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Abstract

On a real hypersurface in the complex quadric or the complex hyperbolic quadric we can
consider the Levi-Civita connection and, for any nonnull real number k , the k -th generalized
Tanaka-Webster connection. We also have a differential operator of first order of Lie type asso-
ciated to the k -th generalized Tanaka-Webster connection. We classify real hypersurfaces in the
complex quadric and the complex hyperbolic quadric for which the Lie derivative and the Lie
type differential operator coincide when they act on the shape operator of the real hypersurface
either in the direction of the structure vector field or in any direction of the maximal holomorphic
distribution.
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1 Introduction.

Let (M̃, J, g) be a Kähler manifold and M a real hypersurface of M̃ , that is, a submanifold of
codimension 1 with local normal unit vector field N . Then M inherits an almost constant metric
structure (φ, η, g, ξ). Let ∇ denote the Levi-Civita connection on M and S its shape operator
associated to N .

As M has an almost contact metric structure, for any nonnull real number k we can define the so
called k -th generalized Tanaka-Webster connection ∇̂(k) on M by

∇̂(k)
X Y = ∇XY + g(φSX, Y )ξ − η(Y )φSX − kη(X)φY

for any X,Y tangent to M (see [3]). Let us call F
(k)
X Y = g(φSX, Y )ξ − η(Y )φSX − kη(X)φY , for

any X,Y tangent to M . F
(k)
X is called the k -th Cho operator on M associated to X . Notice that

if X ∈ C , the maximal holomorphic distribution on M given by all the vector fields orthogonal to ξ ,
the associated Cho operator does not depend on k and we will denote it simply by FX . We also have
∇̂(k)φ = 0, ∇̂(k)η = 0, ∇̂(k)g = 0 and ∇̂(k)ξ = 0.

The torsion of the connection ∇̂(k) is given by T (k)(X,Y ) = F
(k)
X Y −F (k)

Y X for any X,Y tangent

to M . From T (k) we can define the torsion operator associated to the vector field X tangent to M

by T
(k)
X Y = T (k)(X,Y ) for any Y tangent to M .

Let L denote the Lie derivative of the real hypersurface M . Then LXY = ∇XY −∇YX for any
X,Y tangent to M . Associated to the k -th generalized Tanaka-Webster connection ∇̂(k) we can

consider a differential operator of first order by L
(k)
X Y = ∇̂(k)

X Y − ∇̂(k)
Y X = LXY + T

(k)
X Y , for any

X,Y tangent to M .
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In this paper we will consider real hypersurfaces in M̄m(ε), ε = ±1, where M̄m(1) will denote the
complex quadric Qm = SOm+2/SOmSO2 and M̄m(−1) will denote the complex hyperbolic quadric
Qm∗ = SOo2,m/SO2SOm . Both are Hermitian symmetric spaces of rank 2 and are equipped with two
geometric structures: a Kähler structure J and a parallel rank 2 subbundle A of the endomorphism
bunddle End(TM̄m(ε)), which consists of all the real structures on the tangent space of M̄m(ε). For
any A ∈ A the following relations hold: A2 = I and AJ = −JA . A nonzero tangent vector W at
a point of M̄m(ε) is called singular if it is tangent to more than one maximal flat in M̄m(ε). There
are two types of singular tangent vectors for M̄m(ε):

• If there exists a conugation A ∈ A such that W ∈ V (A), then W is singular. Such a singular
tangent vector is called A -principal.

• If there exists a conjugation A ∈ A and orthonormal vectors X,Y ∈ V (A) such that W/‖W‖ =

(X + JY )/
√

2, then W is singular. Such a singular tangent vector is called A -isotropic,

where V (A) = {X ∈ T[z]M̄m(ε)|AX = X} and JV (A) = {X ∈ T[z]M̄m(ε)|AX −X} , [z] ∈ M̄m(ε),
are the (+1)-eigenspace and the (-1)-eigenspace for the involution A .

The tangent bundle TM of the real hypersurface M splits orthogonally into

TM = C⊕ F,

where C = ker(η) is the maximal complex subbundle of TM and F = Rξ . The structure tensor field
φ restricted to C coincides with the complex structure J .

We sill say that M is Hopf if its Reeb vector field is principal. That is Sξ = αξ for a certain
function α .

The study of real hypersurfaces M in Qm was initiated by Berndt and Suh in [1]. In this paper the
geometric properties of real hypersurfaces M in complex quadric Qm , which are tubes of radius r ,
0 < r < π/2, around the totally geodesic CPn in Qm , when m = 2n are presented. The condition
of isometric Reeb flow is equivalent to the commuting condition of the shape operator S with the
structure tensor φ of M . The classification of such real hypersurfaces in Qm is obtained in [2]:

Proposition 1.1 The following statements hold for a tube M of radius r, 0 < r < π/2 around the
totally geodesic CPn in Qm , m = 2n :

1. M is a Hopf hypersurface.

2. The normal bundle of M consists of A-isotropic singular tangent vectors of Qm .

3. M has four distinct principal curvatures, unless m = 2 in which case M has two distinct prin-
cipal curvatures, which are given in the following matrix

Principal curvature Eigenspace Multiplicity

2 cot(2r) F 1

cot(r) νzCPn 	 [ξ] 2n− 2

− tan(r) TzCPn 	 [Aξ] 2n− 2

0 [Aξ] 2

4. The shape operator commutes with the structure tensor field φ , i.e. Sφ = φS .
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5. M is a homogeneous hypersurface.

Moreover, such tubes are the unique real hypersurfaces in Qm satisfying Sφ = φS .

In the case of the complex hyperbolic quadric Qm∗ we have a similar result, [7]

Proposition 1.2 Let M be a tube around the totally geodesic CHn in Qm∗ , m = 2n , or the
horosphere in Qm∗ whose center at the infinity is in the equivalent class of an A-isotropic singular
geodesic in Qm∗ . Then the following statement holds:

1. M is a Hopf hypersurface.

2. The tangent bundle TM and the normal bundle νM of M consists of A-isotropic singular
tangent vectors of Qm∗ .

3. M has four (or three) distinct principal curvatures which are given in the following table

Principal curvature Eigenspace Multiplicity

2 coth(2r),2 F 1

coth(r),1 νCHn 	 CνM 2n− 2

tanh(r),1 TCHn 	 (C	 Q) 2n− 2

0 C	 Q 2

4. The shape operator commutes with the structure tensor field φ , i.e. Sφ = φS .

5. The Reeb flow on M is an isometric flow.

Real hypersurfaces appearing in Proposition 1.2 are the unique ones in Qm∗ satisfying condition
4.

Recently, in [5] we have proved the following

Theorem 1.1 There does not exist any real hypersurface in Qm , m ≥ 3 , such that the Lie derivative
and the differential operator L(k) coincide on S , that is, LS = L(k)S , for any nonnull k .

In this paper we will study real hypersurfaces in M̄m(ε) such that either LξS = L
(k)
ξ S or LXS =

L
(k)
X S for any X ∈ C . We will obtain the following results:

Theorem 1.2 Let M be a real hypersurface in M̄m(ε) , m ≥ 3 , and any nonnull real number k .

Then LξS = L
(k)
ξ S if and only if either i) ε = 1 and M is an open part of a tube of radius r ,

0 < r <
π

2
, around the totally geodesic CPn in Qm , m = 2n , or ii) ε = −1 and M is an open part

of a tube around a totally geodesic CHn in Qm∗ , m = 2n , or a horosphere whose center at infinity
is A-isotropic singular.

Theorem 1.3 1. There does not exist any real hypersurface in Qm , m ≥ 3 , such that LXS =

L
(k)
X S , for any X ∈ C and any nonnull real number k .
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2. Let M be a real hypersurface in Qm∗ , m ≥ 3 , and k a nonnull real number. Then LXS = L
(k)
X S

for any X ∈ C if and only if k2 = 1 , M is Hopf and N is either A-isotropic or A-principal. In
both cases M has two distinct constant principal curvatures, k and −k , and in the first case the
eigenspace corresponding to k is Tk = Span{ξ, Aξ,AN} ⊕ Ck , with φCk = T−k ; in the second
case Tk = Span{ξ} ⊕ Ck , with φCk = T−k .

As a conclusion of both Theorems we obtain

Corollary 1.1 There does not exist any real hypersurface in Qm∗ , m ≥ 3 , such that LS = L(k)S ,
for any nonnull real number k .

2 Preliminaries.

For the study and notations of the geometry of the complex quadric Qm and its real hypersurfaces
see [6] and [4]. In the case of the complex hyperbolic quadric Qm∗ see [7].

Let M be a real hypersurface in M̄n(ε) and N a unit normal vector field of M . Any vector field
X tangent to M satisfies the relation

JX = φX + η(X)N. (2.1)

The tangential component of the above relation defines on M a skew-symmetric tensor field of type
(1,1) φ , named the structure tensor. The structure vector field ξ is defined by ξ = −JN and is called
the Reeb vector field. The 1-form η is given by η(X) = g(X, ξ) for any vector field X tangent to
M . So, on M an almost contact metric structure (φ, ξ, η, g ) is defined. The elements of the almost
contact structure satisfy the following relations

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY ) = g(X,Y )− η(X)η(Y ) (2.2)

for all tangent vectors X,Y to M . Relation (2.1) implies φξ = 0.

At each point [z] ∈M we define

Q[z] = {X ∈ T[z]M |AX ∈ T[z]M for all A ∈ A[z]}

which is the maximal A[z] -invariant subspace of T[z]M . Then for real hypersurfaces in M̄n(ε) we
have the following, [2], [7],

Lemma 2.1 Let M be a real hypersurface in M̄m(ε) . Then the following statements are equivalent:

1. The normal vector N[z] of M is A-principal.

2. Q[z] = C[z] .

3. There exists a real structure A ∈ A[z] such that AN[z] ∈ Cν[z]M .

Assume now that the normal vector N[z] of M is not A-principal. Then there exists a real structure
A ∈ A[z] such that

N[z] = cos(t)Z1 + sin(t)JZ2,

AN[z] = cos(t)Z1 − sin(t)JZ2, (2.3)
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where Z1 , Z2 are orthonormal vector in V (A) and 0 < t ≤ π

4
. Moreover, the above relations due to

ξ = −JN imply

ξ[z] = − cos(t)JZ1 + sin(t)Z2,

Aξ[z] = cos(t)JZ1 + sin(t)Z2. (2.4)

So we have g(AN[z], ξ[z]) = 0, g(N[z], AN[z]) = cos(2t) = −g(ξ[z], Aξ[z]).

The Codazzi equation of M is given by

g((∇XS)Y − (∇Y S)X,Z) = ε{η(X)g(φY,Z)− η(Y )g(φX,Z)− 2η(Z)g(φX, Y )

+g(X,AN)g(AY,Z)− g(Y,AN)g(AX,Z) + g(X,Aξ)g(JAY,Z)− g(Y,Aξ)g(JAX,Z)}
(2.5)

for any X,Y, Z tangent to M .

The shape operator of a real hypersurface M in Qm is denoted by S . The real hypersurface is
called Hopf hypersurface if the Reeb vector field is an eigenvector of the shape operator, i.e.

Sξ = αξ, (2.6)

where α = g(Sξ, ξ) is the Reeb function. In this case, taking Z = ξ in (2.5) we get

Y (α) = ξ(α)η(Y )− 2g(ξ, AN)g(Y,Aξ) + 2g(Y,AN)g(ξ, Aξ) (2.7)

Finally, [2], [7], we have the following

Lemma 2.2 Let M be a Hopf real hypersurface in M̄m(ε) , m ≥ 3 . Then the tensor field 2SφS −
α(φS + Sφ) leaves Q and C 	 Q invariant and we have 2SφS − α(φS + Sφ) = −2φ on Q and
2SφS − α(φS + Sφ) = −2β2φ on C	 Q , where β = g(Aξ, ξ) = −2cos(2t) .

3 Proof of Theorem 1.2

Let M be a real hypersurface in Qm such that (LξS)Y = (L
(k)
ξ S)Y for any Y tangent to M . This

yields

−φS2Y + SφSY = g(φSξ, SY )ξ − η(SY )φSξ − kφSY − g(φSξ, Y )Sξ + η(Y )SφSξ + kSφY (3.1)

for any Y ∈ TM .

Let us suppose that M is non Hopf. Then at a point p ∈ M we can write Sξ = αξ + βU , for a
nonnull real number β and a unit vector U ∈ Cp . Therefore on an open neighborhood of p we have
a similar expression where α and β 6= 0 are functions on such a neighborhood and U a unit vector
field in C . Then (3.1) gives
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βg(φU, SY )ξ − βη(SY )φU − kφSY − βg(φU, Y )Sξ
+βη(Y )SφU + kSφY + φS2Y − SφSY = 0

(3.2)

for any Y tangent to M . If we take the scalar product of (3.2) and ξ we get βg(SφU, Y ) −
αβg(φU, Y ) + kβg(φY,U)− βg(φSY,U) = 0. As β 6= 0 this yields 2g(SφU, Y ) = (α+ k)g(φU, Y ) for
any Y tangent to M . Therefore

SφU =
α+ k

2
φU. (3.3)

If in (3.2) we take Y = ξ we obtain −kβφU + βφSU = 0. Once again, β 6= 0 yields φSU = kφU .
Applying φ we obtain

SU = βξ + kU. (3.4)

Taking now Y = φU in (3.2) and bearing in mind (3.4) we have β(
k − α

2
)ξ + (k(

α+ k

2
) − β2 −

(α+ k)2

4
)U = (

k − α
2

)SU . If we suppose k = α we have k2−β2−k2 = −β2 = 0, which is impossible.

Thus k − α 6= 0 and

SU = βξ + (
2

k − α
)(
k2 − α2

4
− β2)U. (3.5)

From (3.4) and (3.5) it follows k = (
2

k − α
)(
k2 − α2

4
−β2). This yields 2k2−2kα−k2+α2 = −2β2 ,

that is, (k − α)2 = −2β2 , which is impossible.

Therefore M must be Hopf. We write Sξ = αξ and (3.1) gives −φS2Y +SφSY = −kφSY +kSφY ,
for any Y tangent to M , or equivalently (Sφ− φS)SY = k(Sφ− φS)Y , for any Y tangent to M .

Now Sφ − φS is a symmetric operator on M . Moreover, for any X,Y tangent to M we have
g((Sφ − φS)SX, Y ) = kg((Sφ − φS)X,Y ) = kg(X, (Sφ − φS)Y ) = g(X, (Sφ − φS)SY ) = g(S(Sφ −
φS)X,Y ). That is, (Sφ− φS)S = S(Sφ− φS). Then we can find an orthonormal basis of TM that
at the same time diagonalizes Sφ − φS and S . Let Y be a vector field of such a base satisfying
(Sφ− φS)Y = λY and SY = µY . Thus SφY − µφY = λY . Its scalar product with Y gives 0 = λ .
Therefore, any eigenvalue of Sφ − φS is null. This yields Sφ = φS and the result follows from
Propositions 1.1 and 1.2.

4 Proof of Theorem 1.3

Let M be a real hypersurface in Qm such that (LXS)Y = (L
(k)
X S)Y for any X ∈ C and any Y

tangent to M . Then we have

g(φSX,SY )ξ − η(SY )φSX + g(φS2Y,X)ξ + kη(SY )φX
−g(φSX, Y )Sξ + η(Y )SφSX + g(φSY,X)Sξ − kη(Y )SφX = 0

(4.1)

for any X ∈ C , Y tangent to M .
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First suppose that M is Hopf with Sξ = αξ . Taking Y = ξ in (4.1) we obtain

−αφSX + kαφX + SφSX − kSφX = 0 (4.2)

for any X ∈ C . Bearing in mind (4.2), (4.1) becomes

g(φSX,SY )ξ − g(φS2Y,X)ξ − αg(φSX, Y )ξ + αg(φSY,X)ξ = 0 (4.3)

for any X ∈ C , Y tangent to M . Its scalar product with ξ yields

SφSX + S2φX − αφSX − αSφX = 0 (4.4)

for any X ∈ C .

The first term in (4.2) has no component in ξ . Taking the scalar product of (4.2) and any Y ∈ C

we also obtain

αSφX − kαφX − SφSX + kφSX = 0 (4.5)

for any X ∈ C . Adding (4.2) and (4.5) we obtain (k − α)φSX + (α − k)SφX = 0 for any X ∈ C .
Thus we have two possibilities:

The first one is α 6= k . As M is Hopf, we obtain φS = Sφ . Take a unit X ∈ C such that
SX = λX and Y = φX in (4.1). As φS = Sφ we obtain 2g(SX,SX)ξ − 2g(SX,X)Sξ = 0.
Therefore λ(λ−α) = 0. Thus either λ = 0 or λ = α . In the case of ε = 1, from Proposition 1.1, in C

there are nonnull principal curvatures. Thus there exists a principal curvature λ = α 6= 0. Therefore
we must have either 2cot(2r) = cot(r) or 2cot(2r) = −tan(r). As 2cot(2r) = cot(r)− tan(r) in both
cases we arrive to a contradiction. A similar reasoning from Proposition 1.2 in the case of ε = −1
proves that this possibility does not occur.

We have obtained then that α = k . In this case (4.2) becomes

−kφSX + k2φX + SφSX − kSφX = 0 (4.6)

for any X ∈ C and (4.4) would be

SφSX + S2φX − kφSX − kSφX = 0 (4.7)

for any X ∈ C . The scalar product of (4.7) and Z ∈ C yields

−SφSX − φS2X + kSφX + kφSX = 0 (4.8)

for any X ∈ C . Take a unit X ∈ C such that SX = λX . From (4.6) we get −kλφX + k2φX +
λSφX − kSφX = 0. This implies
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(λ− k)SφX = k(λ− k)φX. (4.9)

From (4.9) we have two possibilities: Either λ = k or λ 6= k . In this case SφX = kφX . Introducing
this φX in (4.7) and (4.8) we obtain S2X = k2X . That is, λ2 = k2 and as λ 6= k , we must have
λ = −k .

We have proved that in C the unique possible eigenvalues are k and −k . If any eigenvalue in C

is equal to k we should have Sφ = φS , but as α = k , we should have, for ε = 1, 2cot(2r) = k =
cot(r) = −tan(r) and k = 2k , which is impossible. We obtain a similar contradiction in the case
ε = −1.

Therefore there exists a unit X ∈ C such that SX = −kX and SφX = kφX . Introducing this X in
the Codazzi equation we have g((∇XS)φX−(∇φXS)X, ξ) = ε{−2+g(X,AN)g(AφX, ξ)−g(φX,AN)
g(AX, ξ) + g(X,Aξ)g(JAφX, ξ)− g(φX,Aξ)g(JAX, ξ)} = ε{−2 + 2g(X,AN)2 + 2g(X,Aξ)2} .

On the other hand (∇XS)φX − (∇φXS)X = k∇XφX −S∇XφX + k∇φXX +S∇φXX . Therefore
g((∇XS)φX − (∇φXS)X, ξ) = −kg(X,SX) + kg(X,SX)− 2kg(X,φSφX) = 2kg(SφX, φX) = 2k2 .

We have obtained 2k2 = ε{−2 + 2g(X,AN)2 + 2g(X,Aξ)2} . If ε = 1,we get 1 < k2 + 1 =
g(X,AN)2 + g(X,Aξ)2 ≤ 1, giving a contradiction.

Suppose ε = −1. From (2.7), the fact of k being constant and g(ξ, AN) = 0 we get g(Y,AN)g(ξ,

Aξ) = 0 for any Y tangent to M . Therefore, if g(ξ, Aξ) = 0, cos(2t) = 0, t =
π

4
and N is

A -isotropic. If not, g(AN, Y ) = 0 for any Y tangent to M and N is A -principal.

If N is A-isotropic, for any X ∈ Q we have g(X,AN) = g(X,Aξ) = 0 and 2k2 = 2. That
is, k2 = 1. If N is A-principal, from Lemma 2.2, 2SφS − k(φS + Sφ) = −2φ on C . As there
exists a unit X ∈ C such that SX = −kX and SφX = kφX , (φS + Sφ)X = −kφX + kφX = 0.
Therefore, SφSX = −φX = −kSφX = −k2φX and again k2 = 1. This finishes the proof for Hopf
real hypersurfaces.

Let us suppose now that M is non Hopf. As in Theorem 1.2, we write Sξ = αξ+ βU on a certain
open subset of M , for a unit U ∈ C and a nonvanishing fuction β on such a subset.

Taking Y = ξ in (4.1) we obtain

−βg(SφU,X)ξ − αφSX − αβg(φU,X)ξ − βg(φSU,X)ξ
+kαφX + SφSX + βg(φU,X)Sξ − kSφX) = 0.

(4.10)

for any X ∈ C . Its scalar product with ξ yields −2βg(SφU,X) − βg(φSU,X) + kβg(φU,X) = 0.
Therefore, as g(−2SφU + kφU − φSU, ξ) = 0, we get

−2SφU + kφU − φSU = 0. (4.11)

And, in particular,

g(SU, φU) = 0. (4.12)

If we take X = U , Y ∈ C in (4.1) we have

g(φSU, SY )ξ − η(SY )φSU − g(φS2Y,U)ξ + kη(SY )φU
−g(φSU, Y )Sξ + g(φSY,U)Sξ = 0

(4.13)
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and its scalar product with φU yields −η(SY )g(SU,U) +kη(SY ) = 0 for any Y ∈ C . Taking Y = U
we get −βg(SU,U) + kβ = 0. Then

g(SU,U) = k. (4.14)

The scalar product of (4.11) and φU gives −2g(SφU, φU) + k − g(SU,U) = 0. Bearing in mind
(4.14) we obtain

g(SφU, φU) = 0. (4.15)

The scalar product of (4.13) and U gives −βg(φSU, Y ) +βg(φSY,U) = 0 for any Y ∈ C . That is,
g(φSU, Y ) + g(SφU, Y ) = 0, for any Y ∈ C . Taking Y = φU we obtain g(SU,U) + g(SφU, φU) = 0.
From (4.14) and (4.15), this yields k = 0, which is impossible and we finish the proof.
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