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Abstract 
 

The importance that decision-making problems and optimisation problems have 
today in all aspects of life is beyond all doubt. Despite that importance, both 
problems tend to be thought of as following different routes, when they have, in 
fact symbiotic .  Here, we consider the different decision problems that 
arise when different kinds of information and framework of behaviour are 
considered, and we explore the corresponding optimisation problems that can be 
derived for searching the best possible decision. We explore the case where Fuzzy 
Mathematical Programming problems are obtained as well as other new ones in the 
fuzzy context.  
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1. Introduction. 
 
Decision making is an activity that is inherent in the behaviour of people. When a decision only 
affects the person who decides, it may have a low impact, but when it may affect third parties 
(other people, a company, a market, etc.) it is essential to know in depth the mechanisms and 
methodologies that govern such a decision process.  
 
In the hypothetical case that a decision-maker (a) knows all the possible consequences of their 
decisions, (b) knows all the alternatives, and (c) can choose rationally and knowingly, then the 
optimal choice will be the action whose consequence is the preferred by the decision-maker 
from among all the set of possible consequences that their action may have.  
 
However, this apparently simple path is windy, complicated and sometimes almost impossible 
to follow due to the amount of information that needs to be collected. In simple terms, a 
decision maker would need to know all the alternatives, to be able to have access to all their 
consequences, to know how to order the results of the actions or ensure that a decision has only 
one consequence and so on.  
 
Another problem arise when we assume that the context in which decision making is developed 
can change, the information available could be partial, etc. All of these circumstances, casuistic 
and options are studied in the Decision Theory area, whose first antecedent is found in [Von]. 
 
One of the most studied problems in Decision Theory considers a single decision-maker, that 
the information available is of a probabilistic nature, and  the results of the different options that 
the decision-maker has (the rewards), can be ordered according to a criterion that the decision-
maker establishes and which allows him/her to take the best decision among the possible ones. 



As stated before, these ideal conditions are hard to meet. In the framework that defines the real 
world in which the problem is posed we may not know all the available alternatives, or we may 
not apply the criterion that we want to order the consequences or, more frequently, the 
information on the parameters is not probabilistic, but of whatever other nature. 
Thus, depending on the characteristics of the problem, a wide range of models appears: single 
person decision problem with a finite number of numerically valued results, single person with 
incomplete information, group decision making problems, and so on. 
 
Going further, what we want also to highlight here is that it is not just a matter of making 
decisions, but also a matter of making the best decision according to the framework in which we 
are acting, simply because we generally seek to optimise our results. 
 
In this context, our aim here is to explore the connections between decision making problems 
and optimisation problems, starting with those of Mathematical Programming, formulating the 
later on the basis of the characteristics of the data and the information available in the former. 
 
As a result, we expect contributing rationality to the field of optimisation and giving greater 
amplitude to decision making, facilitating the comparisons and allowing new optimisation and 
decision models to appear, which up to date have not been considered. This would be of 
particular relevance when new frameworks of behaviour are introduced for the decision maker.  
 
The paper is organized as follows. In Section 2 the essential elements of a General Decision 
Problem are introduced. Then in Section 3, and departing from the Taxonomy of Ignorance by 
[Smi], the different natures that the information can have are described, and as a consequence 
the different frameworks in which decision and optimisation problems can be posed are 
presented. With these elements, Section 4 explores the case where the available information is 
fuzzy. We consider the potential decision making problems and the corresponding   
Optimisation Problems, together with their formulation. Section 5 is devoted to conclusions and 
further discussion. 
 
2. Description of the General Decision Problem 
 
In very general terms, a decision problem consists in choosing the best alternative in a set of 
actions, where a  is available  of an 
alternative or action one understands the degree of agreement between the result that is obtained 
by applying it and the decision-  criteria. As expected,  the quality  must be evaluated 
from the information available. In the majority of real situations, upon knowing the context in 
which the decision problem arises, external factors exist (which are usually 
states) that, together with the characteristics of the available information, condition the result of 
an action. Thus, if the decision-maker chooses a certain alternative x, he receives a reward , that 
we can note as f(x, et), where et is the state of nature (i.e. the current situation of the external 
factors). That gain or reward may have different interpretations depending, for instance, on 
whether the information that we have on the data that define the problem is linguistic, visual, 
numerical, etc. 
 
Thus, from a formal point of view, the simplest decision problem contains the following seven 
basic elements: 
 

1) A decision-maker, individual person or team of people that act as one, interested in 
solving the problem posed. 

2) A space of alternatives, actions or possible decisions, X, which contains at least two 
elements (if only one single possible action exists then there is no problem of choice). 



3) A set of states of nature, E, that describes the Environment in which the problem is 
posed, i.e. that the decision-maker does not control and therefore they condition the 
results of their actions. 

4) A set of results, rewards or consequences, each of which is associated to a pair 
constituted by an alternative and a state of nature. 

5) A relationship that establishes the preferences of the decision-maker on the possible 
results that can be obtained. 

6) A characterisation of the available information that indicates, in terms of knowledge, 
what we know about the elements that participate in the problem. 

7) A framework of behaviour K that establishes the rules to guide the decision-maker in 
making the selection. 

 
Therefore, if E = {e1, e2 m} is the set of possible states of nature, that is to say the 
Environment of the problem, and X = {x1, x2 n} is the set of alternatives, the results will be 
represented as an application  
 

f: X E  U 
 
where U = {f(x1, e1), f(x1, e2 n, em)} is a set of utility values  (the payment, benefit, reward 
or, ultimately, consequence that is associated to each alternative-state).  
 
When some (simple) formal conditions arise, the problem can be represented by a matrix such 
as the following, 
 

   e1  e2   em 

x1  r11  r12    r1m 
x2  r21  r21    r2m 

         
xn rn1  rn2    rnm 

 
where rij = f(xi, ej  
 
Comparing f(xi, ej) by means of the order relation (the criterion) that the decision-maker has 
established, a measure of the suitability of xi with respect to such a criterion can be obtained. So 
that the aggregation of these measures will provide the overall 
finally, will indicate the course of action to follow (the decision that must be taken in terms of 
the available information). 
 
Summarizing, a unipersonal decision problem can be represented by a sextet (X, E, I, K) 
that includes the set of actions to be taken, the environment, the results, the relation that orders 
said results, which naturally will have to be consistent with the characteristics that the set U 
(numerical, linguistic, etc.) has, the available information and the framework of behaviour in 
which the decision-maker makes decisions.  
 
It should be noted that other more specific aspects can be superimposed to this scheme, which, 
as a whole, end up characterising the situation, i.e., the decision problem that is being 
considered: 
 

a) The decision-maker, as the entity that takes decisions, can be a single individual or also 
a set of people. In this latter case, we would have a group decision making (GDM) 
problem in which the different individuals interact to take a decision. Below, we shall 
consider the unipersonal case and we shall refer to this henceforth as the General 
Decision Problem. 



b) The problem can take into account repeated decision making over a certain time period, 
that is to say, it can be stated as a multi-stage problem. Here, we consider only single-
stage problems. 

c) In general, the consequences are measured numerically. However other alternatives are 
possible. In other words the set U where the function f takes values, does not have to be 
a sub-set of the real line, making sense to imagine linguistically established 
consequences, which express a quality, or that are even affected by other characteristics, 
such as can be the case of random, symbolic, uncertain etc., values. 

d) Likewise, the decision-maker must establish a proper order on possible results, which 
will ultimately be what enables them to take the decision which is most interesting in 
the Environment where the problem is being developed, and which can be conditioned 
by the Framework of Behaviour K, i.e. by the rules of behaviour to be followed. As well 
as this, when the consequences are not valued numerically, it is also possible to resort to 
building a utility function of the results. When the consequences can be valued 
numerically, and also when a utility function is available, what remains to be solved 
may be seen as an optimisation problem. But the order used by the decision-maker does 
not necessarily have to be unique, i.e. that the decision-maker can have different criteria 
simultaneously (cost, distance, accessibility, security to hierarchize their 
preferences. If this were the case, this would give rise to the denominated Multi-Criteria 
Decision-Making (MCDM) Problems which we will not be dealing with herein. In any 
case, it is interesting to point out that it is perfectly reasonable to have group decision 
problems (GDM) with multiple criteria (MCDM). On this point we will make no initial 
supposition. 

e) The environment of the problem is described by the states of nature. The type of 
information available will exercise an influence in the environment, so that given a 
specific environment, the decision could be different depending if the information we 
have on the states of nature is linguistic or probabilistic since that, depending on the 
case, the theoretical tools that we can use will be different (potentially leading to 
different solutions). In any case the number of states of nature, just like the number of 
actions, can be finite, which is not synonymous of easy, infinite or infinite numerable. 

f) The information available can come from different sources. Also, it may have different 
properties (which generates aggregation, comprehension, and information fusion 
problems), it may not be precisely defined or it may be conditioned by some special 
characteristic (provisionality, incoherences, etc.). In short, for the available information 
we have one of the following two possibilities: 

- We do not know or we ignore, partially or totally, some of the elements that take part 
into the problem. In this case, we say that the information available is incomplete 
and we have a General Decision Problem with Incomplete Information (GDPII). 

- All the elements that take part into the problem are precisely known, so that there is 
no ignorance regarding this. In this case we shall talk about a General Decision 
Problem with Complete Information (GDPCI). 

 
In the case of problems with complete information, it is clear that they can be understood as an 
optimisation problems, which depending on each particular case, could be solved either exactly 
(with methods from the Mathematical Programming area) or approximately (for example using 
Metaheuristics). However, when the information is not complete, the possible solving methods 
will vary depending on the nature of the information. A proper classification of the different 
types of information is needed, to properly understand, in turn, which are the most appropriated 
methods to use.  
 
Besides considering the cases of complete or incomplete information, the framework of 
behaviour in which the problem is 



ur decisions are 
not the same when we have enough time for analysing the alternatives as to when we have to 
decide fast due to some emergency.  
 
The following section delves deeper into these aspects. On the one hand, a classification of the 
different types of information that we may take into account is presented, and on the other hand 
the different (behavioural), frameworks that we can consider for the solution to the problem at 
hand are presented. 
 
3. Types of information available and frames of behaviour. 
 
Decision making situations with complete information are not usual. In order to obtain effective 
operative and applicable solutions for real world situations, there will be aspects we are not 
aware of, i.e., that we do not know for whatever reason. Among which are the lack of 
knowledge of our own lack of knowledge or the ignorance of what we do not know because we 
despise it and do not give importance to the data that we cannot understand [Bam].  
 
In reality we do not consciously exercise ignorance, but that we do not know or despise what is 
unknown. As pointed out in [Rav], more often than we would like
laboratory, where things are messy and unpredictable  
 
Several forms of ignorance can arise in a decision-making situation, and reviewing all of them 
is completely out of the scope of this paper. The field of ignorance that we shall consider is 
based on the Ignorance [Smi] which we shortly describe in Fig. 1.    
 

 
Fig. 1. Taxonomy of ignorance 

           
According to this taxonomy, a General Decision Problem should initially distinguish between 
two possible types of ignorance. We refer to the first as error-type Ignorance, abbreviated to 
Error, and the second is known as Ignorance associated with Irrelevant, Irrelevance for short. 
Whilst the former covers ignorance due to incomplete knowledge, the latter contemplates 
ignorance derived from deliberately neglecting data due to considering them irrelevant. This 
first division refers to admitting the possibility of later reviewing the available information, 
replacing it eventually in the event of errors, or of declaring possible anomalies as being 
irrelevant, despising them and not including them in the model. 



Ignorance by irrelevance is divided into three types: a) information discarded by Untopicality, 
b) that which is deliberately omitted, i.e. Taboo, and c) that characterised by Undecidability (we 
do not know, for example, if certain data are true or false and that is not relevant either, as often 
occurs in judicial contexts). Whatever the nature of the irrelevance-type information, it does not 
usually arise in decision-making problems and therefore we shall not be concerned with it.  
 
Ignorance caused by errors may be due to: 
 

a) A distortion, originated in confusions or inexactness. A clear example is rounding 
numerical data to facilitate handling in our problem. In such situation, the erroneous or 
distorted data can be reviewed and eventually replaced. These distortions can, in turn, 
be of two types: human or automatic confusions, and inaccuracies. For example, when 
the unit of measurement is confused (centimetres instead of meters), in the first case, or 
when approximate quantities are expressed, in the second one.  
 

b) Certain incompleteness of the information. It can be provoked by two other 
possibilities, depending on whether there is Uncertainty over the data (understood as 
that the information is gradual and therefore not complete), or there is a real Absence of 
information (related with lack of knowledge on what is ignored). It would be the case 
for example of not knowing all the data of a time series, but knowing that they exist, or 
not knowing that those data exist (absence of knowledge). The main difference between 
information uncertainty and absence of information is that we can associate a measure 
to the former. At some point, when a measure of information of uncertainty reaches its 
maximum, we can say that the situation is the same as the absence of information.  
Therefore, we will left out the latter case in the rest of this paper. 

 
So going deeper into the Uncertainty case, then we can classify it by three different forms, 
according to whether the information available is vague, probabilistic or ambiguous. Vagueness 
refers to the fact that the data are given in ranges of values (it is between 6 and 8, between 
spring and summer The probability arises when randomness take part into the information 
available (you will win a prize with a probability of 0.01) and ambiguity is present when we 
have a finite number of possibilities for our data (we can go to France, to China, to the 
Caribbean  
 
Up to this point, the taxonomy is obviously general. When we concentrate on the most 
particular area of decision making problems under uncertainty, and with the aim of later 
focusing in the corresponding problem solving methods, we can even further analyze the type of 
the information available. In this way, we can naturally reach what we called the Environment 
of the problem.  
 
When we deal with ambiguous or vague information, we may consider:  
 

a) If the information is vague, we may found Fuzziness [Zad] in the data or they are not 
completely specified (there is Nonspecificity). In the first case, the concepts associated 
to our data do not have clearly defined frontiers (young, tall, etc.). In this case fuzzy set 
theory, or more generally Soft Computing, are the right tools to manage such kind of 
information. In the second, the nonspecificity supposes that handling these data 
demands greater precision, a better definition, to be able to operate with efficacy (it is 

in the 20th century , in Europe , etc.). 
 

b) Ambiguous information always appears in situations in which the definition of a state 
can have different interpretations. For example, s

that the person is elegant, intelligent, smart so a series of possibilities appear to 



confer ambiguity to the information being handled. That ambiguity can be reduced by 
refining the discourse universe on the parameters we are talking about.  
 

The essential difference between Vagueness and Ambiguity is graduality, in the sense that 
some information can be more precise than another one. For the purposes of decision-
making,  Vagueness and Ambiguity will define identical Environments E, and therefore the 
same states of nature, since adjusting the granularity or degree of belonging of the different 
parameters to consider, in one case or another the corresponding information can be made to 
be of one or another type.  

 
As relevant examples for Environments with vagueness (identical for the ambiguous-type 
information) we can cite:   

 
- Environment of Certainty: it is characterised because there is sureness regarding the 

values that the data will take in the future; an essential nuance with regard to 
certitude. As an example we can know that it will rain tomorrow (certainty), which 
does not coincide with having certitude over something: 7.45 l/m2 of water 
collected. 

- Environment of Possibility: arises when a possibility distribution is established on 
the data. This is somehow similar to a probability distribution, but more associated 
to the concept of feasibility than to randomness and therefore without any formal 
axiomatic. 

- Environment of Undefinition: arises when the data are not well specified, although 
they are known to a certain extent. This would be the case, for instance, with data 
like cool, agreeable and hot. 

 
c) When the information available is affected by randomness, surely the most studied 

situation in Decision Theory, the following three Environments can be considered: 
 

- Environment of Certitude: in this case, the current state of the nature is perfectly 
known. In general terms, it is in this environment where Optimisation Problems 
arise (find the best value in a set, conforming to a certain pre-established criterion).  

- Environment of Risk: this appears when the decision-maker only knows the 
probability distribution of the different states of nature. The essential tool to solve 
the problems associated to this environment is the Criterion of Expected Utility. It 
should be noted that when a given state of nature has a probability of 1 of 
occurrence, then the situation fits an environment of Certitude. 

- Environment of Random Uncertainty (uncertainty for short in the sequel): just the 
list of possible states of nature is available with no additional information regarding 
their occurrences. In this environment, such well-known decision rules as Laplace, 
Maximin, etc. among many others, can be applied. 

 
Despite the type of information available, it is clear that the order of the alternatives provided by 
the decision-maker is a direct function of the Framework of Behaviour, in which the problem is 
defined. In other words, given a decision problem, the chosen alternative will change depending 
on the Context.  
 
Although the number of possible Frameworks of Behaviour (Frames for short) for decision 
making is practically unlimited, we highlight some Frames as being the most influential from 
the decision maker point of view. 
 
Specifically, we refer to the following:  
 



- Neutral Frame, which arises when the context of the problem is exempt of peculiarities that 
can influence the decisions to be taken. In general, this Frame, in which the decision-maker 
chooses the courses of action with rational criteria, without external incidences and for 
variables that take real positive values, is usually assumed for the theoretical study of 
solutions to the problem. 

- Frame of Competition, which arises when two or more decision-makers with partially or 
totally opposed interests take part into in the problem; each of whom act in their own benefit. 
In these circumstances a decision may by chosen that, not being the best, is that which most 
benefits the decision-maker for the prejudice that it may cause to his/her opponent. 

- Ethical Frame, in which the decisions are taken prioritising the common good of the social 
surroundings in which the problem is developed. Often, the decisions that are chosen are the 
optimum in terms that cannot be measured quantitatively, although they can qualitatively: 
the best alternative for the survival of a company may be the suppression of x job posts. 
However, in a Frame of Labour Ethics that optimum decision can be substituted by another 
much less damaging for the persons involved. 

- Adversarial Decision Making Frame, in this frame, decision maker may resort to sub-optimal 
solutions because there is an external observer (adversary) trying to diminish decision maker 
rewards. For example, he may not choose the optimal route because he is being observed and 
tries to confuse the adversary. 

- Emergency Frame, appears when exceptional circumstances are given (e.g. catastrophes, 
, 

which are usually not all of those possible. Hopefully, that best decision in the emergency 
frame may match the optimal solution (the one corresponding to the neutral frame). 
Nevertheless, in the majority of cases it will not happen due to different factors such as the 
lack of resources to explore all the range of alternatives, the possible disappearance of 
alternatives, the sudden unfeasibility of some others, etc. In this frame, a good solution 
strategy can be to protocolise the problem, in such a way that when the emergency arises 
then an action protocol that minimises as far as possible the risks of a bad action can be 
consulted, being able to increase the possibility that the solution to the problem in an 
Emergency Frame and the optimal solution to the problem coincide. 

- Sustainability Frame, associated to sustainable decisions . In parallel to how 
 [Bru], a decision is sustainable if it satisfies the current decision 

maker expectations (i.e. be optimal in some sense), but without compromising choices on the 
problem that may be made in the future. It therefore makes perfect sense that we consider the 
Sustainability Frames to take decisions which, fitting the needs of the problem facing us, 
allow to solve the problem again when it reappears, without being conditioned by the 
preceding decisions.  

- Dynamic Frame, in which the concept of best solution changes with time as the conditions 
are subject to dynamic changes also. A simple example illustrate this. We wish to decide the 
route that we will follow to reach a specific place. The information available advises 
choosing route R1 over R2. But as we will not be the only ones who solve that problem, at 
that same moment, there may be a large number of persons who isolate and independently 
also take route R1. Thus R1, which appeared the fastest, safest, shortest or whatever, will 

-
having even put into practice the choice of R1. This Dynamic Frame is typical of Problems 
of Transport, Investment, Management and many other areas [Yan].  

 
Although the description we have given has been done describing each Frame separately, it is 
clear that a confluence of frames could occur. The following figure describes this situation, both 
for a problem with complete information as well as with incomplete information, which in each 
case would add a third dimension to the figure: that of the source of available information. 
 



 
Figure 2: Concurrence of Frames of Behaviour and types of information 

 
4. Particular Decision Problems: Optimization Problems 
 
Given a decision problem, we consider two different perspectives. The first is called Model 
Formulation and the second is Model Solving. From the point of view of formulation, we need 
to define the elements K). From the point of view of model solving and 
independently of the environment and the frame of behaviour, we always need to take the best 
decision, i.e. find the alternative that maximises our results. It is at this point, where the decision 
problem becomes an optimisation problem.  
 
The optimisation problem can be defined once the features of the decision problems are fully 
determined, particularly the type of information available and the frame in which it will be 
developed. Thus, the optimisation problem can be represented as (XI

K, EI
K, f I

K,  IK), where  
stands for a given type of information (I) and a frame of behaviour (K).   
 
Then the problem we have is to find that alternative x*  XI

K such that 
 

f IK(x*) = MaxI
K {f IK(x): x  XI

K; f IK: XI
K EI

K  UI
K} 

 
where f I

K is a function that gives the reward associated to each alternative, for each state of 
nature that is considered. Said reward can be numerical, linguistic, etc. 
 
As we described above, let us now distinguish two cases: when the information available is 
complete or incomplete.  
 
Problems with Complete Information 
 
If the current situation has the following features: the available information is complete, the 
results are valued in the real line, the set of alternatives X  Rn and the environment of 
certainty, i.e. we know exactly what the state of nature is; the problem that we have is to find 
that alternative x*  X such that 
 

fK(x*) = MaxK {fK(x): x  XK; fK: XK EK  UK} 
 
This situation can be stated as a General Optimisation problem (GOP), formulated in the 
following terms: 
 



Maximise f(x) 
Subject to gi for i  M      

    hj(x) = 0, for j   
         x  K  
 
where f, gi(x) and hj(x), i  M and j  L, are functions that take values in the real line and K is a 
set of rules, eventually constraints, that define the Frame of Behaviour in which the problem is 
to be developed.   
         
In the context of the GOP, the frame of behaviour K appears as constraints on the values of the 
variables, as functions gi(x) and hj(x), i  M and j  L or as both.  
 
The function f is called objective function. Constraints gi M are called inequality 
constraints, while the hj(x) = 0, j L, are called equality constraints. A vector x X that satisfies 
all the constraints is said to be a feasible solution to the problem, with the feasible set of the 
problem being constituted by all the feasible solutions. As a patent result, resolving the previous 
GOP consists in finding a feasible solution x* such that  
 

f(x* for any feasible solution x 
 

A solution x* is called the optimal solution to the problem. 
 
Given that any constraint in equality can be decomposed into two constraints in inequality (one 

 and that, multiplying by -1, any constraint in becomes represented in 
rth we shall represent a GOP considering only inequality constraints.  

 
If we now assume the ideal situation of a Neutral Frame, and we add the constraint x  0 (i.e.  K 
is defined by the positive orthant), the problem to be solved is formulated as follows,  
 

Maximise f(x) 
Subject to gi for i     (1) 

          x  
 
The reader can observe here that this is a Mathematical Programming problem. We can resort to 
a wide set of methods to solve it. 
 
Mathematical Programming problems can be divided into two major groups: those of Convex 
Programming, characterised because the functions that take part into them are convex, i.e. 
satisfy that  
 

x,y  X and  0) 
 
and those of non-Linear Programming, which describe optimisation problems in which the 
functions that define them are neither linear nor convex. These latter do not usually have 

s.  
 
Problems with Incomplete Information 
 
If the current situation has the following features: the available information is incomplete, with 
fuzziness that can be properly modelled with fuzzy techniques, the set of alternatives and the 
results are also fuzzy, then the corresponding optimization problem consists in finding the 
alternative x* such that 
 

f fK(x*) = Max
f
K {f fK(x): x  Xf

K; f fK: Xf
K Ef

K  Uf
K} 



 
where the superscript f his problem is a Fuzzy Mathematical Programming 
problem that can adopt different versions and need specific solution methods. 
  
Therefore, from now on we shall consider problems that can be formulated as, 
 

Maximise         f(x)f 
Subject to:        gi(x)f f 0, for i  I    (2) 

                        x  K  
 
where the objective function, the set of constraints or the coefficients that take part into the 
problem, one by one, partially, or all together are of a fuzzy nature.  
 
We consider in the following that the functions f and gi, i  I, are convex and that the 
coefficients that take part into the problem are given by LR type fuzzy numbers.  
 
We recall that a fuzzy set A, with membership function  is said to be convex if 
 

 
 
(alternatively, a fuzzy set is convex if all its -cuts are convex). Likewise, [Tak], a fuzzy set Kf  
in Rn, with membership function , is a (fuzzy) cone if all its -cuts are cones in R, [0,1].  
 
Therefore, and as before, if K constrains the solutions to the positive orthant, we obtain the 
model that was first studied in [Bel]: 
 

Maximise         z = f(x)f 
Subject to:        gi(x)f f 0, para i  I     

                      
 
When all the elements that take part in the problem are convex, we have a Fuzzy Convex 
Programming problem. Depending on the specific characteristics of the different fuzzy elements 
that define it, we will have different types of Fuzzy Convex Programming problems.  
 
Among these, the most important due to their application to the real world are those of Fuzzy 
Linear Programming (FLP), those of Fuzzy Quadratic Programming (FQP), those of Fuzzy 
Geometrical Programming (FGP) and, because of their theoretical interest and novelty, those of 
Fuzzy Conic Programming (FCP). These variants are described next.  
 
4.1 Fuzzy Linear Programming 
 
The most general FLP problem can be stated as follows: 
 

Maximise         z = cfx 
Subject to:        Af f bf      (3) 

                      
 
where cf and bf are vectors of n and m fuzzy numbers, respectively, Af is an n m matrix of fuzzy 
numbers and f is a comparison relation among fuzzy numbers.  
 
The description of the origin of FLP, its different taxonomies, models, methods, extensions and 
applications, is beyond the scope of this paper. The interested reader is referred to [Luh2], 
[Ver1], [Ver2] and [Lod].  
 



We recall that (3) can be resolved from the Representation Theorem of Fuzzy Sets, taking into 
account its -cuts, [0,1]. For illustrative purposes, we will show next how such solution 
approach works, as it may help to solve other similar problems.  
 

 (3) all the elements that take part into the problem are well known, with 
the exception of the set of constraints which we consider as fuzzy. In other words, the decision-
maker allows violations up to a certain value that he/she predetermines. In the following model, 
the fuzziness in the constraints is represented by the symbol  f : 
 

Maximise         z = cx 
Subject to f b     (4)  

                      
 
Formally, this means that for each constraint ai f bi, i  I, there is a continuous and not 
decreasing membership function ( ) defined by the following expression, 
 
  
 
 
 
 
In such a way that whenever the constraint is completely satisfied, the degree of its fulfilment is 
1, but that violations of the constraint are admitted up to a maximum value bi+di, from which 
the degree of fulfilment is zero.  
 
Considering the -cuts of the constraints, [Ver1] we can find a fuzzy solution for our problem 
[Ver1] from the optimal parametric solution x*( [0,1], from the following parametric PL 
model, 
 

Maximise         z = cx 
Subject to          + d (1-         (5)   

  [0,1] 
 
This model, is a conventional (non-fuzzy) model that acts as an auxiliary model in the search for 
a fuzzy solution for (4) and illustrates how, in general, if we have a fuzzy optimisation problem 
Pf, calculating its -cuts, [0,1], we build a collection of -problems that we can solve (for 
each ) with standard methods. We thus obtain a set of solutions x*( [0,1], from which, by 
application of the Theorem of Representation, we build the final fuzzy solution xf of Pf. 
 
A special case of this type of problems are those of Fuzzy Fractional Programming, initially 
introduced in [Luh1]. In general, a Fractional Programming problem is established in the 
following terms, 
 

Maximise    z = f0(x) 
Subject to: P g   
  Ax = b 
   

Where the objective function f0 is defined as  
 

f0(x) = (cx + d) / (ex + f) 
 

and ex + f > 0, and c,d,e and f are real coefficients. 
 

            1                         if       aix   bi 
 
 

  i(aix, bi) =     1 - (aix-bi)/di      if di  aix   bi  + di  
                        0                       if       aix  > bi + di 



These problems, by simple transformations, can be easily linearised, and changed to reach the 
following structure: 
 

Maximise  cy + dz  
Subject to:  Py     
   Ay  bz = 0 
   ey + fz = 1 

                 
 
when some of the elements that take part into the problem are of a fuzzy nature we can obtain 
Fractional Fuzzy Programming Problems which in each case will have different structures: 
fuzzy constraints, fuzzy objective, etc. and obviously can be solved by means of the above 
parametric method. 
    
4.2 Fuzzy Quadratic Programming 
 
Within Convex Programming, we can find the field of Quadratic Programming, which can be 
understood a generalisation of Linear Programming. Quadratic Programming problems are 
applied in a wide variety of areas [Sil]: ranging from Least Squares approximation and 
estimation problems through to those of planning insurance and re-insurance, passing through 
those which are perhaps the most referred to: those of selection and optimisation of economic 
portfolios.   
 
In general, a quadratic programming problem is posed as follows,  
 

Maximise            z = cx + ½ x H x 
Subject to:          A       (6)   

      
 
where c, b and A have known meanings and H is a symmetrical matrix, of appropriate 
dimensions, which is positive semi-definite, so that the quadratic shape xHx is convex and the 
objective function is also convex. 
 
From here, and in the same ways as with FLP problems, we can consider different models of 
Fuzzy Quadratic Programming according to where fuzziness may appear. For example, in the 
coefficients of the objective function, 
 

Maximise             z = cfx + ½ xHfx 
Subject to:               (7)   

    
 
in the constraints, 
 

Maximise             z = cx + ½ xHx 
Subject to:         f b      (8)   

     
 
or in the coefficients that define the constraints, 
 

Maximise              z = cx + ½ xHx 
Subject to:         Af f bf                (9) 

     
It is obvious that combinations among these three models also make sense, i.e., Quadratic 
Programming problems with fuzzy costs and constraints. 
 



A first approach to these problems can be found in [Bec] and a survey of models and solution 
methods in [Sil]. However, we note that we can apply the parametric method explained in the 
previous sub-section to any of these three problems (7)-(9) to obtain auxiliary models that, in 
each case, are no more than conventional Quadratic Programming parametric problems, 
solvable with standard algorithms. 

4.3 Geometric Programming

A Geometric Programming problem in standard form is an optimisation problem that has a very 
special structure. To specify its definition, [Duf], we remember that we use the term monomial 
function or simply monomial, to refer to a function of the shape

1 2
1 2

na a a
nf x c x x x

where c > 0 and the values are real numbers. The constants c and ai are usually named as
coefficient and exponent of the monomial, respectively.

A sum of monomials, i.e. a function with the form

1 2
1 2

1

k k nk

K
a a a

k n
k

f x c x x x

where ck > 0 is called posynomic or posynomial. Any monomial is a posynomial.

Then, a Geometric Programming problem is formulated as, 

Maximise f(x)
Subject to gi (10)

hj(x) = 1, para j 

where the hj(x) are given by monomial functions, the objective f and the constraints gi are 
posynomial functions and the variables x, by definition, are strictly positive, i.e., xi > 0, i = 1, 

, n.

From a model like (10), some generalizations are possible, like Fuzzy Geometric Programming 
models, i.e. problems in which some or all of the elements that define it are of a fuzzy nature:

- Geometric Programming problems with fuzzy coefficients and/or exponents, derived 
from situations in which fuzzy numbers gives the corresponding parameters. We shall 
denominate these as Fuzzy Numbers based Geometric Programming problems.

- Geometric Programming problems with fuzzy constraints, i.e., Geometric Programming 
problems in which some, or all, of the constraints can be slightly violated. We shall 
denominate these problems as Fuzzy Constrained Geometric Programming problems.

- Fuzzy Geometric Programming problems, i.e. Geometric Programming problems in 
which coefficients, exponents and constraints of a fuzzy nature are simultaneously
considered.   

With regard to solution methods for each of these three types of problems, the most immediate,
intuitive and effective approach is to employ a parametric one [Ver1], i.e., based on the 
determination of the -cuts [0,1], of the fuzzy elements that take part into the problem.



Geometric Programming problems are in almost all cases associated to Engineering 
applications. Among these, energy control, concentration of impurities (doping profile), the 
design of digital circuits, logistics, the composition of floors (floor planning), the wiring of 
circuits or the calculation of reticular steel structures (truss design), to cite but a few, stand out 
[Boy]. But, although they are real-world applications, it is more that reasonable to suppose that 
the data available have a fuzzy nature; yet in reality there are not many known models of 
Geometric Programming in the specialised literature which consider fuzzy elements, thus 
making it an important area and with growing interest [Cao], [Zho], [Liu].

4.4 Fuzzy Conic Programming

A set K is a convex cone if it is a convex set and additionally it is a cone, i.e. for any x1, x2 K
and 1 2 0, it is verified

1x1 + 2x2 K

A Conic Programming Problem is posed in the following terms,

Minimise cx
Subject to Ax = b, x K (11)

where c Rn, b Rm, A is a matrix (n m) of real numbers and K is a convex cone. 

The dual problem of (11) is,

Maximise by
Subject to K* (12)

A and K* is the dual cone [Tak] of K, defined by

K* = {s Rn x K}

The applications of Conic Programming are very varied and amongst which we can highlight
[Lob] antenna array weight design, portfolio optimisation with loss risk constraints, finite 
impulse response filter design, equilibrium of systems with piecewise-linear springs or grasping 
forte optimisation. However, and despite the novelty and interest of its applications, there is 
little work found in the area of fuzzy sets related to Fuzzy Conic Programming (FCP).

An important concept is that of fuzzy convex cone. A fuzzy set K in Rn is a fuzzy convex cone 
if all its -cuts K , [0,1], are convex cones. From that, taking into account some of the 
already known results on duality in Fuzzy Mathematical Programming [Ver3], different 
possibilities arise to study dual problems of the possible Fuzzy Conic Programming problems 
that may appear, depending on whether the fuzziness is in the coefficients of the objective 
function or in some element of the constraints, whether it be the cone itself, the constraints, the 
coefficients in the constraints or a model that involves two or more of these elements.

But in addition to these lines of research, there are other options that depend on the 
characteristics of the cone K that takes part into the problem. The most frequently used cones 
are the Positive Octant, the Lorentz Cone or Second Order Cone and the Positive Semi-defined 
Cone. Thus, for instance, we could consider certain fuzziness in the case of the Lorentz Cone, 

12 2

1
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nn
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K x x x x

To work with a Fuzzy Lorentz Cone Kf, i.e., defined as



12 2
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nn
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where, as we have been representing throughout this work, the symbol f makes reference to the 
fact that the constraint that defines Kf, is fuzzy.

In this case would have the following new Fuzzy Conic Programming problem,

Minimise cx
Subject to Ax = b, x Kf

and its possible variants.

It seems clear that the definition of fuzzy dual cone and, from that, the approach and resolution 
of new Fuzzy Conic Programming models, is a task of undoubted interest which will have to be 
undertaken immediately, as well as analysing the possibility of integrating the different Frames 
of Behaviour that we defined above in Section 3, for decision making in terms of sustainability, 
of crisis, etc., but now defining those frames from the concept of cone, whether it be fuzzy or 
not.

Concluding Remarks

In decision making contexts, making the best decision is equivalent to find the optimal 
alternative, thus the connection between a decision problems and an optimization problems is 
clear. One key aspect of these problems is that one of the kind of available information. 
Considering different types of information available and frames of behaviour, which maps to a 
set of constraints restricting the alternative availables, may lead to a myriad of 
scenarios/situations/models. Taking into account all these aspects, we have explored here the 
different models that may arise when we consider incomplete information and vagueness, and 
particularly when the vagueness is associated with fuzziness. As a consequence we have 
contributed some rationality to the field of optimisation by facilitating the comparisons and 
allowing new optimisation and decision models to appear, which up to date have not been 
considered in the literature. The proposal and analysis of solution methods for these new 
optimization models found, mainly those of Fuzzy Conic Programming, but also those derived 
from the new defined frameworks of behaviour, will be approached in future works.
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