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Abstract

By means of the availability of mechanisms such as Dynamic Voltage and Frequency
Scaling (DVFS) and heterogeneous architectures including processors with different
power consumption profiles, it is possible to devise scheduling algorithms aware of
both runtime and energy consumption in parallel programs. In this paper, we pro-
pose and evaluate a multi-objective (more specifically, a bi-objective) approach to
distribute the workload among the processing cores in a given heterogeneous paral-
lel CPU-GPU architecture. The aim of this distribution may be either to save energy
without increasing the running time or to reach a trade-off among time and energy
consumption. The parallel programs considered here are master-worker evolution-
ary algorithms where the evaluation of the fitness function for the individuals in the
population demands the most part of the computing time. As many useful bioinfor-
matics and data mining applications exhibit this kind of parallel profile, the proposed
energy-aware approach for workload scheduling could be frequently applied.
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1 INTRODUCTION

Nowadays, due to economic and environmental reasons, energy-saving has emerged as one of the main goals in computing
systems and the term efficiency not only means good speedups but also optimal energy consumption. Thus, the development of
scheduling procedures that take into account both objectives constitutes an important research issue (1, 2, 3, 4).

In this regard, two main approaches could be explored. On the one side, present microprocessors usually implement power
management policies that usually change between microprocessors and are not visible to the user. In this case, it is necessary
to devise a black-box approach (5) that models the main characteristics of the applied power management policy. The other
approach uses techniques, such as DVFS, that enable the user to control the frequency and voltage of the processors in the
platform (2, 3). In both cases, the target is the development of a task scheduling procedure that, by being aware of those factors,
minimizes runtime and reduces energy consumption.

This multi-objective requirement for task scheduling procedures is tackled in the present paper by proposing a multi-objective
(i.e. a bi-objective) cost function that represents the user choice instead of using a Pareto-based multi-objective approach. This
cost function substitutes the user’s selection of one of a non-dominated solution in the front obtained from a Pareto-based
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multi-objective approach to the optimization problem by the assignment of a suitable value to the parameters that define the
proposed bi-objective cost function. To build the cost function, suitable models are needed to predict both running time and
energy consumption corresponding to the workload to be distributed. One of the contributions of this paper is an approach
based on linear regression to build the energy model from experimental measures obtained from the energy consumption of
the computing node in the development of parallel master-worker evolutionary algorithms implemented in heterogeneous CPU-
GPU architectures. Our experiments in this paper also show that, for many applications, the effect of programming strategies
that take into account energy consumption principles is directly observable in the consumption of the computing nodes.

After this introduction, Section 2 describes the characteristics and applications of parallel evolutionary algorithms considered
in the paper. Then, Section 3 describes the proposed cost function including the goals of minimizing runtime and energy con-
sumption. It can be used to implement scheduling procedures that provide the allocation of tasks to processors to reach different
trade-offs between runtime and energy consumption according to the relative weight assigned to each one, as it is illustrated in
Section 4 in case of CPU-GPU platforms and master-worker parallel evolutionary algorithms. The experimental results to eval-
uate our proposal are provided in Section 5, and Section 6 summarizes the contributions published on energy-aware scheduling
procedures described in the literature and related with the work here presented. Finally, the conclusions are given in Section 7.

2 MASTER-WORKER PARALLEL EVOLUTIONARY ALGORITHMS

Many bioinformatics and data mining applications comprise tasks, such as classification, clustering, feature selection, and opti-
mization, that implement metaheuristics based on evolutionary algorithms. As these algorithms are inspired in the natural
evolution, they evolve a set of solutions (population of individuals) for the target problem across a given number of iterations
(generations) by applying operators, such as selection, mutation and/or crossover to the solutions in the population according to
their quality, or fitness. This way, for a given iteration or generation, an evolutionary algorithm has to evaluate the fitness of the
solutions in the population according to a cost, or performance function. Once the solutions are evaluated, a selection operator is
applied to include the best solutions in the population for the next generation, and new solutions are also generated to complete
this new population by changing some of these solutions (through a mutation operator), by combining several solutions (through
a crossover operator) (6). Thus, each generation of an evolutionary algorithm requires the fitness evaluation of the solutions in
the population. This could imply a significant runtime, in many real problems where the fitness function is costly to compute
and/or in algorithms that evolve a population with a large number of solutions. Therefore, parallel processing constitutes a use-
ful approach to accelerate the execution of evolutionary algorithms and/or to improve the quality of the solutions they provide
as greater populations can be evolved in the same amount of times as more processors are involved. Different approaches can
be considered to parallelize an evolutionary algorithm, as can be seen in (7). In this way, it is possible to implement in parallel
the fitness evaluation for the different solutions in the population, or to distribute the solutions among smaller subpopulations
that evolve independently and interchange solutions after a given number of generations. Moreover, different profiles of paral-
lelism are present in the corresponding codes that evaluate the fitness for a given solution and it is interesting to develop efficient
parallel codes for the present heterogeneous CPU-GPU platforms.

With respect to bioinformatics and data mining applications, for example in (8), an evolutionary multi-objective optimization
is applied to solve a feature selection problem in a Brain Computer Interface (BCI) application. The individuals of the population
correspond to different sets of features that define the components of the patterns to be classified. These sets of features have
to be evaluated by the accuracy and generalization capabilities of the classifier once it has been adjusted by using the training
patterns characterized by the selected features. The iterations required to train the classifier usually require a high amount of
computing time as it is shown in Table 1 , which provides the runtime for the steps of a feature selection procedure based on
an evolutionary algorithm, described in (9) and analyzed with the tool gprof (10). The fitness evaluation needs between 99.93%
(with 120 individuals in the population) and 98.60% of the runtime (with 15,000 individuals). Moreover, as the evaluation of
the fitness is completely independent for each individual in the population, a master-worker approach constitutes a very suitable
alternative to efficiently parallelize this kind of problems. This way, according to Amdahl’s law, our hypothesis in this paper
considers that an energy-aware procedure to allocate the fitness evaluation tasks is still useful to devise an energy-efficient master-
worker evolutionary algorithm because, even in the case of a very large number of individuals in the population, the percentage
of runtime devoted to evaluate the fitness of the population represents the most time consumed of the procedure (above 98%).

Thus, this paper tackles energy consumption of parallel programs whose tasks dependence graphs are shown in Figure 1 (a). In
this graph, tasks 𝑇 1, ..., 𝑇𝑁 can be executed in parallel after task 𝑇 0, and after synchronizing themselves once they have finished,
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FIGURE 1 Task dependence graph considered (a), and evolutionary algorithm as example of application with such graph (b)

task 𝑇 0 is executed again and generates another set of parallel tasks, 𝑇 1, ..., 𝑇𝑁 , executed in parallel, and so on. Moreover,
the runtime of task 𝑇 0 is negligible with respect to runtime of each parallel task, 𝑇 1, ..., 𝑇𝑁 . Many useful applications can be
parallelized according to the dependence graph of Figure 1 (a). Indeed, Figure 1 (b) schematizes an evolutionary algorithm that
whose main characteristics have been previously summarized. In each generation, the fitness of the individuals in the population
has to be evaluated according to some performance procedure that could demand a costly computation.

3 A COST FUNCTION FOR MULTI-OBJECTIVE WORKLOAD SCHEDULING

The scheduling strategy proposed in the paper have to take into account information about both goals of runtime and energy
consumption reduction. These two objectives usually correspond to opposed goals, as improving runtime could imply increasing
the instantaneous power. An increment in the instantaneous power across the program runtime could correspond either to an
increment or a decrement in the energy consumed by the program, depending on the achieved acceleration on the runtime. This
way, we have to cope with a multi-objective (in this case a bi-objective) problem (11). An alternative to solve it is to use an
optimization algorithm that searches a set of Pareto non-dominated solutions (non-dominated scheduling alternatives) among
which the user selects the most appropriate one for the given situation. Nevertheless, due to the runtime required by this Pareto-
based multi-objective approach, in this paper we use a cost function whose minimum corresponds to the desired trade-off among
the two considered goals of time and energy. Of course, this trade-off is set offline by setting the values of the corresponding
parameters of the bi-objective cost function).

Therefore, given a task 𝑖 with a workload equal to 𝐶𝑖 clock cycles, that have been allocated to a processor 𝑗 running at
frequency 𝑓𝑗 , it is possible to define two indices, Δ𝑡(𝐶𝑖, 𝑓𝑗) and Δ𝐸(𝐶𝑖, 𝑓𝑗), with values between 0 and 1. These indices are
respectively related with the relative deviations of the estimated time and energy consumption, 𝑡(𝐶𝑖, 𝑓𝑗) and 𝐸(𝐶𝑖, 𝑓𝑗), for the
allocation of a task 𝐶𝑖 to the processor 𝑗 running at frequency 𝑓𝑗 , as is given in Equation (1):

Δ𝑡(𝐶𝑖, 𝑓𝑗) =
𝑡(𝐶𝑖, 𝑓𝑗) − 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥)

𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛) − 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥)

Δ𝐸(𝐶𝑖, 𝑓𝑗) =
𝐸(𝐶𝑖, 𝑓𝑗) − 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛)

𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥) − 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛)

(1)

This way, to select a processor and the corresponding frequency for a given task, the scheduling algorithm could use a cost
function that takes into account both the energy and runtime objectives through indices Δ𝑡(𝐶𝑖, 𝑓𝑗) and Δ𝐸(𝐶𝑖, 𝑓𝑗). Here, we
propose a bi-objective cost function Δ(𝐶𝑖, 𝑓𝑗) = 𝑎 ⋅ Δ𝑡(𝐶𝑖, 𝑓𝑗) + 𝑏 ⋅ Δ𝐸(𝐶𝑖, 𝑓𝑗) with positive coefficients 𝑎 and 𝑏 verifying that
𝑎+ 𝑏 = 1. This cost function promotes allocations with low values of Δ𝑡(𝐶𝑖, 𝑓𝑗) and Δ𝐸(𝐶𝑖, 𝑓𝑗), and even lower values for one
factor whenever the other factor grows. Depending on the relative values of 𝑎 and 𝑏, it is possible to give more relevance either
to optimize runtime or energy consumption.

To obtain the values of the deviations Δ𝑡(𝐶𝑖, 𝑓𝑗) and Δ𝐸(𝐶𝑖, 𝑓𝑗) for a given task 𝑖, on which the multi-objective cost function
depends, the corresponding models, 𝑡(𝐶𝑖, 𝑓𝑗) and𝐸(𝐶𝑖, 𝑓𝑗), that relate the runtime and the energy consumption with the workload
𝐶𝑖 and frequencies 𝑓𝑗 , are required. These models also allow the determination of the maxima and minima values for runtime
and energy consumption: 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛), 𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥), 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥), and 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛).
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Different approaches have been considered to estimate the models 𝑡(𝐶𝑖, 𝑓𝑗) and 𝐸(𝐶𝑖, 𝑓𝑗) that quantify the time and energy
consumption behaviours of the program execution in the given computing platform. For example, in (12), the target application
is run for different configurations in order to be able to fit a regression model to the observations. Other example of this black-box
approach is shown in (5). As in (3) and many other previous work dealing with this issue, the energy model can be also estimated
from the power consumption equations corresponding to CMOS circuits that include the terms associated to capacitive, short-
circuit, and leakage power. This way, assuming the capacitive term as the most significant one, we could estimate the power
consumption in a processor as:

𝑃𝑜𝑤𝑗 = 𝛽 ⋅ 𝑓𝑗 ⋅ 𝑉𝑗
2 (2)

Where parameter 𝛽 is related with the product of the number of transistors switching in the processor per clock cycle and the total
capacitance load, 𝑓𝑗 is the clock frequency, and 𝑉𝑗 is the supply voltage of the processor 𝑗. Therefore, the energy 𝐸𝑗 consumed
by a given task 𝑖 that requires 𝐶𝑖 clock cycles in a processor with a supply voltage 𝑉𝑗 can be estimated from Equation (2) by:

𝐸𝑗 = 𝛽 ⋅ 𝑓𝑗 ⋅ 𝑉𝑗
2 ⋅

𝐶𝑖

𝑓𝑗
= 𝛽 ⋅ 𝑉𝑗

2 ⋅ 𝐶𝑖

(3)

Whenever a processor is idle, there is also a so-called indirect energy consumption term that for a given processor 𝑗 can be
estimated by:

𝐸𝑖𝑑𝑙𝑒
𝑗 = 𝛽 ⋅ 𝑓𝑗 ⋅

(

𝑉 𝑖𝑑𝑙𝑒
𝑗

)2
⋅ 𝑡𝑗 (4)

being 𝑉 𝑖𝑑𝑙𝑒
𝑗 the supply voltage of the processor in its idle state and 𝑡𝑗 is the amount of time in which processor 𝑗 has been

in this state. The tasks have to be allocated to the processors included in a heterogeneous platform with 𝑁𝑃 processors,
𝑃𝑗(𝑗 = 1, ..., 𝑁𝑃 ). Each processor 𝑗 can operate at different Voltage Supply Levels (VSLs), 𝑉𝑗,𝑙(𝑙 = 1, ..., 𝜔(𝑗)), corresponding
to different clock frequencies 𝑓𝑗,𝑙(𝑗 = 1, ..., 𝑁𝑃 )(𝑙 = 1, ..., 𝜔(𝑗)). This way, if we use these models to estimate the energy con-
sumption, and considering 𝐶𝑖

𝑓𝑗,𝑙
as the runtime of a task 𝑖 with workload 𝐶𝑖 allocated to processor 𝑗 running at frequency 𝑓𝑗,𝑙, the

relative deviations of Equation (1) can be given as:

Δ𝑡(𝐶𝑖, 𝑓𝑗,𝑙) =

𝐶𝑖

𝑓𝑗,𝑙
− 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥)

𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛) − 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥)
(5)

Δ𝐸(𝐶𝑖, 𝑓𝑗,𝑙) =
𝛽 ⋅ 𝑉𝑗,𝑙

2 ⋅ 𝐶𝑖 − 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛)
𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥) − 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛)

(6)

In Equation (5), the parameters, 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛) and 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) can be obtained from the highest and lowest clock cycle values,
𝐶𝑖, required to complete the estimated workloads of the different tasks 𝑇𝑖(𝑖 = 1, ..., 𝑁) and from the frequencies of the available
processors, 𝑓𝑗,𝑙. In Equation (6), the energy consumed while the processors are idle is not explicitly shown to prevent unnecessary
complexities in the mathematical expressions. Thus, the following parameters can be evaluated:

𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛) =
𝑚𝑎𝑥

(

𝐶𝑖
)

𝑚𝑖𝑛
(

𝑓𝑗,𝑙
)

𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥) =
𝑚𝑎𝑥

(

𝐶𝑖
)

𝑚𝑎𝑥
(

𝑓𝑗,𝑙
)

𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛) =
𝑚𝑖𝑛

(

𝐶𝑖
)

𝑚𝑖𝑛
(

𝑓𝑗,𝑙
)

𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) =
𝑚𝑖𝑛

(

𝐶𝑖
)

𝑚𝑎𝑥
(

𝑓𝑗,𝑙
)

(7)

Parameters 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛), 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥), 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛), and 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) verify that 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) < 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥) < 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛)
and 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) < 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛) < 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛). The parameter 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛) is the time required by the task with the heaviest
workload when it is executed in a processor running at the lowest frequency. The parameter 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥) is the time required
by the task with the highest workload in a processor running at the highest frequency. This way, 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛) and 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥)
respectively represent the highest and lowest running times that the heaviest task would require in the present heterogeneous
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platform. In the same way, 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛) and 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) are, respectively, the highest and lowest running times for the lightest
task. In Equation (5) only 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛) and 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) are required. It is also possible to define energy consumption parame-
ters, 𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛), 𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥), 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛), and 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥), that respectively correspond to the runtimes 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛),
𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥), 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛), and 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) as follows:

𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛) = 𝑚𝑎𝑥
(

𝐶𝑖
)

⋅ 𝛽 ⋅ 𝑚𝑖𝑛
(

𝑉𝑗,𝑙
)2

𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥) = 𝑚𝑎𝑥
(

𝐶𝑖
)

⋅ 𝛽 ⋅ 𝑚𝑎𝑥
(

𝑉𝑗,𝑙
)2

𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛) = 𝑚𝑖𝑛
(

𝐶𝑖
)

⋅ 𝛽 ⋅ 𝑚𝑖𝑛
(

𝑉𝑗,𝑙
)2

𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) = 𝑚𝑖𝑛
(

𝐶𝑖
)

⋅ 𝛽 ⋅ 𝑚𝑎𝑥
(

𝑉𝑗,𝑙
)2

(8)

This way, 𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛), 𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥), 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛), and 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) verify that 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛) < 𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛) <
𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥) and 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛) < 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) < 𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥). In Equation (6), for the relative deviation in the energy
consumption, only 𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑎𝑥) and 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑖𝑛) are required.

In what follows, we describe a scheduling procedure that allocates processors and frequencies to tasks trying to minimize
both runtime and energy consumption by taking advantage of the proposed bi-objective cost function that joins the deviations
of Equation (1). Such scheduling procedure should allocate tasks on the available processors according to the available models
about their computational cost and energy consumption. The procedure also needs information about the characteristics of the
processors in the system where the tasks will be executed. Among these characteristics, the possible frequencies at which the
processors can run, and the availability of changing frequencies and voltages either by the operating system or the user, determine
the applicability of static or dynamic scheduling procedures and their implementation inside the application or in the runtime
system. Algorithm 1 provides the proposed scheduling procedure. Given a set of tasks with workloads 𝐶𝑖, the procedure sorts the
tasks according to their workloads, verifying that 𝐶𝑖 ≤ 𝐶𝑖+1. The 𝑁𝑃 processors among which the tasks have to be distributed
are also sorted according to the values of their frequencies so that, for processor j-th, its 𝐹𝐿 possible operating frequencies
verify that 𝑓𝑗,1 ≤ 𝑓𝑗+1,1(𝑗 = 1, ..., 𝑁𝑃 − 1) and 𝑓𝑗,𝑘 ≥ 𝑓𝑗,𝑘+1(𝑘 = 1, ..., 𝐹𝐿 − 1).

The procedure of Algorithm 1 proceeds as follows. Given the first task, 𝐶1, in the sorted list of tasks, the cost function is
evaluated for the allocation of this task to all possible frequencies in the available processors, Δ(𝐶1, 𝑓𝑗,𝑘) = 𝑎 ⋅Δ𝑡(𝐶1, 𝑓𝑗,𝑘) + 𝑏 ⋅
Δ𝐸(𝐶1, 𝑓𝑗,𝑘). The task is allocated to the processor/frequency for which the lowest value of Δ(𝐶1, 𝑓𝑗,𝑘) is obtained. Then, the
processor (and its operating frequencies) is removed from the list of available processors and the procedure continues with the
next task in the sorted list. Given a set of 𝑁𝑇 tasks to be distributed among 𝑁𝑃 processors, each with 𝐹𝐿 possible frequencies,
the complexity of the procedure is 𝜃(𝑁𝑃

2 ⋅ 𝐹𝐿). The procedure implements a greedy algorithm that only ensures to get local
optima, although it would be possible to use more powerful optimization procedures such as an evolutionary algorithm, this
would requires an unsuitable higher computational cost.

The energy-aware scheduling procedure of Algorithm 1 could be implemented either in the runtime system or in the appli-
cation, depending on whether the changes in the processor’s frequency are done at system or user level. Thus, it could be
implemented inside the application code whenever DVFS is available at user level. Moreover, the procedure can be also imple-
mented in heterogeneous platforms including processors with different energy consumption profiles (i.e. different operating
frequencies or voltages) although it would not be able to change frequencies or voltages. This situation corresponds to having
processors operating at different constant frequencies: 𝑓1,1, ..., 𝑓𝑝,1 with 𝑓𝑗,1 ≠ 𝑓𝑘,1 for at least two different processors 𝑗 and 𝑘.

Figure 2 provides information about the increments in runtime and decrements in energy consumption obtained by simulating
the procedure described in Algorithm 1 for 100 different randomly selected configurations of tasks with computing costs between
100 and 3,000 cycles and cost differences multiple of 100 cycles. A heterogeneous configuration with processors corresponding
to two different sets of relative speeds has been considered as is shown in Table 2 , which provides the relative speeds with
respect to the one achieved at the highest frequency of 1 GHz (100% in P5, P6, P7 and P8). The second frequency in Table 2 for
each processor is an eighty percent of its highest frequency and the lowest frequency is one half of this highest frequency. The
highest frequency for the first type of processors is an eighty per cent of the highest frequency for the other group of processors.
An idle frequency of 100 MHz has been considered in the simulations and the (𝑎, 𝑏) parameter couples simulated are (0.1, 0.9),
(0.25, 0.75), (0.5, 0.5), (0.75, 0.25), and (0.9, 0.1). Figure 2 (a) compares the scheduling obtained by the procedure of Algorithm
1 with a random allocation of tasks to the processors running at their highest frequencies. Figure 2 (b) shows the increments
with respect to a scheduling that provides the minima runtimes. Figure 2 demonstrates that, as the coefficient 𝑏 increases (and
as 𝑎 consequently decreases), the decrements (with respect to the scheduling used as reference) in energy consumption are larger
at the cost of increasing the runtimes.
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Algorithm 1 Description of the energy-aware procedure for scheduling
Function Energy_Aware_Scheduling

(

𝐶,𝑁𝑃 , 𝑓 , 𝐹𝐿, 𝑎, 𝑏
)

Input : Set 𝐶: Cycles of task 𝑖 to be allocated to a processor, 𝐶𝑖; ∀𝑖 = 1, ..., 𝑁𝑃
Input : Number of processors, 𝑁𝑃
Input : Set 𝑓 : Frequency 𝑖𝑡ℎ of the processor 𝑗𝑡ℎ, 𝑓𝑖,𝑗 ; ∀𝑖 = 1, ..., 𝐹𝐿; 𝑗 = 1, ..., 𝑁𝑃
Input : Number of frequency levels, 𝐹𝐿
Input : First coefficient of the cost function, 𝑎, related with the execution time
Input : Second coefficient of the cost function, 𝑏, related with the energy consumption
Output: 𝑆, the new solution for the problem

1 𝐶𝑚𝑎𝑥 and 𝐶𝑚𝑖𝑛 ← max
(

𝐶𝑖
)

and min
(

𝐶𝑖
)

, respectively
2 𝑓𝑚𝑎𝑥 and 𝑓𝑚𝑖𝑛 ← max

(

𝑓𝑖,𝑗
)

and min
(

𝑓𝑖,𝑗
)

, respectively
3 𝑡(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛) and 𝑡(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) ← Compute Equation (7)
4 𝐸(𝐶𝑚𝑎𝑥, 𝑓𝑚𝑖𝑛) and 𝐸(𝐶𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) ← Compute Equation (8)
5 𝐶𝑖 ← Sort 𝐶𝑖 verifying 𝐶𝑗 ≤ 𝐶𝑗+1

6 𝑓𝑖,𝑗 ← Sort 𝑓𝑖,𝑗 verifying 𝑓1,𝑗 ≤ 𝑓1,𝑗+1 and 𝑓𝑖,𝑗 > 𝑓𝑖+1,𝑗

7 repeat
// Select frequency and processor to locate 𝐶𝑖

8 repeat
9 if processor 𝑗 has not been previously selected then

10 repeat
// Δ𝑡

(

𝐶𝑖, 𝑓𝑗,𝑘
)

and Δ𝐸
(

𝐶𝑖, 𝑓𝑗,𝑘
)

computed as Equations (5) and (6)
11 Δ

(

𝐶𝑖, 𝑓𝑗,𝑘
)

= 𝑎 ⋅ Δ𝑡
(

𝐶𝑖, 𝑓𝑗,𝑘
)

+ 𝑏 ⋅ Δ𝐸
(

𝐶𝑖, 𝑓𝑗,𝑘
)

12 until all 𝑘 = 𝐹𝐿 frequency levels are considered;
13 end
14 until all 𝑗 = 𝑁𝑃 processors are evaluated;

15 𝑆 ← Get the frequency level of processor, 𝑗, for which is obtained the minimum value of Δ
(

𝐶𝑖, 𝑓𝑗,𝑘
)

16 Mark processor 𝑗 as selected

17 until all 𝑖 = 𝑁𝑃 processors are evaluated;
18 return 𝑆

End

In Algorithm 1, it is considered that the number of available processors, 𝑁𝑃 , coincides with the number of tasks, 𝑁𝑇 . Nev-
ertheless, it is also possible to use the procedure in case of having more tasks than processors. Thus, if we have 𝑁𝑇 tasks and
𝑁𝑃 processors with 𝑁𝑇 > 𝑁𝑃 , the 𝑁𝑇 −𝑁𝑃 tasks remaining not allocated after allocating the first 𝑁𝑃 tasks to the 𝑁𝑃 proces-
sors can be successively allocated once a processor 𝑗 completes the task allocated to it. This can be done by evaluating the cost
function Δ(𝐶𝑠, 𝑓𝑗,𝑘)(𝑘 = 1, ..., 𝐹𝐿) for all 𝑁𝑇 − 𝑁𝑃 remaining tasks, 𝐶𝑠, and the frequencies at which processor 𝑗 could run.
The task for which the lowest value of Δ(𝐶𝑠, 𝑓𝑗,𝑘) is obtained is the one allocated to processor 𝑗.

4 A MULTI-OBJECTIVE SCHEDULING APPROACH FOR CPU-GPU PLATFORM

This section deals with the case of a platform including only two different kinds of processors among which is necessary to
distribute a set of tasks with the same workload, allowing a specific way for applying the proposed multi-objective cost function
Δ(𝐶𝑖, 𝑓𝑗,𝑘). Although it seems to be a very specific situation, many real applications tackled by evolutionary metaheuristics and
executed in parallel on platforms including CPU and GPU cores correspond to this profile (9). Indeed, heterogeneous platforms
with nodes including several superscalar multicore microprocessors (CPU cores) and GPUs (although other accelerators such
as FPGAs, vector units, etc. are also possible) constitute the present architectural trend to cope with energy efficiency while
maintaining performance increments. As it has been briefly introduced in Section 2, the codes to be analyzed evolve a population
of individuals distributed among the available CPU and GPU cores of the node to compute their fitness. In the GPU architectures
here considered, the GPU cores are grouped defining several multi-threaded processors that, for example in NVIDIA GPUs, are
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FIGURE 2 Increments in runtime (higher positive values mean worse runtime) and decrements in energy consumption (higher
positive values mean less energy consumed) with respect to two scheduling procedures taken as references: (a) results with
respect to random allocated tasks; (b) results with respect to minimum runtime scheduling

called Streaming Multiprocessors (SMXs). The fitness evaluation of a given individual is allocated either to a superscalar CPU
core or to an SMX. The GPU cores included in a given SMX also allow the parallel fitness evaluation of the corresponding
allocated individual by taking advantage of the corresponding data parallelism. Whenever the fitness evaluation of the individuals
of the population corresponds to the most important part of the computational cost of the evolutionary algorithm, the workload
scheduling is reduced to determine the rate, 𝑥, of individuals allocated to the GPU cores and the rate 1 − 𝑥 of them allocated to
the CPU cores. Thus, a model for the runtime is:

𝑡 = 𝑔 ⋅
(

𝑁 ⋅ 𝑡𝑚𝑎𝑠𝑡𝑒𝑟 + 𝑚𝑎𝑥
(⌈

𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

⌉

⋅ 𝑡𝐺𝑃𝑈 ,
⌈

(1 − 𝑥) ⋅𝑁
𝑃𝐶𝑃𝑈

⌉

⋅ 𝑡𝐶𝑃𝑈

))

(9)

where 𝑔 is the number of generations, 𝑁 is the number of individuals in the population, and 𝑃𝐶𝑃𝑈 and 𝑃𝐺𝑃𝑈 are, respectively,
the CPU cores and GPU SMXs in the platform. It is considered that the 𝑥 ⋅𝑁 individuals allocated to the GPU cores are equally
distributed among the GPU cores, and the (1 − 𝑥) ⋅𝑁 individuals are equally distributed among the CPU cores. The parameter
𝑡𝑚𝑎𝑠𝑡𝑒𝑟 corresponds to the time required by one of the cores to process the master task 𝑇 0 (Figure 1 ) for a given iteration, while
parameters 𝑡𝐶𝑃𝑈 and 𝑡𝐺𝑃𝑈 are, respectively, the time required by the CPU cores and the GPU cores to evaluate one individual.
The parameters 𝑡𝑚𝑎𝑠𝑡𝑒𝑟, 𝑡𝐶𝑃𝑈 and 𝑡𝐺𝑃𝑈 can be also expressed as a function of the corresponding workload and the frequency of
the corresponding processor as 𝑡𝑚𝑎𝑠𝑡𝑒𝑟 =

𝑊𝑚𝑎𝑠𝑡𝑒𝑟

𝐹𝐶𝑃𝑈
, 𝑡𝐶𝑃𝑈 = 𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
, and 𝑡𝐺𝑃𝑈 = 𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
, where 𝐹𝐶𝑃𝑈 and 𝐹𝐺𝑃𝑈 are the frequencies of,

respectively, the CPU and GPU cores, and 𝑊𝑚𝑎𝑠𝑡𝑒𝑟, 𝑊𝐶𝑃𝑈 , and 𝑊𝐺𝑃𝑈 are respectively, estimations of the cycles of the workloads
of 𝑇 0, the evaluation of an individual in the CPU, and the evaluation of an individual in the GPU. This way, the execution time
can be modeled as:

𝑡 = 𝑔 ⋅
(

𝑁 ⋅
𝑊𝑚𝑎𝑠𝑡𝑒𝑟

𝐹𝐶𝑃𝑈
+ 𝑚𝑎𝑥

(⌈

𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

⌉

⋅
𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
,
⌈

(1 − 𝑥) ⋅𝑁
𝑃𝐶𝑃𝑈

⌉

⋅
𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈

))

(10)

Some considerations have to be done with regard to model of Equation (10). It has been supposed that the times 𝑡𝐶𝑃𝑈 and 𝑡𝐺𝑃𝑈
required to evaluate one individual are the same for all individuals in the CPU cores (𝑡𝐶𝑃𝑈 ) or in the GPU SMXs (𝑡𝐺𝑃𝑈 ). This
circumstance can be also considered very unusual, although it is possible to find useful application showing such behaviour. The
EEG feature selection for BCI here considered can be suitably modelled this way as the evaluation of each individual has been
done by a fixed number of iterations of the 𝐾-means algorithm to qualify the utility of the set of features selected that a given
individual in the population codifies. Thus, the data parallelism provided by the GPU SMXs provides similar acceleration to the
𝐾-means algorithm for all individuals in the population as has been demonstrated in our previous paper (9). In our problem, it
is possible to fit two linear regressions considering the values of the load distribution, 𝑥, verifying:

⌈

𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

⌉

⋅
𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
≤
⌈

(1 − 𝑥) ⋅𝑁
𝑃𝐶𝑃𝑈

⌉

⋅
𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
(11)

⌈

𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

⌉

⋅
𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈
>
⌈

(1 − 𝑥) ⋅𝑁
𝑃𝐶𝑃𝑈

⌉

⋅
𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈
(12)
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The corresponding expressions obtained are the next one:

𝑇𝑙𝑒𝑓 𝑡 = 𝑇𝑙𝑒𝑓 𝑡_0 + 𝑇𝑙𝑒𝑓 𝑡_1 ⋅
⌈

(1 − 𝑥) ⋅𝑁
𝑃𝐶𝑃𝑈

⌉

(13)

where 𝑇𝑙𝑒𝑓 𝑡 stands for the running time in case of low values of 𝑥 (more workload is allocated to the CPU cores than to the GPU
ones), and thus the GPU ends its workload before, and:

𝑇𝑟𝑖𝑔ℎ𝑡 = 𝑇𝑟𝑖𝑔ℎ𝑡_0 + 𝑇𝑟𝑖𝑔ℎ𝑡_1 ⋅
⌈

𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

⌉

(14)

being 𝑇𝑟𝑖𝑔ℎ𝑡 the running time for high values of 𝑥, where the CPU cores finish their workload before. Thus, for the given platform
(the values of 𝑁 , 𝑃𝐶𝑃𝑈 , 𝑃𝐺𝑃𝑈 , 𝐹𝐶𝑃𝑈 and 𝐹𝐺𝑃𝑈 are known), from the known experimental values of 𝑇𝑙𝑒𝑓 𝑡 for 𝑥 = 0, 𝑇𝑟𝑖𝑔ℎ𝑡 for
𝑥 = 1.0, and 𝑇𝑙𝑒𝑓 𝑡 for 𝑥 = 0.1 (or 𝑇𝑟𝑖𝑔ℎ𝑡 for 𝑥 = 0.9) it is possible to determine the values of 𝑡𝐶𝑃𝑈 , 𝑡𝐺𝑃𝑈 , and 𝑡𝑚𝑎𝑠𝑡𝑒𝑟 (or 𝑊𝐶𝑃𝑈 ,
𝑊𝐺𝑃𝑈 , and 𝑊𝑚𝑎𝑠𝑡𝑒𝑟 as 𝐹𝐶𝑃𝑈 and 𝐹𝐺𝑃𝑈 are known). An approximate model for energy consumption is described in what follows.
Given a GPU including 𝑃𝐺𝑃𝑈 cores running at frequency 𝐹𝐺𝑃𝑈 , the energy consumed by the evaluation of its individuals,
distributed among the 𝑃𝐺𝑃𝑈 cores can be expressed as the product of the instantaneous power consumed by the cores and the
corresponding running time, plus the energy consumed by the cores while they are idle. This way, in each generation, 𝑔, the
energy consumed by the CPU and the GPU can be given as Equation (15) shows:

𝐸𝐶𝑃𝑈 = 𝑃𝑜𝑤𝐶𝑃𝑈 ⋅
⌊

(1 − 𝑥) ⋅𝑁
𝑃𝐶𝑃𝑈

⌋

⋅ 𝑡𝐶𝑃𝑈 +
𝑃𝑜𝑤𝐶𝑃𝑈

𝑃𝐶𝑃𝑈
⋅
(

(1 − 𝑥) ⋅𝑁 −
⌊

(1 − 𝑥) ⋅𝑁
𝑃𝐶𝑃𝑈

⌋

⋅ 𝑃𝐶𝑃𝑈

)

⋅ 𝑡𝐶𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒
𝐶𝑃𝑈

= 𝑃𝑜𝑤𝐶𝑃𝑈 ⋅
(1 − 𝑥) ⋅𝑁

𝑃𝐶𝑃𝑈
⋅ 𝑡𝐶𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒

𝐶𝑃𝑈

𝐸𝐺𝑃𝑈 = 𝑃𝑜𝑤𝐺𝑃𝑈 ⋅
⌊

𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

⌋

⋅ 𝑡𝐺𝑃𝑈 +
𝑃𝑜𝑤𝐺𝑃𝑈

𝑃𝐺𝑃𝑈

(

𝑥 ⋅𝑁 −
⌊

𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

⌋

⋅ 𝑃𝐺𝑃𝑈

)

⋅ 𝑡𝐺𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒
𝐺𝑃𝑈

= 𝑃𝑜𝑤𝐺𝑃𝑈 ⋅
𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

⋅ 𝑡𝐺𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒
𝐺𝑃𝑈

(15)

where 𝑃𝑜𝑤𝐺𝑃𝑈 is the instantaneous power consumed when the 𝑃𝐺𝑃𝑈 cores of the GPU are evaluating individuals, and 𝐸𝑖𝑑𝑙𝑒
𝐺𝑃𝑈

is the energy consumed by the idle cores. 𝑃𝑜𝑤𝐶𝑃𝑈 , 𝑃𝐶𝑃𝑈 , and 𝐸𝑖𝑑𝑙𝑒
𝐶𝑃𝑈 are the analogous terms for CPU. The rationale for the

previous Equation (15) can be understood from Figure 3 that refers to the GPU but can be also applied to CPU cores (by also
substituting 𝑥 by 1 − 𝑥). In the figure, the number of squares in the horizontal dimension (𝑃𝐺𝑃𝑈 ) corresponds to the number of
SMXs in the GPU while the number of squares in the vertical dimension corresponds to the times that the GPU SMXs work
in parallel once the 𝑥 ⋅ 𝑁 individuals are distributed among them. In the last iteration not all available SMXs possibly work.
Thus, the grey squares indicate that the SMX works and consumes a 𝑃𝑜𝑤𝐺𝑃𝑈

𝑃𝐺𝑃𝑈
of power and the white squares correspond to the

power consumed while the SMX is idle, 𝑃𝑜𝑤𝑖𝑑𝑙𝑒
𝐺𝑃𝑈

𝑃𝐺𝑃𝑈
. Taking into account the previous expressions, the energy consumed across the

generations executed by the algorithm can be given as:

𝐸 = 𝑔 ⋅
(

𝐸𝐺𝑃𝑈 + 𝐸𝐶𝑃𝑈 + 𝜖
)

= 𝑔 ⋅
(

𝑃𝑜𝑤𝐺𝑃𝑈 ⋅
𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

⋅ 𝑡𝐺𝑃𝑈 + 𝑃𝑜𝑤𝐶𝑃𝑈 ⋅
(1 − 𝑥) ⋅𝑁

𝑃𝐶𝑃𝑈
⋅ 𝑡𝐶𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒

𝐶𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒
𝐺𝑃𝑈 + 𝜖

)

= 𝑔 ⋅
(

𝑃𝑜𝑤𝐺𝑃𝑈 ⋅
𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

⋅
(

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈

)

+ 𝑃𝑜𝑤𝐶𝑃𝑈 ⋅
(1 − 𝑥) ⋅𝑁

𝑃𝐶𝑃𝑈
⋅
(

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈

)

+ 𝐸𝑖𝑑𝑙𝑒
𝐶𝑃𝑈 + 𝐸𝑖𝑑𝑙𝑒

𝐺𝑃𝑈 + 𝜖
)

(16)

The third term of Equation (16), 𝜖, corresponds to the energy consumed by task 𝑇 0 and the other elements of the platform
(memory, buses, I/O, etc.). Models for 𝐸𝑖𝑑𝑙𝑒

𝐶𝑃𝑈 and 𝐸𝑖𝑑𝑙𝑒
𝐺𝑃𝑈 can be also obtained in terms of parameters of the platform and the

workload distribution as follows:

𝐸𝑖𝑑𝑙𝑒
𝐶𝑃𝑈 = 𝑃𝑜𝑤𝑖𝑑𝑙𝑒

𝐶𝑃𝑈 ⋅
((

1 −
(1 − 𝑥) ⋅𝑁

𝑃𝐶𝑃𝑈
+
⌊

(1 − 𝑥) ⋅𝑁
𝑃𝐶𝑃𝑈

⌋)

⋅
(

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈

))

𝐸𝑖𝑑𝑙𝑒
𝐺𝑃𝑈 = 𝑃𝑜𝑤𝑖𝑑𝑙𝑒

𝐺𝑃𝑈 ⋅
(

1 − 𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

+
⌊

𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

⌋)

⋅
(

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈

) (17)

The parameters of the models for time and energy consumption from Equations (10) to (17) could be determined from experi-
ments considering different distribution rates, 𝑥 and 1 − 𝑥, number of individuals, 𝑁 , and number of generations, 𝑔, given the
characteristics of the CPU-GPU platform in terms of the number of processors, 𝑃𝐶𝑃𝑈 and 𝑃𝐺𝑃𝑈 , and their operating frequencies
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FIGURE 3 Scheme of the energy expressions corresponding to GPU

𝐹𝐶𝑃𝑈 and 𝐹𝐺𝑃𝑈 . By fitting Equation (10) with the experimental time measures, it would be possible to obtain the parameters
𝑊𝑚𝑎𝑠𝑡𝑒𝑟, 𝑊𝐶𝑃𝑈 , and 𝑊𝐺𝑃𝑈 . Once these values are substituted in Equations (16) to (17), the experimental values of energy con-
sumption can be used to determine 𝑃𝑜𝑤𝐶𝑃𝑈 , 𝑃𝑜𝑤𝐺𝑃𝑈 , 𝑃𝑜𝑤𝑖𝑑𝑙𝑒

𝐶𝑃𝑈 , and 𝑃𝑜𝑤𝑖𝑑𝑙𝑒
𝐺𝑃𝑈 , and the shape of 𝜖 after fitting the model for

energy consumption of Equation (16). Thus, we consider a linear regression model that, according to Equations (16) to (17)
presents the following terms:

𝐸 = 𝐴0 + 𝐴1 ⋅
(

𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

)

+ 𝐴2 ⋅
⌊

𝑥 ⋅𝑁
𝑃𝐺𝑃𝑈

⌋

+ 𝐴3 ⋅
⌊

(1 − 𝑥) ⋅𝑁
𝑃𝐶𝑃𝑈

⌋

+ 𝜖 (18)

where coefficients 𝐴0, 𝐴1, 𝐴2, and 𝐴3 can be related with the parameters of the model in Equations (16) to (17) as:

𝐴0 = 𝑔 ⋅
(

𝑃𝑜𝑤𝑖𝑑𝑙𝑒
𝐺𝑃𝑈 ⋅

(

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈

)

+ 𝑃𝑜𝑤𝑖𝑑𝑙𝑒
𝐶𝑃𝑈 ⋅

(

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈

)

⋅
(

1 − 𝑁
𝑃𝐶𝑃𝑈

)

+ 𝑃𝑜𝑤𝐶𝑃𝑈 ⋅
(

𝑁
𝑃𝐶𝑃𝑈

)

⋅
(

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈

))

(19)

𝐴1 = 𝑔 ⋅
((

(

𝑃𝑜𝑤𝐺𝑃𝑈 − 𝑃𝑜𝑤𝑖𝑑𝑙𝑒
𝐺𝑃𝑈

)

⋅
(

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈

))

−
(

(

𝑃𝑜𝑤𝐶𝑃𝑈 − 𝑃𝑜𝑤𝑖𝑑𝑙𝑒
𝐶𝑃𝑈

)

⋅
(

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈

)

⋅
(

𝑃𝐺𝑃𝑈

𝑃𝐶𝑃𝑈

)))

(20)

𝐴2 = 𝑔 ⋅
(

𝑊𝐺𝑃𝑈

𝐹𝐺𝑃𝑈

)

⋅ 𝑃𝑜𝑤𝑖𝑑𝑙𝑒
𝐺𝑃𝑈 (21)

𝐴3 = 𝑔 ⋅
(

𝑊𝐶𝑃𝑈

𝐹𝐶𝑃𝑈

)

⋅ 𝑃𝑜𝑤𝑖𝑑𝑙𝑒
𝐶𝑃𝑈 (22)

Then, it is possible to build the cost function for conditions of population, generations, frequencies, etc. not previously executed
by determining the relative deviations given in Equations (1), and to statically determine the best value of 𝑥 for a given population
of 𝑁 individuals and operating frequencies to execute the application in a given platform (number of CPU and GPU cores, and
the rest of parameters). This approach for static workload scheduling is summarized in Figure 4 and experimentally analyzed
in Section 5.

5 EXPERIMENTAL RESULTS

In this section, we experimentally analyze our approach. The measures of time and consumed energy have been obtained by
running an OpenCL (version 1.2) code for the multi-objective feature selection problem corresponding to a BCI task applied
to a dataset containing 178 patterns extracted from the data recorded in the BCI Laboratory of the University of Essex. Each
pattern is an electroencephalogram (EEG), described by 3,600 features corresponding to 12 features per each of the 20 temporal
segments and 15 electrodes (8). The code implements a master-worker parallel multi-objective evolutionary algorithm where
each individual codifies a subset of 3,600 features (a feature selection). The fitness function to evaluate the quality of a given
feature selection (i.e. the fitness function of the corresponding individual) implies to apply the 𝐾-means algorithm to the set
of 178 patterns described with the selected features as components (9). In each generation, to evaluate the fitness of the 𝑁
individuals in the population, the master thread distributes them among the CPU cores and GPU SMXs. The fitness evaluation
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FIGURE 4 Scheme of a static load distribution procedure for CPU-GPU platforms

of each individual is done by one thread in case of the individual is allocated to a CPU core, while if the individual is allocated
to the GPU, its fitness is processed in parallel by all threads of one of the Stream Multiprocessors (SMXs) of the GPU.

The code, compiled with GCC 4.8.5, runs on Linux CentOS 6.7, in a cluster node including two Intel Xeon E5-2620 v4 CPUs
with eight cores per socket (thus running up to 32 threads per node). The node also includes an NVIDIA Tesla K40m at 755
MHz with 12 GB of global memory, 288 GB/s as maximum memory bandwidth, and 2,880 CUDA cores distributed into 15
SMXs. In our experiments, the CPU cores have executed the threads allocated to them at 1,200 MHz, 1,600 MHz and 2,100
MHz using the cpupower shell command. The instantaneous power and energy consumption of the node has been measured
by a watt-meter which we have developed based on an Arduino Mega card. It provides, in real time, four measures per second
for each node in the cluster. We have repeated the experiments five times. Tables 3 and 4 provide the average and standard
deviations of the time and energy consumption measures obtained from our experiments. The points in the graphs of Figure
5 provide the time measures and the curves fitted by using our model and multiple linear regression. Furthermore, Figure 6
provides for energy consumption the same information as Figure 5 for running time.

From the experimental measures of the energy consumption, it is clear that these curves do not evolve linearly with 𝑥 and thus,
the 𝜖 term in Equation (16) is not linear with 𝑥 as the rest of terms in that equation are linear or, as can be seen from Equations
(15), bounded by curves linear with 𝑥. The energy consumed by our application depends on the power dissipated by the CPU and
GPU cores and the uncore elements of those processors (last level caches, interconnects, etc.), and the power dissipated by the
remaining components of the system. It is possible to assume that the power dissipated by the uncore and the system elements
is constant once the computer has been executing some workload for a given time (13). It seems that 𝜖 behaves as a constant
term until a given value of 𝑥, i.e. it keeps constant until the number of individuals sent to be evaluated by the GPU is larger than
a value that corresponds to a volume of data to transfer to the GPU, thus implying more power consumption in the PCIe bus
or in the memory transferences. From this value of 𝑥, the experimental results seems to correspond to linear increments in 𝜖 as
𝑥 grows. It has to be taken into account that, although the time consumed by the memory accesses and bus transferences can
be overlapped with the CPU or GPU processing and could not be apparent in time, these elements consume energy that could
be apparent in the experimental energy consumption data (if it represents a significant amount with respect to the other energy
terms). This way, we have modeled 𝜖 as:

𝜖 = 𝜖0 ⋅
(

𝑥 − 𝑥𝑐
)

⋅
⌊

𝑥
𝑥𝑐

⌋

(23)

The value of 𝑥𝑐 in Equation (23) can be obtained by two linear regressions. The first one uses experimental results of values of
𝑥 close to 0, corresponding to workloads much higher in the CPU cores than in the GPU ones (and also values of 𝑥 lower than
𝑥𝑐), while the second linear regression is applied to values of 𝑥 close to 1 (and also values higher than 𝑥𝑐), where the GPU is
much more loaded than the CPU. The cross point of these two lines estimates the value of 𝑥𝑐 . Table 5 provides the values of 𝑥
estimated for 𝑥𝑐 , and for the minima running times, for the different values of 𝑁 and 𝐹𝐶𝑃𝑈 considered in our experiments.



Juan José Escobar et al. 11

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5
x 10

4

Rate of GPU Workload (N = 240 individuals)

T
im

e 
(m

s)

 

 

1,200 MHz (fitted)
1,600 MHz (fitted)
2,100 MHz (fitted)
1,200 MHz (data)
1,600 MHz (data)
2,100 MHz (data)

(a)

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6

7
x 10

4

Rate of GPU Workload (N = 480 individuals)

T
im

e 
(m

s)

 

 

1,200 MHz (fitted)
1,600 MHz (fitted)
2,100 MHz (fitted)
1,200 MHz (data)
1,600 MHz (data)
2,100 MHz (data)

(b)

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

12
x 10

4

Rate of GPU Workload (N = 960 individuals)

T
im

e 
(m

s)

 

 

1,200 MHz (fitted)
1,600 MHz (fitted)
2,100 MHz (fitted)
1,200 MHz (data)
1,600 MHz (data)
2,100 MHz (data)

(c)

FIGURE 5 Fitted curves for experimental running times with 𝑁 = 240 (a), 480 (b), 960 (c) individuals and 𝐹𝐶𝑃𝑈 = 1, 200,
1, 600, 2, 100 MHz and model defined by Equation (10)
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FIGURE 6 Fitted curves for experimental consumed energies with 𝑁 = 240 (a), 480 (b), 960 (c) individuals and 𝐹𝐶𝑃𝑈 =
1, 200, 1, 600, 2, 100 MHz and model defined by Equation (16)

Table 6 shows the values of the𝑅2-statistics, the𝐹 -statistics and its 𝑝-values, and the error standard deviations corresponding
to the fitted running time and energy consumption models for different values of population,𝑁 , and CPU core frequencies, 𝐹𝐶𝑃𝑈
(Figures 5 and 6 ). The values shown for 𝑅2-statistic (closed to 1 in all alternatives), 𝐹 -statistic and its 𝑝-value (very low 𝑝-
values compared with their corresponding 𝐹 -statistic values), and error standard deviations demonstrate that the proposed time
and energy models are statistically significant. Indeed, seeing Figures 5 (a) to 5 (c), and Figures 6 (a) to 6 (c) the accuracy of
the fitted curves is acceptable. In particular, the minima of the fitted curves correspond to the ones experimentally observed.

Table 7 provides the parameters of time and energy models described in Equations (10), (16), (18), and (23) once they have
been fitted to the experimental data as it is shown in Figures 5 and 6 . The parameters 𝑊𝑚𝑎𝑠𝑡𝑒𝑟, 𝑊𝐶𝑃𝑈 , and 𝑊𝐺𝑃𝑈 can be
determined from Equations (10) to (14), corresponding to the running time model fitted to the experimental results obtained,
for example, in the case of 𝑁 = 240 individuals, 𝑔 = 50, and 𝐹𝐶𝑃𝑈 = 1, 200 MHz. The values obtained (𝑊𝑚𝑎𝑠𝑡𝑒𝑟 = 0.46 ⋅ 106,
𝑊𝐶𝑃𝑈 = 78.48 ⋅ 106 and 𝑊𝐺𝑃𝑈 = 13.69 ⋅ 106 cycles) allow the specification of Equation (10) for our platform and application.
Thus, it makes possible to predict the curves for the values of 𝐹𝐶𝑃𝑈 (1,200, 1,600 and 2,100 MHz), and 𝑁 (240, 480 and 960
individuals), used in our experiments. The values provided in Table 7 for the parameters 𝑊𝐶𝑃𝑈 and 𝑊𝐺𝑃𝑈 of the fitted models
respectively present standard deviations of only 5.2% and 3.5% with respect to their respective mean values. This circumstance
seems to corroborate our supposition in the models of Section 4 about the use of a similar number of cycles required to evaluate
the fitness for all individuals of the population in an SMX of the GPU (𝑊𝐺𝑃𝑈 ) or in a CPU core (𝑊𝐶𝑃𝑈 ). Moreover, 𝑊𝐶𝑃𝑈 >
𝑊𝐺𝑃𝑈 , which is coherent with the data parallel fitness evaluation of the individuals allocated to GPU SMXs.
Moreover, from the experimental values of the energy consumed by the node after executing the code corresponding to the
given values for 𝑁 , 𝑔, 𝐹𝐺𝑃𝑈 , and 𝐹𝐶𝑃𝑈 (and once 𝑊𝑚𝑎𝑠𝑡𝑒𝑟, 𝑊𝐶𝑃𝑈 , and 𝑊𝐺𝑃𝑈 have been determined from the experimental time
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FIGURE 7 Temporal evolution of the instantaneous power: (a) for 𝑥 = 0.5 and different values of frequency in the CPU cores;
and (b) for a frequency of 2,100 MHz in the CPU cores and different values of 𝑥 (rate of workload allocated to the GPU) and
𝑁 = 960 individuals

measures as has been indicated before), it is possible to determine the parameters 𝑃𝑜𝑤𝐶𝑃𝑈 , 𝑃𝑜𝑤𝐺𝑃𝑈 , 𝑃𝑜𝑤𝑖𝑑𝑙𝑒
𝐶𝑃𝑈 , 𝑃𝑜𝑤𝑖𝑑𝑙𝑒

𝐺𝑃𝑈 , and
𝜖0 from the multiple linear regression of Equation (18) where the term 𝜖 is substituted by Equation (23). Equations (19) to (22)
provide the values for 𝑃𝑜𝑤𝐶𝑃𝑈 , 𝑃𝑜𝑤𝐺𝑃𝑈 , 𝑃𝑜𝑤𝑖𝑑𝑙𝑒

𝐶𝑃𝑈 and 𝑃𝑜𝑤𝑖𝑑𝑙𝑒
𝐺𝑃𝑈 from the coefficients 𝐴0 to 𝐴3 of the linear regression.

As it is shown in Table 7 , the parameters 𝑃𝑜𝑤𝐶𝑃𝑈 , 𝑃𝑜𝑤𝐺𝑃𝑈 , 𝑃𝑜𝑤𝑖𝑑𝑙𝑒
𝐶𝑃𝑈 , 𝑃𝑜𝑤𝑖𝑑𝑙𝑒

𝐺𝑃𝑈 , and 𝜖0, depend on the operating frequency
of the CPU cores. The values of 𝑃𝑜𝑤𝐶𝑃𝑈 are similar for 1,200 and 1,600 MHz but are larger for 2,100 MHz, for all considered
population sizes (240, 480, and 960). With respect to 𝑃𝑜𝑤𝐺𝑃𝑈 , also in all considered population sizes, the values are larger for
1,600 MHz than for 1,200 MHz and 2,100 MHz, which present similar values. The values of 𝑃𝑜𝑤𝐶𝑃𝑈 are between 1.4 and 3.7
times larger than the values of 𝑃𝑜𝑤𝐺𝑃𝑈 . With respect to the parameters related with the energy consumption term not explained
by the CPU and GPU terms (Equation (15)), and defined in Equation (23), the experimental results show (Table 5 ) that the
values of 𝑥𝑐 slightly decrease as the CPU core frequency grows and almost do not change with the population size. Given a
population size, the values of 𝜖0 decrease from 1,200 MHz to 1,600 MHz, and slightly increases from 1,600 MHz to 2,100 MHz,
as shown in Table 7 . Given a CPU frequency, the values of 𝜖0 clearly grow with the population size, 𝑁 .

Once the parameters of the models are obtained for one of the considered alternatives (for example 𝑁 = 240 individuals and
𝐹𝐶𝑃𝑈 = 1, 200 MHz) it is possible to estimate the running time and energy consumption models for other values of 𝑁 at the
same frequency, 𝐹𝐶𝑃𝑈 . Table 8 provides the mean of the relative prediction errors for different values of 𝑁 and 𝐹𝐶𝑃𝑈 when
the parameters of their corresponding time and energy models are estimated from regressions applied to the configuration of
𝑁 = 240 individuals and 𝐹𝐶𝑃𝑈 equal to 1,200, 1,600, and 2,100 MHz, respectively. As Table 8 shows, the mean relative errors
are between 12.1% and 24.6% for the energy consumption model, and between 1.4% and 3.1% for the running time model.

Figure 7 shows curves corresponding to the temporal evolution of the instantaneous power. The curves in Figure 7 (a)
illustrate the evolution for different operation frequencies in the CPU cores with the same distribution of individuals among
CPU and GPU cores (𝑥 = 0.5) while Figure 7 (b) gives curves for different distributions of individuals at the same operating
frequency in the CPU cores (𝐹𝐶𝑃𝑈 = 2, 100 MHz). From Figure 7 (a), it is clear that the values of the instantaneous power
grow with the operating frequencies. Indeed, the values of the instantaneous power for 1,200 and 1,600 MHz are nearer than
the ones corresponding to 1,600 and 2,100 MHz. Figure 7 (b) shows that the values of the instantaneous power also change
with the rate of individuals allocated to the CPU cores. The curve with the lowest values of instantaneous power corresponds to
the situation in which all individuals are allocated to the GPU. With respect to the other two curves, the one with larger power
values corresponds to 𝑥 = 0.5. Although only half of the population is allocated to the CPU cores, the power consumed by the
elements of the node required to communicate the CPU core of the master thread and the GPU could explain this behaviour.

Figure 8 shows the shape of the cost function Δ = 𝑎 ⋅ Δ𝑡 + 𝑏 ⋅ Δ𝐸 for 𝑁 = 240 individuals, 𝐹𝐶𝑃𝑈 = 1, 600 MHz, and
different values for parameters a and b. Depending on these values, the minimum of the cost function corresponds to a minimum
in the energy consumption (𝑥 = 0.75), in the running time (𝑥 = 0.60), or represents a trade-off between time and energy.
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FIGURE 8 Cost function for different values of parameters 𝑎 and 𝑏, for 𝑁 = 960 individuals and 𝐹𝐶𝑃𝑈 = 1, 600 MHz

6 RELATED WORK

In (14), an overview on energy efficiency on clusters is provided. In that paper, the different technologies for energy efficiency are
classified into two main groups, the so-called Static Power Management (SPM) techniques, and the Dynamic Power Management
(DPM) ones. The SPM techniques are based on the use of low-power components while the DPM techniques use software
approaches and power-scalable components. Moreover, the DPM techniques can be also classified according to two alternatives:
i) those based on the dynamical adjustment of power consumption by taking advantage of power-scalable components and ii)
the energy-aware load balancing techniques.

Several approaches have been reported on scheduling procedures that take into account not only the running time but also
the energy consumption of the program, and can be considered as examples of alternative i) in DPM techniques. Most of
them are based on Dynamic Voltage Scaling (DVS), a technique that allows dynamic scaling of the CPU voltage to reduce
energy consumption. This way, the time spent by lighter tasks waiting for heavy tasks to finish can be reduced and the required
levels of performance could be still satisfied. Paper (1) describes a first phase performing a priority based task ordering and
scheduling, followed by a second phase where integer programming is used to optimize voltage scaling. In (2), the efficient
Decisive Path Scheduling (DPS) algorithm (15) is combined with DVS to minimize both time and energy computation. In the
proposed procedure (15), DPS is firstly applied to the corresponding task graph to obtain low finish runtimes and, after that,
DVS is applied during slack times to reduce energy consumption while the computing time achieved by the schedule algorithm
is maintained. Results obtained by simulation in (2) show average energy consumption reduction of about 40% over DPS.

Paper (3) proposes two different cost functions, based on different approximations for energy measurement, to tackle schedul-
ing on processors with DVS, and reach a trade-off between completion time and energy consumption in precedence-constrained
parallel applications. The simulation results provided show that schedules generated by previous energy-unconscious schedul-
ing heuristics consume among 16 and 51 percent more energy than their alternatives. In (4), it is described a two-level method
for scheduling large workloads to reduce the energy consumption while the quality of service is maximized in a data center with
heterogeneous sets of clusters of multi-core processors. The approach is based on the definition of a multi-objective problem for
energy-efficient scheduling of workflows in data centers. The experimental results obtained on more than 100,000 workflows
generated with the tool described in (16) show that the best performing schedulers defined in (4) achieve improvements up to
46.8% in makespan and up to 29.0% in energy consumption with respect to a typical round-robin strategy. In (17), an approach
for scheduling multi-core heterogeneous grid systems that includes the makespan and the minimization of energy consumption
as objectives is provided. It uses data on computing capacity and energy consumption from the information provided by vendors
and supposes that the tasks to be distributed among the available cores have neither deadlines nor precedence constraints.

The Heterogeneous Energy-aware Race to Halt (H-EARtH) algorithm described in (18), considers the availability of hetero-
geneous platforms and DVFS capabilities, to provide a runtime procedure that determines the best core and its corresponding
voltage and frequency values to optimize energy consumption. In general, the previously cited papers on energy-aware schedul-
ing procedures show relevant improvements in energy consumption. Nevertheless, in the present state of this researching line
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it is difficult to provide some fair comparisons to conclude what is the best strategy. Moreover, the performance improvements
achieved by the different approaches depend on the characteristics of the applications, and the most part of the experimental
results have been obtained either for workloads randomly generated or corresponding to specific task graph descriptions in which
the computational costs of the different tasks are supposed to be known. Our procedure described in Section 3 can be applied to
master-worker applications where the time of workload allocated to the master is almost zero. It has a computational complexity
proportional to the product of number of tasks, processors and available operation frequencies, and provides energy improve-
ments (Figure 2 ) of up to 80% with increments in the running time (specially in case of comparison with a scheduling procedure
that provides the minimum running time), and up to 20% without increments in the running time (in case of comparison with
randomly allocated tasks).

An effective energy-aware online or runtime scheduler requires an accurate prediction of the effects of different voltage and
frequency levels in different phases of the application (14), whose computational costs are difficult to know in advance. Never-
theless, besides the procedures requiring programmer-exposed DVFS strategies for runtime power management, it is possible
to take into account energy consumption and time optimization principles in platforms that do not allow the user to access and
control the DVFS alternatives online (or is so costly and should be avoided). Thus, a black-box scheduling approach is proposed
in (5), based on an offline power model and an online workload modeling. Papers (19, 20) deal with the determination of power
and energy consumption models either by running micro-benchmarks (19) or through the evaluation of energy consumption of
the platform components (20). In (13), the modeling of power consumption in codes for sparse linear systems is shown, along
with the analysis of the different power-saving modes of CPU cores, to define energy-aware strategies for the corresponding run-
time. In this same line, the energy consumption characterization by applying multiple linear regression models is proposed in
(12). We have also applied a multiple linear regression model to define a multi-objective cost function to optimize, with respect
to both time and energy consumption, the workload distribution among the processors in the platform.

As energy consumption and running time are competing objectives, a multi-objective (more specifically a bi-objective)
approach is required to tackle the development of an energy-aware scheduling problem. Indeed (4) proposes as future work the
use of multi-objective evolutionary algorithms to learn about the trade-offs evaluated by the two-level schedulers described in
the paper. Nevertheless, a scheduling algorithm built on a Pareto-based multi-objective evolutionary algorithm would require a
large computing time along with a strategy to select among the different alternatives included in the obtained the Pareto front.
The multi-objective approach here described, based on a bi-objective cost function, requires to assign weights to the energy and
time objectives, as it is proposed in (21), where a previously defined weighted energy-delay product corresponding to the desired
trade-off among both objectives avoids the selection of one of the alternatives included in the Pareto front once an approach to
it has been determined. In this paper, we also propose a cost function that comprises the two goals of energy consumption and
runtime although not through an energy-delay product but a weighted sum.

Thus, this paper also illustrates how the approach based on a multi-objective cost function can be applied to both DPM
alternatives as our bi-objective cost function can be used by a scheduling procedure in a platform including power-scalable
components, and by a load balancing procedure. Indeed, the paper shows how it is possible to define a trade-off between energy
consumption and running time to determine the most suitable workload distribution for a heterogeneous CPU-GPU platform.

With respect to the energy consumption efficiency of hybrid CPU-GPU platforms, some results on this topic have been
provided by papers (22, 23). For example, (22) provides analytical models to get insight into performance gains and energy
consumption in different CPU-GPU platforms and concludes that greater parallelism allows opportunities for energy-saving and
encourages the development of energy-saving parallel applications. In (24), two alternatives are considered for energy efficiency:
to determine a workload distribution among CPU and GPU to reach that both sides finish at the same time, and to coordinately
throttle the GPU frequencies and memory according to their utilization. The paper (24) also points out the need for an approach
that takes into account both CPU and GPU architectures to minimize energy consumption as, although GPUs have better energy
efficiency than CPUs, allocating all workload to the GPU is not necessarily the most energy efficient approach because energy
is the product of power and time, and a workload distribution among CPU and GPU cores that allows similar computing times
in the different cores could be the most energy efficient alternative. In the present paper, we have also shown that suitable
workload distributions among the CPU and GPU cores are able to optimize energy consumption and running time, although not
necessarily the same workload distribution is able to simultaneously optimize both objectives. To cope with this multi-objective
problem, we have devised a cost function comprising both energy and runtime objectives. This cost function is built from energy
consumption and running time models of the considered application that, following the approach described in (12), have been
determined by multiple linear regression of the experimental data.
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7 CONCLUSIONS

This paper proposes a bi-objective cost function comprising information of both runtime and energy consumption of the corre-
sponding workload distribution as Δ = 𝑎 ⋅ Δ𝑡 + 𝑏 ⋅ Δ𝐸, where the effect of both goals, time and energy, is weighted through
parameters, 𝑎 and 𝑏 (𝑎 ≥ 0, 𝑏 ≥ 0, and 𝑎+𝑏 = 1), that control the trade-off between the two goals. This multi-objective approach
avoids the need for selecting one of the non-dominated solutions in the front obtained by a Pareto-based multi-objective opti-
mization. Nevertheless, this cost function based on a multi-objective approach requires the value of the parameters 𝑎 and 𝑏 of
the cost function, which allows the definition of scheduling procedures aware of runtime and energy once a suitable model is
available to predict the energy consumption and runtime of a given workload distribution in the computing platform at hand.

A greedy scheduling procedure based on the proposed bi-objective cost function has been evaluated by simulation in case of
DVFS mechanisms would be available in heterogeneous architectures including processors with different power consumption
profiles. The simulation experiments which we have accomplished considering a master-worker parallel evolutionary application
with a negligible master workload have shown that, by using the adequate combination of parameters 𝑎 and 𝑏, it is possible to
control the strength of each component, runtime and energy consumption, of the cost function and get relevant energy-savings
without an important increase in the runtime.

From measures of runtime and energy consumed by the CPU-GPU heterogeneous computing node while the application is
executed considering different CPU frequencies, it is clear that an adequate workload distribution among CPU cores and GPU
SMXs could imply less energy consumption than to allocate all workload to the GPU. As the energy is the product of time and
power, lower energy consumptions can be shown, even in the case of using higher CPU frequencies, once the right workload
distribution is considered. By multiple linear regression, we have fitted time and energy models to the experimental results with
good accuracies and statistical significance.

A lot of researching work still has to be completed. On the one side, it would be very useful to have more accurate models
for the heterogeneous configurations of processors in terms of their energy consumption capabilities. The application of the
approach proposed here considering measures of consumed energy and runtime in the execution of other real parallel codes
and heterogeneous platforms should be also accomplished. The improving of energy-saving approaches and models for the
elements in the computing platform different from the CPU and GPU cores should be also accomplished for the application here
considered and for others. Moreover, the consideration of different operating GPU frequencies could contribute to complete the
analysis of the applicability domain for the proposed models.
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TABLE 1 Runtime distribution (including time percentages) among the most relevant steps of an evolutionary multi-objective
feature selection procedure (8) for different population sizes, 𝑁

𝑵 Fitness Evaluation Non-domination Sorting Crossover Rest of Procedures Total TimeTime (s) % Time (s) % Time (s) % Time (s) %
120 119.19 99.93 0.01 0.01 0.03 0.03 0.04 0.03 119.27
240 236.38 99.92 0.07 0.03 0.09 0.04 0.03 0.01 236.57
480 477.00 99.90 0.14 0.03 0.18 0.04 0.14 0.03 477.46
960 954.85 99.87 0.70 0.07 0.31 0.03 0.29 0.03 956.15

15,000 14,946.12 98.60 196.61 1.30 5.53 0.04 9.87 0.06 15,158.13

https://ftp.gnu.org/pub/old-gnu/Manuals/gprof{-}2.9.1/html_node/gprof_toc.html
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TABLE 2 Relative speeds (in %) in the processors with the configuration used in the simulation

% P1 P2 P3 P4 P5 P6 P7 P8

Configuration
80 80 80 80 100 100 100 100
64 64 64 64 80 80 80 80
40 40 40 40 50 50 50 50

TABLE 3 Means and standard deviations of the experimental running times, in seconds (𝑁 : Number of individuals in the
population; 𝐹𝐶𝑃𝑈 : Frequencies in the CPU cores; %GPU Workload is the percentage of the population evaluated by the GPU)

𝑵 𝑭𝑪𝑷𝑼 % GPU Workload
(MHz) 0 10 25 50 75 90 100

240
1,200 30.64 ±0.35 27.93±0.22 23.78±0.22 17.78±0.43 13.86±0.06 16.28±0.04 17.76±0.19
1,600 22.99 ±0.13 20.95±0.01 18.09±0.12 13.79±0.32 13.44±0.14 15.83±0.09 17.35±0.12
2,100 17.47±0.10 15.89±0.07 14.05±0.29 10.55±0.13 13.22±0.07 15.63±0.18 17.13±0.12

480
1,200 59.65±0.58 54.13±0.32 46.24±0.63 34.08±0.38 26.70±0.23 31.58±0.11 34.56±0.12
1,600 44.61±0.16 40.57±0.35 35.14±0.34 26.39±0.28 26.17±0.14 30.93±0.25 34.09±0.17
2,100 34.15±0.19 31.28±0.15 27.14±0.28 20.33±0.21 25.80±0.17 30.62±0.08 33.76±0.25

960
1,200 118.73±0.41 107.97±0.36 92.56±0.68 67.31±0.91 53.35±0.27 62.95±0.72 69.68±0.36
1,600 88.88±0.41 81.32±0.15 70.06±0.64 51.89±0.39 52.11±0.22 61.86±0.33 68.31±0.52
2,100 67.58±0.25 61.99±0.28 54.77±0.27 40.75±0.30 51.36±0.12 60.84±0.42 67.31±0.29

TABLE 4 Means and standard deviations of the experimental energy consumption of the node in 𝑊 ⋅ ℎ (𝑁 : Number of indi-
viduals in the population; 𝐹𝐶𝑃𝑈 : Frequencies in the CPU cores; %GPU Workload is the percentage of the population evaluated
by the GPU)

𝑵 𝑭𝑪𝑷𝑼 (MHz) % GPU Workload
0 10 25 50 75 90 100

240
1,200 1.71±0.02 1.61±0.03 1.40±0.02 1.13±0.02 0.94±0.01 1.05±0.02 1.11±0.01
1,600 1.34±0.02 1.24±0.02 1.10±0.03 1.01±0.03 0.94±0.02 0.99±0.01 1.06±0.01
2,100 1.32±0.05 1.22±0.02 1.09±0.01 0.87±0.02 1.00±0.02 1.14±0.04 1.11±0.03

480
1,200 3.09±0.03 2.83±0.02 2.46±0.04 1.87±0.01 1.54±0.01 1.77±0.02 1.90±0.01
1,600 2.35±0.02 2.15±0.01 1.92±0.02 1.65±0.06 1.55±0.02 1.70±0.02 1.84±0.01
2,100 2.37±0.01 2.20±0.02 1.93±0.03 1.50±0.02 1.81±0.03 2.03±0.04 2.06±0.08

960
1,200 5.86±0.02 5.35±0.02 4.63±0.04 3.45±0.04 2.79±0.02 3.26±0.05 3.54±0.02
1,600 4.39±0.03 4.07±0.01 3.62±0.06 3.01±0.12 2.91±0.07 3.15±0.01 3.45±0.03
2,100 4.44±0.03 4.09±0.04 3.68±0.10 2.77±0.01 3.42±0.01 3.82±0.05 3.97±0.07

TABLE 5 Minima Values (0.05 is the lowest change in the workload considered in our experiments)

𝑵 𝑭𝑪𝑷𝑼 (MHz) 𝒙𝒄 ± 𝟎.𝟎𝟓 𝒙
(

𝒕𝒎𝒊𝒏
)

± 𝟎.𝟎𝟓

240
1,200 0.75 0.75
1,600 0.75 0.60
2,100 0.50 0.50

480
1,200 0.70 0.70
1,600 0.65 0.60
2,100 0.50 0.55

960
1,200 0.70 0.70
1,600 0.65 0.60
2,100 0.50 0.55
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TABLE 6 Statistical Analysis. 𝐹𝐸𝑆𝐷: Fitting Error of Standard Deviation

𝑵
𝑭𝑪𝑷𝑼 𝑹𝟐-statistic 𝑭 -statistic 𝒑-value 𝑭𝑬𝑺𝑫 𝑹𝟐-statistic 𝑭 -statistic 𝒑-value 𝑭𝑬𝑺𝑫
(MHz) (W ⋅ h) (s)

240
1,200 0.996 1662.02 9.76 ⋅ 10−35 0.014 0.992 2279.00 2.07 ⋅ 10−20 0.017
1,600 0.945 128.30 2.06 ⋅ 10−18 0.029 0.995 3348.98 6.63 ⋅ 10−22 0.016
2,100 0.947 133.64 1.16 ⋅ 10−18 0.028 0.996 4592.69 3.91 ⋅ 10−23 0.014

480
1,200 0.998 3557.96 1.12 ⋅ 10−39 0.012 0.985 1222.98 5.31 ⋅ 10−18 0.019
1,600 0.977 325.64 3.03 ⋅ 10−24 0.021 0.982 984.20 3.64 ⋅ 10−17 0.019
2,100 0.989 695.50 4.18 ⋅ 10−29 0.014 0.990 1772.77 1.95 ⋅ 10−19 0.015

960
1,200 0.999 7610.05 1.27 ⋅ 10−44 0.009 0.997 6031.97 3.39 ⋅ 10−24 0.011
1,600 0.993 1082.51 5.83 ⋅ 10−32 0.013 0.997 6026.96 3.42 ⋅ 10−24 0.009
2,100 0.991 815.53 3.94 ⋅ 10−30 0.012 0.999 23591.77 1.61 ⋅ 10−29 0.006

TABLE 7 Parameters of time and energy models described in Equations (10), (16), and (23) fitted by linear regression

𝑵 𝑭𝑪𝑷𝑼 𝑾𝑪𝑷𝑼 𝑾𝑮𝑷𝑼 𝑾𝒎𝒂𝒔𝒕𝒆𝒓
𝑷𝒐𝒘𝑪𝑷𝑼

𝑷𝑪𝑷𝑼

𝑷𝒐𝒘𝑮𝑷𝑼

𝑷𝑮𝑷𝑼

𝑷𝒐𝒘𝒊𝒅𝒍𝒆
𝑪𝑷𝑼

𝑷𝑪𝑷𝑼

𝑷𝒐𝒘𝒊𝒅𝒍𝒆
𝑮𝑷𝑼

𝑷𝑮𝑷𝑼
𝝐𝟎

(MHz) (⋅𝟏𝟎𝟔 Cycles) (⋅𝟏𝟎𝟔 Cycles) (⋅𝟏𝟎𝟔 Cycles) (W) (W) (W) (W) (W ⋅ h)

240
1,200 78.48 13.79 0.46 7.96 9.62 1.41 2.48 1.82
1,600 74.62 14.05 0.58 8.23 12.11 1.53 4.46 1.13
2,100 73.16 14.06 0.63 11.70 6.74 1.37 2.05 1.57

480
1,200 85.46 14.72 0.25 6.55 5.57 1.47 1.50 4.11
1,600 81.80 14.79 0.36 6.70 7.86 1.53 2.63 2.71
2,100 81.00 14.87 0.40 9.67 5.60 2.95 2.12 2.88

960
1,200 82.30 15.22 0.38 6.44 4.39 2.78 1.38 8.07
1,600 79.09 15.13 0.48 6.44 6.17 2.99 2.35 4.82
2,100 74.96 14.88 0.61 9.52 4.44 3.41 1.43 5.75

TABLE 8 Mean Relative Error, 𝑀𝑅𝐸, in time and energy prediction of the case for 𝑁 = 240 individuals, with respect to
𝑁 = (480, 960) at the same frequency, 𝐹𝐶𝑃𝑈

𝑵 𝑭𝑪𝑷𝑼 (MHz) 𝑴𝑹𝑬 (Energy prediction) 𝑴𝑹𝑬 (Time prediction)
𝑵 = 𝟐𝟒𝟎 and 𝑭𝑪𝑷𝑼 = 𝟏, 𝟐𝟎𝟎

480 1,200 0.166±0.035 0.031±0.026
960 0.223±0.042 0.015±0.011

𝑵 = 𝟐𝟒𝟎 and 𝑭𝑪𝑷𝑼 = 𝟏, 𝟔𝟎𝟎
480 1,600 0.171±0.035 0.023±0.019
960 0.246±0.049 0.014±0.011

𝑵 = 𝟐𝟒𝟎 and 𝑭𝑪𝑷𝑼 = 𝟐, 𝟏𝟎𝟎
480 2,100 0.108±0.012 0.020±0.015
960 0.179±0.013 0.016±0.013
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