
A parallel solution with GPU technology to predict

Energy Consumption in Spatially Distributed Buildings

using Evolutionary Optimization and Artificial Neural

Networks

J.R.S. Iruelaa, L.G.B. Ruiza, M.C. Pegalajara, M.I. Capelb

aDepartment of Computer Science and Artificial Intelligence, University of Granada,
Spain

bDepartment of Software Engineering, University of Granada, Spain

Abstract

Today all governments talk about climate change and its consequences. One
of the ways to tackle this problem is by studying the energy consumption
of the buildings around us. The study of energy consumption may give us
relevant information to make better decisions, and thus reduce costs and pol-
lution. However, ANN training models, in order to achieve those goals, has a
high computational cost in terms of time. To solve that problem, this paper
presents a GPU-based parallel implementation of NGSA-II to train ANNs
whose evaluation has also been implemented in a parallel GPU scheme. Our
methodology is designed to predict the energy consumption of a series of
public buildings, and thus, to model consumption, save energy and improve
the energy efficiency of these buildings without compromising their perfor-
mance obtaining the prediction in a very short period of time. We compared
the sequential implementation of the evolutionary algorithm NSGA-II with
our new version developed in parallel and the parallel implementation gets
better results in much faster execution time.

Keywords: Energy consumption forecasting, Artificial Neural Networks,
GPU, Evolutionary Algorithm

1. Introduction1

In the last 50 years, the planet has degraded more than in 100 centuries [1].2

According to the United Nations, 60% of all-natural resources are exploited3

Preprint submitted to Energy Conversion and Management January 18, 2020

The published version of this accepted manuscript can be found at:
https://doi.org/10.1016/j.enconman.2020.112535

https://doi.org/10.1016/j.enconman.2020.112535


in a non-sustainable manner. It becomes, therefore, necessary to carry out4

efficient use of the energy resources for the time to come. Moreover, pre-5

dicting energy consumption (EC) in a set of buildings associated with an6

institution is a difficult task to perform Feng et al. [2] that large companies7

and administrations around the world are aiming today Liu et al. [3], Park8

et al. [4], and to solve it is of paramount importance for the achievement of9

efficient EC by 2020. One of the most important areas in which to tackle this10

problem is in the local EC (EC) forecasting, which will allow us to anticipate11

future events and, in this way, propitiate to make wise decisions regarding12

energy savings. In this realm, to analyze the EC collected by sensors at an13

individual level, over delimited zones or buildings, can help to reduce energy14

costs and environmental impact created by energy production. To make,15

however, predictions of EC within a time range, e.g., a forecast temporal16

horizon (time of prediction of the model) larger than 1 hour is not usually17

useful, and it is actually an extremely difficult task to carry out because of18

the massive amount of data to be processed within an established time-span.19

In this work we propose to use ANN to predict EC in buildings that, to20

the best of our knowledge, has not been tried before in conjunction with a21

multi-objective function optimization over a population, which is carried out22

with the well-known NSGA-II algorithm to optimize both models. In order23

to obtain the necessary high performance of the application for making useful24

EC predictions, we propose an implementation based on GPU to leverage all25

the performance capabilities of that implementation of the models can bring26

to us. The models were tested by using different buildings of the University27

of Granada, and the obtained results, by making a daily prediction in an28

approximate time of 60 seconds, are shown.29

Several studies provided solutions to the problem of predicting EC in30

buildings by using Evolutionary Algorithm (EA) and ANN [5, 6]. However,31

the main drawback of those methods lies in their non-dependable time re-32

sponse. So far, some approximations have been proposed to solve this prob-33

lem [5]. As a consequence, there is still a lot of work to do in this research line34

whereas some interesting GPU implementations of EAs have been proposed35

in [7, 8, 9, 10, 11] in which different data structures, configurations, data size36

and complexity were studied to solve the problem. The main issue in these37

solutions lies in the fact that all of them only parallelize the repetitive process38

of the evolutionary algorithm needed to find the fitness of the population,39

without going any further in terms of the parallel structure of the sub-tasks40

of that algorithm. To fill up this gap, we propose here to advance in the41

2



design of the EA by taking full advantage of parallelism not only in the par-42

allelization of the EA intrinsic scheme but also at the level of the evaluation43

of each individual of the mentioned population. Thus, by the evaluation of44

the ANN associated with each individual, we designed a parallel solution to45

deal with the fitness function calculation of the population of the EA.46

Although, as mentioned above, the problem of parallelization of EAs has47

been addressed multiple times with success, however the proposed solutions48

up today present the hurdle of ignoring time restrictions. The function that49

usually takes the longest time to be calculated is the fitness function, which50

is the weak point regarding the performance of all the previously mentioned51

parallelization proposals of these algorithms [10]. In order to achieve the52

above requirements and solve the problem of EC prediction, a new design of53

a parallel multi-objective evolutionary algorithm of the NSGA-II is presented54

here. By an original assignment of blocks to threads of the GPU that consists55

of starting a processing structure of 2 levels of GPU-threads, we obtained that56

the evaluation with genetic operators of each individual of the population was57

independently performed. Thus, the iterative loop performed in each ANN to58

evaluate all data is done in parallel without safety violation (race conditions,59

non-mutual exclusion, . . .) that might hinder one another evaluation.60

The main point to solve the mentioned problems is how to cope with the61

high time cost of calculations. To do so, parallel computing was adopted as a62

fundamental tool for speeding up the creation of new prediction models [12].63

However, there are two different methodologies within the area of parallelism64

to follow. The first one, based on the parallelization of the algorithmic parts65

of the calculation only at the CPU level, which is expensive in terms of66

computation resources and limited by the small acceleration factor of the67

calculations. The second approach is aimed at the deployment of software at68

the GPU level, and thus the entire algorithm and data are programmed as69

CUDA kernels on the GPU. This approach is usually more economical than70

the former one and has better performance since it can have up to 6000 cores71

available (e.g., NVIDIA Tesla graphics) that are efficient for the execution72

of matrix operations. For this reason, we selected this parallelism in GPU,73

which proved to work successfully on modelling EC in our University.74

Our proposal has proven to be an excellent solution to deal the high75

time cost needed to obtain good forecasting models, achieving substantial76

improvements in terms of time and an enormous difference between sequential77

and parallel evaluation of the population. The rest of the work has been78

divided into the following sections: Section 2 presents a brief description79

3



of the GPU architecture. Section 3 describes the proposed algorithms to80

solve the power consumption prediction problem. Section 4 explains how the81

proposed multi-objective evolutionary algorithm has been parallelized and82

implemented on GPUs with the goal of reducing the run-time of the entire83

algorithm. Section 5 presents the results of the experiments, which were84

obtained from the UGR data-set and the implementation of the developed85

algorithm. Section 6 concludes with a summary of the main conclusions86

obtained and future research work.87

2. Related work88

Studying energy consumption can help to reduce energy costs and the envi-89

ronmental impact created by its production. For this reason, to improve90

energy efficiency in buildings is a concern in many situations nowadays.91

When studying energy consumption we are mainly interested in obtaining92

behavioural patterns [13] to detect anomalies [14, 15] and to make predic-93

tions of energy demand [16], as well as to acquire consumption profiles of94

different buildings[17].95

In the related literature there are many techniques to predict energy96

consumption in different scenarios, such as ARIMA[18], Grey Models[19],97

Regression Tree[20], Support Vector Machine[21], Artificial Neural Networks98

(ANN) [22] or even combination of different techniques to optimize solutions,99

such as, neural fuzzy systems[23], regression trees using clustering methods100

[24], ANN and Evolutionary Algorithm [25], among others Wu et al. [26], Fan101

et al. [27]. Particularly, ANN has proven to be a powerful technique to pre-102

dict energy consumption. Several kinds of ANN can be found in literature to103

solve these problems. In [28] an Artificial Neural Network Inverse is utilized104

to optimize multiple variables in an absorption heat transformer in order to105

provide a method for optimizing energy usage. An study of local perceptron106

networks can be found in [29] where authors discuss several approaches to107

carry out forecasting on time series. They demonstrate that ANNs many of-108

ten outperform traditional prediction techniques. For a deeper analysis and109

a comprehensive study of artificial neural networks, a fundamental reference110

is [30].111

Nevertheless, all those techniques lack of a method to optimize and im-112

prove their results, and therefore, they are highly improvable very often.113

Hence, other techniques must be used to deal with this drawback, and these114

are Evolutionary Algorithms (EA)-based ones Krzywanski et al. [31]. The115

4



EAs bring the possibility of optimizing models in many senses, e.g., sim-116

plifying its structure, dealing local minimum, optimizing relations among117

parameters. Several studies have provided solutions to the problem of pre-118

dicting energy consumption in a series of buildings using EA, with which119

sequential solutions are proposed to obtain accurate results. However, the120

cost due to the execution time of EA is often seen as very high to get results121

on time [5], especially in those systems which presents time criticality. On122

the other hand, EA has proven to be very suitable to obtain its parallelization123

and has successfully solved numerous problems. In [9] a flight planner was124

developed with EA, the results are compared in the study with the sequential125

version. With the parallel algorithm, the execution time was reduced by a126

factor of 290x compared to sequential execution. A similar study with differ-127

ent techniques is carried out in [7] where the problem of energy consumption128

forecasting of a hydroelectric power plant was solved in real-time successfully129

by using a parallel GPU implementation of a evolutionary algorithm. In that130

study, results were shown competitive compared to the serial version. And131

several approaches were proposed in many other studies [8, 10], where dif-132

ferent proposals of parallel-based evolutionary algorithms were investigated,133

and so distinct different data structures, configurations of the algorithm, data134

size and complexity of the problem, have been compared over recent years135

[11].136

Since in our approach we do not only look for accuracy but also intend137

to speed up the algorithm execution, we focus the research on parallelizing138

a multiobjective evolutionary algorithm with neural networks in order to139

obtain the results in the shortest period. In order to achieve these objectives140

of precision and acceleration, the execution of the evolutionary algorithm141

has been parallelized along with the evaluation of individuals through neural142

networks.143

3. Preliminary concepts144

GPU was originally designed to be used in video games or image rendering145

[32] as it presents a high degree of parallelism that is required in these kinds146

of problems. But as of today it has been assumed in many fields of research,147

and it has yielded the technical term known as GPGPU (General-Purpose148

computation on GPU) [32, 33]. Note that this section is intended to introduce149

some essential concepts concerning the GPU, so the reader can skip this150

section if he is an expert in this field, or otherwise he should not since the151

5



association between our solution and the structure of the GPU could not be152

easy to follow.153

Therefore, the GPU’s particular structure is the first thing we must154

point out. Thus, figure 1 compares the architectures of the CPU and GPU.155

Whereas CPU reserves more space for control units and their associated stor-156

age, and thus the remaining space is intended for the logical arithmetic units157

(ALU)(see Figure 1a), on the contrary the GPU allocates more space to ALU158

and less space for control and storage units in order to reach a higher degree159

of explicit parallelism and throughput(see Figure 1b).160

CPU is biased to process serial instructions that use a lot of memory, while161

a GPU is a better choice for processing parallel instructions that use much less162

memory. Another difference is that CPU has few powerful processing cores,163

while GPU has thousands of these. The GPU architecture works better with164

highly parallelizable applications while the CPU gets more computational165

performance by parallelizing applications with longer sequential code [34].166

This point is important as we leverage these features in the representation of167

our solution (the ANN) as it shows a high level of potential parallelism [7],168

which will be detailed in the next sections.169

(a)
(b)

Figure 1: CPU (a) and GPU (b) architecture.

3.1. GPU notations170

The architecture and software that support the use of GPUs allow us to use171

them for general-purpose calculations. There are different frameworks with172

which it is possible to develop software and generate code for the GPU. The173

two most important frameworks are OpenCL [35] and CUDA [36], both of174

which are platforms that allow the GPU to be used for high-level program-175

ming. OpenCL is a cross-platform programming language with no hardware176

6



constraints that is intended to be used on heterogeneous platforms, whereas177

CUDA is a parallel computing platform that includes a compiler and tools178

for programming algorithms in NVIDIA GPUs. The fact that CUDA was179

developed exclusively to work with NVIDIA graphics cards gives it a clear180

advantage over OpenCL by obtaining better performance results [37]. On181

the other hand, OpenCL is supported by more software applications than182

CUDA actually is.183

In the CUDA environment, CPU is referred as the host, and GPU as the184

device. The set of instructions running on GPUs are structured into functions185

called kernels. These kernels will be the most critical point in our work as186

the success of our solution regarding performance improvement depends on187

the optimal implementation of them. They will be the operations that our188

algorithm will carry out, i.e., the creation of the solutions, its evaluation,189

etcetera.190

A kernel can be launched from either the CPU or GPU. The advantage191

of calling a kernel from the GPU is that it reduces the bottleneck caused by192

the necessary communication between GPU and CPU memories, and thus193

we take advantage of this feature and therefore try to keep data into the194

GPU as long as possible to speed up the computations. The kernels are195

executed by the different threads available on the GPU. As can be seen196

in the figure 2 that shows the internal structure of the GPU, threads are197

organized in blocks, which have a 3D structure that defines the number of198

threads in each dimension. At the same time, blocks are organized in a 2D199

grid. When a kernel is launched, it runs as a grid of parallel threads. The200

threads in a grid are organized in 2 hierarchy levels but only to reference201

them in the program. At the top level, each grid is made up of one or more202

blocks of threads. All blocks have the same number of threads. Each block203

is unequivocally identified by two coordinates assigned by CUDA, for more204

detail we refer to [36].205

NVIDIA uses ”Single Instruction Multiple Threads” (SIMT) as the run-206

time model. The threads of each block are executed in sets of 32 threads207

called warps. All threads in the same warp must execute the same instruc-208

tion at the same time instant. When some threads belonging to the same209

warp need to execute a different instruction, a divergence occurs, and the210

group of threads of the same warp is executed sequentially, thus no simulta-211

neously. In order to minimize convergence, it is advisable to avoid instruc-212

tions that produce thread bifurcation. However, in our solution, this would213

be required as some functions are needed for it. For instance, the mutation214

7



Figure 2: Structure block and threads.

operator, because some individuals will change their values and others will215

not, depending on a probability. All of this will be discussed in detail later216

on.217

CUDA defines its own memory hierarchy, which includes, among the dif-218

ferent memories shared and non-shared by threads, there exist global memory219

and shared memory. Global memory can be accessed and modified from the220

host and the device, therefore all the threads can access to the global mem-221

ory. Shared memory is faster than global memory but its capacity is smaller.222

All the threads of the same block can access the shared memory. All data223

stored in this memory are lost when the block ends its execution. Data that224

are frequently used by the same block must be moved to the block’s shared225

memory, and so the performance offered by the GPU can be improved.226

4. Methodology227

In this work, we combine two machine learning techniques to address the228

problem of EC forecasting applied to prevent energy waste in buildings. The229

first technique is artificial neural networks (ANN), which are used to model230

and predict energy usage. The second one is the multi-objective evolutionary231

algorithm NSGA-II deployed in our study to provide a procedure to obtain232

optimal forecasting models, i.e., the neural network with the least number of233

hidden neurons and which makes the least error in the set of examples. Note234

that in our solution, we will not use any classic machine learning algorithm,235

8



but we will use the same EA to modify the weights of the ANNs so we carry236

out the two task we pursue at once. In this way, we minimize the error237

and the complexity of the model simultaneously. Since the cost of deploying238

these techniques for EC forecasting is very high in terms of time, the models239

supporting them were designed for implementation on a GPU framework.240

With this fact in mind, in the following subsections, we will go over these241

concepts.242

4.1. Artificial neural networks243

ANNs are algorithm based on brain functioning which are widely known for244

their good results, and used in tasks such as process control, optimization,245

pattern recognition, prediction, etc. [38, 39, 40].246

One of the most recognized models, used in multivariate regression prob-247

lems, are the neural networks called feed-forward. Its topology can be ob-248

served in 3 and, as this figure shows, the ANN connect their input neurons249

to the hidden neurons, and then these to the output neurons. This type of250

ANN uses the values of the input neurons and the weights assigned to each251

link, which connect them to the hidden neurons, to assign values to the states252

of the network. Once the states of the hidden neurons and the weights asso-253

ciated with the output layer are calculated, the value for each of the output254

neurons will be finally obtained.255

On the other hand, Back-propagation (BP) is one of the most popular256

algorithms used for training feed-forward neural networks. BP is a method257

based on gradient descent and may be subject to convergence at a premature258

local optimal solution. As a consequence, the solutions found by this tech-259

nique depend on the fair initial randomness and on the lack of that fairness260

during the calculus of solutions, which is not easy to prevent [41]. Therefore,261

ANNs can make errors caused by multiple local optimal solutions and the262

application of the BP method may yield results from a local solution that are263

not the global optimal [42]. In addition to this, the use of ANN, like many264

other techniques, implies determining several criteria before its execution,265

such as to obtain the number of neurons and the selection of the training266

procedure. These decisions can be made by an expert through trial and er-267

ror, as usual, on account of high computing time of carrying out the entire268

procedure, it would be better to reduce the number of trials. We must keep269

in mind that making these decisions is generally a difficult task, since the270

change of a single parameter, among the possible configurations of an ANN,271

9



Figure 3: Typology of a feed-forward ANN.

may lead to a substantial negative effect on the performance of the learn-272

ing algorithm, which makes it difficult to find the optimal global and how it273

affects the performance of the neural network. As a solution to those draw-274

backs, we propose to deploy an evolutionary algorithm capable of carrying275

out these tasks at the same time. In other words, we utilize the evolutionary276

algorithm not only to adjust some of ANN’s parameters, such as the number277

of neurons, but also to combine the information of the different solutions to278

learn about the data and thus to provide an implicit training mechanism,279

thus fitting in this way the different weights of the models. Indeed, this ap-280

proach has shown its potential to solve many problems like this one up to281

now [43][44].282

4.2. Evolutionary Algorithms and Multi-objective Evolutionary Algorithms283

Evolutionary algorithms (EA) are a global search method based on a pop-284

ulation of individuals (associated with sub-optimal solutions), inspired by285

the natural mechanisms of the genetic evolution of biological species. On286

10



the whole, a EA employs three operators: selection, mutation and crossover.287

Those procedures are used to generate new solutions (called individuals) that288

will lead to exploration of new search points. EA may become very effective289

in a wide variety of problems, however, their execution time may become a290

limiting factor for deploying it when programming the solution of some large291

problems. This fact is due to the great number of operations which should292

be done to achieve the final solution. One of the most expensive, in terms293

of computation time, of such procedures is the evaluation of the population,294

also called calculus of the fitness function. This is because all individuals295

must be evaluated many times to estimate the accuracy of their associated296

solutions. Fortunately, evaluations can be carried out independently for each297

individual in the population, and it makes the EA a candidate method to be298

parallelized with high performance [45].299

In the specific literature, EA are usually designed to solve a problem300

with a single objective, e.g., error, saving, space, etc. However, it is not301

uncommon in real problem solving to seek solutions that require finding302

values of parameters according to multiple criteria [46]. However, it is normal303

that the optimal way to combine the different objectives is not known or it304

is difficult to do so. For these problems with multiple objectives, there is305

not always a single solution that can be considered the best one, but a set of306

solutions that represent the best compromises between the different criteria.307

This set is called the optimum Pareto set and its representation in the target308

space is called the Pareto front [47, 48].309

On the other hand, EAs are recognized for their great effectiveness in310

solving difficult optimization problems [6] but addressing them requires large311

amounts of computing resources as every solution has to be evaluated many312

times. In this vein, it becomes necessary to take advantage of parallelization,313

which has proven to be the fastest and most effective approach [49] [50].314

For these reasons, our design, developed by using this technology, will be315

explained in the sequel.316

4.3. Multi-objective evolutionary algorithms to optimize ANN317

In this work, the multi-objective evolutionary algorithm NSGA-II is used to318

combine the knowledge of every solution so as to optimize the topology of the319

networks and to train the weights of the ANNs. By doing so, one can obtain320

the least error with the optimum number of neurons [51]. This algorithm sets321

the ground to develop a software component of the method based on fair-322

randomness of solutions choice that allows us to better explore the search323

11



space, making it easier not to fall into local optimal solutions but to improve324

solution searching by performing several procedures properly optimized.325

In the following section, we will detail and adapt all the components of326

the NSGA-II algorithm in order to obtain an optimal ANN with the final327

aim of predicting EC in buildings.328

4.3.1. Coding of individuals329

In the calculation of individuals two parts are differentiated: a first one that330

will represent the number of hidden neurons in the sought networks and a331

second part that will represent the set of associated weights to the links bound332

to these neurons; note that an appropriate value of the weights will provide333

better forecasting in the model. These two parts can be seen represented334

graphically in figure 4. This figure shows a diagram with the coding used335

in this study, where N is the number of hidden neurons that make up the336

network and Wij and Vij are the different weights of the network. The gene337

associated with the number of hidden neurons will be an integer value and338

the genes associated with the set of network’s weights will be coded as real339

values.340

Figure 4: Data structure.

4.3.2. Objectives to optimize341

In this study, the main objective is to obtain the optimum neural network.342

To do so, the following objectives have been taken into account:343

The prediction error: In our problem, for an ANN, we can say the lower344

the error is, the better solution is found. Therefore, to minimize the error345

obtained in the training set will be one of the objectives of our method.346

12



In equation 1 we see the definition of MSE, this refers to the first objective,347

where T is the number of instances available for training, Y(t) is the expected348

output and O(t) is the output calculated by the network at time t.349

Min {f1(s)} = min

{
1

T

T∑
t=1

(Y (t)−O(t))2

}
(1)

Number of hidden neurons: This objective allows us to compare networks350

of different sizes with the intention of finding networks with fewer hidden351

neurons. In function 2 you can see the definition of this objective, where h(s)352

is the number of hidden neurons for the network s.353

Min {f2(s)} = min {h(s)} (2)

Eventually, the NSGA-II algorithm will focus on finding individuals that354

minimize these objectives, i.e., solutions that have the lowest prediction error355

and obtained with the simplest model architecture. It is common to find a356

better solution if the model is more complex, therefore discovering a simpler357

model while keeping the error level of a more complex one is not a trivial358

task [43][44][52]. Next sections will detail the whole scheme of the proposed359

algorithm.360

4.3.3. Initialization of the population361

Each of the individuals who are part of the population will represent a possi-362

ble, non-optimal, solution to the problem. Each solution represents a distinct363

ANN. The generation of the individuals is made randomly, in order to explore364

the most of the search space. To generate the population, in our problem,365

each individual will be assigned a random number of hidden neurons between366

a previously declared minimum and a maximum. Therefore, in this study,367

4 and 32 respectively were established as these values. Once the length of368

the individual has been defined, its structure will be completed by randomly369

assigning weights between a previously defined range [-30, 30].370

4.3.4. Fitness function371

The fitness function is used to know how good is a solution. In our case372

and, since it is a classic evolutionary algorithm, it is normal to choose as373

fitness function the error returned by the neural network evaluated with the374

training set. In that case, as it is a multi-objective algorithm, fitness will be375

13



determined by 2 objectives, the error obtained by ANN and the number of376

hidden neurons.377

4.3.5. Selection378

Selection is the first genetic operator to be used in a EA. This operator,379

based on the fitness of each individual, is used to improve the search for380

parent chromosomes. The main objective of the selection is to promote and381

make survive parents with better fitness. There are several strategies to carry382

out the selection, some of the most used are tournament selection, random383

selection and roulette selection.384

In this work, the selection by tournament has been used, in which two385

parents are chosen at random among all the population and these are con-386

fronted by means of a comparison of their fitness.387

4.3.6. Crossover388

The crossing is a genetic operator that is in charge of generating new children389

from the parents. This operator simulates the mating and genetic reproduc-390

tion of nature. For getting so, this operator selects two parents, and then391

two things can happen:392

1. Both parents have the same number of hidden neurons; in this case, two393

children are generated of the same length of the parents, and the genes394

of the children will be obtained by crossing the ones of both parents.395

2. The parents have a different number of hidden neurons; in this case,396

two children will also be generated. The first child will have the same397

number of hidden neurons as the first parent and the second child will398

have the same number of hidden neurons as the second parent. The399

genes of the children will be generated by crossing the genes of both400

parents. When the number of genes is different, then these will be401

completed with the longest parent’s genes.402

The heuristic Wright’s crossover [53] has been used in this work, and its403

application has yielded good results, indeed [43, 54]. Figure 5 shows graph-404

ically the heuristic Wright’s crossover where two parents are crossed based405

on a crossing probability if the children do not cross because the probability406

of crossing is not satisfied, the parents replace the children in the next gen-407

eration. If they can finally be crossed, the children will be obtained in the408

following way:409

14



Let ai and bi be the parents to be crossed and r is a random real number410

(float) belonging to [0,1] then a child is obtained by the following equation:411

h1 = r × (bi − ai) + ai (3)

Figure 5: Heuristic Wright crossover.

4.3.7. Mutation412

The mutation operator is applied in EA to preserve the diversity of the413

population. This operator creates new individuals by slightly modifying or414

drastically the genes of existing individuals. Thus, in our work, two types of415

mutation can be distinguished: structural and genetic, respectively. Figure416

6 shows a graphical representation of both mutations. While the structural417

mutation modifies the topology of the network (neuron numbers) and causes418

a drastic change in the individual, the genetic mutation modifies one or419

several genes corresponding to the weights of the network. When the size of420

the network is changed, the chromosome must be restructured by expanding421

or decreasing its size; this benefits the exploration of the search space.422

In the following sub-section, the implementation of the proposed NSGA-II423

algorithm is detailed.424

4.4. NSGA-II description425

The NSGA-II (Elitist Non-Dominated Sorting Genetic Algorithm) was pro-426

posed by Deb et al., in 2002. Since this problem requires to work with several427

targets to optimize, it is necessary to introduce the concept of dominance.428

Therefore, prior to explaining the algorithm, a series of definitions must be429

given to properly understand how NSGA-II works:430

15



Figure 6: Structural and genetic mutation.

Definition 4.1. Solution A dominates solution B if the following two con-431

ditions are met:432

1. If A <= B for all M objectives and433

2. If A < B for at least one of the M objectives.434

In the event that one of the above conditions is not met, solution A435

would not dominate solution B. For example, if a ANN A has better error436

and less neurons than another ANN B, then A dominates B; otherwise, it437

doesn’t. Considering a population of N solutions each with M values of target438

functions, the following procedure is used to find the non-dominated set of439

solutions [55]:440

1. Do i = 1.441

2. For all j 6= i, compare solutions xi and xj to determine dominance,442

using the 2 conditions cited above.443

3. If for any j, xi is dominated by xj, mark xi as dominated. Increase i444

by one and go to step 2.445

4. If all solutions (i = j) in the set have been considered, go to step 5;446

otherwise increase i by one and go to step 2.447

5. All solutions that are not marked as dominated are non-dominated448

solutions.449

By applying the above definition, we can divide the population of indi-450

viduals into different groups according to their dominance number. The first451

frontier will be formed by individuals who are not dominated by any other452

individual in the population and then, the dominance number is 0. The sec-453

ond and following frontiers will be calculated by performing an iterative loop454

16



where individuals who are not dominated by other individuals of the same455

group are singled out and the rest are inserted into a new front. This process456

will be repeated until all individuals in the population are organized into457

fronts. Note that the first front is a set that only contains the individuals458

non-dominated by others, and thus the set of P solutions associated to these459

individuals is known as the Pareto front [51].460

In order to avoid the selection of two too similar parents, NSGA-II uses461

the individual’s attribute known as distance crowding, which allows to pre-462

serve the diversity of the population. This procedure guarantees the diversity463

of the population within the same Pareto front by blending all the objectives.464

In this way, when the population converges towards the optimal Pareto front,465

the algorithm ensures that the solutions are distant enough to acknowledge466

dissimilarity from each other [55].467

Having defined the main concepts necessary for NSGA-II [34], we will468

now explain how it works, firstly by showing the pseudocode and then a469

brief explanation of it:470

1 generationsCount = 0;
2 currentPopulation = generateRandomIndividuals(N);
3 evaluateFitness(currentPopulation);
4 nonDominatedSort(currentPopulation);
5 while generationsCount <X do
6 while newPopulation.count <X do
7 parent1, parent2 = select(currentPopulation);
8 child1, child2 = crossover(parent1, parent2);
9 mutate(child1, child2);

10 newPopulation.Add(child1, child2);

end
11 nextGeneration = currentPopulation + newPopulation;
12 nonDominatedSort(nextGeneration);
13 currentGeneration = selectBestN(nextGeneration);
14 generationsCount = generationsCount + 1;

end
Algorithm 1: NSGA-II.

471

Initially, the NSGA-II algorithm creates a random population of P0 par-472

ents, on line 2. The population is sorted (within different fronts) on line 4473

according to their number of non-dominance, once they have been evaluated474

(see lines 2-3). Using the selection, crossover and mutation operators, the475

17



descendant population Q0 will be generated, on lines 7-9. The population of476

Pt parents of size N is used to create the descendant population Qt of size477

N , line 10. The two populations are then joined to form Rt of size 2N , line478

11. Once the populations have joined, an non-dominated operator is used to479

classify the Rt population on different Pareto fronts and the new population480

is generated according to that procedure, as shown on lines 12-13. First, the481

individuals belonging to the best non-dominated front F1 will be added, then482

individuals from the second front F2, third front F3, . . ., so on a so forth. The483

adding of individuals to different fronts continues until obtaining N fronts,484

where N is the number of solutions.485

For a more detailed description of the implementation of the algorithm486

see [56].487

5. Parallel Multiobjective Evolutionary Algorithms for ANN opti-488

mization489

So far, the general scheme of the implemented EA has been introduced as490

well as many necessary concepts for understanding our solutions. In this491

section, the bulk of our contribution is presented. This section details the492

strategy that has been carried out to parallelize the multi-objective evolu-493

tionary algorithm NSGA-II and also to calculate in parallel the computation494

error that all the population of individuals also makes. These two approaches495

that we followed provided a substantial increase in speed with regard to their496

sequential versions. Logically, parallel versions follow a different development497

strategy that the serial versions, since the design of an algorithm for being498

deployed in a CPU is not valid to be run on a GPU directly, because mem-499

ory and thread management in a GPU differ from the CPU ones, yet the500

algorithm intention shares the same philosophy.501

In figure 7 we can see the parallelization of the algorithm’s general scheme.502

We can observe that two sections are differentiated; the sequential section,503

where the load of the dataset is carried out and the definition of parameters504

of the algorithm. That section is also where the selection and ordering of the505

best individuals that have been obtained after executing the whole process506

(main loop of algorithm 1 ) is carried out to finally check the stop criterion.507

The parallel section is made up of the evaluation of the individuals and all the508

functions belonging to the evolutionary algorithms NSGA-II. In the following509

sections we will design the entire algorithm for its optimization on the GPU.510

18



Figure 7: Flowchart of kernels.

5.1. GPU-based Parallel Strategy for evaluations of ANNs in the population511

As we have mentioned in previous sections, the ANN used in our study512

and the one to be evaluated are the feed–forward neural networks. The513

evaluations of each of the networks are independent of each other, so we514

can consider launching them on the GPU at the same time, in parallel. In515

order to evaluate all individuals at once, we developed a kernel in which each516

individual is assigned to a specific block, as shown in figure 8. This block517

is called a thread-block in CUDA, which is a programming abstraction that518

represents, with CUDA Toolkit 10, a group of up to 1024 threads. Threads519

in the same block run on the same stream processor and can communicate520

with each other via shared memory or atomic operations.521

Therefore, as in the kernel designed, we associated one individual to each522

block of the grid for parallel computation with GPU. The number of threads523

per block will be equal to the maximum number of neurons present in the524

initial parameters of the algorithm << Pop size,N max >>. To map the525

grid’s blocks into the individuals of NSGA-II, we used a global float matrix526

19



in which each row corresponds to an individual. Each individual will be527

composed of the network weights, the number of hidden neurons and the528

error obtained after executing the evaluation.529

Figure 8: Parallel Strategy for Evaluating the ANN.

5.2. Parallel Strategy for GPU Evaluation of NSGA-II Operators530

The strategy followed to parallelize the functions corresponding to the NSGA-531

II algorithm are detailed below. The GPU parallelization design is simpler532

than the one carried out in the ANN evaluation of the population’s individ-533

uals of the previous subsection. Now, only a single thread-block of the GPU534

will be used to execute all individual actions. All kernels corresponding to535

this part are executed individually and serially. They have been executed536

with a block size equal to 1 whose number of threads is equal to the pop-537

ulation size << 1, pop size >>. The reason of this is because of the low538

cost in terms of space of those operations and the advantage of using a faster539

memory, i.e., in the same block all elements may access to a small space of540

memory with substantially lower latency than uncached global memory. As541

we can see in the figure 9, the data will be read from shared memory and542

global memory. In this way, each one of the operations associated to the543

functions of the algorithm is carried out in parallel by each population indi-544

vidual with the consequent advantage of being able to share memory of quick545

access, and thus obtaining a greater gain in the execution of each one of the546

functions of the evolutionary algorithm. These data will be processed by the547

different threads of the same block. Depending on the kernel to execute, the548

threads of the unique block will perform one task or another in order to get549

the following results, for example, for fGI will apply the first function that550

will result in RGI , which translates into an array with randomly initialized551

individuals:552

20



• Generation of individuals (GI): A matrix will be obtained with a553

new, randomly generated, population.554

• Non dominated sorting (NDS): It will return the population sorted555

by fronts.556

• Crowding distance (CD): It will return, in a similar way to NDS,557

the crowding distance of each individual with respect to its neighbors558

that belong to its same front.559

• Selection operator (SO): A set of the best parents will be obtained.560

• Crossover and mutation operators (CMO): It will return a new561

population of children from the parent selection carried out in SO.562

Figure 9: Memory management and design for each kernel fi leveraging shared memory.

GI: A kernel has been created in which each thread randomly generates563

an individual. The xoroshiro128+ [57] algorithm has been used to create564

random numbers in the GPU. These new values will be stored in a float565

matrix where each row will correspond to an individual, and the columns566

will be the weights of the network that will later be evaluated in order to567

obtain an error. As many threads as individuals in the population will be568

used.569

NDS: In this kernel, each thread is in charge of evaluating the dominance570

of each individual with respect to the others. To this end, the measures of571

goodness of the individuals have been loaded into shared memory in order to572

accelerate access to these data. Once the dominance of each of the individuals573

has been calculated, a single thread will be in charge of creation of the574

different fronts. The data structure used to classify individuals in fronts575

21



has been shown in figure 12, where the elements of a first array of integer576

type contains the indices of individuals sorted by fronts and the components577

of a second array of integer type holds the size of each front. To execute this578

kernel, as many threads as individuals in the population will be assigned to579

the thread block.580

Figure 10: Data structure for fronts.

CD: Each of the threads is in charge of assigning the crowding distance581

between individuals of a specific front. To do this, each thread is responsible582

for obtaining the solutions with maximum and minimum fitness values, re-583

spectively, in each front, along with the crowding distance. As many threads584

as fronts will be used, so the kernel will be launched with a number of threads585

equal to the size of the population, which is meant to address the extreme586

case of each individual belongs to a single front. Two vectors have been587

created in shared memory of the integer and float types, respectively, which588

contain the measures of goodness. Finally, the distance between individuals589

of the same front is calculated and stored in a data structure similar to the590

one described in figure 12.591

SO: In this kernel each of the threads is responsible for conducting a592

tournament between two individuals from which a winner is obtained. In593

order to optimize the speed of access to these data, shared memory area has594

been used to store the information of the fronts and the crowding distance.595

Two float and integer vectors have been created for this purpose.596

CMO: Unlike the other kernels, this kernel’s execution initiates with a597

number of threads per block equal to pop size/2. This is because each thread598

is responsible for making a cross and a mutation through which two new599

individuals, also called children, will be generated. This kernel works with600

two float matrices that store parents and new children, both stored in global601

memory due to their large size. In addition, several variables stored in the602

registers of each thread are created to know the size of each individual, fitness603

and probabilities of crossing and mutation.604

22



Data (Bytes)

Global memory Constant memory Shared memory (per block)
8114×10ˆ3 65535 4915

Other GeForce characteristics

Registers per block Warp size Maximum Threads per MP
65536 32 2048

Table 1: Features of the NVIDIA Geforce GTX 1080.

6. Experiments and results605

This section shows the experiments and results carried out to solve the prob-606

lem of EC prediction in a set of distributed buildings of the University of607

Granada. Developed models analyze historical data and are trained by fol-608

lowing our parallel-optimized design of the NSGA-II evolutionary algorithm.609

Four different facilities have been used in this study whose dataset has about610

four years hourly data. Although the UGR has more buildings available, the611

rest of them show a very similar energy expenditure to one of those selected.612

In summary, each data set is made up of 35,000 instances each one thus613

a building provides hourly information about its consumption, i.e., about614

35,000 samples per building. Most of the pre-processing consisted in compil-615

ing consumption by days; in this way, we will work with the past 24 hours616

as time window for predicting.617

All measurements were performed using a graphics card NVIDIA Geforce618

GTX 1080, which has a total of 2560 cores, a maximum of 1024 threads per619

block and the memory hierarchy that is depicted in Table 1. In this work,620

Python was used due to its versatility and its broad compatibility with other621

packages related to Machine Learning methods and algorithms. Numba is622

utilized to work with CUDA, a Python compiler supported by CUDA that623

can compile the code for its execution in GPU.624

NSGA-II need to set different parameters before algorithm’s execution,625

all of which were previously tested, and by modifying them one can observe626

the algorithm yields more exploratory results or more convergence of results627

depending on its execution behavior. In order not to hamper the final aim628

of this contribution, some of these parameters were skipped as we want to629

focus on the significant improvement in terms of execution time of our imple-630

23



mentation of the algorithm. Once this has been done, we decided to choose631

as fundamental parameters for the NSGA-II algorithm the ones shown in632

Table 2 only.633

Probability
Crossing 0.9

Tournament’s winner 0.9
Structural mutation 0.5

Genetic mutation 0.1

Table 2: Chosen parameters for NSGA-II implementation

Although several population sizes were tested for the NSGA-II algorithm634

implementation, its size was set to 160 individuals owing to the results that635

will be explained in the following paragraphs. The ANN instances deployed636

in our study were set as to have a range of neurons between 4 and 32. The637

energy consumption (EC) data have been normalized between 0 and 1 to638

have the same range of values for each input to the ANN, thus ensuring that639

the model will not give more weight to those attributes which values belong640

to a wider range. The data will be reconstructed as shown in Figure 11.

Figure 11: Normalized consumption over a 100-hour period.

641

The NSGA-II developed in this work allows us to obtain a set of optimal642

solutions, which are those that form the Pareto front. On figure XX is shown643

a visual example of the Pareto front obtained for a particular building of our644

study. In this graph, the X axis shows the error committed (MSE) and the Y645

axis the number of hidden neurons, each one of the graph-points represents646

a non-dominated optimal solution and the entire set of points represent the647

Pareto front648

24



On this front of Pareto we will be see the solutions that have obtained the649

least error in the prediction of energy consumption with a minimum network650

size

Figure 12: The Pareto optimal front provided by the NSGA-II

651

We run ten executions for each algorithm and building, so that we could652

perform a statistical analysis of the results. Each dataset was randomly di-653

vided into training data (70%) and test data (30%), to prevent over-training.654

After the parameters are established, the first experiment is intended to655

compare both implementations of the NSGA-II, the sequential and our par-656

allel proposal. Notice that both implementations are exactly the same. The657

sequential design is performed by launching one block and just one thread658

in the GPU. Table 3 illustrates the speed up achieved by our design. In this659

table, all kernels decrease their execution time in the parallel version of the660

evolutionary algorithm with respect to the sequential one. Some functions661

need more computational cost than others, for example, the generation of662

individuals (GI) and the cross-mutation operator (CMO) take similar time663

because their computations are focused on simple operations over the popu-664

lation. In the first case, GI is responsible for the creation of random numbers665

to generate all individuals. In the second case, CMO not only creates some666

random values but also modifies some genes of individuals to perform the667

mutation and crossover computations. For this reason, the implementation668

of CMO operator shows more speedup than that of the GI. Another example669

of an effortless function is the selection operator (SO) as it just needs to670

decide which individuals are selected for crossing. Differently to execution671

25



times shown by those functions, the non-dominated sort operator (NDS) is672

the most time-consuming function. In this case, more barriers that synchro-673

nise and cause contention of threads arise in the NDS function because of674

the high dependency among fronts to build each one of them, and this is why675

the lowest speed-up is obtained here. Along with the NDS, the crowding dis-676

tance (CD) is the basis of the NSGA-II algorithm. The CD, however, may677

be optimized in a better way than NDS because CD calculates the distance678

matrix among solutions, and this task may be done separately. This proce-679

dure takes considerable time as all individuals must be computed each other,680

for this reason, the third-best speed-up is attained here. Finally, the most681

consuming function is often associated with the fitness function (FF), due682

to its iterative behaviour. This function used to be launched over and over683

during the algorithm. As a consequence, the emphasis has been placed on684

looking for a good parallel implementation of FF in our proposal. Thus, in685

this table one may observe a great difference in execution times of all func-686

tions in its sequential version. The same happens if we observe the parallel687

version results. Nevertheless, the optimized design of the FF function em-688

powers the algorithm and gets a surprising speed-up up to 787.90. What’s689

more, it enables to decrease the execution time of the algorithm from several690

hours to some minutes.691

Kernel Name Sequential Parallel Speedup

GI 17.85 0.259 68.92
NDS 479.67 62.6 7.66
CD 1026.50 17.5 58.66
SO 3.70 0.122 30.33

CMO 17.56 1.02 17.22
FF 104350 132.44 787.90

Table 3: Time (ms) of each kernel, generation of individuals (GI), non-dominated sort
and crowding distance functions (NDS and CD, respectively), selection operator (SO),
crossover and mutation operators (CMO) and the fitness function (FF).

Some experiments were launched using different population size. Those692

results are gathered in table 4. The execution time in nearly all cases is the693

same, although it is observed that it increases a little as the population grows.694

There is almost no difference because there is still some memory in the GPU695

which may be used. For this reason, from 200 individuals on it takes longer.696

26



In addition to this, the mean squared error achieved is slightly better as the697

population increases. However, the implementation run typically reaches a698

point between 160 and 200 individuals beyond which the algorithm does not699

provide any further improvement. This is on account of the amount of the700

information that individuals may provide, and therefore the amount of useful701

knowledge each individual can share.702

Population
Size

Time
(s)

MSE
Memory

Usage (MB)
GPU
Usage

80 22.989 0.0122 143 92%
160 19.792 0.0098 145 95%
200 20.129 0.0094 147 98%
250 24.345 0.0099 151 100%
300 25.932 0.0105 160 100%

Table 4: Scalability of the designed algorithm using different population size.

Similarly, table 5 shows the average execution time of each individual703

with a different number of individuals if all of them got the same number704

of threads. The first column shows the number of individuals, the second705

column the minimum time, the third column the maximum time and the last706

column the time average. That table provides information about how each707

individual moderately increases their time cost as the number of individuals708

increases. This is due to the increase in data that are loaded into the device as709

the number of individuals increases. The amount of data is relatively small, as710

a consequence, all data are located in shared memory except the information711

related to each individual, and this fact explains this little variability.712

Individuals Min Max Avg

80 0.8249 1.1721 0.9286
160 0.8443 1.1491 0.9492
200 0.8713 1.0945 0.9620
250 0.8717 1.0833 0.9684
300 0.8802 1.0643 0.9820

Table 5: Population size - Time (sec) execution of an individual.

27



The next experiment is intended to compare the accuracy of both solu-713

tions. In table 6 we can see the experimentation for sequential and parallel714

models. Columns 2,3,4 and 5 show the experimentation for the buildings715

B1, B2, B3 and B4, respectively. Column 1 describes the metric used. For716

sequential and parallel experiments we show the average fitness, which con-717

tains the average MSE of 10 executions of each algorithm; the best fitness718

and worst fitness with the minimum and maximum MSE obtained with 10719

runs and the standard deviation. The number of evaluations has been fixed720

at 5000 and a total of 150 individuals. As we can see in the table 6, the re-721

sults obtained by both implementations are quite alike. However, the parallel722

version shows lower error values on average.723

For a better analysis of the results in table 6, we have included boxplots724

of the MSE distribution. Figure 13 contains the boxplots of the MSE for the725

different buildings in sequential and parallel models. The median value in726

boxplots is highlighted with an orange line. The whiskers plot illustrates in727

all buildings present a mean error closer to the Q1 in sequential, and their728

parallel versions get closer to the Q3. Just in the fourth instance, these results729

slightly change due to the higher complexity of the behaviour presented by730

that building. This fact give us an idea that all results are quite similar among731

them, and their differences are caused by the randomness in the algorithm.732

In nearly all cases, the algorithm reaches a set of solutions comparable in733

every experiment. However, in the situation that the building presents a734

consumption harder to predict, then their solutions vary in a higher range as735

it is not so easy to find the optimal model, yet note that this range is quite736

small in terms of error as illustrated in the following figures.737

The implementation carried out in parallel maintains the quality, under-738

stood as the lower possible MSE of solutions obtained with the algorithm,739

with respect to the solutions found in sequential implementation as shown in740

table 6. With the intention of validating the quality of the results obtained,741

a statistical test has been used. First, the normality of the errors was verified742

with the Shapiro test. Since all error distributions follow a normal distribu-743

tion, a parametric test was carried out using the T-test with 99% confidence744

to compare the results in the sequential and parallel version for each of the745

buildings. Each cell contains the p-value resulting from the t-test. A value746

< 0.01 means that there are significant differences between the samples com-747

pared in the test, i.e., the sequential and parallel versions of the algorithm748

in our case, and a value > 0.01 means that there are no differences between749

the two versions. We may conclude from this table that both versions show750

28



Measures B1 B2 B3 B4

Sequential Average Fitness 0.0168 0.0118 0.0182 0.0174
Best Fitness 0.0140 0.0079 0.0130 0.0165
Worst Fitness 0.0197 0.0145 0.0237 0.0245
Standard Deviation ±0.0018 ±0.0022 ±0.0031 ±0.0035

Parallel Average 0.0153 0.0095 0.0152 0.0162
Best Fitness 0.0117 0.0061 0.0107 0.0130
Worst Fitness 0.0176 0.0122 0.0191 0.0218
SD ±0.0017 ±0.0018 ±0.0025 ±0.0027

t-Test 0.0821 0.0227 0.0305 0.0329

Table 6: Average MSE of sequential and parallel implementations.

similar behaviour in terms of accuracy. There are no significant differences751

except in the fourth case, caused by the variability in the solutions obtained752

experiments that correspond to the sequential implementation. Note that753

Figure 13 shows a greater box in that building. This is because the be-754

haviour of that building is harder to model. Consequently, finding a model755

with good accuracy is more complicated.756

Table 7 shows the percentage of GPU utilization of each of the kernels.757

Starting from the bottom upwards, the GI is the function that makes less758

use of the device, followed by the SO and the CMO. This is due to their759

computations are notably simpler than the rest. After them, CD is placed760

in the third place, this kernel must be launched every time all individuals761

are evaluated. It takes longer than the previous functions because it must762

calculate distances among all individuals. The function that needs the sec-763

ond more time to get their results is the NDS as this kernel has to perform a764

sorting algorithm according to the dominance of the solutions and this kind765

of algorithms often takes a great amount of time. Finally, as expected, the766

core of the algorithm is mainly focused on the FF. This kernel takes the767

longest time on account of the data that need to process and the number768

of iterations that need to be done to evaluate all individuals with all data.769

Nearly half of the time required to execute the algorithm is spent in FF.770

For this reason, our efforts were focused on improving and optimizing this771

part of the evolutionary algorithm by associating one individual per block.772

Thus, the number of threads was optimized according to the maximum num-773

29



Figure 13: Boxplots of the error rate (MSE) for buildings.

ber of neurons and therefore, all computations can be executed in parallel,774

achieving the excellent speed-up obtained. This fact demonstrates that our775

implementation might be considered a significant contribution in the current776

state-of-art since not only improves the parallel design of a hybrid solution of777

the NSGA-II with ANN but is also showing better figures regarding speed up778

in particularly complex functions of the algorithm. Additionally, it lessens779

the MSE with respect to other NSGA-II implementations on GPU.780

Kernel Name Usage Rate

FF 48.11%
NDS 39.55%
CD 11.46%

CMO 0.23%
SO 0.07%
GI 0.01%

Table 7: Kernel profiling.

Finally, figure 14 shows a graphical representation of the forecast of EC781

for a total of 100 hours of a set of test data. In these plots, the horizontal782

30



axis represents the hour that is predicted and the vertical axis represents783

the normalized consumption for that hour. Figure 14a shows the best result784

obtained and figure 14b shows the worst result of the parallel and sequential785

versions. As we can see in the figures the predicted results fit well to the real786

values in both cases. The results of both versions have been put together to787

visually verify how the fit does not differ considerably from each other.788

(a)

(b)

Figure 14: Example of the (a) best and worst (b) predictions of energy consumption
by both parallel and sequential models.

31



6.1. Performance comparison between NSGA-II and Backpropagation.789

After showing the good results obtained in the performance of our parallel790

NSGA-II algorithm in comparison to its sequential version, an experiment791

has been carried out to compare the algorithm developed in this paper with792

the well-known Backpropagation (BP) one. BP is one of the most popular793

local search algorithms used for neural network training.794

Given the long execution time that the BP algorithm implementation795

takes, a total of 9 runs of the algorithm were launched for each of the buildings796

included in this study. Each of the executions has been performed to a total797

of 50 iterations. The number of neurons in the Nsga-II experiment has been798

set between a range of 4 and 32, however the range chosen for BP algorithm799

execution was coarser (by increasing in two from 2 to 32), since the average800

execution time of the BP took too long. The average time taken to run the801

parallel NSGA-II and then obtain a set of optimal solutions is 25.932 s., while802

the BP had an average execution time of 10 hours to obtain the results with803

respect to all the different number of neurons aforementioned. In table 8 we804

can see the performance comparison for both algorithms. This table shows,805

for each building, the best model obtained after conducting the experiment.806

The first column shows the identifier of each building. In column 2 and 5 we807

can see the number of hidden neurons, which the best model obtains for the808

different buildings with the NSGA-II and the BP respectively. In columns 3809

and 6 it can be seen that the error given by the NSGA-II and BP for the B2810

building is almost equal, and it is slightly better in the rest of the buildings811

as for the BP results. Finally, columns 4 and 7 show the execution time of812

the NSGA-II and BP, it can be seen that our algorithm is much faster than813

the BP. Although the error of the models is important, in this work we have814

focused more in improving the execution time sacrificing some tenths of error815

since, since in some problems is most relevant to obtain faster and a little816

less precise models.817

7. Conclusion818

This paper presents a parallel implementation of NSGA-II developed in GPU819

to train an ANN whose evaluation has also been implemented in parallel in820

GPU to solve the problem of predicting EC. The objective of our proposal is821

to reduce the execution time of the different functions that compose the algo-822

rithm. Our implementation is able to obtain an optimal neural network with823

the least number of neurons necessary to learn the set of examples and also824

32



Building
NSGA-II
neurons

NSGA-II
MSE

NSGA-II time
(seconds)

BP
neurons

BP
MSE

BP time
(seconds)

B1 4 0.0117 26.998 14 0.0044 7821.44
B2 4 0.0061 25.965 4 0.0049 595.40
B3 4 0.0107 25.441 18 0.0054 12200
B4 4 0.0130 25.899 18 0.0045 13089.30

Table 8: NSGA-II and BP performance comparison.

provides the weights trained making a minimum error for a specific building,825

and thus taking less than 60 seconds with a total of 20000 evaluations and826

an average MSE of 0.0093, achieving in some functions of the algorithm a827

speedup of 788 compared with the sequential version.828

In the experimentation section, different results of the behaviour of the829

algorithms developed in this work have been shown. Our proposal obtains830

good results in time and accuracy with respect to the sequential version on831

account of the good utilization of the resources of the GPU as they are the832

deployment of memory of fast access. It is worth mentioning that 100%833

of GPU use has been achieved, for which it has been necessary an elaborate834

CUDA development work and extensive experimentation. On the other hand,835

the use of the GPU limits the parameters of the algorithm since it cuts down836

the size of the population of individuals that can be used due to constraints837

by GPU resources availability. Finally, the version developed in parallel has838

shown to obtain better results in execution time without loss of precision.839

This assertion has been verified with statistical tests, which have shown that840

there are no significant differences between the accuracy obtained in the serial841

version and the parallel version, even though there is a great difference in842

the performance of an advantageous way by the parallel version.843

In future work we would like to explore and solve our current device lim-844

its by deploying our implementation on a GPU with more computational845

resources, as the Nvidia Tesla with the intention of knowing if a higher pop-846

ulation size and a higher number of executions will produce better results847

without increasing too much the execution time of the entire algorithm. We848

are also confident that CUDA’s future capabilities will be improved by help-849

ing us to scale our problem. Besides, as a continuation of this work, several850

lines of research remain open and in which it is possible to continue working.851

These lines have arisen during the development of this work and we hope to852

33



be able to work in the near future. One of these future lines is to develop853

more complex networks for the evaluation of the models, intending to achieve854

an improvement in the precision of the results. On the other side, we would855

like to analyze the aggregation of other data sources to reinforce the results856

obtained. These new data sources could be measurements of temperature,857

humidity, luminosity and occupancy.858

Acknowledgement859

This work has been supported by the project TIN201564776-C3-1-R.860

References861

[1] S. Belt Ibérica, En los ultimos 50 años, el plan-862

eta se ha degradado más que en 100 siglos,863

http://www.belt.es/noticias/2005/abril/26/planeta.htm, 2005.864

[2] Y. Feng, D. Gong, Q. Zhang, S. Jiang, L. Zhao, N. Cui, Evaluation of865

temperature-based machine learning and empirical models for predicting866

daily global solar radiation, Energy Conversion and Management 198867

(2019) 111780.868

[3] Y. Liu, Y. Zhou, D. Wang, Y. Wang, Y. Li, Y. Zhu, Classification of869

solar radiation zones and general models for estimating the daily global870

solar radiation on horizontal surfaces in china, Energy Conversion and871

Management 154 (2017) 168 – 179.872

[4] J.-K. Park, A. Das, J.-H. Park, A new approach to estimate the spatial873

distribution of solar radiation using topographic factor and sunshine874

duration in south korea, Energy Conversion and Management 101 (2015)875

30 – 39.876

[5] L. G. B. Ruiz, M. I. Capel, M. C. Pegalajar, Parallel memetic algorithm877

for training recurrent neural networks for the energy efficiency problem,878

Applied Soft Computing 76 (2019) 356–368.879

[6] L. G. B. Ruiz, R. Rueda, M. P. Cuéllar, M. C. Pegalajar, Energy880

consumption forecasting based on elman neural networks with evolutive881

optimization, Expert Systems with Applications 92 (2018) 380–389.882

34



[7] L. B. d. Oliveira, C. G. Marcelino, A. Milanés, P. E. M. Almeida, L. M.883

Carvalho, A successful parallel implementation of NSGA-II on GPU for884

the energy dispatch problem on hydroelectric power plants, in: 2016885

IEEE Congress on Evolutionary Computation (CEC), pp. 4305–4312.886

[8] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-887

jardins, J. P. Turian, D. Warde-Farley, Y. Bengio, Theano : A CPU888

and GPU Math Compiler in Python.889

[9] V. Roberge, M. Tarbouchi, G. Labonté, Fast Genetic Algorithm Path890

Planner for Fixed-Wing Military UAV Using GPU, IEEE Transactions891

on Aerospace and Electronic Systems 54 (2018) 2105–2117.892

[10] R. S. Sinha, S. Singh, S. Singh, V. K. Banga, Accelerating Genetic893

Algorithm Using General Purpose GPU and CUDA.894

[11] D. D’Agostino, G. Pasquale, I. Merelli, A Fine-Grained CUDA Im-895

plementation of the Multi-objective Evolutionary Approach NSGA-II:896

Potential Impact for Computational and Systems Biology Applications,897

in: C. DI Serio, P. Liò, A. Nonis, R. Tagliaferri (Eds.), Computational898

Intelligence Methods for Bioinformatics and Biostatistics, Lecture Notes899

in Computer Science, Springer International Publishing, 2015, pp. 273–900

284.901

[12] I. M. Coelho, V. N. Coelho, E. J. d. S. Luz, L. S. Ochi, F. G. Guimarães,902

E. Rios, A GPU deep learning metaheuristic based model for time series903

forecasting, Applied Energy 201 (2017) 412–418.904

[13] O. Guerra Santin, Behavioural Patterns and User Profiles related to905

energy consumption for heating, Energy and Buildings 43 (2011) 2662–906

2672.907

[14] D. B. Araya, K. Grolinger, H. F. ElYamany, M. A. M. Capretz, G. Bit-908

suamlak, An ensemble learning framework for anomaly detection in909

building energy consumption, Energy and Buildings 144 (2017) 191–910

206.911

[15] Y. Zhang, W. Chen, J. Black, Anomaly detection in premise energy912

consumption data, in: 2011 IEEE Power and Energy Society General913

Meeting, pp. 1–8.914

35



[16] B. B. Ekici, U. T. Aksoy, Prediction of building energy consumption by915

using artificial neural networks, Advances in Engineering Software 40916

(2009) 356–362.917

[17] S. Heiple, D. J. Sailor, Using building energy simulation and geospatial918

modeling techniques to determine high resolution building sector energy919

consumption profiles, Energy and Buildings 40 (2008) 1426–1436.920

[18] S. Barak, S. S. Sadegh, Forecasting energy consumption using ensemble921

ARIMA–ANFIS hybrid algorithm, International Journal of Electrical922

Power & Energy Systems 82 (2016) 92–104.923

[19] Y.-S. Lee, L.-I. Tong, Forecasting energy consumption using a grey924

model improved by incorporating genetic programming, Energy Con-925

version and Management 52 (2011) 147–152.926

[20] J. Fan, X. Wang, L. Wu, F. Zhang, H. Bai, X. Lu, Y. Xiang, New927

combined models for estimating daily global solar radiation based on928

sunshine duration in humid regions: A case study in south china, Energy929

Conversion and Management 156 (2018) 618 – 625.930

[21] B. Dong, C. Cao, S. E. Lee, Applying support vector machines to predict931

building energy consumption in tropical region, Energy and Buildings932

37 (2005) 545–553.933

[22] L. Ekonomou, Greek long-term energy consumption prediction using934

artificial neural networks, Energy 35 (2010) 512–517.935

[23] K. Li, H. Su, J. Chu, Forecasting building energy consumption using936

neural networks and hybrid neuro-fuzzy system: A comparative study,937

Energy and Buildings 43 (2011) 2893–2899.938

[24] B. Choubin, G. Zehtabian, A. Azareh, E. Rafiei-Sardooi, F. Sajedi-939

Hosseini, Kişi, Precipitation forecasting using classification and regres-940

sion trees (CART) model: a comparative study of different approaches,941

Environmental Earth Sciences 77 (2018) 314.942

[25] A. Azadeh, S. F. Ghaderi, S. Tarverdian, M. Saberi, Integration of943

artificial neural networks and genetic algorithm to predict electrical en-944

ergy consumption, Applied Mathematics and Computation 186 (2007)945

1731–1741.946

36



[26] L. Wu, G. Huang, J. Fan, F. Zhang, X. Wang, W. Zeng, Potential947

of kernel-based nonlinear extension of arps decline model and gradient948

boosting with categorical features support for predicting daily global949

solar radiation in humid regions, Energy Conversion and Management950

183 (2019) 280 – 295.951

[27] J. Fan, X. Wang, L. Wu, H. Zhou, F. Zhang, X. Yu, X. Lu, Y. Xiang,952

Comparison of support vector machine and extreme gradient boosting953

for predicting daily global solar radiation using temperature and precip-954

itation in humid subtropical climates: A case study in china, Energy955

Conversion and Management 164 (2018) 102 – 111.956

[28] R. A. Conde-Gutiérrez, U. Cruz-Jacobo, A. Huicochea, S. R. Casolco,957

J. A. Hernández, Optimal multivariable conditions in the operation of an958

absorption heat transformer with energy recycling solved by the genetic959

algorithm in artificial neural network inverse, Applied Soft Computing960

72 (2018) 218–234.961

[29] Y. Dong, J. Wang, Z. Guo, Research and application of local perceptron962

neural network in highway rectifier for time series forecasting, Applied963

Soft Computing 64 (2018) 656–673.964

[30] G. S. Georgiou, P. Christodoulides, S. A. Kalogirou, Implementing ar-965

tificial neural networks in energy building applications — A review, in:966

2018 IEEE International Energy Conference (ENERGYCON), pp. 1–6.967

[31] J. Krzywanski, K. Grabowska, F. Herman, P. Pyrka, M. Sosnowski,968

T. Prauzner, W. Nowak, Optimization of a three-bed adsorption chiller969

by genetic algorithms and neural networks, Energy Conversion and970

Management 153 (2017) 313 – 322.971

[32] M. Heitzler, J. C. Lam, J. Hackl, B. T. Adey, L. Hurni, GPU-Accelerated972

Rendering Methods to Visually Analyze Large-Scale Disaster Simulation973

Data, Journal of Geovisualization and Spatial Analysis 1 (2017) 3.974

[33] S. S. Stone, J. P. Haldar, S. C. Tsao, B. Sutton, Z.-P. Liang, et al.,975

Accelerating advanced mri reconstructions on gpus, Journal of parallel976

and distributed computing 68 (2008) 1307–1318.977

[34] A. Syberfeldt, T. Ekblom, A comparative evaluation of the GPU vs.978

the CPU for parallelization of evolutionary algorithms through multiple979

37



independent runs, International Journal of Computer Science & Infor-980

mation Technology (IJCSIT) 9 (2017) 1–14.981

[35] OpenCL - The open standard for parallel programming of heterogeneous982

systems, https://www.khronos.org/opencl/, 2013.983

[36] J. Sanders, E. Kandrot, CUDA by Example: An Introduction to984

General-Purpose GPU Programming, Addison-Wesley Professional, 1st985

edition, 2010.986

[37] OpenCL vs. CUDA: Which Has Better Application Support,987

https://create.pro/blog/opencl-vs-cuda/, 2017.988

[38] C. H. Dagli, Artificial Neural Networks for Intelligent Manufactur-989

ing, Springer Science & Business Media, 2012. Google-Books-ID:990

K4ftCAAAQBAJ.991

[39] S. Samarasinghe, Neural Networks for Applied Sciences and Engineer-992

ing : From Fundamentals to Complex Pattern Recognition, Auerbach993

Publications, 2016.994

[40] D. Roffman, G. Hart, M. Girardi, C. J. Ko, J. Deng, Predicting non-995

melanoma skin cancer via a multi-parameterized artificial neural net-996

work, Scientific Reports 8 (2018) 1701.997

[41] J. Škutová, Weights initialization methods for mlp neural networks,998

Vysoká škola báňská-Technická Univerzita Ostrava (2008).999

[42] L. G. B. Ruiz, M. Cuéllar, M. Delgado, M. C. Pegalajar, An application1000

of non-linear autoregressive neural networks to predict energy consump-1001

tion in public buildings, Energies 9 (2016) 684.1002

[43] M. Delgado, M. C. Pegalajar, A multiobjective genetic algorithm for1003

obtaining the optimal size of a recurrent neural network for grammatical1004

inference, Pattern Recognition 38 (2005) 1444–1456.1005

[44] A. Blanco, M. Delgado, M. C. Pegalajar, A real-coded genetic algorithm1006

for training recurrent neural networks, Neural Networks 14 (2001) 93–1007

105.1008

38



[45] P. Pospichal, J. Jaros, J. Schwarz, Parallel Genetic Algorithm on the1009

CUDA Architecture, in: C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner,1010

A. Ekárt, A. I. Esparcia-Alcazar, C.-K. Goh, J. J. Merelo, F. Neri,1011

M. Preuß, J. Togelius, G. N. Yannakakis (Eds.), Applications of Evo-1012

lutionary Computation, Lecture Notes in Computer Science, Springer1013

Berlin Heidelberg, 2010, pp. 442–451.1014

[46] E. Zitzler, K. Deb, L. Thiele, Comparison of Multiobjective Evolution-1015

ary Algorithms: Empirical Results, Evol. Comput. 8 (2000) 173–195.1016

[47] C. Von Lücken, A. Hermosilla, B. Barán, Algoritmos evolutivos para1017

optimización multiobjetivo: un estudio comparativo en un ambiente par-1018

alelo aśıncrono, X Congreso Argentino de Ciencias de la Computación1019

(2004).1020

[48] C. A. Coello Coello Coello, A Short Tutorial on Evolutionary Mul-1021

tiobjective Optimization, in: E. Zitzler, L. Thiele, K. Deb, C. A.1022

Coello Coello, D. Corne (Eds.), Evolutionary Multi-Criterion Optimiza-1023

tion, Lecture Notes in Computer Science, Springer Berlin Heidelberg,1024

2001, pp. 21–40.1025

[49] G. Wu, J. L. Greathouse, A. Lyashevsky, N. Jayasena, D. Chiou,1026

GPGPU performance and power estimation using machine learning, in:1027

2015 IEEE 21st International Symposium on High Performance Com-1028

puter Architecture (HPCA), pp. 564–576.1029

[50] M. C. Pegalajar, M. Capel, L. G. B. Ruiz, M. Delgado, A parallel ap-1030

proach to intelligent data analysis for efficient energy management in1031

distributed facilities (pioneer), in: European Space Projects: Develop-1032

ments, Implementations and Impacts in a Changing World - Volume 1:1033

EPS Porto 2017,, INSTICC, SciTePress, 2017, pp. 28–49.1034

[51] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A Fast and Elitist Mul-1035

tiobjective Genetic Algorithm: NSGA-II, Trans. Evol. Comp 6 (2002)1036

182–197.1037

[52] M. Delgado, M. P. Cuellar, M. C. Pegalajar, Multiobjective hybrid opti-1038

mization and training of recurrent neural networks, IEEE Transactions1039

on Systems, Man, and Cybernetics, Part B (Cybernetics) 38 (2008) 381–1040

403.1041

39



[53] A. H. Wright, Genetic Algorithms for Real Parameter Optimization,1042

in: Foundations of Genetic Algorithms, Morgan Kaufmann, 1991, pp.1043

205–218.1044

[54] M. Delgado, M. P. Cuellar, M. C. Pegalajar, Multiobjective Hybrid1045

Optimization and Training of Recurrent Neural Networks, IEEE Trans-1046

actions on Systems, Man, and Cybernetics, Part B (Cybernetics) 381047

(2008) 381–403.1048

[55] C. A. C. Flórez, R. A. Bolaños, A. M. Cabrera, Algoritmo Multiobjetivo1049

Nsga-Ii Aplicado Al Problema De La Mochila., Scientia Et Technica XIV1050

(2008) 206–211.1051

[56] K. Deb, D. Kalyanmoy, Multi-Objective Optimization Using Evolution-1052

ary Algorithms, John Wiley & Sons, Inc., New York, NY, USA, 2001.1053

[57] Xoshiro, xoroshiro generators and the PRNG shootout,1054

http://xoshiro.di.unimi.it/, 2018.1055

40


