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Abstract: This paper aims to present a methodology for the application of matching methods in
industry to measure causal effect size. Matching methods allow us to obtain treatment and control
samples with their covariates as similar as possible. The matching techniques used are nearest,
optimal, full, coarsened exact matching (CEM), and genetic. These methods have been widely used in
medical, psychological, and economic sciences. The proposed methodology provides two algorithms
to execute these methods and to conduct an exhaustive search for the best models. It uses three
conditions to ensure, as far as possible, the balance of all covariates, the maximum number of units
in the treatment and control groups, and the most significant causal effect sizes. These techniques
are applied in the carton board industry, where the causal variable is downtime, and the outcome
variable is waste generated. A dataset from the carton board industry is used, and the results are
contrasted with an expert in this process. Meta-analysis techniques are used to integrate the results
of different comparative studies, which could help to determine and prioritize where to reduce waste.
Two machines were found to generate more waste in terms of standardized measures whose values
are 0.52 and 0.53, representing 48.60 and 36.79 linear meters (LM) on average for each production
order with a total downtime of more than 3000 s. In general, for all machines, the maximum average
wastage for each production order is 24.98 LM and its confidence interval is [13.40;36.23] LM. The
main contribution of this work is the use of causal methodology to estimate the effect of downtime on
waste in an industry. Particularly relevant is the contribution of an algorithm that aims to obtain the
best matching model for this application. Its advantages and disadvantages are evaluated, and future
areas of research are outlined. We believe that this methodology can be applied to other industries
and fields of knowledge.

Keywords: matching; exploratory matching algorithm; homologous model search algorithm;
manufacturing; cardboard industry; genetic; exploratory matching model search algorithm; EMMSA

MSC: 62D20

1. Introduction

The cardboard industry has been growing steadily, attributable to increased corrugated
box packaging needs for export and e-commerce from its versatility to protect, store, and
transport [1]. The corrugated cardboard is made up of two sheets of paper (internal and
external) and, in the middle, the corrugated paper that provides the energy-absorbing
capacity [2]. The production volume is expected to reach 700 million metric tons by 2040,
with a market size bordering USD 220 billion by 2028 [3]. Consequently, more waste will
be generated which must be controlled because of its environmental, energy, and economic
burdens [4].

One of the sources of waste in this industry is the printing subsystems, composed of
several printing machines forming production lines (printing lines), where each includes
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several stages or modules [1]. Each machine may have different characteristics depending
on the number of colors to be printed, the volume to be produced, and the post-printing
stages it includes.

The production process of an order starts with a setup stoppage, and multiple stop-
pages may occur due to non-programmed or programmed operations. These stoppages are
registered in real time by alarm monitoring software. The waste can arise from intrinsic
reasons of the product design that can be calculated for each sheet, but we are interested
in the waste sheets due to stoppages in the printing line. Thus, some of these stoppages
can generate more waste due to effects on unscheduled maintenance, staffing, supply of
materials, resource planning, subsystem failures, or fault propagations, among others [5].

Thus, determining the waste volume produced by each stoppage is impractical, com-
plex, and difficult to quantify. The strategy followed has been to address all sources of
waste using, for example, total productive maintenance [6], but which machine generates
the most waste due to downtime? In which time interval does the most waste occur? Where
to start? This generates more uncertainty because it is very complex to determine which
stoppages are more important than others in almost half a million stoppage records.

However, if the waste is significant, the machine will likely stop, so somehow there
should be a relationship between downtime and waste. For this reason, from a causal
perspective, a study is required to determine the magnitude of the effect produced by the
downtime of all these causes on waste.

Causal research in the manufacturing industry has been concentrated on the alarm root
cause analysis, presenting multiple data-driven methods, such as those oriented to time-
series data (Granger causality or entropy transfer), as well as methods oriented towards
cross-sectional data, such as machine learning and probabilistic graphical models [7].
However, the former cannot be applied because the actual available data for downtimes
only records the date but not the time when it occurs. Machine learning makes excellent
predictions, but it does not properly determine the causes or adequately measure the causal
effect size [8,9].

Therefore, the objective of this paper is to present a methodology to measure the
causal effect size of the total downtime (seconds) of production orders on waste (LM) using
production observational data. In addition, we will study its strengths and weaknesses.
We believe that this methodology can be extended to other industries.

Addressing this problem is challenging due to the multiple sources of noise that occur
in an industry: data distributions are non-normal, relationships are non-linear, and many
variables exhibit multicollinearity [10]. Another problem is to find a parametric model that
adequately measures the effect size. In addition, one of the challenges is to preprocess the
data in such a way as to eliminate as much bias as possible [11].

We will use the matching methods to balance observational data and choose the best
matching models that properly measure the effect size [12]. However, traditionally, it has
been recommended to use several matching models to choose the best models, this being a
manual search process. To our knowledge, no specific methodology exists for this purpose,
nor have matching methods been used in the industry. The main contributions of this
research are:

• The presentation of the exploratory matching model search algorithm (EMMSA) for
causal analysis.

• The exploratory matching algorithm (EMA) for building matching models for each
machine and treatment.

• The homologous model selection algorithm (HMSA) to choose the best matching
models and select the one that detects the maximum effect.

• The application of meta-analysis to integrate the findings from the different machines
and treatments.

To accomplish this, we will use a real dataset from a cardboard factory that is not
fully automated and facing organizational difficulties and limitations, which increases the
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dataset’s variability. For these data, we pose a single research question: What is the effect
size of total downtime on the waste generated on a printing line?

This article is organized into five sections. Section 2 summarizes the main causal
methods used in the industry, the potential outcome framework, multivariate matching
techniques, and meta-analysis models. Section 3 presents a description of the data, and how
they were obtained. Section 4 presents the proposed industry application methodology
and describes the exploratory matching algorithms and the homologous model selection
algorithm. Section 5 presents and discusses the results. Section 6 concludes the study.

2. Literature Review
2.1. Causality Techniques Applied to the Manufacturing Process

Almizahad et al. synthesized the different methods of root cause analysis for both time
series and cross-sectional data [7]. For time series, two approaches are available depending
on whether they use multivariate Granger causality (MGC) [12] or transfer entropy (TE)
methods.

Granger causality (G-causality) is a concept of direct causality used to establish
whether the past values of a time series help to improve the prediction of another time
series [13]. This method makes several assumptions, such as that the cause occurs before
its effect, the time series values are continuous and Gaussian, the causal effect is linear,
the time series is stationary [14], there is a discrete sampling frequency, and unmeasured
confounding variables are not present [15]. These assumptions are unlikely to be met
in practice [15]. MGC extends bivariate Granger causality to multiple variables and its
advantage is that it has a low computational cost, is easier to implement, and works well
with little data [16]. Principal component analysis is traditionally used as a feature selection
method [7]. The main applications of MGC in root cause analysis are indicated in Table A1.

TE measures the amount of information transferred between two time series [17]. The
TE methods were developed by establishing probability density functions (PDF) for each
variable using kernel estimators because they offer robustness and accuracy [18]. A casual
measure is established comparing the transfer entropy between two variables in one and
another direction, and the significance level (threshold) of this measure is defined using
Monte Carlo simulations of surrogated data [18]. Surrogated data can be generated by
randomly shuffled data, or by the interactive amplitude-adjusted Fourier transform [19].
The main applications of MGC in root cause analysis are indicated in Table A2.

TE methods have the advantage of detecting linear or nonlinear causal relationships
but have a high computational cost due to the application of their significance test based on
Monte Carlo simulations. In addition, they require a large amount of seasonal data. They
also require a method to select model parameters due to the use of PDF methods based on
kernel estimators. Other disadvantages of TE and MGC are the inability to detect spurious
relationships and to determine the existence of hidden (unmeasured) variables.

In cross-sectional data, Bayesian networks have been widely used. A Bayesian network
(BN) is a directed acyclic graph (DAG) in which the nodes represent the random variables
of the system under study, and the edges indicate the incidence of one node on another [20].
However, they have the disadvantage that they do not allow cycles, which are very present
in industrial control processes. They are also not as accurate because the learning algorithms
find equivalent Markov classes with multiple linking possibilities, which makes them
difficult to interpret [21].

All these methods are data-driven, only detect directionality, and do not measure the
causal effect size. To achieve this, they require the elimination of random noise that could
affect the measurement of the effect size. In addition, they must control for bias introduced,
and none of these approaches have addressed this yet.

As far as we know, no relevant records of matching methods were obtained in the
fields of production and logistics. Therefore, it can be deduced that matching techniques
have not been used to measure causal effect size in the industrial sector.
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2.2. Potential Outcome Framework

To make inferences about the causal effect of a treatment, the potential outcome
model was formalized by Donald Rubin [22]. A causal effect is the value comparison
(difference or ratio) of the potential outcome (Y) when it is exposed to two alternative
causal states or alternative treatments [22,23]. Alternative treatments can be binary
(1: treatment and 0: control) or multi-treatment, and they should be defined into mu-
tually exclusive alternative states [24]. In randomized trials, the way “each individual” is
chosen to receive the treatment condition is known as the allocation mechanism [25], but
in observational studies, it is impossible to control this aspect.

The individual causal effect is defined by the contrast between alternative states
(treatment and control) for the same individual in the population of interest. The aggregate
causal effects (average treatment effect—ATE) estimate the mean of the individual effects [26]
which are shown in Equations (1) and (2). These causal effects can be defined over any
subset of the population. E[.] signifies the expectation operator of probability theory.

ATE = E[Y1] − E[Y0] = E[Y1 − Y0] (1)

ATE =
1
N

N

∑
i=1

E
[
Y1

i −Y0
i

∣∣∣ Xi

]
=

1
N

N

∑
i=1

(µ 1(Yi)− µ0(Yi)), (2)

where E[Y1] is the expected value of potential outcome for the treatment group; E[Y0] is the
expected value of the potential outcome for the control group; E[Y1 − Y0] is the expected
value of the difference of the two expectations equivalent to the mean treatment effect;
E
[
Y1

i −Y0
i

∣∣ Xi
]

is the expected value of the difference in the individual potential outcome,
given their covariables Xi; µ1(Yi) is the mean individual potential outcome of the treatment
group; µ0(Yi) is the mean individual potential outcome of the control group; and N is the
size of the control or treatment groups.

In observational studies, the potential outcome of an alternative treatment that is not
known is called the counterfactual. Thus, each observed potential outcome variable only
reveals half of the information contained because it is impossible to observe both values
for the same individual, either for ethical or practical reasons [23], and so one can never
calculate the individual causal effect. This challenge is known as the fundamental problem
of causal inference [26].

Because of this impossibility, the average treatment effect on the treated (ATT) is used
more often (Equation (3)), where n is the size of the groups, m is the number of treatments,
and Tj is the weighting of each treatment.

ATT =
1

∑m
j=1 Tj

n

∑
i=1

TjE
[
Y1

i −Y0
i

∣∣∣ Xi

]
=

1
∑m

j=1 Tj

n

∑
i=1

Tj [µ1(Yi)− µ0(Yi)] (3)

When the causal effects are constant in each i, the ATT is equal to the ATE. However,
another group-level causal effect is the causal hazard rate (or causal risk ratio), which is often
used in epidemiology and health sciences [27].

Causal Hazard Rate =
E
[
Y1]

E[Y0]
=

P
(
Y1 = 1

)
P (Y0 = 1)

(4)

2.3. Multivariable Matching Methods Overview

Estimating the causal effect in observational studies is a critical task as the researcher
has no control over the treatment allocation mechanism. Therefore, its covariates may differ
between treatment and control individuals (unbalanced) [28]. The balance refers to the
similarity of the marginal covariate distribution in both groups and thus avoids the model
dependence or imprecise inference [29].

The Model dependence is the variation in causal effect estimation at point xi among
plausible alternative models that fit the data reasonably well [30]. However, when there
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is no model dependency, the functional form does not matter because the result will be
approximately the same [31].

Thus, observational studies require a design phase to resemble randomized experi-
ments, using background information (covariates), create more balanced treatment and
control samples, and support more robust and credible inferences [25,29,32].

Multivariate matching is a set of nonparametric methods applied before parametric
analysis to eliminate the difference in the covariates (Xi) affecting the causal variable (Ti)
without accessing the outcome variable (Yi) [31]. It improves the balance with a minimum
of loose observations in the process, allows for controlling the influence of confounding
factors, and obtains more precise estimates of the causal effect with reduced bias and
variance [28].

In order not to bias the analysis, the outcomes should not be available, and thus, by com-
paring several matched designs, the search for a satisfactory design becomes transparent [33].

The fundamental rule to avoid selection bias is that our preprocessed data set should
include a subset of records from the observed sample whose treatment and control groups
are unrelated and which have the same baseline characteristics [31], such that:

∼
p(Xi | T = 1) =

∼
p(Xi | T = 0) (5)

Matching techniques only require that their distributions (treatment and control) be
as close as possible, although the unobserved covariate bias is always possible [29]. In this
way, Ti is independent of Xi, and the dependence on the functional form in the parametric
analysis will be eliminated [31].

A first matching attempt was to use one-to-one exact matching, a treated unit with
a control unit that contains both identical values of Xi, discarding all units that do not
match. Exact matching uses one or more control units that match each treated unit, which
improves efficiency [28].

According to [30], they suggest removing observations from the control group that
are outside the “convex hull” of the treatment group. That is, units in the control group
that are outside the range of the treatment variable are discarded. For this reason, to avoid
extrapolation bias, it is necessary to check the common support and verify whether the
control units are in the convex hull of the treatment group [31].

Thus, if the number of observations of the matched sample N is not reduced so much,
matching will frequently reduce the bias and the variance of the estimates of the parametric
analysis [31]. If NC >> NT, then more control units can be matched with each treatment
unit, which improves the efficiency of estimation, and the bias may be reduced [34]. If NT
>> NC, then each unit control may be matched with several treated units, which is known
as matching with replacement [35].

The propensity score is a measure that summarizes all Xi variables, and it is defined
as the conditional probability of unit i receiving treatment T, given their covariates Xi [36].
The propensity score is formulated as e(Xi) in the following equation:

e (Xi)= Pr(T = 1 | Xi) (6)

It is commonly calculated using a logit model (or random forests). Some matching
techniques are based on a proximity metric, either distance or similarity. It may also use a
threshold to ensure that the difference between the values of the metrics of the matched
treatment and control units is less than or equal to it [37]. This threshold is known as a
caliper.

Nearest-neighbor matching calculates the closeness metric of each observation based
on the values of its covariates and then it matches the closest control and treatment units
to each other [38]. Two versions are available for matching without substitution: greedy
matching or optimal matching. The first matches a treated unit with the control unit that
has the most similar propensity score without minimizing the overall distance, and the
second includes minimizing the absolute distance between the matched units [39].
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However, propensity scores attempt to balance the covariates but two units with the
same value score may be very different. So, another approach is to additionally use the
Mahalanobis distance within the calibrators of the propensity score, thus adding a layer
of protection, but will not normally generate optimal pair matching [40].

Optimal matching solves an optimal assignment problem to find the closest treat-
ment and control units that meet certain requirements or constraints on the balance of
covariates [41]. Optimal matching is often used with the RELAX IV algorithm to solve the
minimum cost flow problem in a network [42].

Full matching creates matching subsets containing one treated unit with one or more
control units, or one control unit with one or more treated units [43]. Optimal full matching
minimizes a weighted average of the estimated distance measure between pairs matched
within each subclass, and it is available in the matchit package [41,44].

Genetic matching implements a more general distance measure based on the Maha-
lanobis distance, which incorporates a matrix of weights to be optimized over several
generations. Optimization is carried out by minimizing a loss function over the matched
sample at each iteration, identifying the corresponding weights until it converges asymp-
totically to the optimal solution [45].

Multiple measures of balance provide a more complete image of balance and the bi-
ases [46]. One such measure is the standardized mean difference (SMD) between treatment
and control groups before and after matching. The SMD of each variable can be visualized
with an SMD chart. If the absolute value of SMD is greater than 0.1, it indicates evidence of
imbalance between the treatment and control groups. The SMD is not dependent on the unit
of measure, and it is expressed for continuous covariates with the following equation [47]:

SMD =
X1 − X0√

s2
1+s2

0
2

(7)

For binary covariables, it is calculated using the proportions (p̂i) of their values, both
in the treated group and the control group [48].

SMD =
p̂1 − p̂0√

[p1(1− p̂1)+̂ p̂0(1− p̂0)]
2

(8)

The variance ratio (VR) compares the variances of the two matched groups. If this
indicator is equal to 1, it means that the balance is good, and less than 2 is generally
acceptable [31]. The hypothesis test and its corresponding p-value should be used with
caution. The significance test can detect spurious statistically significant differences [28].

The prognostic score is defined as the predicted probability of an outcome under
control conditions [49]. It has been demonstrated to be an excellent indicator of the degree of
bias reduction, and it is more efficient than the covariate mean differences and significance
tests [46], even when the prognostic scoring model is misspecified. For this, a regression
model is fitted to predict the outcome using the control group covariates. Thus, using
the same model, the outcome of both control and treatment group units is predicted. The
absolute SMD (ASMD) of both groups is then compared [50].

Even if optimally matched records were found, it is possible that they do not coin-
cide in their unobserved variables, and therefore, there may be a bias in the treatment
assignment due to these factors [51,52]. Sensitivity analysis in observational studies is a
mathematical calculation of the amount of unobserved covariate bias needed to change
the conclusions of the study [33]. This mathematical calculation varies an underlying
assumption to a statistical procedure to determine what magnitude of deviation from that
assumption would be necessary to alter the conclusion [33]. The Rosenbaum sensitivity
test for Hodges—Lehmann point estimate calculates the odds of differential assignment to
treatment due to unobserved factors for a range of gamma values. It is an unconfounded
estimate that reflects “the uncertainty of the hidden bias due to failure to control for un-
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observed covariates” [52]. Better observational study design decisions result in better
insensitivity to large unmeasured biases [51].

Cohen’s [53] effect size measure (d) is defined as the mean difference between the
treatment and control groups divided by the population standard deviation. There are
other more precise measures with various corrections of the standard deviation depending
on the size of the groups and the (non)similarity of variances. However, the square root
of the mean of the variances of both groups is frequently used as the population standard
deviation. Thus, the effect size is similar to a Z-score and its formula is the same as the
SMD. The Z-score is a standardized measure that allows us to make comparisons between
different populations. In addition, Cohen defined three values for the value of d for the
corresponding small, medium, and large effect sizes (0.2, 0.5, and 0.8, respectively) [53].

The proximity metrics are described in Table A3. The R libraries used in this paper are
shown in Table A4.

In practice, many researchers have recommended building different matching models
and choosing the one with the best fit of their covariates [33,54,55]. However, we have
reviewed the literature (as of 30 September 2023), and, to our knowledge, only individual
approaches exist for each specific problem, but we have not found generic methods to
identify these models, which represents a knowledge gap.

In the absence of a general methodology to determine the best matching models, we
developed in this paper a novel methodology to find them. For this purpose, we have run
the most popular matching methods, providing balancing criteria and priorities to facilitate
the identification and selection of the best models. The proposed methodology is presented
in Section 4.3.

2.4. Statistical Models for Meta-Analysis

Meta-analysis is a statistical technique for integrating the findings from different
comparative studies [56].

Two statistical models are most commonly used: the fixed-effect model and the random-
effect model. The first assumes that a common effect size exists for each study and that
their differences are due to sampling errors [57]. The second assumes that a distribution of
true effects exists with different effect sizes for each study, and it focuses on calculating the
parameters of this distribution [57]. The difference among studies can be due to background
factors as well as the design or execution of the study. The random effects model nomenclature
of DerSimonian–Laird and their formulas are shown in Tables A5 and A6, respectively [56].

3. Data

The production process we are concerned with has been summarized in the Introduc-
tion because it is the stochastic process that generates the available data.

The cardboard industry has two main production areas: corrugating and printing.
The printing subsystem is composed of several printing lines. Each printing line is made
up of several sequential modules or stages, for example, feeder, printer, die cutter, slotter,
folder, gluer, stacker, or binder. These printing lines are also referred to as machines. The
characteristics of each machine will depend mainly on the maximum number of colors it
can print, the production volume, and the post-printing stages that compose it.

The industry works in three rotating shifts, 24 h a day, 7 days a week. The work teams
are roughly similar in productivity and efficiency. During the production process of an
order, there may be one or more stoppages, starting with the setup stoppage, and then,
there may be zero or n stoppages due to scheduled or unscheduled operations. At the end
of the production of an order, the wasted units are counted.

Data on production orders and downtime are stored in the organization’s ERP (enter-
prise resource planning) and alarm monitoring software, respectively.

The process begins when a production order is created in the sales department at
the client’s request. Then, during the week before delivery, the scheduler assigns a date,
shift, and machine on which the order will be produced, as well as the raw material and



Mathematics 2023, 11, 4506 8 of 34

personnel requirements. When the assigned day arrives, the production order enters the
queue of the machine, according to the allocated position.

Before the machine starts processing the order, the raw material and personnel are
provisioned, and the machine is guaranteed to be operational. The production order starts
with the setup stoppage where the cliché of each color is loaded, color shade is adjusted,
and print accuracy adjustments are made. Each subsequent stoppage may be related to the
modules of the printing line.

We want to determine the effect of the total downtime (seconds) of a production
order on its waste (linear meters). Preliminary data that could help answer the causal
question were selected by eliminating incomplete orders (due to cancellations), inconsistent
or flawed records, and production lines with insufficient records (less than 1000 records).

New variables are calculated from the existing variables. Additionally, aggregate
variables are generated by production orders. All available variables that could be associ-
ated with the outcome are described in Table 1. The dataset contains 59,676 records of the
production orders collected over three years (2019 to 2021).

Table 1. Dataset variables description.

Variable Description Datatype/Unit Operation

MCH Print subsystems (machine) Categoric -
PRICELAM Sheet price euros -
MT2LAM Sheet area m2 -

TEST Box compression test N -
ORDEREDLM Linear meters of an order LM -

SCHEDLM Planned linear meters LM -
FINALLM Final linear meters to send to client LM -

OVERPROCLM Linear meters of overprocessing LM -

ASLEEPTIME
Time of the production order since it

was created until it enters the
machine queue

minutes Calculated

QUEUETIME Queue time of a production order minutes Calculated
PRODCTIME Order production time minutes Calculated

MSETUP Stoppage time for setting the order
on the machine seconds -

MSUMALL
Sum of the time of all stoppages after
setup of a production order (causal

variable)
seconds Calculated and

aggregated

TMSUMALL Treatment variable for causal
variable 1, . . ., 10 Calculated

WASTELM Linear meters of waste LM Calculated

A more complex data set containing the individual stoppages of the different stages
will not be used for the effect size calculations because it increases the number of variables
and increases the complexity of the matching. However, we will address this data set in
another study, for which we will need the collaboration of an expert in the process.

4. Methodology

To address how to use matching methods to measure the effect of a causal variable
on the outcome variable, we propose the following steps outlined in Figure 1, which are
described in the subsequent sections.
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4.1. Causal Questions and Causal Variable

To conduct a causal analysis of observational data, a causal question must first be
established to guide the whole process [27]. For this, it is necessary to distinguish between
causal and non-causal questions. Causal questions deal with the mechanisms of data
generation or predictions of how a system will behave after an intervention [58].

Therefore, for the selection of the causal variable, the phenomenon is first analyzed in
search of variables that allow an intervention, to produce the expected value in the outcome
variable [23,59].

Then, to formulate the causal question, both the causal and outcome variables must be
explicit in the question with the corresponding units of measurement. For example, “What
is the effect size of the causal variable (units) on the outcome variable (units) in the system?”

4.2. Preparation of Dataset for the Matching Algorithms
4.2.1. Exploring Feature Importance

It is advisable to create a regression model (e.g., light gradient boosting [60]) to
determine the importance of the predictor variables on the outcome variable. In addition,
we could examine the order of importance of variables to check that the chosen causal
variable is included. If not, it is advisable to review the causal question again by choosing
an important variable on which an intervention is possible [27].

In the industrial environment, production order variables are strongly associated with
the output variable (e.g., the higher the number of order units is, the higher the number of
waste units is). They are not causal variables, but associative, because they are set by the
client, and, therefore, we cannot modify them; i.e., they do not allow interventions.

The causal variable is not always the one with the highest level of association with the
outcome variable. Some causal variables may have a low level of association. Likewise,
causal variables exist that are key and trigger the increase (or decrease) in the outcome
variable, but their level of association could be close to zero, so they might not be considered
causal variables. Therefore, the causal variable may or may not be strongly associated with
the outcome variable.

Thus, causal analysis is an adjusted analysis, because the covariates, whether causal or
associative, are controlled to rule out their effects on the outcome variable so that the size
of the causal effect can be measured directly with the minimum possible bias and variance.

Therefore, in observational studies, the causal variable is not always required to be
a necessary and sufficient condition to yield the effect on the outcome variable. In most
cases, it is not sufficient, or it may be sufficient but not necessary, because other variables
may be causing the effect.

4.2.2. Treatment Interval Design

A first approach consists of measuring the effect of a causal variable that groups
together many causes affecting an outcome variable. To analyze it, the causal variable is
segmented into intervals, depending on the amount of data, to measure the effect produced
by each of them. From this result, we could determine the intervals with the greatest impact
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on the outcome variable to prioritize the search for its causes in the production process.
This is because problems are often multi-causal, which is common in the manufacturing
environment.

Each treatment (interval) is numbered from 0 to N, in ascending order of the causal
variable. A control treatment is considered when the value of the causal variable is zero, and
the treatment number assigned will be 0. Each treatment (from 1 to 10) will be contrasted
with the control treatment (0). Then, the effect of treatment n will be the mean of the
difference in potential outcomes between the two groups, treatment n and treatment 0.

But how many intervals should be defined? One alternative is to use a scatter diagram
of the two variables (cause and outcome) and manually define the intervals of interest.
Another alternative is to define the different intervals using percentiles and adjust their
values, considering, as far as possible, at least 100 records per treatment to be able to detect
the effect size with the minimum possible bias.

4.2.3. Selection of Systems (Machines)

Matching algorithms require sufficient records to function properly. For this reason,
we scanned for the number of records for each production line and discarded those with
insufficient records; for example, for 10 treatments, at least 1000 records are required for
the printing line.

4.3. Exploratory Matching Algorithm

To assemble the samples as randomized experiments using the covariates prior to the
causal variable, several popular matching algorithms are used, such as nearest, optimal,
full, genetic, and coarsened exact matching (Section 2.3).

Algorithm 1 shows the exploratory matching algorithm (EMA). It begins by defining
the formulas for matching and random forest (RF) models, as well as defining the lists of
treatments, the matching methods, and the distance measures used. Then, it proceeds to
set up four nested loops for the different machines, treatments, methods, and distances
to be used in the matching methods. This algorithm is very brief as it does not contain
the R-specific programming details but illustrates how to proceed. Before the end of each
iteration, different tests are performed to collect the balancing information for subsequent
analysis.

All model and test summaries are saved in a text file. Another algorithm in Python
extracts the interest variables for its posterior analysis which are saved in a CSV file. These
variables are machine; treatment; matching algorithm; distance; binning; control units;
treatment units; matched control units; matched treatment units; variance of treatment
group; and variance of control group. From the predictions of the RF model, the explained
variance and the size effect (the mean difference for each group) are obtained, as are the
following: the number of non-balanced variables whose standard mean differences are
greater than 0.1; the number of non-balanced variables whose variance ratios are greater
than 2; gamma and upper bound of the Rosenbaum sensitivity test when the upper bound
is greater than 0.05; the F-statistic, p-value, and ratio of variances of the F-test; the t,
p-value, confidence interval, and mean in group C and T of the Welch two-sample t-test;
and the unconfounded estimate of the Rosenbaum sensitivity test for Hodges–Lehmann.
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Algorithm 1. Exploratory matching algorithm (EMA).
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 4.4. Homologous Model Selection Algorithm (HMSA)

The CSV file of the matching results contains the relevant variables that we could
use to select the matching models that best balance our data for each machine–treatment.
Then, HMSA processes this file, calculates the Z-Score, and proceeds to find the register
of matching results with the lowest number of unbalanced variables and with the highest
number of matched units. To accomplish this, we define two conditions to validate models.
These are responsible for assigning balancing priorities to each matching model. A third
condition is set to search for models with higher priority in both condition 1 and condition
2, and then, at the machine–treatment level, the mean Z-score is calculated and those
models whose Z-score is greater than 95% of the mean are selected. These models selected
are considered homologous due to their similar characteristics. Next, the selection of the
better matching method is chosen from homologous models for each machine–treatment.
Algorithm 2 summarizes the HMSA algorithm with its conditions and priorities.
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Algorithm 2. Homologous model selection algorithm (HMSA).
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4.4.1. Condition 1—Unbalanced Variables

The first condition has three priorities. Priority 1 is assigned to models that have
zero unbalanced variables in both SMD and VR. Otherwise, priority 2 is assigned if zero
unbalanced variables exist in SMD and up to 20% unbalanced variables exist in VR, or zero
unbalanced variables exist in VR and up to 20% unbalanced variables exist in SMD. If the
two previous cases do not occur, priority 3 will be assigned if the models present up to 20%
of unbalanced variables both in SMD and VR. If the above three cases do not occur, priority
9 will be assigned to models with an excessive number of unbalanced variables.
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4.4.2. Condition 2—Matched Units

The second condition also has three priorities. Priority 1 is assigned to models whose
matched units in the treatment and control groups are equal to the maximum number of
treatment and control units, respectively, i.e., no treatment units have been lost, and the
number of control-matched units is at least the same as the number of treatment units.
Otherwise, priority 2 is assigned to models with a maximum number of matched units in
the treatment group and with matched units in the control group greater than or equal to
90% of the control units, or vice versa. If the above two cases do not occur, priority 3 is
assigned to models with a number of matched units greater than or equal to 90% of units
in both the control and treatment groups. If the above three cases do not occur, priority 9 is
assigned to indicate the loss of a significant number of treatment or control units.

4.4.3. Condition 3—Homologous and Selected Models

Matching models whose priorities of condition 1 and condition 2 are less than or equal
to 3 are found, thus discarding all models that do not present a satisfactory balance. If
no records remain after filtering for a machine–treatment, it is assumed that a satisfactory
model does not exist. Then, the highest priority models of condition 1 (minimum value)
are chosen. From these registers, the highest priority registers of condition 2 (minimum
value) are chosen. Then, for each machine–treatment, the models whose Z-score exceeds
95% of the mean Z-score are considered homologous models because they have similar
characteristics and represent the best models that capture the largest effects. From the
homologous models, the model with the maximum Z-score is selected as the best model
for the respective machine–treatment.

In addition, two values are obtained as effect size for each machine–treatment, and
the first one will be obtained from the selected model (Z-score), and the second one will
be the mean of the effect size of the homologous models with their respective confidence
intervals.

The results of homologous models, including the selected model, are exported to
Excel for visualization and analysis. The EMA is implemented using the R libraries listed
in Table A4. The HMSA is implemented in Python. Both algorithms are available for
consultation upon reasonable request by any reader. However, it will not be possible to
establish comparisons of this methodology with other existing methodologies because such
comparisons do not exist, as already indicated in the Literature Review section.

4.5. Validation of Results with the Expert

The results obtained from the quantitative models will be validated with the qualitative
knowledge of the expert in this process. In addition, the results are contrasted with a data
analysis of the outcome variable.

4.6. Meta-Analysis

Meta-analysis techniques are used to make comparisons of the effect of the causal
variable on the outcome variable in a subsystem. For this purpose, the “meta” library in R
was used to develop another algorithm that integrates these results and determines, in a
subsystem, the contribution of each treatment to the outcome variable. Similarly, for each
treatment, a meta-analysis is performed to determine the contribution of the causal effect in
each subsystem to the outcome variable. Since these are standardized measures, it allows
these comparisons to be made.

5. Results and Discussion
5.1. Causal Questions and Causal Variable

The causal variable chosen in the Introduction to formulate the causal question is the
total downtime (MSUMALL) of a production order. This variable can be intervened in since
it can be changed by using different strategies. The main causes of these stoppages can
be due to inefficient processes, operator errors, lean inventory of materials, or inefficient
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machine maintenance. By addressing these causes, downtimes can be reduced, and at the
same time, waste can also be reduced as it is likely that the machine will be stopped when
it produces defective units. Intuitively, the downtime could be directly proportional to the
error severity.

The outcome variable is WASTELM since we are concerned about its behavior and
intend to control it through MSUMALL to reduce costs and increase profitability.

For this reason, these two variables are crucial in the analysis of productivity, and
it becomes valuable to detect the time intervals in which waste is higher. Thus, with an
appropriate intervention according to the error type, it will be possible to change the causal
variable to the lowest possible intervals (treatments) where the waste is smaller.

5.2. Exploring the Feature Importance

A regression was performed using the LightGBM library. The most satisfactory model
was found using a hyperparameter grid, and its values are shown in Figure 2, which illus-
trates that among the important features associated with the outcome variable (WASTELM)
are (i) OVERPROCLM, which indicates the linear meters of overproduction, either by a
small safety percentage to cover possible defective units not observed by the naked eye,
or by replacement of non-conforming units; (ii) M2LAM, which is a product specification;
(iii) SCHEDLM, which is determined in planning, and its value is slightly higher than the
linear meters specified by the client in the production order; (iv) ORDEREDLM, which
represents the linear meters of the production order; (v) PRODTIME, which depends on
the downtimes of the current order; (vi) ASLEEPTIME, which depends on the order date
and its delivery date; (vii) FINALLAM, which represents the linear meters of production
(without waste) shipped to the client; (viii) MSUMALL, which depends on the downtime
of all stoppages after MSETUP; (ix) MSETUP, which depends on the operator and the order
complexity; and (x) QUEUETTIME, which depends on the downtime of previous orders.
However, OVERPROCLM and FINALLAM do not directly cause waste but are its effects.

Therefore, the causes of waste could somehow be reflected in the total downtime,
which will be confirmed by this study. However, it is previously necessary to segment
MSUMALL to generate the treatment variables (TMSUMALL). Thus, with the proposed
methodology, we will be able to identify for each machine the time interval where the
greatest waste is generated in order to subsequently identify with the expert the possible
causes that explain it.

Then, the covariates that we should control for matching algorithms are all those that
occur prior to the treatment variable (TMSUMALL), such as MT2LAM, ORDEREDLM,
SCHEDLM, QUEUETIME, ASLEEPTIME, TEST, and MSETUP. The covariate TEST is
included because it is important to control the carton strength, as it is somehow an indicator
of the thickness and would help to obtain more similarly matched units. MSETUP is
considered because it occurs before the stoppages to be analyzed.

Equation (9) shows the matching formula that will be used to build the models
controlling the TMSUMALL variable with the variables that precede it and which are not
causes of WASTEML.

TMSUMALL ~ MT2LAM + ORDEREDLM + SCHEDLM + QUEUETIME + ASLEEPTIME + TEST + MSETUP (9)

PRODCTIME, OVERPROCLM, PRODLM, and FINALLM are involved a posteriori
and will be included in the random forest regression model to measure the effect size of
each model. Equation (10) shows the formula for building random forest regression models
in which participate all predictors variables. In the end, after selecting the best models,
it will be checked whether the effect size is similar between the simple mean of the two
groups and the mean of the difference of the predictions of the RF models in both groups.

WASTELM ~ PRICELAM + MT2LAM + ORDEREDLM + SCHEDLM +
FINALLM + QUEUETIME+ ASLEEPTIME + PRODCTIME + MSETUP

+ MSUMALL + OVERPROCLM + TEST
(10)
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5.3. System Selection and Treatment Interval Construction

The treatment variable was generated by splitting the MSUMALL variable, considering
all machines with more than one thousand records (machines with an insufficient number
of records were excluded). The treatments correspond to each decile, considering all
the records for their calculation to obtain the same analysis interval for all the machines.
Records whose MSUMALL is zero are considered the treatment group (0). Table A7 shows a
summary of the number of records and the treatment interval (in seconds) for each machine.
Figure A1 shows the MSUMALL density function for each machine. Figure A2 shows the
WASTELM density function for each machine.

5.4. EMA and HMSA Algorithms

Algorithm 1 (EMA), which executes the different matching methods with the various
distance metrics selected, was run and 7691 matching models were obtained. Then, Algo-
rithm 2 (HMSA), which performs an exhaustive search for the best models to be considered
as homologous, was run, and 2644 models (34%) fulfilling conditions 1 and 2 were obtained,
this being the first filter.

The results of the application of Algorithm 2 (HMSA) are summarized in Table 2.
It shows a summary of all models found that meet condition 1 (rows) and condition 2
(columns) showing their respective priorities.
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Table 2. Model number resulting of the application of HMSA by conditions and priorities.

Condition 2: Methods and Priorities

Condition 1
Condition 3: Homol.

CEM FullMatch Genetic Nearest Optmatch

2 1 2 3 1 1 2 1 Total
Cond1

%
Total

Priority 1 176 80 57 130 839 318 86 189 1875 71%
0 175 38 57 130 439 158 86 85 1168 62%
1 1 42 400 160 104 707 38%

Priority 2 24 72 17 41 183 155 32 100 624 24%
0 19 69 17 41 179 153 32 98 608 97%
1 5 3 4 2 2 16 3%

Priority 3 4 2 4 71 36 8 20 145 5%
0 4 2 4 71 36 8 20 145 100%

I. Total by priorities 200 156 76 175 1093 509 126 309 2644 100%
II. Total by methods 200 407 1093 635 309 2644
III. % Models by meth. 7.6% 15.4% 41.3% 24.0% 11.7% 100%
IV. Homol. models 6 45 404 162 106 723
V. % Homol. models (II) 3.0% 11.1% 37.0% 25.5% 34.3% 27.3%
VI. % Homol. models 0.8% 6% 55.9% 22% 15% 100.0%
VII. % Homol. Models of total 0.2% 1.7% 15.3% 6.1% 4.0% 27.3%
VIII. Selected models 0 15 39 8 8 70
IX. % Selected models by meth. 0.0% 21.4% 55.7% 11.4% 11.4% 100.0%

Note: Condition 1 and 2 can have up to three priorities each one. Condition 3 can be 0 (for discarded models) or 1
(for homologous models). Total values are shown in bold, either by conditions, priority, methods, homologous
models or selected models.

In addition, for each priority of condition 1, there can be two rows to indicate the
fulfillment of condition 3. If it is 1, it indicates the number of models that fulfill condition
3, which we will call homologous models, or 0 indicates the number of models that do not
fulfill this condition, and therefore, they are consequently discarded. Condition 3 acts as
the second filter.

For example, the HMSA algorithm found 839 models from the genetic method that met
condition 1—priority 1 and condition 2—priority 1, of which 400 models were considered
homologous because they also met condition 3, and 439 were discarded. In addition, it
found 183 genetic models that fulfilled condition1—priority 2 and condition 2—priority 1,
of which 4 models were considered homologous because they also met condition 3 and 179
were discarded.

The bottom part of Table 2 shows a summary of models filtered by HMSA. For example,
it found 1093 genetic models that met conditions 1 and 2 (II), and they represent 41.3%
(III) of the 2644 models that met both conditions (1 and 2) for any priorities. In addition, it
found 404 homologous models (IV), and they represent 37% of the total genetic models (V),
56% of the models found (VI) from all homologous models (723), and 15.3% of the total
models (VII) fulfilling conditions 1 and 2. Finally, it selects for each machine–treatment
39 genetic models that represent 56% of the 70 models selected from all methods.

Therefore, 723 homologous matching models fulfilling conditions 1, 2, and 3 were
obtained (IV), which corresponds to 27% of the models (V) that meet conditions 1 and 2 (2644).

In other words, only 9% of all generated models (7691) fulfill the three expected
conditions of having almost all variables balanced (condition 1), the maximum number of
treatment and control units (condition 2), and an effect size greater than 95% of the mean
(condition 3). The remaining percentage of models is discarded because the models have a
priority value greater than 1 in conditions 1 and 2 or because they do not meet condition 3,
which acts as a second filter.

The results of the application of Algorithm 2 (HMSA) are plotted by methods (Figure 3)
and distances (Figure 4). Thus, Figure 3a and Table 2 (V and VI) show that most of the
homologous matching models are selected by the genetic (56%), nearest (22%), and optimal
(15%) methods. Figure 3a shows that the most selected distances in the homologous models
are scaled Euclidean (33%), GAM (15%), GBM (15%), Mahalanobis (12%), and GLM (10%).
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Methods and distances by machine: Figure 3b shows that the genetic, nearest, and
optimal methods find homologous models on all machines. Fullmatch does not find
homologous models in M3, and CEM only finds them in M1. More models are obtained in
M4 because it has a larger number of records, which could facilitate matching.

Figure 4b shows that the genetic method obtains an almost similar number of models
for each distance measure, whether it uses a caliper or not. Figure 4c shows that the scaled
Euclidean and Mahalanobis distances have most of the homologous models across all
machines.
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Therefore, the genetic method is the one that generates more homologous models
due to its iterative process to automatically evaluate the balance and optimize the search
for a better solution. For this, it uses a generalized version of the Mahalanobis distance
that incorporates a matrix of weights to be adjusted in each iteration to minimize the loss
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function. At each iteration, it produces a new generation and converges asymptotically [45].
However, the disadvantage of the genetic method is the mean execution time with any
distance, as shown in Figure 4f, and the Euclidean, GBM, and Bart distances are the most
time-consuming.

Methods and distances by treatment: Figure 3c shows that genetic, nearest, optimal,
and fullmatch methods find homologous models on all treatments. Figure 4d shows that
the scaled Euclidean, GAM, GLM, and Mahalanobis distances have the most homologous
models across all treatments.

Therefore, the genetic method with Mahalanobis and scaled Euclidean distances
ensures finding homologous models for all machines and all treatments, with or without
caliper, as shown in Figure 3b,c and Figure 4b–d.

The run time was approximately 140 h on an Intel Core I7 Fourth Generation computer
with 12 Gb RAM (1600 Mhz) and an SSD hard disk (560 Mb/s). The matching library
used is matchit. For the genetic method, the maximum number of generations is 100, the
maximum unchanging generational is 4, and the convergence tolerance is 0.001. More
details about this algorithm can be found in [45].

5.5. Effect Size

Finally, HMSA chooses one model the among homologous models for each ma-
chine–treatment. The model chosen is the one with the highest Z-score to indicate the
largest effect captured from the corresponding homologous models. Then, HMSA cal-
culates the mean effect size of these homologous models and their confidence interval
(CI).

The results of the selected models for each machine–treatment are shown in Table A8,
and their effects are plotted in Figure 5a,b. Almost all selected models obtained priority 1
in conditions 1 and 2, indicating that all variables were balanced, with no loss of treatment
units, and with the maximum number of control units (or at least equal to the number of
treatment units). The exceptions appear in machine M1, treatments 8, 9, and 10, in which
there was an unbalanced variable. Furthermore, it is observed in Table A8 that the mean of
the effects calculated as difference of means (EffMD), and the values of the differences of
the means of the predictions using RF models (EfffRF) are approximately similar, which
confirms the low dependence of the models.

In addition, the fullmatch method detects the largest effects because it incorporates
almost all of the control units, increasing the variability of mean differences and capturing
larger Z-scores. However, it does not find balanced models in all treatments, which are
covered by the models of the other methods.

Therefore, the genetic, fullmatch, optimal, and nearest methods guarantee to find
models with the highest Z-score on each machine and treatment, as also is shown in Table 2
(VIII y IX). In addition, the scaled Euclidean, Mahalanobis, GAM, robust Mahalanobis, and
Euclidean distances are used in 80% of the selected models, as shown in Figure 6.

Table 3 summarizes the Z-score greater than 0.30 and the mean effect of homologous
models greater than 20 LM. Then, we can determine that, in standardized terms, the three
higher Z-scores are in M4-T10, M5-T10, and M6-T10. In linear meters, wastes greater
than 20 linear meters are generated in M1-T10, M4-T10, M5-T10, and M6-T10. Therefore,
treatment 10 is the one that generates the most waste on machines M1, M4, M5, and M6.
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Table 3. Selected models: Z-scores and EffMeans greater than 0.30 and 20 LM, respectively.

Selected Models (Z-Score > 0.30) Seleted Models (EffMean > 20 LM)

MCH Treat EffMD Z-Score MCH Treat EffMD Z-Score

M1 T9 24.38 0.30 M1 T9 24.38 0.30
M1 T10 34.25 0.41 M1 T10 34.25 0.41
M3 T2 20.99 0.44 M3 T2 20.99 0.44
M3 T4 20.55 0.45 M3 T4 20.55 0.45

- - - - M4 T7 20.19 0.25
- - - - M4 T8 22.58 0.26

M4 T9 29.28 0.44 M4 T9 29.28 0.44
M4 T10 48.60 0.52 M4 T10 48.60 0.52
M5 T1 24.81 0.37 M5 T1 24.81 0.37
M5 T7 26.17 0.31 M5 T7 26.17 0.31
M5 T9 25.22 0.37 M5 T9 25.22 0.37
M5 T10 36.79 0.53 M5 T10 36.79 0.53
M6 T6 14.87 0.34 - - - -
M6 T7 16.28 0.42 - - - -
M6 T8 19.75 0.44 - - - -
M6 T10 34.69 0.46 M6 T10 34.69 0.46

5.6. Overall Effect Size

To find out which machine generates more waste in statistical terms, we integrate
the different studies of each machine and treatment using the meta-analysis techniques
described in Sections 2.4 and 4.6. For this purpose, the meta-library has been used and, for
the sake of brevity, we only present the M6 machine and treatment 10, which is where more
waste is generated in standardized terms, as shown in Figure 7a,b.
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The results of the meta-analysis are summarized in Table 4. It shows the random
effect (RandEff) among studies, as well as their maximum effects found. Columns I2 and τ2

indicate the among-study heterogeneity, measured as the percentage of the total variance
(I2) that is explained by the between-study variance (τ2). The “Max” column indicates, for
each machine (treatment), the treatment (machine), method, and distance that produce
the maximum mean effect measured in SMD or EffAvg LM, to which their respective
confidence intervals are appended (95%-CI and 95%-CI LM).

Table 4. Meta-analysis for each machine and treatment with its maximum effect.

Meta-Analysis for Each Machine Maximum Effect for Each Machine

MCH RandEff 95%-CI I2 τ2 Max (Treat) SMD 95%-CI EffAvg LM 95%-CI LM

M1 0.18 [0.09;0.26] 37% 0.0067 T10-Full-Mah 0.41 [0.25;0.56] 34.25 [12.53;55.97]
M2 0.11 [0.03;0.19] 0% 0.0001 T8-Near-Mah 0.26 [0.02;0.50] 19.70 [18.18;21.22]
M3 0.07 [−0.01;0.16] 0% 0.0000 T3-Full-Calip 0.30 [−0.02;0.61] 5.80 [5.99;5.61]
M4 0.20 [0.13;0.28] 76% 0.0108 T10-Full-Glm 0.47 [0.33;0.61] 48.60 [14.48;82.72]
M5 0.23 [0.10;0.36] 70% 0.0271 T10-Full-Mah 0.53 [0.34;0.72] 36.79 [13.19;60.39]
M6 0.32 [0.24;0.40] 65% 0.0103 T9-Full-Gam 0.52 [0.37;0.67] 14.97 [4.32;25.62]
M7 0.07 [−0.01;0.15] 44% 0.0072 T5-Near-Mah 0.19 [0.04;0.35] 14.74 [12.41;17.07]

All Mchs. 0.38 24.98 [13.40;36.23]

Meta-Analysis for Each Treatment Maximum Effect for Each Treatment

Treat RandEff 95%-CI I2 τ2 Max SMD 95%-CI EffAvg LM 95%-CI LM

1 0.11 [0.01;0.21] 40% 0.0055 M1-Opt-Mah 0.27 [0.05;0.49] 19.80 [16.13;23.47]
2 0.13 [0.07;0.20] 0% 0.0000 M3-Full-Calip 0.30 [−0.02;0.61] 20.99 [21.69;20.29]
3 0.16 [0.09;0.22] 5% 0.0001 M6-Full-Mah 0.25 [0.11;0.38] 12.56 [6.53;18.59]
4 0.14 [0.07;0.20] 0% 0.0001 M6-Full-Mah 0.21 [0.09;0.34] 7.71 [4.77;10.65]
5 0.16 [0.10;0.22] 10% 0.0001 M6-Full-Calip 0.24 [0.10;0.39] 7.21 [4.51;9.91]
6 0.13 [0.01;0.26] 67% 0.0181 M6-Full-Glm 0.35 [0.20;0.50] 14.87 [6.37;23.37]
7 0.18 [0.03;0.33] 79% 0.0313 M6-Full-Calip 0.42 [0.28;0.57] 16.28 [5.81;26.75]
8 0.21 [0.10;0.31] 60% 0.0120 M6-Full-Mah 0.44 [0.29;0.58] 19.75 [6.28;33.22]
9 0.22 [0.02;0.42] 87% 0.0544 M6-Full-Gam 0.52 [0.37;0.67] 14.97 [4.32;25.62]

10 0.34 [0.22;0.46] 69% 0.0186 M5-Full-Mah 0.53 [0.34;0.72] 34.69 [12.44;56.94]
All Treat. 16.88 [7.99;25.77]

τ2 is the variance of the random effects and has a very relevant value because it
indicates the importance of each machine for the differences in waste. For example, 0.0271 is
an important variance concerning the other variances. This indicates great variability exists
between machines, and some machines have an inherent effect on waste. Furthermore, we
did not eliminate or correct for this variability in the matching process. Therefore, there
must be other variables in the M5 machine that have more influence on the waste.

In Table 4, the column “EffAvg LM” is the mean of the maximum effects in linear
meters corresponding to the SMD value. The “All Mchs” row is weighted average of the
effects of the treatments of each machine in which the maximum total wastage is reached.
Thus, the maximum average waste for each production order that has stoppages after
MSETUP is 24.98 LM with a confidence interval of [13.40;36.23].

In addition, we observe that the selected models of machines M2 and M3 present
similarity since their I2 is 0%. The same occurs with treatments 2 and 4. In these cases, their
mean random effects are approximately equal in normalized terms.

In contrast, it is observed that the selected models of machines M4, M5, and M6
present greater differences, which indicates the heterogeneity of the studies, and therefore,
their means and CIs are different. The same is true for treatments 6 to 10. In addition, it is
observed that the fullmatch method detects the largest effects in 71% of the machines and
90% of the treatments.

5.7. Advantages and Disadvantages of This Methodology

An advantage of this methodology is that it measures the causal effect of downtime on
waste. In addition, this methodology could be used to study with the experts the causes that
reduce productivity and overall equipment effectiveness (OEE). Therefore, it is important
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to address the downtimes to increase machine availability, avoid their deterioration and
improve the performance, efficiency, and quality of the printing line. This way of studying
the impact of downtime on waste is justified because it addresses two crucial issues at the
same time: waste as a function of downtime, which will help reduce production costs and
improve the profitability of the organization.

The process followed to obtain the models to which the required strong restrictions
apply means that, in percentage terms, this number of models is small, although in absolute
numbers it is still a very large number of resulting models.

For this reason, the three HMSA conditions are so restrictive that models could be
obtained whose causal effect sizes, for the same machine–treatment, have slight variations.

Condition 3 (effect size greater than 95% of the mean) selects models that capture
large effects, so it is possible that other more moderate effects are being neglected in this
situation.

However, the choice to stay with models that meet all the constraints and are therefore
strongly consolidated gives value to these models as it allows us to detect the variability
caused by waste due to downtime in very extreme situations.

If, with these restrictions, homologous models are not found in some machine–treatment,
it means that no reliable models were found to measure the corresponding effect size.

The main limitation of this study is that it does not measure the effect of the stoppages
of each stage of the production line of each machine, which will be addressed in a future
study, but it serves the purpose of an exploratory search for the main causes using the
matching models.

Another disadvantage is that the effect size is calculated assuming that the standard
deviations are different, and the group sizes are similar (Equation (7)). For this reason,
in cases where the sample size and the standard deviation of each group are markedly
different, it will be necessary to correct the standard deviation of the population. This may
occur mainly with fullmatch, which considers more control units.

In any case, the differences detected when the standard deviation correction is per-
formed would produce effects analogous or slightly underestimated to the uncorrected
effect measurements. Equation (7) has more power to measure the effect because it has
more type 1 errors. Therefore, the measured effects of the fullmatch models, using Equation
(7), provide sufficient reliability to be considered.

6. Conclusions

In this work, the EMMSA methodology has been developed to measure, for each ma-
chine, the size of the causal effect of downtime on waste. As mentioned in the Introduction,
being able to measure this effect could contribute to studying, quantitatively and causally,
one of the main problems of the manufacturing industry, since it affects productivity and
profitability.

This methodology allows a rigorous comparison between the different models gener-
ated by the matching methods used to perform the causal analysis.

For this purpose, the EMMSA is carried out with two developed algorithms: Algo-
rithms 1 (EMA) and 2 (HMSA). Both have the advantage of performing an exploratory
search for the best models to ensure, as far as possible, comparative groups with all co-
variates balanced, the maximum number of treatment and control units, and an effect size
greater than 95% of the mean.

In the applied case, the machines and treatments where most waste is generated
are shown in Table 3. Using meta-analysis methods, it was determined that M5 and M6
machines and treatment 10 generate the most waste in terms of standardized measurements.
As such, the meta-analysis method helps us to prioritize, at the machine and treatment
levels, where waste should be primarily addressed.

In future studies, the EMMSA methodology can be extended to more than ten covari-
ates, include binary variables, and use variables with very different probability distributions.
These extensions may require more criteria or priors to improve the model selection process.
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The EMMSA methodology could be adapted for applications in other industries
involving production processes in which waste is a fundamental part of the cost. It could
also be extended to other fields of knowledge.
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Appendix A

Appendix A.1. Causality Methods in Time Series

Table A1. Multivariable Granger causality methods for time series.

Method Relations Data Reference

Auto Regressive Model Linear Stationary [16]

Gaussian Process
Regression Non-linear Non-stationary data [16]

Spectral Granger Causality Non-linear Oscillating variables: Fourier
transformation [61]

Grouping Multivariate
Granger Causality Non-linear

Oscillating variables:
Multivariate non-linear chirp

mode decomposition
[62]

Table A2. Granger causality methods for time series.

Method Description Reference

Direct Transfer
Entropy (DTE)

Detects spurious causalities and direct
(indirect) paths between univariate time series.

Requires stationary data.
[19]

(Direct) Transfer Zero Entropy (T0E)

Like DTE but does not assume well-defined
PDF. Detects direct or indirect causalities for

multivariate data. Does not require stationary
data or a large sample.

[63]

Trend Transfer
Entropy (TTE)

Causal analysis based on the time-series trends
reducing computational burden. [64]

Symbolic dynamic based normalized
Transfer Entropy (SDNTE)

Fast and efficient to root cause diagnostic in
real time using xD-Markov machine. Accepts

only stationary variables.
[65]

Normalized (Direct) Transfer Entropy
It assumes a random delay in the occurrence of
the alarms and mutual independence between

them.
[66]
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Appendix A.2. Distances and R Libraries

Table A3. Proximity metrics.

Distance Description Reference

Canberra d(p, q) =
n
∑

i=1

|pi−qi |
|pi |−|qi |

[67]

Euclidean and Scaled Euclidean d(p, q) =

√
n
∑

i=1
(pi − qi)

2

GAM

Generalized additive model distance is a form of
parametric logistic regression. It belongs to the
family of generalized linear models. It assumes

that outcome variables depends linearly on
unknown smooth functions of its predictor

variables.

[68]

GLM

The generalized linear model distance is a
generalization of ordinary linear regression using a
link function between predictors and outcome and

for each variable a variance function of its
predictors. It assumes that each predictor is

generated by a probability distribution family
(normal, binomial, exponential, poisson, etc.).

[69]

Mahalanobis and Robust
Mahalanobis

d(p, q, θ) =
√
(p− q)TS−1(p− q)

Where, p and q are vectors of size n, θ is the
probability distribution over Rn, and S is the

positive definite covariance matrix.

[70]

Manhattan (Taxicab) d(p, q) = |pi − qi |
Hermann Minkowski (1864–1909)

Maximum d(p, q) = maxi |pi − qi |
Pafnuty Chebyshev (1821–1894)

Minkowski

d(p, q) = s

√
n
∑

i=1
(pi − qi)

s

s = 1, Manhattan distance; s = 2, Euclidean distance;
s = ∞, Chebyshev distance. Hermann Minkowski

(1864–1909)

Table A4. R Packages used.

Package Description Reference

matchIt
It implements a wide variety of matching algorithms such

as nearest Mahalanobis, optimal matching, fullmatch,
genetic, and coarsened exact matching.

[44]

optmatch

Finds the optimal match and support variable number of
controls and full matching. It uses auction algorithm

implemented with RELAX IV Fortran code [42] to solve the
minimum cost flow problem. It has academic license.

[41]

sensitivitymult Sensitivity analysis for normal distributions using M-Test. [51]

car Sensitivity analysis for no normal distributions using
Levene test. [71]

cobalt Generates balance tables and plots for covariates of
matched groups [72]

rbounds
Implements sensitivity analysis methods documented in

[29] and calculates point estimates from Hodges–Lehmann
and Wilcoxon tests.

[73]

tableone

It summarizes the variables (continuous or categorical) of
the matching results, thus facilitating their reading. In
addition, it performs statistical tests and calculates the

standardized mean difference.

[74]
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Table A4. Cont.

Package Description Reference

lightgbm

Optimized machine learning algorithm using gradient
boosting decision tree (GBDT) implemented with

gradient-based one-side sampling (GOSS) and exclusive
feature bundling (EFB)

[60]

randomForest
A classification and regression algorithm that combines

randomized decision trees and aggregates their predictions
by averages.

[75]

meta Implements methods for meta-analysis of random-effect
models and common-effect models. [76]

Table A5. DerSimonian–Laird nomenclature.

Variable Nomenclature of Random Effect Model for
DerSimonian-Laird

k Number of comparative studies

i 1, . . ., k

nTi, nCi Number of records in treatment and control groups

rTi, rCi
Proportion of records with some event in treatment and control

groups
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Observed  
treatment effect 

Yi = True treatment effect + sampling error 
Yi = Ѳi + ei 

Variance of ei 
𝜎  

The sampling variance capturing intra-study variance and the sampling 
size. It is usually unknown, but it is estimated from study data (𝑠 ). 

Ѳi Ѳi = μ + δi 
μ Overall treatment effect of study population 

δi δi = Ѳi − μ 
It is the deviation of the study from overall treatment effect. 

Variance of δi 
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Table A6. DerSimonian–Laird Formulas.

Formulas for the Estimation of the Overall Population Treatment Effect µ Equation

Estimate of the initial weighting wi0 wi0 = 1
s2

i
(A1)

Estimate of initial yw(0) yw(0) =
∑k

i=1 wi0yi

∑k
i=1 wi0 (A2)

Estimate Q statistics Q =

[
k
∑

i=1
wi0(yi − yw(0))

2
]

(A3)

Estimate t2 t2 = Q − (k−1)[
∑k

i=1 wi0 −
∑k

i=1 w2
i0

∑k
i=1 wi0

]
(A4)

Estimate second step weighting, wi wi =
1

t2+s2
i

(A5)

Estimate mw mw =
∑k

i=1 wiyi

∑k
i=1 wi

(A6)

Estimate τ2, weighted method of
moments τ2 ≈

[∑k
i=1 wi(yi − mw)2] −

[
∑k

i=1 wis2
i −

∑k
i=1 w2

i s2
i

∑k
i=1 wi

]
[

∑k
i=1 wi −

∑k
i=1 w2

i
∑k

i=1 wi

] (A7)

Estimate final weighting Wi Wi = 1
τ2+s2

i
(A8)

Estimate µ MW =
∑k

i=1 Wiyi

∑k
i=1 Wi

(A9)

Estimate Standard error µW Standar error o f µW = SE(MW) = 1

( ∑k
i=1 Wi)

1
2

(A10)

Confidence Interval µ CI = MW ± 1.96 SE(MW) (A11)

Appendix B

Treatment Intervals, Density Functions, and Selected Models

Table A7. Downtime intervals of machines for each treatment (MSUMALL).

Trat Min Max M1 M2 M3 M4 M5 M6 M7 Total

0 - - 3521 978 3008 7318 1831 3087 4039 23,782
1 59 291 166 62 54 990 50 331 173 1826
2 292 441 150 68 80 897 138 317 210 1860
3 442 580 142 76 109 779 129 436 209 1880
4 581 722 152 77 85 715 127 493 233 1882
5 723 908 187 91 96 693 133 355 308 1863
6 909 1160 219 112 103 673 171 349 243 1870
7 1161 1497 222 106 107 661 165 370 240 1871
8 1498 2010 252 136 119 605 178 389 202 1881
9 2011 3005 274 154 124 531 200 371 214 1868
10 3006 18,113 334 237 162 406 231 407 195 1972

Total 5619 2097 4047 14,268 3353 6905 6266 42,555
% Control units 62.7% 46.6% 74.3% 51.3% 54.6% 44.7% 64.5% 55.9%

% Treatment units 37.3% 53.4% 25.7% 48.7% 45.4% 55.3% 35.5% 44.1%



Mathematics 2023, 11, 4506 28 of 34

Mathematics 2023, 11, x FOR PEER REVIEW 30 of 36 
 

 

 

7 1161  1497  222  106  107  661  165  370  240  1871  
8 1498  2010  252  136  119  605  178  389  202  1881  
9 2011   3005  274  154  124  531  200  371  214   1868  

10 3006  18,113  334  237  162  406  231  407  195  1972  
Total  5619  2097  4047  14,268  3353  6905  6266  42,555  

% Control units 62.7% 46.6% 74.3% 51.3% 54.6% 44.7% 64.5% 55.9% 
% Treatment units 37.3% 53.4% 25.7% 48.7% 45.4% 55.3% 35.5% 44.1% 

 
Figure A1. MSUMALL density function for each machine. 

 
Figure A2. WASTELM density function for each machine. 

Figure A1. MSUMALL density function for each machine.

Mathematics 2023, 11, x FOR PEER REVIEW 30 of 36 
 

 

 

7 1161  1497  222  106  107  661  165  370  240  1871  
8 1498  2010  252  136  119  605  178  389  202  1881  
9 2011   3005  274  154  124  531  200  371  214   1868  

10 3006  18,113  334  237  162  406  231  407  195  1972  
Total  5619  2097  4047  14,268  3353  6905  6266  42,555  

% Control units 62.7% 46.6% 74.3% 51.3% 54.6% 44.7% 64.5% 55.9% 
% Treatment units 37.3% 53.4% 25.7% 48.7% 45.4% 55.3% 35.5% 44.1% 

 
Figure A1. MSUMALL density function for each machine. 

 
Figure A2. WASTELM density function for each machine. Figure A2. WASTELM density function for each machine.



Mathematics 2023, 11, 4506 29 of 34

Table A8. Selected models: balance information and causal effect size.

MCH Treat Method Distance C1 C2 CU TU NSMD NRV CMU TMU RV Wtpval EffMD EffRF CIhigh CIlow ZScore

M1 1 Optmatch mahalanobis 1 1 3521 166 0 0 166 166 0.84 0.01 19.80 19.42 21.73 17.88 0.27

M1 2 FullMatch scaled_euclidean 1 1 3521 150 0 0 3521 150 0.82 0.02 16.35 16.19 17.09 15.62 0.20

M1 3 Genetic bart 1 1 3521 142 0 0 142 142 0.64 0.11 16.07 15.60 17.61 14.54 0.19

M1 4 Genetic gam 1 1 3521 152 0 0 152 152 0.91 0.25 11.53 11.27 0.13

M1 5 Genetic gam 1 1 3521 187 0 0 187 187 0.92 0.35 8.00 7.26 10.00 5.99 0.10

M1 6 Genetic gam 1 1 3521 219 0 0 219 219 1.02 0.12 13.05 13.78 14.06 12.03 0.15

M1 7 Genetic gam 1 1 3521 222 0 0 222 222 1.42 0.24 10.28 9.87 0.11

M1 8 Genetic gbm 2 1 3521 252 1 0 252 252 0.76 0.14 11.97 12.87 12.89 11.05 0.13

M1 9 FullMatch scaled_euclidean 2 1 3521 274 1 0 3521 274 0.61 0.00 24.38 24.52 26.21 22.55 0.30

M1 10 FullMatch mahalanobis 2 1 3521 334 1 0 3521 334 0.58 0.00 34.25 34.11 37.57 30.94 0.41

M2 1 Genetic robust_mahalanobis 1 1 978 62 0 0 62 62 1.82 0.37 7.87 8.38 14.34 1.41 0.16

M2 2 Optmatch mahalanobis 1 1 978 68 0 0 68 68 0.48 0.14 15.13 15.56 17.67 12.59 0.26

M2 3 FullMatch robust_mahalanobis 1 1 978 76 0 0 978 76 1.86 0.08 9.78 10.39 11.40 8.15 0.18

M2 4 Genetic gbm 1 1 978 77 0 0 77 77 1.84 0.12 15.67 16.55 19.42 11.91 0.25

M2 5 Genetic gbm 1 1 978 91 0 0 91 91 1.42 0.29 14.45 14.16 27.97 0.93 0.16

M2 6 Genetic gbm 1 1 978 112 0 0 112 112 0.69 0.38 11.63 12.07 11.63 11.63 0.12

M2 7 Nearest scaled_euclidean 1 1 978 106 0 0 106 106 0.70 0.64 5.34 5.82 9.62 1.06 0.07

M2 8 Genetic scaled_euclidean 1 1 978 136 0 0 136 136 0.54 0.02 19.70 20.57 21.22 18.19 0.29

M2 9 Optmatch scaled_euclidean 1 1 978 154 0 0 154 154 1.14 0.42 7.54 6.37 8.58 6.49 0.09

M2 10 Genetic scaled_euclidean 1 1 978 237 0 0 237 237 0.77 0.41 5.84 5.68 11.22 0.45 0.08

M3 1 Genetic gam 1 1 3007 54 0 0 54 54 1.31 0.34 9.39 9.35 15.91 2.87 0.18

M3 2 Genetic mahalanobis 1 1 3007 80 0 0 80 80 0.41 0.01 20.99 22.14 23.46 18.52 0.44

M3 3 Genetic scaled_euclidean 1 1 3007 109 0 0 109 109 1.39 0.53 5.80 5.07 9.67 1.93 0.09

M3 4 Genetic bart 1 1 3007 85 0 0 85 85 0.45 0.00 20.55 20.69 23.42 17.67 0.45

M3 5 Genetic gam 1 1 3007 95 0 0 95 95 0.73 0.22 7.47 7.32 8.53 6.40 0.18

M3 6 Genetic gam 1 1 3007 103 0 0 103 103 1.88 0.23 7.71 7.95 9.14 6.28 0.17

M3 7 Genetic gam 1 1 3007 106 0 0 106 106 0.57 0.14 13.71 13.10 15.38 12.05 0.21

M3 8 Genetic gam 1 1 3007 119 0 0 119 119 0.61 0.27 7.05 6.27 8.28 5.82 0.14
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Table A8. Cont.

MCH Treat Method Distance C1 C2 CU TU NSMD NRV CMU TMU RV Wtpval EffMD EffRF CIhigh CIlow ZScore

M3 9 Nearest scaled_euclidean 1 1 3007 124 0 0 124 124 0.66 0.14 12.65 11.93 13.46 11.83 0.19

M3 10 Genetic glm 1 1 3007 162 0 0 162 162 0.71 0.14 11.84 12.34 13.04 10.63 0.16

M4 1 Genetic euclidean 1 1 7318 990 0 0 990 990 0.65 0.10 4.90 5.09 5.29 4.52 0.07

M4 2 Nearest scaled_euclidean 1 1 7318 897 0 0 897 897 0.66 0.00 11.65 11.75 12.42 10.89 0.16

M4 3 Genetic mahalanobis 1 1 7318 779 0 0 779 779 0.78 0.00 13.68 13.78 13.98 13.37 0.17

M4 4 Genetic gbm 1 1 7318 715 0 0 715 715 0.85 0.01 8.53 8.67 9.05 8.00 0.15

M4 5 Optmatch scaled_euclidean 1 1 7318 693 0 0 693 693 0.62 0.00 13.89 14.03 14.46 13.33 0.19

M4 6 Genetic bart 1 1 7318 673 0 0 673 673 0.61 0.00 17.83 18.29 18.55 17.11 0.23

M4 7 Nearest robust_mahalanobis 1 1 7318 661 0 0 661 661 0.65 0.00 20.19 20.38 21.17 19.20 0.25

M4 8 Genetic scaled_euclidean 1 1 7318 605 0 0 605 605 0.49 0.00 22.58 22.69 23.28 21.89 0.26

M4 9 Genetic euclidean 1 1 7318 531 0 0 531 531 0.57 0.00 29.28 29.01 30.12 28.44 0.36

M4 10 Genetic euclidean 1 1 7318 406 0 0 406 406 0.49 0.00 48.60 49.27 50.23 46.98 0.52

M5 1 Genetic robust_mahalanobis 1 1 1831 50 0 0 50 50 1.64 0.07 24.81 25.65 28.36 21.26 0.37

M5 2 Nearest mahalanobis 1 1 1831 138 0 0 138 138 0.70 0.03 15.64 15.60 17.55 13.74 0.27

M5 3 Genetic mahalanobis 1 1 1831 129 0 0 129 129 0.76 0.07 10.86 10.44 12.14 9.58 0.23

M5 4 Genetic glm 1 1 1831 127 0 0 127 127 0.39 0.02 19.82 20.09 21.41 18.23 0.30

M5 5 Genetic robust_mahalanobis 1 1 1831 133 0 0 133 133 0.79 0.07 15.62 15.96 17.33 13.91 0.23

M5 6 Genetic mahalanobis 1 1 1831 171 0 0 171 171 0.74 0.07 9.99 9.84 14.86 5.12 0.20

M5 7 Optmatch glm 1 1 1831 165 0 0 165 165 0.63 0.01 26.17 26.32 26.77 25.56 0.31

M5 8 Genetic gam 1 1 1831 178 0 0 178 178 0.70 0.01 15.56 15.69 17.61 13.50 0.26

M5 9 FullMatch euclidean 1 1 1831 200 0 0 1831 200 0.82 0.00 25.22 24.96 27.38 23.06 0.37

M5 10 FullMatch scaled_euclidean 1 1 1831 231 0 0 1831 231 0.48 0.00 36.79 37.42 45.70 27.88 0.53

M6 1 FullMatch scaled_euclidean 1 1 3087 331 0 0 3087 331 0.84 0.00 8.06 8.11 9.41 6.72 0.24

M6 2 FullMatch scaled_euclidean 1 1 3087 317 0 0 3087 317 0.84 0.05 4.36 4.24 7.23 1.48 0.12

M6 3 FullMatch scaled_euclidean 1 1 3087 436 0 0 3087 436 0.61 0.00 12.56 12.77 13.43 11.69 0.25

M6 4 FullMatch mahalanobis 1 1 3087 493 0 0 3087 493 0.70 0.00 7.71 7.75 12.80 2.62 0.21

M6 5 FullMatch scaled_euclidean 1 1 3087 355 0 0 3087 355 0.77 0.00 7.21 7.23 9.52 4.91 0.24
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Table A8. Cont.

MCH Treat Method Distance C1 C2 CU TU NSMD NRV CMU TMU RV Wtpval EffMD EffRF CIhigh CIlow ZScore

M6 6 FullMatch euclidean 1 1 3087 349 0 0 3087 349 0.58 0.00 14.87 14.93 17.80 11.94 0.34

M6 7 FullMatch scaled_euclidean 1 1 3087 370 0 0 3087 370 0.70 0.00 16.28 16.48 23.38 9.19 0.42

M6 8 FullMatch mahalanobis 1 1 3087 389 0 0 3087 389 0.51 0.00 19.75 19.96 25.79 13.72 0.44

M6 9 Genetic bart 1 1 3087 371 0 0 371 371 0.74 0.01 14.97 14.87 16.07 13.88 0.20

M6 10 FullMatch euclidean 1 1 3087 407 0 0 3087 407 0.46 0.00 34.69 35.61 34.69 34.69 0.46

M7 1 Genetic robust_mahalanobis 1 1 4039 173 0 0 173 173 0.79 0.27 6.59 6.48 9.09 4.10 0.12

M7 2 Nearest mahalanobis 1 1 4039 210 0 0 210 210 0.98 0.36 6.87 7.05 8.15 5.59 0.09

M7 3 Nearest euclidean 1 1 4039 209 0 0 209 209 0.82 0.06 8.51 8.58 11.46 5.57 0.18

M7 4 Optmatch mahalanobis 1 1 4039 233 0 0 233 233 0.72 0.05 12.14 12.74 14.06 10.23 0.18

M7 5 Nearest mahalanobis 1 1 4039 308 0 0 308 308 0.65 0.02 14.74 14.47 15.85 13.64 0.19

M7 6 Optmatch glm 1 1 4039 243 0 0 243 243 0.68 0.23 7.11 7.71 7.94 6.29 0.11

M7 7 Genetic scaled_euclidean 1 1 4039 240 0 0 240 240 1.16 0.14 7.72 7.81 8.78 6.66 0.14

M7 8 Optmatch robust_mahalanobis 1 1 4039 202 0 0 202 202 0.59 0.26 6.49 6.56 9.95 3.02 0.11

M7 9 Genetic gam 1 1 4039 214 0 0 214 214 1.18 0.05 13.04 13.03 14.64 11.43 0.19

M7 10 Genetic bart 1 1 4039 195 0 0 195 195 0.62 0.04 14.99 15.77 16.68 13.30 0.21

C1:Priority of condition 1; C2: Priority of condition 2; CU: Control units; TU: Treatment units; NSMD: Non-balanced variables by SMS; NRV: Non-balanced variables by RV; CMU:
Control-matched units; TMU: Treatment-matched units; RV: Variance ratio; Wtpval: p-value of Welch test; EffMD: Mean effect size of treatment of homologous models; EffRF: Effect size
of RF model of treatment selected; CIhigh: Confidence interval high value for machine–treatment of homologous models; CIlow: Confidence interval low value for machine–treatment
of homologous models; HLUCE: Hodges–Lehmann unconfounded estimate; ZScore: Z-score of selected model.
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