACE-inhibition
368	with a protein concentration much lower than that in F3 and all other fractions. The best
369	F4 fractions were those from the R-ST and the R-T hydrolysates which inhibited ACE
370	above 40% with a protein content of only 4% of that in the F2 fraction.
371	Using the IC_{50} values, the peptide concentration that gives a 50% reduction of
372	the ACE-activity, it was possible to compare the inhibition capacity of the fractions
373	(Table 2). The IC ₅₀ values varied between 5 and 57 μ g mL ⁻¹ . These results were similar
374	to (and slightly better than) the results obtained by Minervini et al. (2003), who, by use
375	of other artificial substrates in the ACE assay, found IC $_{50}$ values between 16 and 100 μg
376	mL ⁻¹ for fractions of casein hydrolysates made with a proteinase from Lactobacillus
377	helveticus PR4. The inhibitory activity of the hydrolysate fractions produced in this
378	study, especially of F4 fractions, was only slightly lower than that of IPP, which is one
379	of the strongest ACE-inhibitory peptide identified with an IC_{50} of 1.8 µg mL ⁻¹
380	(Nakamura et al., 1995) and showing antihypertensive activity in both animals and
381	humans (Jäkälä & Vapaatalo, 2010; Xu, Qin, Wang, Li, & Chang, 2008). Moreover, the
382	results shown in Table 2 show that the fractions with smaller peptide size (longer
383	elution time) have better ACE inhibitory activity. Similar results were found by Mao et
384	al. (2007) and Jiang, Tian, Brodkorb, and Huo (2010), although the lowest IC_{50} obtained
385	for a hydrolysate fraction (<3 kDa fraction) in the latter study was 461 μ g mL ⁻¹ . The
386	lower IC_{50} of F4 in comparison to F2 might in part be due to a higher number of small
387	peptides in F4 for the same protein content, thus a higher number of the active peptides
388	available for inhibition of ACE. However, it might also stem from the presence in F2 of

a multitude of peptides (high protein content) of which the majority provide limitedcontribution to the ACE-inhibitory activity.

391

392 3.4. Characterisation of peptides in SEC fractions F2 and F4

393

394 The peptide profiles of the F2 fractions and subfractions collected from SEC are 395 shown in Fig. 5. All F2 fractions contained many peptides; the masses of the 396 dominating ones are given above the peaks in Fig. 5. The d and e subfractions from R-T-F2 contained peptides with *m/z* values of 188, 329, 345, 351, 355, 459, 496, 553, 397 398 515, 699, 648, 668, 799, 803, 814, and 1140, of which at least the masses 188, 496 and 1140 were found in both fractions. The other F2 subfractions in addition contained 399 dominating peptides with m/z 598, 652, 748, 751, 690, 978, 995, 1005 and 1152. All of 400 401 these masses represented singly charged peptides. A tentative identification of these peptides was performed by processing the 402 individual fragmentation mass spectra of these peptides with BioTools software. In this 403 way peptides originating from β -casein, α_{s_1} -casein and κ -casein were identified (Table 404 3). The peptide TGPIPN from β -case in has been identified as an ACE-inhibitory 405 406 peptide in a goat milk hydrolysate made with trypsin (Geerlings et al., 2006). Other peptides identified from caprine β -casein are identical to or similar to ACE-inhibitory 407 peptides identified from bovine β -casein, e.g., LHLPLPL, HLPLPL, EMPFPK 408 409 (Pihlanto-Leppälä, Rokka, & Korhonen, 1998; Quirós, Contreras, Ramos, Amigo, & Recio, 2009), VLPVPQ (Maeno, Yamamoto, & Takano, 1996) and YPVEPF (Robert, 410 411 Razaname, Mutter, & Juillerat, 2004). The activity of LHLPLPL seems to be increased after ingestion (Quirós et al., 2009). 412

413	With respect to the peptides identified from κ -casein, YPSYGLNYY is very
414	similar to the synthetic ACE-inhibitor developed by Chiba and Yoshikawa (1991). The
415	peptide FLPYPY has not been identified as an ACE-inhibitor; however, it has been
416	shown to stimulate neurite outgrowth in mice and could be useful to treat
417	neurodegenerative diseases (Sakaguchi, Ishikawa, Nishimura, Sugihara, & Matsumura,
418	2004). Based on its hydrophobic C-terminal, this peptide might have ACE-inhibitory
419	activity as well, in accordance with many bioactive peptides having multiple functions
420	(Hernandez-Ledesma, Amigo, Recio, & Bartolome, 2007; Korhonen 2009; Meisel,
421	1998).
422	The peptides VVAPFPEVF and FVVAPFPEVF identified from α_{S1} -casein
423	represent most of the sequence of the tryptic peptide FFVAPFPEVFGK from bovine
424	α_{S1} -case in that has shown in vivo antihypertensive activity (FitzGerald et al., 2004), and
425	may thus also exert ACE-inhibitory activity, especially considering the basic and
426	hydrophobic residues in the C-terminal. This has been confirmed by Ong, Henriksson,
427	and Shah (2007) who identified a similar peptide (FVAPFPEVF) in cheddar cheese as
428	an ACE-inhibitor. Interestingly, according to their primary sequence, all of these α_{S1} -
429	casein-derived peptides, including the peptide identified in this work, could be broken
430	down during digestion by chymotrypsin at the carboxylic side of Phe, releasing the
431	same peptide, PEVF, which could be the active peptide in vivo.
432	Several of the peptides identified could thus be primarily responsible for the
433	ACE-inhibitory activity exerted by these goat milk protein hydrolysates and fractions.
434	Due to the presence of C-terminal tyrosine residues in some of the identified peptides
435	(FLPYPY and YPSYGLNYY), these are expected also to exert antioxidant activity and
436	thus be multifunctional (Hernández-Ledesma et al. 2007). Apart from the peptides

mentioned, many other peptides were present at low concentration, some of which mayalso have contributed to the bioactivity of the fractions.

439 The F4 fractions, in contrast, contained mainly one compound with retention time 28.5 min (Fig. 6). Based on its high UV-absorbance and its long retention time in 440 SEC and in reversed-phase high performance liquid chromatography it is expected to 441 contain Trp and/or Tyr. Since the elution time of the compound is longer than that of 442 Trp, which is the most hydrophobic of the free amino acids and elutes latest (Broncano, 443 444 Otte, Petrón, Parra, & Timon, 2010; Parrot, Degraeve, Curia, & Martial-Gros, 2003), the compound in F4 must be a di- or tri-peptide containing at least one aromatic amino 445 446 acid residue. This compound tended to fragment somewhat during the LC-MS analysis 447 and gave rise to several masses, the major ones being 368, 351, 159 and 144. It most probably is the dipeptide Trp-Tyr corresponding to f164-165 in both caprine and bovine 448 α_{S1} -casein, which has the mass 368.2, close to the 368.3 found. This also fits with the 449 loss of an amino group upon fragmentation (Rogalewicz, Hoppilliard, & Ohanessian, 450 451 2000) giving the mass of 351.

This dipeptide has not previously been isolated from caseins, but it fits with the 452 structural requirements for the C-terminal part of ACE-inhibitory peptides as obtained 453 454 by quantitative structure-activity relationship (Wu, Aluko, & Nakai, 2006a), and the synthesised peptide WY has shown both ACE-inhibitory and antioxidant activity 455 456 (Hernandez-Ledesma et al., 2007). Furthermore, the reverse peptide, YW, has also been shown to be a potent ACE-inhibitor with in vivo blood pressure lowering effect in 457 spontaneously hypertensive rats (Marczak et al., 2003; Wu, Aluko, & Nakai, 2006b). 458 459 This study is the first to demonstrate the presence of WY in a casein hydrolysate. The highest level was obtained after hydrolysis with a combination of subtilisin and trypsin 460 461 (Fig. 3).

4. Conclusions

465	The results presented in this paper show that although a similar range of peptides
466	was obtained from milk and the casein fraction, the active peptides were more
467	concentrated when microfiltration was performed to isolate the caseins prior to
468	hydrolysis. Extensive hydrolysis and production of ACE-inhibitory peptides was
469	obtained with the two commercial enzymes, especially when used in combination. For
470	industrial purposes, the low price and wide application field of subtilisin is especially
471	interesting. The present results also showed that most of the active peptides were below
472	2 kDa and one particularly active dipeptide was very hydrophobic. This information is
473	very useful in the design of a membrane process which can concentrate and purify the
474	active peptides after the hydrolysis process.
475	
476	Acknowledgements
477	
478	The technical assistance from Kirsten Sjøstrøm, Department of Food Science,
479	University of Copenhagen, is highly appreciated. The financial support from the
480	Consejería de Innovación, Ciencia y Empresa of Junta de Andalucía through the project
481	P07-TEP-02579 and from the Danish Strategic Research Council through the
482	NOVENIA project is gratefully acknowledged.
483	X '
484	References

- 486 Adler-Nissen, J. (1986). *Enzymic hydrolysis of food proteins*. Londo, UK: Elsevier
- 487 Applied Science Publishers.
- Bazinet, L., & Firdaous, L. (2009). Membrane processes and devices for separation of

489 bioactive peptides. *Recent Patents on Biotechnology*, *3*, 61–72.

- 490 Bernacka, H. (2011). Health-promoting properties of goat milk. *Medycyna*
- 491 *Weterynaryjna*, 67, 507–511.
- 492 Broncano, J. M., Otte, J., Petrón, M. J., Parra V., & Timon, M. L. (2010). Isolation and
- identification of low molecular weight antioxidant compounds from fermented

494 "chorizo" sausages. *Meat Science*, *90*, 494-501.

495 Chiba, H., & Yoshikawa, M. (1991). Bioactive peptides derived from food proteins.

496 *Kagaku to Seibutsu*, 29, 454-458.

- 497 Espejo-Carpio, F. J, Pérez-Gálvez, R., Guadix, E. M., & Guadix, A. (2013).
- 498 Optimisation of the hydrolysis of goat milk protein for the production of ACE499 inhibitory peptides. *Journal of Dairy Research*, 80, 214-222.
- 500 Field, R. W., Wu, D., Howell, J. A., & Gupta, B. B. (1995). Critical flux concept for

501 microfiltration fouling. *Journal of Membrane Science*, 100, 259-272.

- 502 FitzGerald, R. J., Murray, B. A., & Walsh, D. J. (2004). Hypotensive peptides from
- 503 milk proteins. *Journal of Nutrition*, *134*, 980–988.
- Fitzgerald, R. J., & Meisel, H. (2000). Milk protein-derived peptide inhibitors of
 angiotensin-I-converting enzyme. *British Journal of Nutrition*, 84, S33-S37.
- 506 Geerlings, A., Villar, I. C., Zarco, F. H., Sánchez, M., Vera, R., Zafra, A., et al. (2006).
- 507 Identification and characterization of novel angiotensin-converting enzyme
- inhibitors obtained from goat milk. *Journal of Dairy Science*, 89, 3326-3335.

509	Gómez-Ruiz, J. A., Taborda, G., Amigo, L., Recio, I., & Ramos, M. (2006).
510	Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem
511	mass spectrometry. European Food Research and Technology, 223, 595-601.
512	Guadix, A., Guadix, E., Páez-Dueñas, M. P., González-Tello, P., & Camacho F. (2000).
513	Procesos tecnológicos y métodos de control en la hidrólisis de proteínas.
514	Technological processes and methods of control in the hydrolysis of proteins.
515	Ars Pharmaceutica, 41, 79-89.
516	Hernandez-Ledesma, B., Amigo, L., Recio, I., & Bartolome, B. (2007). ACE-inhibitory
517	and radical scavenging activity of peptides derived from β -lactoglobulin f(19-
518	25). Interactions with ascorbic acid. Journal of Agricultural and Food
519	Chemistry, 55, 3392-3397.
520	Hernández-Ledesma, B., Recio, I., Ramos, M., & Amigo, L. (2002). Preparation of
521	ovine and caprine β -lactoglobulin hydrolysates with ACE-inhibitory activity.
522	Identification of active peptides from caprine β -lactoglobulin hydrolysed with
523	thermolysin. International Dairy Journal, 12, 805-812.
524	Jäkälä, P., & Vapaatalo, H. (2010). Antihypertensive peptides from milk proteins.
525	Pharmaceuticals, 3, 251-272.
526	Jiang, J., Chen, S., Ren, F., Luo, Z., & Zeng, S. S. (2007). Yak milk casein as a
527	functional ingredient: Preparation and identification of angiotensin-I-converting
528	enzyme inhibitory peptides. Journal of Dairy Research, 74, 18-25.
529	Jiang, Z., Tian, B., Brodkorb, A., & Huo, G. (2010). Production, analysis and in vivo
530	evaluation of novel angiotensin-I-converting enzyme inhibitory peptides from
531	bovine casein. Food Chemistry, 123, 779-786.
532	Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications.
533	Journal of Functional Foods, 1, 177-187.

534	Lee, K. J., Kim, S. B., Ryu, J. S., Shin, H. S., & Lim, J. W. (2005). Separation and
535	purification of angiotensin converting enzyme inhibitory peptides derived from
536	goat's milk casein hydrolysates. Asian-Australasian Journal of Animal Sciences,
537	18, 741–746.
538	Li, G. H., Le, G. W., Shi, Y. H., & Shrestha, S. (2004). Angiotensin I-converting
539	enzyme inhibitory peptides derived from food proteins and their physiological
540	and pharmacological effects. <i>Nutrition Research</i> , 24, 469–486.
541	López-Fandiño, R., Otte, J., & van Camp, J. (2006). Physiological, chemical and
542	technological aspects of milk-protein-derived peptides with antihypertensive and
543	ACE-inhibitory activity. International Dairy Journal, 16, 1277-1293.
544	Maeno, M., Yamamoto, N., & Takano, T. (1996). Identification of an antihypertensive
545	peptide from casein hydrolysate produced by a roteinase from Lactobacillus
546	helveticus CP790. Journal of Dairy Science, 79, 1316–1321.
547	Manso, M. A., & López-Fandiño, R. (2003). Angiotensin I converting enzyme-
548	inhibitory activity of bovine, ovine, and caprine κ -casein macropeptides and
549	their tryptic hydrolysates. Journal of Food Protection, 66, 1686-1692.
550	Mao, X. Y., Ni, J. R., Sun, W. L., Hao, P. P., & Fan, L. (2007). Value-added utilization
551	of yak milk casein for the production of angiotensin-I-converting enzyme
552	inhibitory peptides. Food Chemistry, 103, 1282-1287.
553	Marczak, E. D., Usui, H., Fujita, H., Yang, Y., Yokoo, M., Lipkowski, A. W., et al.
554	(2003). New antihypertensive peptides isolated from rapeseed. Peptides, 24,
555	791-798.
556	Meisel, H. (1998). Overview on milk protein-derived peptides. International Dairy
557	Journal, 8, 363–373.

558	Minervini, F., Algaron, F., & Rizzello, C. G. (2003). Angiotensin I-converting-enzyme-
559	inhibitory and antibacterial peptides from Lactobacillus helveticus PR4
560	proteinase-hydrolyzed caseins of milk from six species. Applied and
561	Environmental Microbiology, 69, 5297-5305.
562	Mota, M. V. T., Ferreira, I. M. P. L. V. O., Oliveira, M. B. P., Rocha, C., Teixeira, J. A.,
563	Torres, D., et al. (2006). Trypsin hydrolysis of whey protein concentrates:
564	Characterization using multivariate data analysis. Food Chemistry, 94, 278-286.
565	Nagpal, R., Behare, P., Rana, R., Kumar, A., Kumar, M., Arora, S., et al. (2011).
566	Bioactive peptides derived from milk proteins and their health beneficial
567	potentials: an update. Food and Function, 2, 18-27.
568	Nakamura, Y., Yamamoto, N., Sakai, K., Okubo, A., Yamazaki, S., & Takano, T.
569	(1995). Purification and characterization of angiotensin I-converting enzyme
570	inhibitors from sour milk. Journal of Dairy Science, 78, 777–783.
571	Ong, L., Henriksson, A., & Shah, N. P. (2007). Angiotensin converting enzyme-
572	inhibitory activity in Cheddar cheeses made with the addition of probiotic
573	Lactobacillus casei sp. Lait, 87, 149–165.
574	Otte, J., Shalaby, S. M. A., Zakora, M., & Nielsen, M. S. (2007a). Fractionation and
575	identification of ACE-inhibitory peptides from α -lactalbumin and β -casein
576	produced by thermolysin-catalysed hydrolysis. International Dairy Journal, 17,
577	1460-1472.
578	Otte, J., Shalaby, S. M. A., Zakora, M., Pripp, H. A., & El-Shabrawy, S. A. (2007b).
579	Angiotensin-converting enzyme inhibitory activity of milk protein hydrolysates:
580	Effects of substrate, enzyme and time of hydrolysis. International Dairy
581	Journal, 17, 488-503.

582	Pan, D., Cao, J., Guo, H., & Zhao, B. (2012). Studies on purification and the molecular
583	mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate.
584	Food Chemistry, 130, 121–126.
585	Park, Y. W., Juárez, M., Ramos, M., & Haenlein, G. F. W. (2007). Physico-chemical
586	characteristics of goat and sheep milk. Small Ruminant Research, 68, 88-113.
587	Parrot, S., Degraeve, P., Curia, C., & Martial-Gros, A. (2003). In vitro study on
588	digestion of peptides in Emmental cheese: Analytical evaluation and influence
589	on angiotensin I converting enzyme inhibitory peptides. Food, 47, 87-94.
590	Pihlanto-Leppälä, A., Koskinen, P., Piilola, K., Tupasela, T., & Korhonen, H. (2000).
591	Angiotensin I-converting enzyme inhibitory properties of whey protein digests:
592	concentration and characterization of active peptides. Journal of Dairy Research,
593	67, 53-64.
594	Pihlanto-Leppälä, A., Rokka, T., & Korhonen, H. (1998). Angiotensin I converting
595	enzyme inhibitory peptides derived from bovine milk proteins. International
596	Dairy Journal, 8, 325–331.
597	Pintado, M. E., & Malcata, F. X. (2000). Hydrolysis of ovine, caprine and bovine whey
598	proteins by trypsin and pepsin. Bioprocess Engineering, 23, 275–282.
599	Pouliot, M., Pouliot, Y., & Britten, M. (1996). On the conventional cross-flow
600	microfiltration of skim milk for the production of native phosphocaseinate.
601	International Dairy Journal, 6, 105-111.
602	Pripp, A. H., Isaksson, T., Stepaniak, L., & Sørhaug, T. (2004). Quantitative structure-
603	activity relationship modelling of ACE-inhibitory peptides derived from milk
604	proteins. European Food Research and Technology, 8, 579-583.

605	Punidadas, P., & Rizvi, S. S. H. (1998). Separation of milk proteins into fractions rich in
606	casein or whey proteins by cross flow filtration. Food Research International,
607	31, 265-272.
608	Quirós, A., Contreras, M., Ramos, M., Amigo, L., & Recio, I. (2009). Stability to
609	gastrointestinal enzymes and structure–activity relationship of β -casein-peptides
610	with antihypertensive properties. <i>Peptides</i> , 30, 1848–1853.
611	Quirós, A., Hernández-Ledesma, B., Ramos, M., Amigo, L., & Recio, I. (2005).
612	Angiotensin-converting enzyme inhibitory activity of peptides derived from
613	caprine kefir. Journal of Dairy Science, 88, 3480-3487.
614	Robert, M. C., Razaname, A., Mutter, M., & Juillerat, M. A. (2004). Identification of
615	angiotensin-I-converting enzyme inhibitory peptides derived from sodium
616	caseinate hydrolysates produced by Lactobacillus helveticus NCC 2765. Journal
617	of Agricultural and Food Chemistry, 52, 6923–6931.
618	Rogalewicz, F., Hoppilliard, Y., & Ohanessian, G. (2000). Fragmentation mechanisms
619	of α -amino acids protonated under electrospray ionization: a collision activation
620	and ab initio theoretical study. International Journal of Mass Spectrometry, 195-
621	196, 565-590.
622	Saito, T. (2008). Antihypertensive peptides derived from bovine casein and whey
623	proteins. In Z. Bösze (Ed.) Bioactive components of milk (pp 295-317). New
624	York, NY, USA: Springer.
625	Sakaguchi, M., Ishikawa, C., Nishimura, T., Sugihara, E., & Matsumura, E. (2004).
626	Neurite outgrowth-stimulating peptide derived from bovine kappa-casein.
627	Bioscience, Biotechnology, and Biochemistry, 68, 2653–2655.

628	Samuelsson, G., Dejmek, P., Trägårdh, G., & Paulsson, M. (1997). Minimizing whey
629	protein retention in cross-flow microfiltration of skim milk. International Dairy
630	Journal, 7, 237-242.
631	Sentandreu, M. A., & Toldra, F. (2006). A rapid, simple and sensitive fluorescence
632	method for the assay of angiotensin-I converting enzyme. Food Chemistry, 97,
633	546-554.
634	Tauzin, J., Miclo, L., & Gaillard, J.L. (2002). Angiotensin-I-converting enzyme
635	inhibitory peptides from tryptic hydrolysate of bovine aS2-casein. FEBS Letters,
636	531, 369–374.
637	Wang, L., Mao, X., Cheng, X., Xiong, X., & Ren, F. (2010) Effect of enzyme type and
638	hydrolysis conditions on the in vitro angiotensin I-converting enzyme inhibitory
639	activity and ash content of hydrolysed whey protein isolate. International
640	Journal of Food Science and Technology, 45, 807-812.
641	Whitworth, J. A. (2003). 2003 World Health Organization (WHO)/International Society
642	of Hypertension (ISH) statement on management of hypertension. Journal of
643	<i>Hypertension</i> , 21, 1983–92.
644	Wu, J., Aluko, R. E., & Nakai, S. (2006a). Structural requirements of angiotensin I-
645	converting enzyme inhibitory peptides: Quantitative structure-activity
646	relationship modeling of peptides containing 4-10 amino acid residues. QSAR
647	and Combinatorial Science, 25, 973-880.
648	Wu, J., Aluko, R. E., & Nakai, S. (2006b). Structural requirements of angiotensin I-
649	converting enzyme inhibitory peptides: Quantitative structure-activity
650	relationship of di- and tripeptides. Journal of Agricultural and Food Chemistry,
651	54, 732-738.

- 652 Xu, J. Y., Qin, L. Q., Wang, P. Y., Li, W., & Chang, C. (2008). Effect of milk
- tripeptides on blood pressure: A metaanalysis of randomized controlled trials.
- 654 *Nutrition*, *24*, 933-940.

Figure legends

Fig. 1. Evolution of permeate flux with time during microfiltration of skimmed goat milk. Experimental data (\bigcirc) and best fit adjusted to the pore blocking model (—) are shown.

Fig. 2. Peptide profiles of hydrolysates made from goat milk protein by use of subtilisin and trypsin. The milk substrates used were skimmed milk (column A), and retentate (column B) and permeate (column C) fractions from microfiltration of skimmed milk. Each freeze-dried hydrolysate was dissolved at 20 mg mL⁻¹ before analysis.

Fig. 3. SEC Profile of goat milk protein retentate hydrolysates made with subtilisin (A), trypsin (B), and both subtilisin and trypsin (C).

Fig. 4. Protein concentration (grey) and ACE-inhibitory activity (black) of each SEC fraction from hydrolysates made from goat milk retentate with subtilisin (A), trypsin (B) and both enzymes (C). Fraction names refer to Fig. 3.

Fig. 5. Peptide profiles of F2 fractions from SEC fractionation of retentate hydrolysates. The retentate was hydrolysed with subtilisin (R-S), trypsin (R-T), and both enzymes (R-ST), respectively. Sample names refer to fractions in Fig. 3. Numbers above peaks represent the masses of major peptides $([M+H]^+)$.

Fig. 6. Peptide profiles of F4 fractions from SEC fractionation of retentate hydrolysates made with subtilisin (R-S), trypsin (R-T), and both enzymes (R-ST), respectively. Sample names refer to Fig. 3. The absorbance at 210 nm is shown as full line and the absorbance at 280 nm as dotted line.

Table 1.

Characteristics of the hydrolysates obtained by enzymatic hydrolysis (3 h, 50 °C) of caprine milk and fractions thereof; for each enzyme-substrate combination the degree of hydrolysis (DH) and the ACE-inhibitory activity are given.^a

Hydrolysate code	Substrate	Enzyme	DH (%)	ACE-inhibition (%)
M-S	Milk	Subtilisin	28.2	60.5 ± 2.3^{a}
M-T	Milk	Trypsin	21.9	$50.9\pm0.5^{\text{ b}}$
M-ST	Milk	Subtilisin + trypsin	32.4	63.2 ± 2.8^{ac}
R-S	Retentate	Subtilisin	29.5	60.7 ± 1.0^{a}
R-T	Retentate	Trypsin	21.7	$54.4\pm2.3^{\rm d}$
R-ST	Retentate	Subtilisin + trypsin	32.3	$64.3 \pm 0.2^{\circ}$
F-S	Filtrate	Subtilisin	21.7	$41.9\pm1.0^{\$}$
F-T	Filtrate	Trypsin	17.9	33.0 ± 0.6^{e}
F-ST	Filtrate	Subtilisin + trypsin	23.2	50.6 ± 2.4^{b}

^a DH was determined from the amount of alkali added during hydrolysis. Each hydrolysate was dissolved at 0.8 mg protein mL^{-1} corresponding to 0.133 mg mL^{-1} in the assay. Values of ACE inhibition with the same superscript letter are not statistically different.

Table 2.

Hydrolysate	Fraction	IC50	
		(µg protein	mL ⁻¹)
R-ST	F2	13.13	
R-ST	F4 ^b	9.28	
R-S	F2b	14.63	
R-S	F4 ^b	5.53	
R-T	F2b	56.96	
R-T	F2c	17.74	
R-T	F2d	15.37	
R-T	F2e ^b	8.04	
R-T	F4 ^b	5.12	

ACE-inhibitory activity (IC₅₀) of the most active SEC fractions from hydrolysed retentate fraction of goat milk protein.

^a Hydrolysate codes are as given in Table 1; the fraction numbers refer to Fig. 3.

 $^{\rm b}$ IC_{\rm 50} were determined after a concentration of the original fraction.

Table 3.

.

Tentative identification of dominating peptides in the active F2 fractions of goat milk retentate hydrolysates (Sample names refer to Fig. 3); the fragment mass spectrum of each peptide was compared to theoretical fragment spectra of the proposed fragment by use of BioTools software and the score is given by this software.

Mass observed [M+H] ⁺	Sample name	Retention time (min)	Possible peptide	Mass calculated [M+H] ⁺	Score	Origin
459.3	R-T-F2d	23.8	n.i. ^a			
553.3	R-T-F2d	30.0	n.i.			
496.5	R-T-F2d+e	33.9	n.i.		C	
696.6	R-T-F2d	36.6	VPNSAE(1P) ^b	696.7	96	α _{s1} -CN f72-77
648.7	R-T-F2d	39.9	n.i.			
667.5	R-T-F2c + d	44.2	n.i.			
803.0	R-T-F2b + c	55.0	LHLPLPL	802.5	130	β-CN f133-139
1140.6	R-T-F2d+e	42.0	YPSYGLNYY ^b	1140.2	322	к-CN f35-43
799,7	R-T-F2d	44.9	FLPYPY	799.4	64	к-CN f55-60
814.9	R-T-F2d	50.4	n.i.			
598.6	R-ST-F2, R-S-F2b, R-T-F2b+c	25.1	TGPIPN	598.7	65	β-CN f63-68
652.7	R-ST-F2, R-S-F2b, R-T-F2b	32.6	VLPVPQ ^b	652.4	47	β-CN170-175
748,8	R-ST-F2, R-T-F2c	35.0	EMPFPK	748.9	92	β-CN f108-113
751.5	R-ST-F2, R-T-F2c	40.0	YPVEPF	751.9	65	β-CN f114-119
690.0	R-ST-F2, R-S-F2b, R-T-F2b+c	48.5	HLPLPL	689.9	63	β-CN f134-139
978.0	R-ST-F2, R-T-F2b	37.0	n.i.			
995.1	R-T-F2b	51.0	n.i.			
1005.0	R-T-F2b+c	54.1	VVAPFPEVF	1005.2	79	α_{s1} -CN24-32
1152.1	R-T-F2b+c	59.0	FVVAPFPEVF	1152.4	350	α _{s1} -CN23-32

^a n.i., could not be identified in the sequences used.

^b This sequence is uncertain.

Figure 1. Espejo et al.

Figure 4. Espejo et al.

