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Abstract 

A classical theorem of Mac Lane and Whitehead states that the homotopy type of a topological 
space with trivial homotopy at dimensions 3 and greater can be reconstructed from its 711 and 712, 
and a cohomology class ks ~H~(rri, 7~). More recently, Moerdijk and Svensson suggested the 
possibility of using Bredon cohomology to extend this result to the equivariant case, that is, for 
spaces X equipped with an action by a fixed group G. In this paper we carry out this suggestion 
and prove an analogue of the classical result in the equivariant case. @ 1998 Elsevier Science 
B.V. All rights reserved. 

AMS Classijication: 55N91; 55R91; 55T91 

1. Introduction 

Mac Lane and Whitehead proved in [ 191 that the homotopy type of a pointed space 

(X,x0), with trivial homotopy at dimensions 3 and greater, can be reconstructed from 

its fundamental group rct(X,xs), together with the rct(X&)-module x2(X,x0) and a 

cohomology class ks l H~(rcr(X,xg), r~(X,xs)). The objective of this paper is to prove 

an analogue of this result (Theorem 7.1) for spaces X equipped with an action by a 

fixed group G or G-spaces. 

From the point of view of its equivariant homotopy type, a G-space X can be 

regarded as a diagram of spaces, namely, the spaces XH of points fixed by each 

subgroup H of G. More concretely: if U(G) denotes the orbit category of G (see 

Section 7), then there is a functor TopG --tT~p~(~)” associating to each G-space X a 

“fixed points” diagram of spaces 
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Xc-) : O(G)OP + Top, 

(taking each object G/H E O(G) to XH) and it is this diagram what determines the 

equivariant homotopy type of X. For example, the equivariant fundamental groupoid 
of X is determined by the fundamental groupoids of all the spaces of fixed points XH, 

with H a subgroup of G. 

The equivariant fundamental groupoid functor is obtained from the usual fimdamen- 
O(G)OP tal groupoid fimctor Top % Gpd as the composite of rcf = rc, with the functor 

TopG + Top o’(GYP indicated above, 

Top’ __t TOpo(G =: , GpdO(G)“, 

4 

so that the equivariant fundamental groupoid of a G-space X is the fimctor 

r&Y) : O( G)Op -+ Gpd, 

which takes any object G/H E 8(G) to the fundamental groupoid of the space XH. 

Applying the Grothendieck construction (see Section 2.1) to the equivariant funda- 

mental groupoid of a G-space X we obtain a category rcG(X) (see Eq. (7.2)) which 

plays in the equivariant case the same role that the fundamental groupoid plays in the 

non-equivariant one. So, a local coefficient is just a n’(X)-module, i.e. a functor from 

rcG(X) to the category of abelian groups. In particular the equivariant homotopy groups 

rc,“(X) are local coefficients. 

Bredon defined the equivariant cohomology of a G-space in [5], and recently 

Moerdijk and Svensson [21] have generalized Bredon cohomology to an equivari- 

ant cohomology with local coefficients. This generalization is given in terms of the 

cohomology of small categories. So, in order to generalize the result of Mac Lane- 

Whitehead we have to substitute cohomology of small categories for group cohomol- 

ogy. To this end, we devote Section 2.4 to introduce and to give some interpretation 

of the cohomology of a small category. In particular we see that this cohomology is 

a cotriple cohomology and that we can use Duskin’s interpretation theorem to identify 

the cohomology of a small category with the set of connected components of torsors. 

Since this interpretation will be essential in the proof of our generalization of the Mac 

LaneWbitehead result (Theorem 7.1), we dedicate Section 3 to introduce 2-torsors 

in the context of the category Cat of small categories. We must say that we intro- 

duce 2-torsors from an angle that it is different from that appearing in [9] and closer 

to the ideas of [lo]. This new approach (which, in any case, we have learned from 

Duskin) is based on the simple idea that a 2-torsor over lI is just a groupoid with 

connected components equal to Ii’ and such that the endomorphism groups are globally 

determined by a n-module (see Section 3.1 for details). 

The generalization of the Mac Lane-Whitehead result says that the equivariant ho- 

motopy type of a G-space X, with trivial equivariant homotopy at dimensions 2 3, is 
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completely determined by the O(G)“P-diagram of groupoids rcy(X), the rrG(X)-module 

rc,“(X) and a cohomology element kj E H3(nG(X), TC,“(X)). Here H3(rcG(X), rc,“(X)) is 

the cohomology of the small category rc’(X) with coefficients in the nG(X)-module 

Our proof of this theorem is based on the adjunction 

C : Cat/%? P Cat’ : J v’ 
(where the right adjoint, &, is the Grothendieck semidirect product construction), as 

well as the extension of this adjunction to the context of 2-categories (see Section 6). 

Thus, part of this paper is devoted to introduce these functors and to study the way 

they behave with respect to torsors. 

We want to thank I. Moerdijk for having introduced us to this problem. In our 

work we use most of the techniques that he and Svensson developed for the study of 

equivariant homotopy problems. On the other hand, we have learned that Joyal and 

Tiemey have developed a more general method of approaching this kind of problems. 

Their method consists in substituting a topos d for the topos of sets and using a Quillen 

model structure in the topos of simplicial b-objects. In particular they have the project 

of building the whole Postnikov tower of a simplicial b-object so that they will obtain 

all the k-invariants. The topos of G-sets is a particular but very important case and we 

all agree that the explicit methods of calculation of the ks-invariant we presented here 

are of general interest. 

2. Preliminaries 

2.1. Grothendieck semidirect product construction 

The 2-category Cat of small categories has lax colimits, that is, any functor F : %‘+ 

Cat (with % small) has a lax colimit (see [4] for the definition of lax colimit). 

The explicit construction that is used to prove the previous statement is called the 

Grothendieck construction or Grothendieck integral and can be found, e.g., [14] or 

[ 181. Given a functor F : V + Cat defined on a small category 97, the category ob- 

tained as the lax colimit of F is called the Grothendieck semidirect product of %? by 

F and is denoted by & F. Its objects are pairs (C,x), where C is an object of V 

and x and object of F(C), and an arrow (C,x) -+ (C/,x’) is a pair (f, /2) consisting of 

an arrow f : C + C’ in 59, and an arrow ;1: F(f)( x -+x’ in F(C’), with the obvious ) 

composition. 

As a lax colimit, the Grothendieck construction has the following property: there is 

a family of functors, one for each object C E 97, 

jC:F(C)-+ F, J w 
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a family of natural transformations 

for each arrow f : C’ + C in V, satisfying the following properties: 

jlc = ljc, 

for any pair of composable arrows C L C’ -% Cl’ in 59 the following diagram 

of natural transformations commutes 

These data are universal in the usual sense for colimits: if there is any category d 

(not necessarily small), together with suitable families of mnctors for each object C, 

tC, and natural transformations for each morphism f : C--t C’, tf, satisfying the above 

properties, then there exists a unique functor T : &F 46 which determines all the 

functors tC and all the natural transformations tf in terms of the jc and the jf in the 

usual sense. 

There is an obvious projection (forgetful functor) SW F + V suggesting that the 

Grothendieck construction SW(-) may be seen as a functor from the functor category 

Catq to the slice category Cat/% 

s 
: Cat’ + Cat/V . 

Q 

Actually this is even a 2-functor (taking as 2-cells between l-cells F, G : (d -% U) 

--)(&I --% U) in Cat/%? just those natural transformations cx : F + G such that bee = 1,). 

Furthermore, if G : %+W is any hmctor between small categories, we have a com- 

mutative square 

.L 
Cat”’ -+ Cat/V 

1 
s, 

1 

Cat’ + Cat/%? 

where the vertical functors are obtained by composition with G and pulling back along 

G respectively. Thus, the “Grothendieck integral” &F is natural in %‘, so that one can 

briefly summarize all the functorial properties of the Grothendieck integral by regarding 
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it as a natural transformation between fimctors from the 2-category of small categories 

to the category of 2-dimensional categories, 

s 
: Cat’-IdCat/( 

Furthermore, if we restrict our attention to groupoids, then the Grothendieck integral re- 

stricts to a “natural transformation” between the following functors from the 2-category 

of small groupoids to the category of 2-dimensional categories, 

J : Gpd(-)+Gpd/(-). 

In other words, if %? is a groupoid, the Grothendieck integral functor & restricts to a 

functor making the diagram 

Gpa” > Gpd/V 

.P .P 
Cat 59 1, ----+ Cat/%? 

commutative. 

The fi,mctor J, : Cat’ +-Cat/%? has a left adjoint C : Cat/??+Cat’, (see, e.g., [14]) 

and as a consequence we have that the functor & : Cat” + Cat/V preserves all limits, 

and in particular pullback diagrams. Moreover, although the left adjoint C does not 

preserve finite limits in general, it does preserve some. In fact, it is not difficult to see 

that the fimctor Z preserves pullbacks. 

We state now a lemma that shows a very interesting property of the adjunction 

C : Cat/%? @ Cat” : J . Y 
Lemma 2.1. Given a jiinctor F: +Z-+Cat, for any object C E V, the category F(C) 
is a co-reflective subcategory of (Z SW F)(C). M ore speciJically, there is a canonical 

inclusion of categories 

ic : F(C)+ (J) z F (Cl, 4 
which embeds F(C) as a full subcategory of (Z SW F)(C). Moreover the counit of the 
adjunction Z -I J, gives, for any object C E 97, a right adjoint of ic 

Ed: C F (C)-F(C). (J) w 
2.2. V-modules 

Since the fimctor & : Cat’ + Cat/% preserves the terminal object, any global point 

1 -+F of a functor F E Cat’ gives rise to a global point of s, F in Cat/%?, that is, 



220 M. Bullejos et al. I Journal of Pure and Applied Algebra 129 (1998) 215-245 

a section of the projection &F 4%‘. Thus, if F has exactly one global point, the 

projection has a canonical section and s, F becomes a pointed object in Cat/%. This 

occurs, for example, if each of the categories F(C) for C E %? has exactly one object 

(making the functor F : W-t Cat factor through the full subcategory Mon - Cat of 

monoids). In such case &F is canonically a pointed object in Cat/%?. Furthermore, in 

that case, JV F has “the same objects” as 59, and the projection functor J, F 4 W is “the 

identity on objects” so that &F is canonically a pointed object in the full subcategory 

of Cat/% consisting of those functors G : F -+ W that are the identity on objects. We 

shall use the notation Cato/% to indicate such full subcategory, and we will use an 

analogous notation in other contexts. For example, if % is a groupoid we will denote 

Gpd,/V the full subcategory of Gpd/%? consisting of those functors G : .F + V that are 

the identity on objects. 

The functor & preserves all limits and in particular, Cartesian products (even when 

restricted to Man’) and thus it takes every monoid or group object in Man’ to a 

monoid or group object in Cat/%. But the monoid objects in Mon” are commutative 

and they constitute the full subcategory ComMon’ ~Mon’ where ComMon is the 

category of commutative monoids. Therefore, if a functor F : V + Cat has the property 

that all its values are commutative monoids, then &F is canonically a commutative 

monoid object in Cat&?. 
Summing up, the restriction of the Grothendieck construction to the category 

ComMon’, factors through the category of commutative monoid objects in Cato/%?. 

The importance that all this has for us lies in the fact that we will be applying the 

Grothendieck construction to left %‘-modules, i.e. functors A : %? -+ Ab (where the cat- 

egory Ab of abelian groups is seen as a full subcategory of Cat). In this case the 

category J, A (with its projection to 9?) is canonically an internal abelian group object 

in Cat&F? 

Ab’ 
sv 

k Ab(Cat@Z) 

SJ s Cat” 0 Cat/V. 

2.3. Geometric realization and weak equivalences of a-categories 

Our objective now is to define the concept of weak equivalence of (small) 
2-categories and to establish two lemmas each of which gives sufficient conditions 

for a 2-functor to be a weak equivalence. These lemmas will be crucial for our 

main theorem. 

As it is done in the case of small categories, the definition of weak equivalence 

of small 2-categories is reduced to that of spaces by functorially associating to each 

small 2-category a simplicial set called its 2-nerve and, then, forming the geometric 

realization of this simplicial set. There are several possible definitions of the a-nerve. 
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One of them is obtained by applying to 2-categories the elegant construction of nerve 

given by Moerdijk and Svensson in [20]. This, however, we shall not do mainly because 

we have not been able to prove our required lemmas based on such definition. Instead 

we give a definition (embodied in diagram 2.3) from which the two Lemmas 2.2 and 

2.3 follow easily using well known results. Before we give our definition of 2-nerve 

we shall review some basic notions mainly to set up our notation. 

A 2-dimensional category or 2-category CC is just a category enriched in the category 

Cat of small categories, that is, for any two objects A,B E 6, we have a category 

t&4, B) of arrows, whose objects are called the arrows or l-cells in 

and whose arrows are called deformations or 2-cells. A deformation M: 

f and g will be represented as 

C from A to B 

between arrows 

Thus, in a 2-category 6 there are two different compositions of deformations. One 

of them, arising from the composition in the categories E(A,B), is called the verti- 
cal composition, while the other, arising from the enrichment composition fimctors 

6(A,B) x K(B, C)+C&4, C), is called the horizontal composition. 

A 2-fimctor between 2-categories, f : B 4 a’, is just a functor such that for any two 

objects of tX, A, B, the arrows part of f, 

fAa: WJO+@(f(4,fW) 

is a functor. Similarly, a 2-natural transformation between 2-functors is just a natural 

transformation whose components are functors. Small 2-categories, 2-fimctors between 

them and 2-natural transformations constitute a 2-category denoted by 2-Cat. For useful 

background information concerning enriched categories and 2-categories, we refer the 

reader to [4, 6, 151. 

We regard any small 2-category & as an internal category in Cat in the following 

way (of the two possible ways): let G??o be the underlying category of 6 (we leave 

out the deformations). Let Vi be the category whose objects are the same objects of 

C and whose arrows are the deformations of 6, the composition in Vi being given by 

the horizontal composition of deformations. Then 6 can be internally represented in 

Cat by the following diagram 

(2.1) 

where the ftmctor Id is the common section of s and t (s for source and t for target) 

taking any arrow to the identity deformation on it, the pullback is that of s and t, and 

the composition, o, is the functor given by the vertical composition. All the categories 
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in the above diagram have the same objects and all the above hmctors are the identity 

on objects. 

We shall now define the nerve of small 2-categories. Recall that for small categories 

the nerve functor 

Ner : Cat 4 Set”’ (2.2) 

is the right adjoint to the categorization fimctor (see [24]), and therefore it preserves 

limits, a fact that we will use later. 

Now, both of the categories Cat and Setdo’ are Cartesian closed, thus they are 

monoidal categories. Since the nerve functor (2.2) preserves Cartesian products and ter- 

minal object, it is a monoidal functor. Thus, it induces a 2-functor 2-Cat -+(SetAop)-Cat 

from the 2-category of small categories enriched in Cat to the 2-category of small 

categories enriched in simplicial sets. Furthermore every small category enriched in 

simplicial sets can be regarded as a “simplicial category”, and one gets a 2-functor 

(SetAoP)-Cat+CatAop. This, composed with the previous one, gives a 2-functor 

%er : 2-Cat + Cat”‘. 

On the other hand we have the Artin-Mazur total complex functor w from the 

category of double simplicial sets to the category of simplicial sets, 

see [l]. Using (2.2) we can form the composite N = w o Ne#“” o ‘%er, 

N&@ 
2-Cat Wer Cat”’ ------+ Set 

A~xAop w is, . Aop 
i 

(2.3) N 

which we define to be the 2-nerve fimctor. 

By the geometric realization or classifying space B(E) of a 2-category 6 we mean 

the geometric realization of its 2-nerve, B(B) = IN(( A 2-functor f : &+Q’ will 

be called a weak equivalence of 2-categories if the corresponding continuous map 

B(f) : B(Q) + B(6’) is a weak equivalence of spaces or, equivalently, if the simpli- 

cial map N(f): N(E)+N(C’) is a weak equivalence of simplicial sets. It is difficult 

in general to see when a 2-functor is a weak equivalence. However, as an immedi- 

ate consequence of the fact that any equivalence of categories induces a homotopy 

equivalence between the corresponding nerves, and the fact that the “diagonal” func- 

tor from Set”’ “Op to Set”’ is weak-equivalent to w, we have that Theorem B.2 

of [7] (which can be rephrased as saying: “Given two jiinctors F, G : A”P --+ SetAop 

and a natural transformation F A G, if all components of I are weak equivalences 

then the diagonal of 2 also is a weak equivalence”) implies the following two results 

(Lemmas 2.2 and 2.3) where (5 and 6’ are small 2-categories regarded as internal 

categories in Cat as indicated above, 
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Lemma 2.2. If f : 6 + (5’ is a 2-functor such that: 
1. it induces a bijection between the corresponding sets of objects, and 
2. for any two objects X, Y E (I the induced functor 

f x.r:a(x,y>~~'(f(x),f(y)> 

is an equivalence of categories, then f is a weak equivalence of 2-categories. 

Lemma 2.3. Zf f : (E -+ 6’ is a 2-functor such that the induced functors f,, : %,, A Gf$ 

and f, :Vl -Ul, are equivalences of categories, then f is a weak equivalence of 
2-categories. 

2.4. Cohomology of small categories 

We shall now review some basic facts about cohomology of categories (cf., e.g. 

[3,23,251). 
The cohomology of a small category +Z with coefficients in a (left) %-module 

A E Ab’ can be defined (by viewing A as an abelian group object in Set’) as the 

cohomology of the topos Set” with coefficients in A. This cohomology is calculated 

as the right derived functors of the global section (or lim, ) functor 

r:Ab’+Ab. 

There are other ways to compute this cohomology, for example as the cohomology of a 

cochain complex associated to the nerve of the category V and also as the cohomology 

of certain cochain complex associated to a cosimplicial complex of abelian groups 

obtained by some kind of bar resolution (see [3]). 

A further way to calculate the cohomology of a small category ‘+? is suggested by the 

fact that, as noted in Section 2.2, for any %-module A, the Grothendieck construction 

produces an abelian group object J,A -+ W in the category Cat&T and the fact that 

this category is tripleable over the full subcategory Gpb,/U(%) of the slice category of 

graphs over the underlying graph U(w) associated to q. Indeed, the category Cat&?? 

is tripleable with cotriple associated to the adjunction 

F : Gph,/U(V) P Cat,,/%? : U, 

where F and U are induced by the “free category” and the “underlying graph” hmctors 

respectively. 

Let G denote the corresponding cotriple. It can be proved (by using the resolution 

in [3] and doing an appropriate translation of what happens in the case of groups - 

see [8] for the details) that there are natural isomorphisms 

between the cotriple cohomology groups HE(V, J, A) of the identity of %? with coeffi- 

cients in the abelian group object &A -+ %? and the cohomology of the small category 
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Gf: with coefficients in the %-module A. The set Der(%,A) of derivations of % is defined 

by a suitable generalization of the derivations in the case of groups (see, e.g., [ 131). 

This interpretation of the cohomology of a small category as a cotriple cohomology 

allows us to use Duskin’s interpretation theorem (see [9]) to find natural isomorphisms 

H”+‘(W,A) ” Tor”[%?,A], 

where the right-hand side is the set of connected components classes of n-dimensional 

U-split torsors above V with coefficients in A. We dedicate Section 3 to study 

2-dimensional torsors in this particular context. 

We now particularize to the case in which the category V? is a groupoid. In this case 

we still have that the category Gpd,/V is tripleable over Gph,/U(V). Let G’ be the 

corresponding cotriple. Now, as noted in Section 2.2, for any g-module A, the forgetful 

functor J, A + %? is also an abelian group object in Gpd,/V. Then, we can mimic what 

happens in groups in order to follow an analogous reasoning with groupoids and get, 

as above, natural isomorphisms 

for all n > 0. So, in the case that V is a groupoid, the cohomology of %? can be identified 

as the cohomology of two different cotriples. In fact we have natural isomorphisms 

E H”+‘(%$A) 2 HE 

Finally we note that the cohomology of a small category can be also interpreted as a 

singular cohomology when the module of coefficients is a local system of coefficients, 

that is, when the module of coefficients is a fimctor A : xl(%) --f Ah where rri(V) is the 

fundamental groupoid (i.e. the groupoid of fractions) of the small category ‘%. Since 

we have a canonical functor %’ + r~i(%?) we can consider A as a V-module. Then, a 

local coefficient is a local coefficient for the geometric realization B(W) = INer(%?)] of 

the category w. 

Illusie proves in [16] that, for local coefficients, there are natural isomorphisms 

H”(%?, A) g H”(B(%), A), 

where H”(B(W),A) are the singular cohomology groups of the space B(V) with coef- 

ficients in the local system A. 

As an immediate consequence of the above isomorphism we have: 

Proposition 2.4. Zf a functor F: V -+%?I is a weak equivalence in the sense that 

the induced map between the corresponding geometric realizations (or nerves) is 

a weak equivalence of spaces (or of simplicial sets), then for any local coeficient 

A : TC~(%?> -+ Ab the induced group homomorphisms 

F* : H”(@,A) + H”(%,F*(A)) 

are isomorphisms. 
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3. Two-dimensional torsors 

In this section we interpret Duskin’s concept of two-dimensional torsor [9] in the case 

that the base category is Cat## and the forgetfi_d functor is U : Cat&? + Gph,/U(%?). 

We will take this as the definition of 2-torsor (in Section 3.1) leaving to the reader 

the task of verifying that it coincides with that given by Duskin in [9] when it is 

particularized to our context. The main reasons we have to use this interpretation of 

the concept of 2-torsor are: 

l to explicitly specify the fiber in the data that define a 2-torsor, and 

l to be able to determine the homotopy type of the 2-categories which appear as the 

fibers of 2-torsors, in some particular contexts (see Theorem 4.3). 

We begin by briefly reviewing some known results to help fixing our notation. Given 

a 2-category 6 regarded as an internal category in Cat as we indicated in Section 2.3, 

diagram (2. l), a (left) action of 6 on a small category, or (left) C-object in Cat is a 

category over %?o, P : X -+ Vo, equipped with a fimctor 

defined on the pullback of s : GT?, --+ VO and P, subject to the usual associative and unit 

laws, and moreover making the diagram 

commutative. There, pr denotes the canonical projection. 

The above required conditions on ,u imply that there is an action of the set of 

deformations of 6 on the set of arrows of % in such a way that the only deformations 

CI that act on an arrow f : A --) B in X are those whose source is P(f ), i.e. 

pm 
P(A) x P(B). 

f? 

Such deformation c( acting on f produces an arrow "f = ,u(cc, f) : A + B in X such that 

P(Ef) = g, the target of tl. 

Given two C-objects, (X 5 %‘o,P), and (g 5 @o, v), an equivariant functor or 

morphism of CC-objects from one to the other is a morphism (X 5 %?o) 2 (C?J 5 %?o) 

in Cat/Vo, compatible with the actions, in the obvious way. Thus, F is such that if u 

acts on (A LB) E % then necessarily c( acts also on F(f) and F(‘f) = ‘F( f ). 
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We will let &Cat to denote the category of (%-objects and equivariant functors. This 

category is also known as the category of internal functors from 6 to Cat, which is 

often denoted by Cat’, because there is a forgetful ftmctor K-Cat -+ Cat/%$ that has 

a left adjoint and the monad on Cat/%?,, induced by this adjoint pair has E-Cat as 

category of algebras. 

Evidently any 2-functor f : 6 + 6’ induces in a fimctorial way (via pullback) a 

functor 

f* : @-Cat + C-Cat, (3.1) 

which preserves in particular finite products, a fact that will be used in Section 3.1 in 

the definition of 2-torsors. 

In a second place, some considerations about internally connected groupoids in 

Cato/Zi’ have to be made. Let us consider the ftmctor 

II0 : 2-Cat + Cat (3.2) 

which sends any 2-category (X to the category II,(K) of connected components of 6, 

that is, to the coequalizer of the fimctors s and t, in the diagram (2.1), 

For a given 2-category (5. let II = no(%). Clearly 6 can be considered as an internal 

category in Cato/U and as such it is connected since II “is” just the terminal object 

of Cato/II. 
If the 2-category 6 is actually a category enriched in the category Gpd of small 

groupoids (so that every deformation has an inverse with respect to the vertical com- 

position) then 6 is also a groupoid as internal category in Cato/li’ and we can say 

that iX is an internally connected groupoid in Cato/ZZ. 
Conversely, let us suppose that a small category n is given and 6 is a 2-category 

which, when regarded as an internal category in Cat, it is an internally connected 

groupoid in Cat&‘. Then evidently II = Us(&) and (5. is actually a category enriched 

in groupoids. 

In what follows our interest will be focused on those 2-categories which are internally 

connected groupoids in Cato/L’ for a given small category II. 

Let 6 be a (small) 2-category which is enriched in the category of groupoids. We 

shall now build a special B-object which has a canonical structure of abelian group 

object in %-Cat. Consider the functor 8 : 2-Cat + Cat which associates to each small 

2-category 6 the equalizer of (s, t) (see (2.1)), 

that is, Q(6) has tie same objects as (E: and its arrows a : A --+ B are just deformations 

c( in a from any arrow f : A + B in B to itself. The composition in J?(6) is given 

by the horizontal composition of deformations and the obvious functor b(E) + %c is 

the identity on objects and sends any arrow cx, as above, to the corresponding f (its 

source and target). 
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Now, if 6 is enriched in the category of groupoids, we can specify an action 

given by conjugation (with respect to the vertical composition), i.e. a deformation 

p acts on an endodeformation CI only in the case that the vertical composition /Sz 

exists and then the result of the action is fizz = /?c$?-’ . In this way we have that &CC-) 

is canonically a C-object in Cat, i.e. an object in (E-Cat. Moreover, the projection 

&F(6) --) %?o has a canonical section 55’s --f B(C), which sends any arrow f in %‘s to its 

own identity deformation and it is clear that the vertical composition of deformations 

makes of B(K) a group object in C-Cat. This group plays an important role in the 

definition of 2-dimensional torsors. 

3.1. Dejinition and properties of 2-torsors 

Let l7 be any small category. If we consider it as a discrete 2-category then 

II-Cat = Cat/n. Thus, if 6 is a 2-category which is an internally connected groupoid 

in Cato/IZ, then the canonical projection P: 6 --+Zi’ (as a morphism of 2-categories) 

induces, as in (3.1), a finite-product preserving hmctor Cat/h’+ C-Cat (pulling back 

along P), which in turn (since it preserves finite products) induces a functor 

P* : Ab( Cat/Ii’) -+ Ab( E-Cat), 

between the corresponding categories of internal abelian group objects. Thus, we have: 

Definition 3.1. Let Zl be any small category and A : II -+ Ab a left ZI-module. A two- 

dimensional torsor above Zl with coefficients in A (or just a l7-A 2-torsor or an A-2- 

torsor above n) is a pair (&A) consisting of an internally connected groupoid 6 in 

Cat&I (called the jber of the torsor), together with a group isomorphism 

Note that for any 2-torsor (6, A), since the group object sn A + Ii is abelian and 1 

is an isomorphism, b(C) is abelian. This means that for any arrow f E (5 the group 

of deformations of f to itself is an abelian group, and this implies that the action 

of 6 on b(O;), given by conjugation, is trivial (meaning that the action of any two 

deformations with the same source and target is the same). So, the isomorphism 1 can 

be seen just as an isomorphism of group objects in Cat/%?0 (forgetting the action). 

Hence the following is an equivalent definition of 2-torsor, which we will prefer. 

Definition 3.2. A two-dimensional torsor above I7 with coefficients in A is a pair 

(&A) consisting of an internally connected groupoid 6 in Cat&i’ and a functor 

I: &(a) + J, A, compatible with the corresponding group structures and such that 
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it makes the following diagram a pullback in Cat 

a(K) L J, A 

1 1. 

%?(J + n 

A morphism of 2-torsors, f : (6, A) -+ (a’, A’), is a 2-functor f : Cs. 4 C’, making com- 

mutative in Cat/I7 the following diagram 

(3.3) 

where a(f) is the obvious functor induced by f, which is clearly compatible with the 

group structures. 

The category of II-A 2-torsors and morphisms between them will be denoted by 

Tor2(ZI,A) and the corresponding set of connected components by Tor2[U,A]. Then, 

as we indicated in Section 2.4 we have natural isomorphisms 

H3(IZ,A) CL’ Tor2[ZI,A]. 

Note now that any 2-category which is the fiber of a 2-torsor above n has the same 

set of objects as 17 and that any morphism f : (CC, I) -+ (CC’, A’) of 2-torsors above n is 

the identity on objects. Moreover, for any two objects X, Y E Zl the induced functor 

f ~,,:ww+mJ) 

is an equivalence of groupoids. In fact, the groupaids (X(X, Y) and CC/(X, Y) have the 

same set of connected components, namely ZI(X, Y), and, on the other hand, the com- 

mutativity of the diagram (3.3) and the conditions of torsor imply that the square 

is a pullback. So, the fimctor f induces, for any arrow g :X + Y in 6, an isomorphism 

between the group of deformations in C from g to itself and the group of deformations 

in CC’ from f(g) to itself. 

We can then apply Lemma 2.2 which immediately implies the following: 

Theorem 3.3. Any morphism f : (6, A) + (C’, A’) of 2-torsors induces a weak equiva- 

lence B(f) : B(K) + B(B’) between the corresponding geometric realizations. In par- 

ticular the fiber groupoids of any two 2-torsors in the same connected component 

have the same homotopy type. 
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4. Two-dimensional torsors above a groupoid 

In this section we are going to study 2-torsors above a groupoid instead of merely 

above an arbitrary category. In particular we will prove that any 2-groupoid is the fiber 

of a 2-torsor above its groupoid of connected components. 

Let us suppose that 6 is a 2-groupoid and let Vc be its underlying groupoid. As we 

have seen in Section 3, in this case the group of deformations of any arrow is always 

an abelian group and so d(K) is an abelian group object in Cat/%‘,,. We shall now 

prove that this abelian group is canonically the Grothendieck semidirect product of a 

@?o-module. 

To this end, we define a fimctor 

Ec:%‘o-Ab (4.1) 

which sends every object C E %‘o to the abelian group E&(C) of endodeformations of 

the identity arrow of C and sends every arrow f : C + C’ to the group homomorphism 

&(f) :-WC> + EdC’) 

given by conjugation (with respect to the horizontal composition) with the identity 

endodeformation of f, that is, Ed = fjf -‘. 

Note that for every f the group homomorphism Ea( f) is an isomorphism. Moreover, 

for any deformation 01 in E the equality between the two possible ways of composing 

the deformations in the following diagram 

that is, the equality f/If -’ = a/k’, g’ Ives that Eg(f) can be obtained by conjugation 

(with respect to the horizontal composition) with any deformation a with source f. 

Analogously, Eg(f) can be obtained by conjugation with any deformation CI’ with 

target f. From this we deduce that if there is a deformation between two arrows 

f and g in (5 then Ea( f) = Eg(g). On the other hand, for any arrow f : C -+ C’, any 

deformation CI : f =+ f is completely determined by f and a deformation of the identity 

arrow of C, so we conclude: 

Lemma 4.1. Given a 2-groupoid 6, the functor over %?o 
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which takes any arrow (f, cc) : C --+ C’ of SW0 EK to the horizontal composition 

is an isomorphism of abelian group objects in E-Cat. 

As an immediate consequence of the above Lemma 4.1 we have that to give a 

2-torsor above a groupoid Il with II-module of coefficients A: li_tAb and fiber a 

2-groupoid (I is equivalent to give a natural isomorphism 1, 

(4.2) 

of go-modules. 

Let us suppose that II is the groupoid of connected components of a 2-groupoid 6 

and let us choose a section (T (at the underlying graph level) of the canonical projection 

%O + II. Since for any two arrows f and g of 6 in the same connected component 

we have Eg( f) = EK(g), we can define a ZI-module A : II --) Ab by A(C) = E&(C) 
and A(J) = E&(0(7)), for any arrow 7 E II. This n-module does not depend on the 

section (T we have chosen, and, on the other hand, there is a natural equivalence 

Iz as in diagram (4.2) above, which gives rise to a 2-torsor above IZ with coeffi- 

cients in A. This torsor (which is not canonical) is usually called the obstruction 
of 6. 

Summing up, we have: 

Theorem 4.2. If QZ is a 2-groupoid with IZ as groupoid of connected components, and 
A : Il + Ab is the II-module de$ned above, then B is the jiber of a 2-torsor above L’ 
with coeflcients on A, called its obstruction. 

Let us remark that in general, if a 2-groupoid CC is the fiber of a 2-torsor above a 

groupoid Il with coefficients in a II-module A, a direct use of the results of Dwyer- 

Kan in [ 111, when they are applied to the simplicial groupoid %er(C.C), gives that the 

classifying space B(6) is a 2-type with tidamental groupoid ZI and A as second 

homotopy group fimctor. The next theorem extends this result to any 2-category which 

is the fiber of a 2-torsor above a groupoid. 
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Theorem 4.3. If a 2-category CC is the fiber of a 2-torsor above a groupoid Ii’ with 
coejicients on a II-module A, then B(K) is a 2-type with fundamental groupoid Il 
and A as second homotopy group functor. 

Proof. If ll is a groupoid and A is a fl-module, in Section 2.4 we have given iso- 

morphisms 

gHH”+‘(lI,A)=H;, ZI, A , 
(s) 17 

where G and G’ are the cotriples associated to the adjunctions 

F : Gph,,/U(n) P Cato/Il : U and F’ : Gph,,/U(ll) + Gpd,/ll : U 

respectively. In particular we have isomorphisms 

which show that any cohomology class can be interpreted either in terms of 2-torsors 

defined internally in the category CabJIll (which are just those we are using until 

now) or else in terms of 2-torsors defined internally in the category Gpd,,/ll. The 

only difference between 2-torsors defined internally in Cato/IZ and 2-torsors defined 

in Gpd,/l7 is that the fiber in the second case is necessarily a 2groupoid. 

So the isomorphisms (4.3) imply that in the connected component class of any 

2-torsor above a groupoid II, there is one whose fiber is a 2-groupoid. Thus, by 

Theorem 3.3 and the above remark the proof is complete. 0 

5. Whitehead 2-groupoid 

The following construction can be found in [20] : Let X be a topological space, 

let Y 2X be any subspace and let S C Y be a set of (“base”)-points. The Whitehead 

2-groupoid W(X, Y, S) of (X, Y, S) is defined as follows: 

l the underlying groupoid of W(X, Y, S) is the fundamental groupoid zi( Y, S), 

l the deformations of W(X, Y,S) are homotopy classes of maps from the square I x Z 

into X, which are constant along the vertical edges with values in S, and map the 

horizontal edges into Y, 

l the domain and codomain of one such deformation are given by restriction to I x 0 

and I x 1 respectively, and the composition of deformations is defined in the usual 

way. 

As in [20], we next apply Whitehead’s construction to the following particular 

case: let T be a simplicial set, with T@) its k-skeleton, and let 1 . 1 denote geometric 
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realization. We define 

W(T)= W(]Tl, ]T(‘)I,]T(O)I). 

This 2-groupoid has the following properties (see [20]): 

(9 

(ii) 

(iii) 

the underlying groupoid E’(T)0 of W(T) is the fundamental groupoid of 

T(l), i.e. 

V(T)0 = rcr(T(r)), 

and therefore W(T)0 is just the free groupoid on the graph 

given by the l-truncation of T, 

the groupoid of connected components of W(T) is the fundamental groupoid 

rcr(T) of T, and the projection 

W(T)0 + r~(w(T)) 

is the functor induced by the inclusion T(l) -+ T, 

the functor Ew(r) : W(T)0 --f Ab (as in diagram (4.1)) takes any point x0 to the 

homotopy group Q(T, T(‘),xo), so that we identify 

Ewcr) = n2(T, T(l)) : q(T(‘)) + Ab 

and also we identify 

&w(n) = I x2( T, T(l)) + W(T),. 
n,(V)) 

Let us note that there is a natural equivalence Ar, also natural in T, 

/:‘1- 
R, (T”‘). T Ab. * 

E W(Q = Ic, K T((‘) 

So the pair (W(T), 2,) is a 712(T) 2-torsor above xl(T), which corresponds to the 

obstruction of the 2-groupoid W(T) as in Theorem 4.2. 
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The natural&y of the above constructions assures that for any simplicial morphism 

f : T + K we have a commutative cube 

in which the front and back faces are pullbacks. 

6. An extension of Grothendieck construction 

We are going to use the following extension of the Grothendieck semidirect product 

construction. Note that this extension is different from the one given by Moerdijk and 

Svensson in [20]. 

Let 59 be a category and let 5: %’ +2-Cat be a functor from V to the cate- 

gory of small 2-categories. By composing $J with the “domain” forgetful fimctor 

( -). : 2-Cat -+ Cat (see diagram (6.1) below) we obtain a functor FO : W + Cat which 

sends any object C E V to the underlying category of the 2-category s(C). Our exten- 

sion of the Grothendieck construction will give us a 2-category s& 3 with underlying 

category 

and a canonical projection 2-functor 

(where 5~7 is regarded as a 2-category with no deformations except the identities), in 

such a way that the following square will be commutative: 

Z-Cat’ ssf ,k 2-Cat/%? 

(-% 
1 1 

C-X 

Cat’ s ) Cat/W. 
0 
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A deformation 

(CP) ~(C’,x’) 
ff’, 1’) 

in JJ,, 3 exists only if f’ = f and in that case it is defined as a deformation 

in g(C’). The vertical and horizontal compositions of deformations are defined in the 

obvious way. 

This construction determines a functor 

JJ : 2-Cat’ + 2-Cat/W 
v 

which extends the usual Grothendieck construction as indicated above. Moreover this 

functor commutes with the calculus of connected components in the following sense: 

let ZIs : 2-Cat + Cat be the functor (3.2) which sends any 2-category (5. to its category 

of connected components. Then we have the following lemma, whose proof is of a 

rather technical character but not difficult. 

Lemma 6.1. For any small category % the following diagram commutes 

2-Cat’ Ss, 2-Cat/V 

where lli denotes in both cases the jiinctors induced by l70 : 2-Cat + Cat. 

On the other hand, if for every object C E 59 the 2-category s(C) is a locally 

connected groupoid in the sense of Section 3, then the 2-category JS, 5 is again 

a locally connected groupoid. Moreover, in this case it is also easy to prove that 

this extension of the Grothendieck semidirect product construction commutes with the 

functor 8 :2-Cat --+ Cat, defined in Section 3. In fact we have: 

Lemma 6.2. For any functor $j : %T -+ 2-Cat such that for every C E %? the 2-category 
s(C) is a locally connected groupoid, there is a natural isomorphism 8 : &J’S, 5) S 
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&a& which makes commutative the diagram 

235 

On the other hand, the adjunction 

C:Cat/V*CaP: 
s Q’ 

given in Section 2.1, can be extended to the context of 2-categories, so that the functor 

JJW also has a left adjoint 

Z : 2-Cat/%? --) 2-Cat’. 

Let us note that if we consider the functors 

2-Cat (-)p Cat 
GI 

which send a 2-category (E; to its 

of deformations of 6 respectively, 

2-category Z(P) satisfies that 

(W))o = C(Vo 5 C) 

and 

(Z(P)), = C(%, -% C) = C(V] 

(6-l) 

underlying category %‘o and to the category Vt 

then for any 2-category above 59, CT. LV, the 

= C). 

Therefore, since the functor C preserves colimits (it has a right adjoint) we have: 

Lemma 6.3. For any small category ?? the following diagram commutes 

2-Cat/V -5 2-Cat’ 

% 1 1 G, 

Cat/W --f Cat’ 
1 

where Il: denotes in both cases the functors induced by Ilo : 2-Cat + Cat. 

The way the fimctor C is defined assures that if (I 5 %? is a 2-category above 

%? which is enriched in groupoids (i.e. any deformation has an inverse with respect 
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to the horizontal composition), then Z(P) is a functor with the property that for 

any object C E %’ the %-category Z(P)(C) is enriched in groupoids and in this case 

&(C(P)(X))= Z(QK))(X). In this sense we will say that the fimctors C and 6’ 

commute. 

7. The theorem 

We come now to the main part of this paper. A group G will be regarded as a 

one-object category, so that the category of G-spaces is the fimctor category TopG of 

functors from G to the category Top of topological spaces. The orbit category of the 

group G is the category O(G) whose objects are left G-sets of the form G/H with 

H C G a subgroup and whose arrows are all the equivariant maps. 

The equivariant homotopy type of a G-space X is determined by the homotopy 

types of the spaces XH of points fixed by each subgroup H of G. More concretely, 

any G-space X determines a fimctor 

(7.1) 

which sends any object GjH of O(G) to the space 

XH = Mapo(G/H,X) 

of points fixed by H, so that we have a fimctor TopG ---f T~p”l(~)“. The homotopy 

invariants of the G-space X are the homotopy invariants of the above diagram (7.1) 

of spaces. 

The equivariant fundamental groupoid of X is the functor 

$(x) : O(G)‘P + Gpd, 

which takes any object G/H E Co(G) to the fundamental groupoid of the space XH. If 

we apply the Grothendieck semidirect product construction (see Section 2.1) to this 

contravariant functor we obtain a category above O(G>oP, which we simply denote 

rcG(X): 

7cG(X) = TC~(X) + cO( G)Op 
> 

. (7.2) 

Now, for any integer n 22 and any object G/H of O(G), we can consider the 

homotopy groups rc,(XH) as functors, or rci(XH)-modules, 

nl(xH) “.‘X”’ Ab, 
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which send an object of rci(XH) (a point x cXH) to the n-th homotopy group rcnn(XH,x). 

Moreover for any map f : G/H -+ G/H’ we have a continuous map Xf : XH’ +XH 

and so a natural transformation 

By the universal property of rcG(X) (of being a lax colimit), the above data is equiv- 

alent to a functor or rrG(X)-module 

which is a local coefficient for the G-space X, called the n-th dimensional G-equivariant 

homotopy group of X. 

After having developed all the required machinery in the preceding sections, we are 

finally ready to state and prove the following theorem, which is the equivariant version 

of the classical theorem proved by Mac Lane-Whitehead [19] for usual spaces. 

Theorem 7.1. The equivariant homotopy type of a G-space X, with trivial equivari- 
ant homotopy at dimensions greater or equal than 3, is completely determined by a 
diagram of groupoids 

Zl : O( G)OP + Gpd, 

a h(G)“p II-module A and an element 

k3EH3 ( s,,,/‘A)’ 
In order to prove this theorem we shall first rephrase it in terms of the homotopy 

category of O(G)‘P-diagrams of simplicial sets. Recall that the homotopy category of 

G-spaces is equivalent to the homotopy category of Lo(G)diagrams of simplicial sets, 

see, e.g., [12] or [20]. This equivalence is induced by the singular complex functor 

Top 2 Setdo’ through the functor Top’ % (SetdoP)“(G)op which sends any G-space 

X to the diagram of simplicial sets 

S’(X) : O( G)Op + SetdoP 

which takes an object G/H E O(G) to s(XH), the singular complex of the space XH. 

Here the homotopy invariants of a diagram of simplicial sets are defined pointwise. 

So, to prove the above Theorem 7.1 is equivalent to proving the following. 
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Theorem 7.2. The equivariant homotopy type of a @(GYP-diagram of simplicial sets 

T : O( G)Op 4 Setdo’, 

with trivial equivariant homotopy at dimensions greater or equal than 3, is completely 
determined by a diagram of groupoids 

Il : U(G)“* + Gpd, 

a JO(G)OP II-module A and an element 

Proof. Given the diagram of simplicial sets 

T : cO( G)Op + Setdo’, 

let TH be the image of an object GJH E O(G) and let Tf : TH’ + TH be the image of 

a G-map f : G/H + GjH’. We then have: 

0) a functor ZI= x1(T): cO(G)oP --+ Gpd, taking an object G/H to the fundamental 

groupoid of TH (where TH is seen as a space via the usual hmctor SetADP --+ Top), 

so ZI(G/H)=zl(TH), 
(ii) for each object G/H E Lo(G), a fiurctor xz(TH) : xl(TH) +Ab, and 

(iii) for each arrow f : G/H -+ G/H’ in O(G), a natural transformation 

Now, as the data in (ii) and (iii) satisfy the analogous of conditions (a) and (b) in 

Section 2.1, we obtain a &oYP II-module 

A: 
J’ 

II+Ab 
O(G)OP 

which sends an object (G/H,x) E JOtGYP L! to the abelian group n2(TH,x). On the other 

hand we can also build a functor 

.I 
rc2( T(-)) : CO(G)OP + Gpd 

z,(T(-)) 

which sends any object GjH E C”(G) to the groupoid s,,CrH, nz(TH> and any arrow 

f : G/H + G/H’ to the hmctor 
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induced by the natural transformation rcz(Tf) as in (iii). Then we can apply the 

Grothendieck construction to get a category 

s (s C'(Gpp n,(T(-1) 

Moreover, the canonical fnnctors S ff,(TH) x2(P) + n,(P) induce a functor 

J’ s n*(T(-)) + J 27, 
C(G)Op n,(Tc-)) t( G)Op 

with the property that for any object G/H E O(G) the square (where the horizontal 

arrows are the canonical inclusions) 

is a pullback. 

It is also straightforward to see that there is a canonical isomorphism of objects 

above S@(G)oP n 

On the other hand, for every H the simplicial set TH has associated a 2-torsor above 

rci( TH) with coefficients in 7c2( TH) 

(@‘(TH)Jr4, 

as in Section 5, where &H is a fimctor which makes the square 

(7.3) 

W(TH)o - nl(TH) 

to be a pullback (see Section 5). This construction is natural in TH. Moreover the 

Whitehead 2-groupoid construction is functorial so, if we only take care of the fibers 
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W( TH) of the above torsors, we have a functor 

WT : O(G)OP ---f 2-Gpd. 

Let 

W(T) = 
/-./ 

WT 
CC(Gpp 

be the corresponding 2-category. Now, since any W(TH) is a 2-groupoid with nl(TH) 

as groupoid of connected components, we can see W(TH) as a locally connected 

groupoid in Cat&c,( TH), for any object G/H. Then we have (by Lemma 6.1) that 

W(T) is a locally connected groupoid in Cat/(~,(,),Il), in particular the category 

of connected components of W(T) is JOCGYP II. If we now apply the Grothendieck 

construction to the pullback squares (7.3), we get squares 

S O(G)OP W(T% - 

which are also pullbacks, by the results stated in 2.1. But we can identify: 

l JOCGYP &( W(T(-))) with &W(T)) (by Lemma 6.2), 

’ &G)OP S n,(T(-') 7q(T(-)) with JJ ,A and 
S(C)OP 

l &o)OP W(T(-))O with w(T)O. 

Therefore we have a diagram 

that is a pullback, so the pair 

(W(T), AT) 

is a 2-torsor above JO(G)op Xl with coefficients in A. This torsor determines an element 
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Besides, from the O(G)OP-diagram of simplicial sets T, we have obtained: 

l a Lo(G)diagram of groupoids ZI : O(G)oP + Gpd, 

. a s&y II-module A, and 

0 an element k! EH3(&,),II,A). 

Note that if we have a natural transformation q : T -+ T’ between B(G)“!‘-diagrams 

of simplicial sets such that each of its components is a weak equivalence, then by 

applying the above constructions we get the same diagram of groupoids Il associated 

to T and T’, the same JO(G)OP Ii’-module A and (by the naturality of the Whitehead 

2-groupoid construction) 2-torsors (W(T), AT) and (W(T’), 2,) which are in the same 

connected component, so they determine the same element k? = k:’ E H3(J,(,), ZI,A). 

This completes the first part of the proof. Conversely, let us suppose that we start with 

a O( Gyp-diagram of groupoids 

Ii’ : S(G)Op + Gpd, 

a SOUP II-module A and an element 

For any object G/H E O(G), let us write AH the ZZ(G/H)-module obtained from the 

s 0(G)OP17-module A by restriction through the canonical inclusion 

I;I(G/H) q II. 
J O(G)OP 

As before we can define a functor 

s 
A(-) : O(G)OP + Gpd 

m-) 

which takes any object G/H E O(G) to J,cG,H, AH, in such a way that there is a 

canonical isomorphism of objects above JO(Gr,Pn, 

bJ(G)‘WA = ) SO(G)JI7(-)A(-) 

Let us choose a 2-torsor (6, ,I) which represents the cohomology class k3. By 

Theorem 3.3, all the fiber groupoids of 2-torsors which represent the same cohomol- 

ogy class have the same homotopy type so it does not matter which 2-torsor we have 
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chosen. As usual, let us consider the diagram 

(7.4) 

which can be thought of as a diagram above O(G)OP. Let 

C( (5) : O( G)Op --) 2-Cat, 

be the functor obtained by applying the functor 

C : 2-CatlO(G A 2-CatcocG)” 

to the canonical projection 

as 2-category above LO(G) Then, by Lemma 6.3, for any object G/H E 8(G) the 

category of connected components of C(CC)(G/H) is C(&cPP I-I)(G/H), hence (by the 

note after Lemma 6.3) Z(&)(G/H) is a locally connected groupoid in the category 

Cat&(&G,OP W(G/H). 
Moreover, since the square in diagram (7.4) is a pullback and ,Y preserves pullbacks 

(see 2.1), we see that for any object G/H E O(G) the square 

C(&(Q)(G/H) = &W(W))) 5 CC J-J ,4WH) 
P(G)OP 

CWo)(G/H) - ~(&,,,,WW) 

(where AH is the functor induced by A) is also a pullback. Consider now the diagram 

~(W(G/H))) 5 C(s S +WW) 
C(G)OP 

1 1 

and let KH be the 2-category obtained by lifting the 2-category Z(C)(G/H) by pullback 

via the canonical inclusion 

II(G/H) - C (s > n (WO 
O(G)OP 
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Then C? is a locally connected groupoid in Cat&I(G/H) and c?‘(@) is the pullback 

S(CH) - &(-W(W))) 

WH)o - (W(Wf)))o 

Moreover the functor AH induces a functor AH*, as in the diagram 

QCH) 
P’ d WGIH) 

AH 

/ I/ 

I 
) WGIH) I 

in which the top face is obtained by lifting the bottom one by pulling back along the 

canonical inclusion Zi’( G/H) - C( ~pcGJop IZ)(G/H) (note that all squares in the cube 

are pullbacks). Thus, the pair (KH, AH*) is a 2-torsor above ZI(G/H) with coefficients 

in AH. Moreover, since II(G/H) is a groupoid we can apply Theorem 4.3 to deduce 

that the geometric realization B(aH) is a 2-type with 

TT~(B(~~)) = U(G/H) and 7c2(B(EH))=AH. 

Summing up: We start with a 2-torsor (6, A) above JO(G)V17, then we consider this 

data above the category O(G)or (via the canonical projections) and we apply the cor- 

responding fimctor C to obtain a O(G)oP-diagram of functors, such that for any object 

G/H E O(G) the pair (Z(CQ(G/H), AH) is a 2-torsor above Z(sCCGPP II)( G/H). Now, 

the groupoid Il(G/H) is a co-reflexive subcategory of the groupoid ~~~~~~~~ II)(G/H) 

via the canonical inclusion 

IZ(G/H) - Z 
(1 > 

fl (G/H) 
O(G)Op 

(see Lemma 2.1) which therefore is a weak equivalence of categories, so the set of 

connected components of torsors above Ii’(G/H) is in bijective correspondence with 

the set of connected components of torsors above C(JOCcYP ZI)(G/H), when the co- 

efficients are appropriated (see the end of Section 2.4). Finally we lift the torsors 

(C(CC)( G/H), LH) via the above inclusions of categories to get torsors (CH, AH* ) above 

lI(G/H) with coefficients the II(G/H)-modules AH. 
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Let us now note that the construction of the torsors (@, AH*) is natural in G/H 
in the following sense: for any arrow G/H -+ G/H’ in O(G), we have a commutative 

diagram 

which induces a commutative diagram 

and so a 2-fimctor 

6.f : @’ --+ cp. 

By this naturality, if we only take care of the fibers EH and we use the 2-dimensional 
nerve, we get a simplicial map 

N@) : N(cH’) -+ N(EH), 

and so a B(G)OP-diagram of simplicial sets 

TB = NK(-) : O(G)OP --f Set”’ 

such that, for any object G/H E O(G), the simplicial set Tk,(G/H) is a 2-type with 

~~(TQ(G/H)) = WGIH) and Q(T~,(G/H)) =AH. 

To finish the proof of this theorem we only need to note that the unity and counity of 

the adjunction 

C : 2-Cat/l!J( G)Op it 2-Cat”(G)op : JJ O(G)OP 

allows us to prove that if we start from a diagram of simplicial sets T as in the 

statement of the theorem, and we build the ks-invariant k: and the simplicial diagram 

Tk;, then we get a diagram which is weak equivalent to T. And conversely, if start 
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with an element k3 E H3(J,(,),, Il,A) we build the diagram of simplicial sets TQ, then 

the k3-invariant k> is again k3. 0 
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