1	Nano- and rapid resolution liquid chromatography-electrospray
2	ionization-time of flight mass spectrometry to identify and quantify
3	phenolic compounds in olive oil
4	
5	Rocío García-Villalba ¹ , Alegría Carrasco-Pancorbo ^{1*} , Gabriela Zurek ² , Marina
6	Behrens ² , Carsten Bäβmann ² , Antonio Segura-Carretero ¹ , Alberto Fernández-
7	Gutiérrez ^{1*}
8	¹ Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/
9	Fuentenueva s/n, E-18071 Granada, Spain
10	² Bruker Daltonik GmbH, Bremen, Germany
11	
12	*Author to whom correspondence should be addressed:
13	Dr. Alegría Carrasco-Pancorbo or Alberto Fernández Gutiérrez, Research Group FQM-297, Department of
14	Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, E-18071 Granada,
15	Spain.
16	E-mail: <u>alegriac@ugr.es</u> or <u>albertof@ugr.es</u>
17	Fax: +34 958 249510
18	
19	Keywords: nano-liquid chromatography / nanospray-interface / olive oil/ phenolic
20	compounds / time of flight-mass spectrometry
21	
22	
23	
24	
25	
25	
26	

1 Abstract

2 The applicability of nano-liquid chromatography coupled to electrospray ionization-time 3 of flight-mass spectrometry (nanoLC-ESI-TOF MS) for the analysis of phenolic 4 compounds in olive oil was studied and compared with a HPLC method. After the 5 injection, the compounds were focused on a short capillary trapping column (100 µm 6 i.d., effective length 20 mm, 5 µm particle size) and then nanoLC analysis was carried 7 out in a fused silica capillary column (75 µm i.d., effective length 10 cm, 3 µm particle 8 size) packed with C18 stationary phase. The mobile phase was a mixture of water + 9 0.5% acetic acid and acetonitrile eluting at 300 nL/min in a gradient mode. Phenolic 10 compounds from different families were identified and quantified. The quality 11 parameters of the nanoLC method (linearity, limits of detection and quantification, 12 repeatability) were evaluated and compare to those obtained with HPLC. The new 13 methodology presents better sensitivity (reaching LOD values below 1 ppb) with less 14 consumption of mobile phases, but worse repeatability, especially inter-day repeatability, 15 doing more difficult to get highly accurate quantification. The results described in this 16 paper open up the application fields of this technique to cover a larger variety of 17 compounds and its advantages will make it especially useful for the analysis of samples 18 containing low concentration of phenolic compounds, as for instance, in biological 19 samples. 20 21 22 23 24 25

1

2 1 Introduction

3 Miniaturization of analytical techniques has recently become one of the most important 4 areas of research and several groups have paid great attention to the study and 5 development of new miniaturized separation methods. Among these, nano-liquid 6 chromatography (nanoLC), firstly introduced by Karlsson and Novotny in 1988 [1], has 7 emerged as a new powerful analytical tool, complementary and/or competitive to 8 conventional HPLC, providing a wide number of important applications, especially in 9 proteomics and related fields [2-5], mainly due to the very low sample requirements. 10 Other applications of nanoLC can be also found in fields such as pharmaceutical [6], 11 environmental [7,8], and enantiomeric analysis [9,10]. The use of nanoLC for food 12 analysis has not been so widely extended so far, although in the last years some 13 interesting works have demonstrated its potential in this field [11-15]. The analyses are 14 carried out in capillaries of small internal diameter (10-100 µm), in most of the cases 15 either of fused silica or peek material and containing selected stationary phases usually 16 used in HPLC with particle sizes of $3-5 \,\mu\text{m}$. In theory, by reducing the internal diameter 17 of the capillary column, better sensitivity can be achieved because the lower flow rate 18 causes a reduction of the chromatographic dilution. However, due to the low injected 19 sample volumes required in column with smaller diameter, the sensitivity will not be 20 high. The loss of sensitivity can be avoided using large volume injections with specific 21 techniques that prevent column overloading: on-column and extra column focusing 22 techniques. In the first one, solutes are dissolved in a solvent of lower eluting power 23 compared to the mobile phase [16] and the second solution consists of using a pre-24 column combining with a switching system [11]. With both techniques large injection 25 volumes could be used, increasing the sensitivity.

As far as detection system is concerned, UV and, in some cases, fluorescence detection
are the most commonly used, although when sensitivity is of paramount importance, MS
detection is gaining more interest due to its easy coupling to nanoLC instrumentation.
For coupling nanoLC to mass spectrometry, several nanospray interfaces have been
tested (sheatliquid and sheatless), some of them commercially available and, in many
occasions, homemade [6,17].

7 Extra virgin olive oil (EVOO) is a valuable component of the traditional Mediterranean 8 diet, unique among other vegetable oils because of its fatty acid composition 9 (characterized by a high monounsaturated-to-polyunsaturated fatty acid ratio) and its 10 high concentration level of phenolic compounds. The phenolic fraction of EVOO 11 consists of a heterogeneous and very complex mixture of compounds, mainly simple 12 phenols, lignans, flavonoids and secoiridoids; every family of compounds varies in 13 chemical properties and has a particular influence on the quality of EVOO [18,19]. There 14 is evidence that phenolic compounds could play a major role in the healthy effects of 15 EVOO, besides to be responsible of its antioxidant activity and organoleptic properties. 16 Therefore, the determination of this family of compounds in olive oil is of special 17 relevance. So far, different analytical methods (gas chromatography (GC) [20], HPLC 18 [21,22], capillary electrophoresis (CE)) [23] coupled to different detectors (UV, 19 fluorescence, mass spectrometry, etc) [24] have been developed to analyze olive oil 20 phenols. However, although nanoLC have already been employed in food analysis, to the 21 best of our knowledge it has not been applied to the analysis of polyphenols. 22 The aim of this work was to test and evaluate the potentiality of nanoLC coupled with 23 mass spectrometry (ESI-TOF MS) for the analysis of phenolic compounds in olive oil. 24 When an analytical technique is applied by first time to face a particular problem, it is 25 quite interesting to compare its potential and performance with those of other techniques

- 1 more widely used. Therefore, a comparison between the performance of both nanoLC-
- 2 ESI-TOF MS and HPLC-ESI-TOF MS methodologies for the separation and
- 3 quantitation of this type of compounds was made.
- 4

5 2 Materials and methods

6 **2.1 Chemicals and samples**

7 Methanol and *n*-hexane of HPLC grade used during sample extraction and acetic acid 8 were purchased from Panreac (Barcelona, Spain). Acetonitrile from Lab-Scan (Dublin, 9 Ireland) was used in the mobile phase for the HPLC and nanoLC analysis. Water was 10 deionized by using a Milli-Q-system (Millipore, Bedford, MA, USA). 11 Standards of hydroxytyrosol, tyrosol, luteolin and apigenin were purchased by Sigma-12 Aldrich (St. Louis, MO, USA) and (+)-pinoresinol was acquired from Arbo Nova 13 (Turku, Finland). Other phenolic compounds used as pure standard samples, elenolic 14 acid and ligstroside aglycon, were isolated from EVOOs by semipreparative HPLC. 15 Stock solutions at concentration of 500 mg/L for each polyphenol were prepared in 16 MeOH and then serially diluted to working concentrations. For the nanoLC analysis the 17 standards were dissolved in mobile phase (water + 0.5% acetic acid) with 10% MeOH. 18 EVOO samples of three different olive fruit varieties so-called Picual, Hojiblanca and 19 Arbequina used for the study were acquired from a supermarket (Granada, Spain). 20

21 **2.2 Sample extraction**

The extraction procedure was based on a specific solid phase extraction (SPE) method with Diol-cartridges which is used as routine extraction protocol in our research group [25]. Briefly, the extraction consisted of passing through a column, previously conditioned with 10 mL of methanol and 10 mL of hexane, 60 g of EVOO dissolved in

1 60 mL of hexane. After removing the non-polar fraction with 15 mL of hexane, the 2 phenolic compounds were recovered with methanol (40 mL). The final volume was dried 3 in a rotary evaporator under reduced pressure at 35°C and the residue was dissolved in 2 4 mL of methanol. After preparing the extracts, proper dilutions were made depending on 5 the technique used in each case (nanoLC or HPLC). For the HPLC analysis a 1:10 6 dilution in MeOH was used and for the injection into the nanoLC, the sample was 7 diluted 1:500 in mobile phase (water + 0.5% acetic acid) with 10% MeOH. 8 9 2.3 Nano-liquid chromatography analyses Experiments were performed in a commercial available instrumentation EASY-nLCTM 10 11 (Bruker Daltonik GmbH, Bremen, Germany), composed of one module and equipped

with three pumps, three pressure sensors, four valves, two flowsensors, an autosamplerand a touchscreen.

The chromatographic separation was performed in a capillary column BioSphere (75 μm
i.d., packed length 10 cm and particle size 3 μm) packed with C18 particles. An on-line
C18 trapping column (BioSphere (100 μm i.d., packed length 20 mm and particle size 5 μm)) was used before the nanoLC column in order to achieve both pre-concentration and
clean up of samples.

19 Optima chromatographic conditions were achieved by using a mobile phase composed of

20 water + 0.5% acetic acid (phase A) and acetonitrile (phase B) with the following

21 gradient: 0 to 10 min, 20-33% B; 10 to 35 min, 33-40% B; 35 to 38 min, 40-95% B.

22 Finally, the B content was decreased to the initial conditions (20%) within 2 min and the

23 column rinsed with these conditions for 5 min. Before starting the following analysis the

24 pre-column and column were re-equilibrated with phase A at 6 μ L/min for 2 min and 0.6

 25μ L/min for 8 min, respectively. A volume of 5 μ L of the sample was injected into the

1 loop and later loaded onto the pre-column using the phase A (water + 0.5% acetic acid) 2 at a flow rate of 6 μ L/min during 1 min, to trap de compounds of interest and to clean the 3 sample. Afterwards, the valve changed position and switched the pre-column in-line with 4 the analytical column eluting the compounds of interest at a flow-rate of 300 nL/min and 5 25°C (the column was at room temperature because of the lack of thermostatization 6 system). Figure 1 shows a schematic figure of the nanoLC system, showing the moment 7 when the sample is loading onto the pre-column using pump A. 8 All nanoLC parts were controlled by Hystar (version 3.1) software. The compounds

9 separated were analyzed with a mass spectrometry detector.

10

11 **2.4 High performance liquid chromatography analyses**

12 An Agilent 1200-RRLC system (Agilent Technologies, Waldbronn, Germany) equipped 13 with a vacuum degasser, autosampler, a binary pump and a UV-Vis detector was used 14 for the chromatographic determination. Polyphenolic compounds were separated by 15 using a Zorbax C18 analytical column (4.6 x 150 mm, 1.8 µm particle size) protected by 16 a guard cartridge of the same packing, operating at 30°C and a flow rate of 1.5 mL/min. 17 The mobile phases used were water with acetic acid (0.5%) (Phase A) and acetonitrile 18 (Phase B) and the solvent gradient changed according to the following conditions: 0 to 19 10 min, 5-30% B; 10 to 12 min, 30-33% B; 12 to 17 min, 33-38% B; 17 to 20 min, 38-20 50% B; 20 to 23 min, 50-95% B. Finally, the B content was decreased to the initial 21 conditions (5%) in 2 min and the column re-equilibrated for 10 min. A volume of 10 µL 22 of the 1:10 diluted methanolic extracts of olive oil was injected. The compounds 23 separated were monitored in sequence first with DAD (240 and 280 nm) and then with a 24 mass spectrometry detector.

1 2.5 Mass spectrometry

2 The nanoLC column and the RRLC system were coupled to a Bruker Daltonik

microTOF mass spectrometer (Bruker Daltonik, Bremen, Germany) using electrospray
ionization (ESI).

In this study the nanoLC column was interfaced to the mass spectrometry using a
commercial sheatless nano-spray interface with a tapered fused silica sprayer tip. The
key parameters of the nano-ESI were adjusted for the flow rate used (300 nL/min) to
achieve stable spray across the entire gradient range: pressure 0.4 bar, dry gas flow 4
L/min and dry gas temperature 150°C.

10 The RRLC system was coupled to the mass spectrometer using an orthogonal

11 electrospray interface (model G1607A from Agilent Technologies, Palo Alto, CA,

12 USA). The flow rate used in the RRLC method 1.5 mL/min was too high for achieving

13 an stable electrospray ionization (ESI) (maximum flow-rate is around 1 mL/min),

14 therefore it was necessary to use a flow divisor 1:6, so the flow delivered into the mass

15 spectrometer was reduced to 0.21 mL/min. According to this inflow the ESI parameters

16 were chosen: nebulizer pressure was set at 2 bar, dry gas flow 9 L/min and dry gas

17 temperature 190°C.

18 The mass transfer parameters (radio frequencies and voltages in the different skimmers,

19 hexapoles and lenses) were similar to those previously optimized in recent works where

20 the same matrix (EVOO) was analyzed [26] acquiring spectra in the range of 50-800 m/z

21 in the negative mode. So far, nanoflow ESI has become routine in the positive ion mode

22 and just few applications have been developed in negative ion mode due to difficulties

23 with spray instability. TOF analyzers provide greatly improved mass resolution (5,000–

24 10,000 at 250 m/z) and significantly high sensitivity and accuracy when acquiring full-

25 fragment spectra. In order to obtain high mass accuracy in TOF, mass calibration is

1 required. After a good instrument calibration, the accurate mass data of the molecular 2 ions and the true isotopic pattern (TIP) can be processed by DataAnalysis 4.0 software 3 (Bruker Daltonik GmbH) which provides information of elemental composition of 4 compounds. The calibrant can either be measured within the sample itself (internal 5 calibration) or, alternatively, can be introduced externally, for instance, with a pump at 6 the beginning or at the end of the analysis (external calibration). In general, it is safest 7 and more convenient to measure the calibrant externally to avoid signal suppression and 8 contamination and to assure the calibrant signal is measured at an appropriate, controlled 9 intensity level. However, the internal calibration provides better mass accuracy (less than 10 3 ppm error). With the instrumentation used in this work for the nanoLC analysis was 11 not possible to do an external calibration because a system to introduce the calibrant at 12 the beginning or the end of the chromatographic run has not been developed yet. Instead 13 of this, an internal calibration was applied using a mixture of well-known phenols 14 present in the olive oil extracts (Table 1), giving mass peaks throughout the desired 15 range of 100-400 m/z. The seven phenolic compounds included in Table 1 (which were 16 available as pure standards) were used to calibrate every analysis. First of all, we 17 corroborated their presence in the analyzed samples (taking into account their retention 18 time, MS spectra and also by analyzing spiked samples). After their unequivocal 19 identification, we decided to use them to increase the accuracy of our results. So we 20 made an average MS spectrum of the whole chromatogram and we re-calibrated every 21 analysis by using the calibration list mentioned above. This procedure resulted in mass 22 accuracies of less than 3 ppm.

23

24 **2.6 Statistics**

Results of phenolic compounds are the averages of at least three repetitions (n=3), unless
 otherwise stated. Tukey's honest significant difference multiple comparison (one-way
 ANOVA) and Pearson's linear correlations, both at p < 0.05, were evaluated using
 Statistica 6.0 (2001, StatSoft, Tulsa, OK).

5

6 **3 Results and discussion**

7 3.1 NanoLC-ESI-TOF MS method

8 3.1.1. Development of the method

9 In order to develop the nanoLC method for the separation of the olive oil phenolic

10 compounds, a capillary column BioSphere C18 (75 μ m i.d., packed length 10 cm and

11 particle size 3 µm) coupled to a C18 trapping column BioSphere (100 µm i.d., packed

12 length 20 mm and particle size 5 μ m) was used.

13 Capillary columns of 75 µm i.d. usually have an ideal injection volume of few nanoliters

14 (20-60 nL) but the use of trapping columns before the analytical column, as mentioned in

15 the introduction, allows injecting relatively high sample volumes, improving the

16 sensitivity. In the case under study, where the sample amount was not limited, 5 μ L of

17 the sample was initially chosen for the injection.

18 Preliminary studies were done analyzing the best way to load the sample from the loop

19 to the pre-column in order to trap the analytes. With the instrumentation used in this

20 work the solvent used to load the samples is always phase A (in this case water + 0.5%

21 acetic acid), and it is not possible to change it. Using this solvent, an appropriate loading

22 time and speed were chosen. With a flow rate of 6 μ L/min, a very low loading time led

23 to some analytes, especially the most hydrophobic, not to reach the pre-column and to

24 keep sorbed onto the tubing connecting the loop and the pre-column. On the contrary, if

25 the time is too large, the analytes, principally the most hydrophilic was displaced from

the pre-column during the loading/washing phase of the analysis. Finally, the best
 loading conditions that allowed an optimum recovery of olive oil phenols into the
 separation columns were 6 μL/min for 1 min. This description results easier to
 understand observing Figure 1.

5 Once optimized the loading conditions, other experimental variables affecting nanoLC 6 analysis were studied. Based on our previous studies with this type of compounds water 7 +0.5% acetic acid and acetonitrile were selected as mobile phases and different isocratic 8 and gradient programs were tested. In general, because of the very different properties of 9 the analyzed compounds, an isocratic elution at different percentages of organic solvents 10 did not provide an appropriate separation of the selected compounds and thus, a gradient 11 elution was required. Optimum separation was achieved by using the following gradient: 12 0 to 10 min, 20-33% B; 10 to 35 min, 33-40% B; 35 to 38 min, 40-95% B. Finally, the B 13 content was decreased to the initial conditions (20%) within 2 min and the column rinsed 14 with these conditions for 5 min. As it can be observed, the gradient is limited between 20 15 and 100% of organic solvent, as in most of the nanoLC-MS systems described in 16 literature [14,27,28], in order to improve spray stability that can be an issue when 17 predominantly aqueous solvents are used (due to the high surface tension of water). 18 Different flow rates were tested: 200, 300 and 400 nL/min (the maximum flow rate 19 supported by the column is 600 nL/min). Worse efficiency and long retention times were 20 obtained when lower flow rates were used, whilst for high flows we got shorter analysis 21 time but a loss of sensitivity and resolution for some compounds. After the optimization, 22 chromatographic separations were carried out at room temperature (25°C) at a flow rate 23 of 300 nL/min. Other lower injection volumes were also tested (500 nL, 1 µL, 2 µL) but 24 the resolution did not improve and the sensitivity was lower.

1 As described in the experimental section the detection was carried out with mass 2 spectrometry (TOF) using a sheathless nano-electrospray. MS was operated in the range 3 between 50-800 m/z in negative polarity; however analyses of EVOO by nanoLC-ESI-4 TOF MS were performed in negative ion mode and in positive ion mode. In positive ion 5 mode, in general, the profiles were worse and as far as the different families of phenolic 6 compounds are concerned, flavonoids and lignans were ionized quite properly, whilst 7 secoiridoids, simple phenols and phenolic acids (or very related compounds) were 8 detected better in negative polarity. We decided to use negative polarity for the rest of 9 the analyses. Figure 2 shows the chromatograms of the olive oil extract (Picual variety) 10 obtained by using nanoLC-ESI-TOF MS and HPLC-ESI-TOF MS. As it can be 11 observed, the nanoLC separation was successfully carried out in a relatively short time 12 (less than 30 min), comparable to some results reported in literature for olive oil phenols. 13 The resolution and efficiency for some compounds were a bit worse than in HPLC, 14 particularly at the beginning of the chromatogram where predominantly aqueous portion 15 is present. 16 17 3.1.2 Identification of the compounds under study 18 The optimized nanoLC-ESI-TOF MS method was applied for the identification and 19 quantification of phenolic compounds in different olive oil samples. 20 The identification of the compounds was easily performed by comparing both migration 21 time and MS spectral data obtained from olive oil samples and standards (commercial 22 standards or isolated compounds by HPLC), and by using the information about the 23 polarity of the compounds, the wide information previously reported in literature [26,29] 24 and the information provided by the mass spectrometer with TOF analyzer. Table 2

25 summarizes the main phenolic compounds identified in Picual EVOO by nanoLC-ESI-

1 TOF MS including information about the retention time, product ions obtained

2 spontaneously in the ionization source, m/z, molecular formula, error and sigma value.

3 As shown in Table 2 calibration error for each mass was less than 3 ppm.

4 Figure 3 shows the base peak chromatogram (BPC) obtained by the developed nanoLC-

5 ESI-TOF MS method operating at the optima conditions for the olive oil from Picual

6 variety and the extracted ions chromatograms (EICs) of the main phenolic compounds

7 identified.

8 A quite stable nanospray was obtained by using these optima conditions and, in general, 9 we could observe minimal carryover in the samples. The most hydrophilic compounds 10 (hydroxytyrosol and tyrosol) presented low efficiency and resolution, probably due to 11 the higher aqueous content used at the beginning of the gradient. We tried to improve the 12 first part of the chromatogram starting with higher organic solvent content (30 and 40% 13 ACN), but with these conditions, the resolution in the rest of the chromatogram was 14 quite worse. Compounds in the family of lignans (pinoresinol, acetoxipinoresinol and 15 syringaresinol) and flavonoids (luteolin and apigenin) were detected with very high 16 efficiency and good peak shape. Regarding secoiridoids, some of them (oleuropein 17 aglycon, ligstroside aglycon, methyl oleuropein aglycon) showed several peaks 18 corresponding to different isomeric forms some of them, previously described in 19 literature [23,26]. The extra peaks that appear in the extracted ion chromatograms of 20 tyrosol and elenolic acid correspond to the fragmentation of other compounds that elute 21 later in the chromatogram.

Three different varieties of olive oil (Picual, Arbequina and Hojiblanca) were analyzed
by using the optima conditions and the results are shown in Figure 4.

24

25 3.1.3 Analytical parameters and quantification of the compounds

The analytical method was then validated in terms of specificity, linearity and precision
 for the analysis of phenolic compounds in olive oil.

3 The specificity of the method was tested by screening analysis of blank (in terms of 4 phenols) oil samples. There were no impurity peaks or contamination at the retention 5 times corresponding to the analytes. In order to obtain the calibration curves, the analyte 6 peak area was plotted versus the analyte concentration. Ten points of different 7 concentrations level (n=10) were chosen for the different phenols standards and for each 8 point the appropriate standard solution was injected three times. In general, wide 9 linearity ranges were observed for each analyte with reasonable linearity and correlation 10 coefficients (r^2) from 0.9670 to 0.9974. To test the sensitivity of the method, the mixture 11 of the seven compounds were diluted several times and injected into the nanoLC system. 12 The limits of detection (LODs) were determined as three times the signal to noise ratio 13 (S/N) and were ranged between very low values: 0.7 and 0.9 ppb for the flavonoids, 14 luteolin and apigenin respectively, and 30 ppb for Hydroxytyrosol. These LODs values 15 are much lower than those described in literature for the same compounds by HPLC-MS. 16 Regarding the repeatability, it was assayed out by three consecutive injections (n = 3) of 17 the standard mixture of phenolic compounds in the same day (intra-day repeatability) 18 and in four different days (inter-day repeatability) obtaining values of relative standard 19 deviation (RSD%) on the peak area ratio above 4.3 and 15.6%, respectively. These 20 results show fairly good intra-day repeatability but, as expected, worse inter-day 21 repeatability that could be explained by the instability of the nanospray. 22 Table 3 shows the main quality parameters of the nanoLC-ESI-TOF MS method: linear 23 range, calibration curve, correlation coefficients (r^2) , limits of detection (LODs), limits 24 of quantification (LOQs) and compares them with those obtained for HPLC-ESI-TOF 25 MS. Both methods were compared taking into account the best chromatographic and

1 mass spectrometry conditions for each one. Better results were obtained using HPLC in 2 terms of linearity and repeatability, especially inter-day repeatability. However, 3 concerning the sensitivity, the nanoLC-ESI-TOF method provided a much higher S/N 4 ratio for the compounds, and therefore, a better sensitivity. 5 The described method was applied to quantify the phenolic compounds under study in 3 6 different varieties of EVOO samples. The analyses were performed in triplicate and the 7 concentration was determined using the area of each individual compound and making 8 an interpolation in the corresponding calibration curve. Table 4 present the polyphenolic 9 content found in commercial olive oils by nanoLC-ESI-TOF MS together with the 10 results obtained with HPLC-ESI-TOF MS. The variability in the phenolic content among 11 the studied varieties can be motivated by some environmental, genetic, geographical and 12 agronomic factors; all those variables have been widely studied in literature. 13 Having a look at Table 4, we can say that, in general, the results obtained for the seven 14 phenolic compounds quantified in terms of their standards in this study are in good 15 agreement when we compare nanoLC-ESI-TOF MS and HPLC-ESI-TOF MS. Only for 16 hydroxytyrosol and tyrosol - belonging to the family of simple phenols - the results 17 achieved by both techniques were not statistically the same. This fact could be explained 18 taking into account that simple phenols are the most hydrophilic compounds in the 19 extracts from olive oil and they appear in the profile when aqueous proportion is more 20 abundant in the mobile phase, resulting in poor spray stability. For the rest, nanoLC and 21 HPLC quantitative results are statistically the same, except for the luteolin content in 22 Arbequina olive oil. 23 From our point of view, it is pretty worth to highlight that as repeatability was higher in 24 HPLC, the standard deviation of HPLC results was lower. Although nanoLC quantitative

25 data were not excellent, we consider that it is very interesting the fact of evaluating that

technique and checking its performance and its capability to quantify accurately this kind
 of compounds. So far, in part due to the low reproducibility of the nanospray technology,
 nanoLC has been mainly used for qualitative analysis.

4

5 **3.2** Comparison between NanoLC and HPLC results

6 With regards to the analytical parameters, nanoLC showed in general worse, although 7 sufficient, resolution, efficiency and repeatability compared to HPLC. However, in terms 8 of sensitivity, the LODs obtained with the nanoLC system used in this study are much 9 lower that those reported previously by using HPLC methods. This high sensitivity could 10 be explain because of the possibility to inject large volumes of samples using the on-line 11 pre-column together with the reduction of the chromatographic dilution due to the use of 12 small i.d. capillary columns [17].

13 The use of nanoLC can also offer other attractive advantages over classical HPLC. The 14 use of small amounts of stationary phases made the columns cheaper (ten-folder lower) 15 than a conventional C18 column and allows the use of expensive packing materials. In 16 nanoLC, the use of pre-columns is highly recommended, since capillaries can be easily 17 blocked at the inlet when real samples have to be analyzed. Besides, it allows samples to 18 be both pre-concentrated and partially cleaned up. It should also be indicated, that after 19 more than 500 injections of olive oil phenols, the column is still in perfect state for the 20 analysis of this type of compounds.

Another important advantage of this miniaturized technique it is the use of relatively low
flow rates (40-600 nL/min depending on the column). Mobile phases, especially
acetonitrile, are quite expensive, and the small amount request for nanoLC makes this
technique very attractive with lower cost and reduction of waste solvents. Similar results
were obtained in both LC and nanoLC with 3000-fold reduction in reagent consumption.

1 The reduction of flow rate also allows a good coupling with MS transferring the entire 2 effluent from the column into the MS instrument, whereas with HPLC we normally need 3 a splitter. Both systems can be easily coupled to the mass spectrometer although the 4 nanoLC coupling is most delicate and present more technical problems, requiring 5 significant expertise, mainly because of the delicate plumbing and the use of fragile 6 fused-silica ESI emitters. Besides, the mass spectrometer gets dirty earlier with nanoLC 7 because the higher flows of solvents used in HPLC clean the surfaces of the equipment. 8 Due to the low consumption of mobile and stationary phases, the nanoLC method seems 9 to be cheaper than the traditional HPLC but, at the moment, because of the novelty of the 10 technique, the instrumentation and packed column for some applications are still pretty 11 expensive. 12 Other advantage of nanoLC over classical HPLC is the possibility to use low injected 13 sample volumes (20-60 nL), fact which can be very useful for applications where 14 sample availability is restricted, as for example in proteomic field. The analyst has to

15 reach always a compromise between nanoliter injection and sensitivity determination.

16 Another advantage that we can stand out is the better baseline noise, due to a reduced

17 background, which is necessary to detect minor components.

Tabla 5 summarizes the advantages and disadvantages of the nanoLC methodologiesversus HPLC.

20

21 4 Concluding remarks

In this work, a nanoLC-ESI-TOF MS method has been developed to demonstrate, for the first time, its application on the determination of phenolic compounds in olive oil. The use and analytical performance of nanoLC were compared with a HPLC method, and both of them were applied for the identification and quantification of different phenolic

1	compounds in olive oil. The most important analytical parameters of both methods
2	(linearity, calibration range, detection and quantification limit, repeatability etc) were
3	calculated to establish the comparison. The new nanoLC method provides comparable
4	analysis time and offers better sensitivity with less consumption of mobile phases;
5	however it presents worse inter-day repeatability and it can be a bit more difficult to
6	operate by the analyst.
7	NanoLC-ESI-TOF MS showed the potential to become a very promising alternative, in
8	particular, for studies where the determination of extremely low concentrations of
9	analytes is required (biological samples, for instance). Further studies are already
10	ongoing in our laboratory using nanoLC-ESI-TOF for the analysis of polyphenols in
11	biological samples.
12	
13	Acknowledgments

The authors are very grateful to Ministry of Education and Science (FPU, AP2005- 4356
and Proyect AGL 2008-05108-CO3-03/ALI), and Junta de Andalucía (Proyect P07AGR-02619).

5 References

[1] Karlsson, K.E., Novotny, M., Anal. Chem. 1988, 60, 1662 -1665.

[2] Hernández-Borges, J., Aturki, Z., Rocco, A., Fanali, S., J. Sep. Sci. 2007, 30, 1589 -1610.

- [3] Ishihama, Y., J. Chromatogr. A 2005, 1067, 73-83.
- [4] Mirgorodskaya, E., Braeuer, C., Fucini, P., Lehrach, H., Gobom, J., *Proteomics* 2005, 5, 399 -408.

- [5] Taylor, P., Nielsen, P. A., Trelle, M. B., Hørning, O. B., Andersen, M. B., Vorm, O.,Moran, M. F., Kislinger, T., *J. Proteome Res.* 2009, 8, 1610 -1616.
- [6] Fanali, S., Aturki, Z., D'Orazio, G., Rocco, A., J. Chromatogr. A 2007, 1150, 252 258.
- [7] Famiglini, G., Palma, P., Siviero, A., Rezai, M. A., Capiello, A., *Anal. Chem.* 2005, 77, 7654 -7661.
- [8] Buonasera, K., D'Orazio, G., Fanali, S., Dugo, P., Mondello, L., J. Chromatogr. A 2009, 1216, 3970 -3976.
- [9] Rocco, A., Fanali, S., J. Sep. Sci. 2009, 32, 1696 -1703.
- [10] Fanali, S., Aturki, Z., Kasicka, V., Raggi, M. A., D'Orazio, G., J. Sep. Sci. 2005, 28, 1719-1728.
- [11] D'Orazio, G., Cifuentes, A., Fanali, S., Food Chem. 2008, 108, 1114-1121.
- [12] Rocco, A., Fanali, S., J. Chromatogr. A 2009, 1216, 7173 -7178.
- [13] Fanali, S., Camera, E., Chankvetadze, B., D'Orazio, G., Quaglia, M. G., *J. Pharm. Biomed. Anal.* 2004, 16, 331 -337.
- [14] Hernández-Borges, J., D'Orazio, G., Aturki, Z., Fanali, S., J. Chromatogr. A 2007, 1147, 192 -199.
- [15] Cerretani, L., Lerma-García, M. J., Herrero-Martínez, J. M., Gallina-Toschi, T., Simo-Alfonso, E. F., J. Agric. Food Chem. 2010, 58, 757-761.
- [16] Buonasera, K., D'Orazio, G., Fanali, S., Dugo, P., Mondello, L., J. Chromatogr. A 2009, 1216, 3970-3976.
- [17] Song, Y., Quan, Z., Liu, Y. M., Rapid Commun. Mass Spectrom. 2004, 18, 2818 -2822.
- [18] Owen R.W., Mier, W., Giacosa, A., Hull, W. E., Spiegelhalder, B., Bartsch, H., *Food Chem. Toxicol.* 2000, 38, 647 -659.

- [19] Servili, M., Montedoro, G., Eur. J. Lipid Sci. Technol. 2002, 104, 602 -613.
- [20] Ríos, J. J., Gil, M. J., Gutiérrez-Rosales, F., J. Chromatogr. A 2005, 1903, 167 -176.
- [21] Oliveras-López, M. J., Innocenti, M., Giaccherini, C., Ieri, F., Romani, A.,
- Mulinacci, N., Talanta 2007, 73, 726 -732.
- [22] Gómez-Alonso, S., Salvador, M. D., Fregapane, G., J. Agric. Food Chem. 2002, 50,6812 -6817.
- [23] Carrasco-Pancorbo A., Neususs, C., Pelzing, M., Segura-Carretero, A., Fernández-Gutiérrez, A., *Electrophoresis* 2007, 28, 806 -821.
- [24] Carrasco-Pancorbo, A., Cerretani, L., Bendini, A., Segura-Carretero, A., Gallina-
- Toschi, T., Fernández-Gutiérrez, A., J. Sep. Sci. 2005, 28, 837 -858.
- [25] Gómez-Caravaca, A. M., Carrasco-Pancorbo, A., Cañabate-Diaz, B., Segura-
- Carretero, A., Fernández-Gutiérrez, A., Electrophoresis 2005, 26, 3538 -3551.
- [26] García-Villalba, R., Carrasco-Pancorbo, A., Vázquez-Martín, A., Oliveras-Ferraros,
- C., Menéndez, J. A., Segura-Carretero, A., Fernández-Gutiérrez, A., *Electrophoresis* 2009, 30, 1 -14.
- [27] Embrechts, J., Lemiere, F., Van Dongen, W., Esmans, E. L., *J. Mass Spectrom*.2001, 36, 317 -328.
- [28] Schneider, B. B., Guo, X., Fell, L. M., Covey, T. R, J. Am. Soc. Mass Spectrom.2005, 16, 1545 -1551.
- [29] García-Villalba, R., Carrasco-Pancorbo, A., Oliveras-Ferraros, C., Vázquez-Martín,
 A., Menéndez, J. A., Segura-Carretero, A., Fernández-Gutiérrez, A., *J. Pharm. Biomed. Anal.* 2010, 51, 416- 429.

Figure captions

Figure 1. Schematic figure of the nano-LC system, showing the moment when the sample is loading onto the pre column using pump A. Valve S is switched to positon 1-6 directing the flow through the loop carrying the sample onto the pre column. Valve W is set to position 1-6, because of the higher pressure drop on the analytical column the flow is directed to waste.

Figure 2. BPC (Base Peak Chromatogram) of an olive oil extract (variety Picual) using nanoLC-ESI- TOF MS (A) and comparison with the HPLC-ESI-TOF MS method (B). Chromatographic conditions are described in Materials and Methods.

Figure 3. Base peak chromatogram (BPC) achieved by nanoLC-ESI-TOF MS at the optima conditions for the variety Picual and extracted ions chromatogram (EICs) of the main phenolic compounds identified: 1, Hydroxytyrosol; 2, Tyrosol; 3, Hydroxy elenolic acid; 4, Elenolic acid; 5, Hydroxy decarboxymethyl oleuropein aglycon; 6, Decarboxymethyl oleuropein aglycon and hydroxy decarboxymethyl ligstroside aglycon; 7, Syringaresinol; 8, Luteolin; 9 Pinoresinol; 10, Acetoxypinoresinol; 11, Hydroxy oleuropein aglycon; 12, Decarboxymethyl ligstroside aglycon; 13, Apigenin; 14, Methyl decarboxymethyl oleuropein aglycon, 15, Oleuropein aglycon; 16, Methyl oleuropein aglycon; 17, Ligstroside aglycon.

Figure 4. Base peak chromatograms obtained by nanoLC-ESI-TOF at optima conditions for olive oils of three different varieties: a) Picual, b) Arbequina, c) Hojiblanca.

Table 1. Mass calibration matrix for internal calibration.

	Name	Formula [M-H] ⁻	Theoretical Mass	Charge
1	Hydroxytyrosol	$C_8H_9O_3$	153.05572	-1
2	Tyrosol	$C_8H_9O_2$	137.06080	-1
3	Elenolic acid	$C_{11}H_{13}O_6$	241.07176	-1
4	Apigenin	$C_{15}H_9O_5$	269.04555	-1
5	Luteolin	$C_{15}H_9O_6$	285.04046	-1
6	Pinoresinol	$C_{20}H_{21}O_6$	357.13436	-1
7	Ligstroside aglycon	$C_{19}H_{21}O_7$	361.12928	-1

Table 2. Phenolic compounds identified in an olive oil extract (Picual variety) bynanoLC-ESI-TOF including: mass/charge ratio, retention time, ISCID (Internal sourcecollision induced dissociation) fragments, molecular formula, error (ppm) and Sigmavalue. Internal calibration was used by using 7 well-known phenolic compounds.

m/z	Retention time (min)	Fragments	Formula [M-H] ⁻	Error	Sigma	Identified Compounds
153.0559	11.3	123	$C_8H_9O_3$	-1.3	0.005	Hydroxytyrosol
137.0610	12.6		$C_8H_9O_2$	-1.6	0.029	Tyrosol
257.0660	15.3	181,137	$C_{11}H_{13}O_7$	2.7	0.007	Hydroxy elenolic acid
241.0712	16.2	139	$C_{11}H_{13}O_6$	2.5	0.014	Elenolic acid
335.1141	16.8	199	$C_{17}H_{19}O_7$	-1.5	0.014	Hydroxy decarboxymethyl oleuropein aglycon
319.1180	17.7	183	$C_{17}H_{19}O_6$	2.2	0.022	Decarboxymethyl oleuropein aglycon
417.1606	18.1		$C_{22}H_{25}O_8$	1.7	0.086	Syringaresinol
319.1185	18.6	199	$C_{17}H_{19}O_6$	0.7	0.003	Hydroxy decarboxymethyl ligstroside aglycon
285.0399	18.8		$C_{15}H_9O_6$	2.1	0.018	Luteolin
357.1348	18.9		$C_{20}H_{21}O_{6}$	-1.1	0.033	Pinoresinol
415.1404	19.2		$C_{22}H_{23}O_8$	1.5	0.026	Acetoxypinoresinol
393.1203	19.3		$C_{19}H_{21}O_9$	3.0	0.005	10-Hydroxy oleuropein aglycon
303.1244	19.6	183	$C_{17}H_{19}O_5$	-2.0	0.015	Decarboxymethyl ligstroside aglycon
269.0459	20.8		$C_{15}H_9O_5$	-1.2	0.079	Apigenin
333.1339	21.1		$C_{18}H_{21}O_{6}$	1.2	0.010	Methyl decarboxymethyl oleuropein aglycon
377.1256	21.5	345,307,275	$C_{19}H_{21}O_8$	-1.2	0.002	Oleuropein aglycon
391.1406	23.9	345,275	$C_{20}H_{23}O_8$	-2.0	0.016	Methyl oleuropein aglycon
361.1295	24.4	291,241	$C_{19}H_{21}O_7$	-0.5	0.012	Ligstroside aglycon

Table 3. Analytical parameters for the nanoLC and HPLC-ESI-TOF MS methods:

relative standard deviation (RSD%), limit of detection (LOD) and quantitation (LOQ),

linearity, calibration curves and r^2 .

Analytes		RSD%		LOD LOQ	Linearity	Calibratian aurua	m ²	
		Intra-day	Inter-day	(ppb)	(ppb)	(ppm)	Cambration curves	Γ-
Hutu	nanoLC	6.8	20.4	30	90	LOQ-4	y = 887868x - 31503	0.994
пуіу	HPLC	4.6	6.8	90	300	LOQ-50	y = 39934x + 42004	0.993
T	nanoLC	8.0	15.6	10	30	LOQ-2	y = 757872x + 4292	0.997
Iy	HPLC	2.1	5.3	310	1030	LOQ-50	y = 12596x + 26635	0.991
EA	nanoLC	7.3	26.3	8	16	LOQ-4	y = 1057886x + 28193	0.982
LA	HPLC	3.4	7.5	1440	4800	LOQ-300	y = 6687.8x + 76261	0.991
Dim	nanoLC	8.1	16.2	1.2	3.6	LOQ-0.5	y = 1545997x + 25558	0.988
Fin	HPLC	3.3	4.6	60	200	LOQ-50	y = 37578x + 53556	0.991
Leit	nanoLC	4.3	16.1	0.9	2.7	LOQ-1	y = 3854172x + 83079	0.980
Lui	HPLC	2.8	5.8	20	60	LOQ-25	y = 114566x + 59826	0.994
4	nanoLC	9.8	18.2	0.7	2.1	LOQ-0.2	y = 6301191x - 28625	0.969
Apig	HPLC	2.0	4.6	20	60	LOQ-25	y = 150131x + 118916	0.991
Lin Anl	nanoLC	9.5	22.0	2	6	LOQ-6	y = 314076x + 405488	0.964
Lig Agl	HPLC	3.0	6.7	430	1430	LOQ-300	y = 9018.9x + 59184	0.993

Hyty: Hydroxytyrosol; Ty: Tyrosol; EA: Elenolic acid; Pin: Pinoresinol; Lut: Luteolin; Apig: Apigenin; Lig Agl: Ligstroside aglycon.

In mass spectrometry detection limit was calculated considering S/N=3

Table 4. Quantitative results (mg/kg) achieved by HPLC and nanoLC-ESI-TOF MS for the three varieties of olive oil (Picual, Arbequina and Hojiblanca) included in the study.

Compounds	PICUAL		ARBE	EQUINA	HOJIBLANCA	
Compounds	nanoLC	HPLC	nanoLC	HPLC	nanoLC	HPLC
Hyty	30.15 ± 2.34 (b)	20.20 ± 0.77 (a)	6.15 ± 0.28 (b)	3.37 ± 0.11 (a)	21.93 ± 1.39 (b)	9.76 ± 0.34 (a)
Ту	15.19 ± 0.75 (a)	11.84 ± 0.56 (a)	4.65 ± 0.21 (b)	2.33 ± 0.10 (a)	13.61 ± 0.97 (b)	6.56 ± 0.17 (a)
EA	54.76 ± 2.54 (a)	58.18 ± 1.46 (a)	14.93 ± 1.86 (a)	10.47 ± 0.84 (a)	37.85 ± 2.33 (a)	33.00 ± 0.98 (a)
Lut	1.64 ± 0.12 (a)	1.84 ± 0.06 (a)	3.72 ± 0.23 (b)	4.41 ± 0.12 (a)	2.95 ± 0.28 (a)	3.29 ± 0.10 (a)
Pin	0.76 ± 0.10 (a)	0.77 ± 0.03 (a)	1.90 ± 0.45 (a)	2.24 ± 0.21 (a)	2.13 ± 0.31 (a)	1.86 ± 0.09 (a)
Apig	0.32 ± 0.06 (a)	0.43 ± 0.04 (a)	0.96 ± 0.23 (a)	1.22 ± 0.08 (a)	0.74 ± 0.06 (a)	0.99 ± 0.07 (a)
Lig Agl	65.5±3.17 (a)	64.78 ± 1.19 (a)	20.09 ± 1.37 (a)	17.38 ± 0.32 (a)	34.77 ± 3.20 (a)	38.23 ± 0.71 (a)

Hyty: Hydroxytyrosol; Ty: Tyrosol; EA: Elenolic acid; Pin: Pinoresinol; Lut: Luteolin; Apig: Apigenin; Lig Agl: Ligstroside aglycon.

Values are given as Mean ± Standard deviation.

Means achieved by nanoLC-MS and HPLC-MS for the three varieties under study were compared. We indicated with different letters when means are significantly different ($p \le 0.05$).

Table 5. Advantages	and drawbacks of	of nanoLC	(versus HPLC).
---------------------	------------------	-----------	----------------

_	nanoLC
Advantages	 Excellent sensitivity, very low LODs (ppb) when techniques to load large sample volumes are used Small amounts of stationary phase make, in most occasions, the columns cheaper Low flow rates (40-600 nL/min): lower cost and reduction of waste solvents Good coupling with MS Low sample consumption (20-60 nL) Better baseline noise due to the reduced background Very promising alternative for biological samples
Disadvantages	 Good intra-day repeatability but low inter-day repeatability Worse linearity Columns more easily blocked with real samples More technical problems because of the delicate plumbing and the use of fragile fused-silica ES emitters Mass spectrometry gets dirty early because of the use of lower flow rate.

Figure 2.

Figure 3.

