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Abstract

We identify a source of numerical instability of quadratic programming problems

that is hidden in its linear equality constraints. We propose a new theoretical ap-

proach to rewrite the original optimization problem in an equivalent reformula-

tion using the singular value decomposition and substituting the ill-conditioned

original matrix of the restrictions with a suitable optimal conditioned one. The

proposed novel approach is showed, both empirically and theoretically, to solve

ill-conditioning related numerical issues, not only when they depend on bad

scaling and are relative easy to handle, but also when they result from almost

collinearity and numerically rank-deficient matrices are involved. Furthermore,

our strategy looks very promising even when additional inequality constraints

are considered in the optimization problem, as it occurs in several practical

applications. In this framework, even if no closed form solution is available,

we show, through empirical evidence, how the equivalent reformulation of the

original problem greatly improves the performances of MatLab R©’s quadratic

programming solver and Gurobi R©. The experimental validation is provided

through numerical examples performed on real financial data in the portfolio
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1. Introduction

Quadratic programming problem (QP) minimizes a quadratic objective func-

tion under linear equality and/or inequality constraints. These problems are

popular in many branches of applied mathematics because of their simple for-

malization and their great capacity to fit in a stylized way complex real-life

problems. Despite the apparent simplicity and tractability, solving a QP be-

comes hard when the matrix describing the quadratic objective function and/or

the matrix describing the linear constraints are ill-conditioned.

In the literature, depending on the various fields of application, a QP is

generally analyzed from different points of view; while in the context of the de-

cision sciences a QP is addressed focusing on its objective function, the algebraic

approach first puts the emphasis on the role of the constraints. In particular,

for a given QP with linear equality constraints, the first approach stresses the

role of the objective function, the goal of the decision process, focusing on the

conditioning of the associated matrix and giving secondary importance to the

restrictions; on the opposite, the second approach pays a special attention to

the equality constraints, as the QP is solved by finding the minimum norm solu-

tion of the undetermined linear system of the restrictions, see among the others

[9, 12, 24]

In this paper, taking advantage of the above mentioned different points of

view, we address the problem of the potential numerical instability of a QP

elicited by the ill-conditioning of its matrix of restrictions, and propose a method

to reduce such phenomenon, by also handling the usually difficult case of almost

collinearity in the restrictions. Our choice to concentrate on one of the two

possible sources of instability is due to the fact that, in relatively recent years,
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the conditioning of the quadratic function has been deeply investigated in the

literature, especially in the context of the decision sciences, whereas, to the best

of our knowledge, no contributions appear in connection to the bad conditioning

of the equality constraints.

Our interest for this kind of numerical issues came from the study of the

mean-variance portfolio model introduced by [25] and formulated as a QP. Since

the publication of such landmark paper, the literature registered an intensive

activity on optimal portfolios connected with QP problems (we refer to [13,

20, 27, 31] as non exhaustive list of relevant references). Though Markowitz

model is universally known as the starting point of modern portfolio theory,

it is also famous for the difficulty of its practical implementation, see [2, 15],

and its poor out-of-sample performances, see [8]. The literature identifies in the

numerical instability of the model the principal reason of the above mentioned

drawbacks. The model’s parameters are unknown and, consequently, need to

be estimated, leading to computational inaccuracy and uncertainty. In other

words, the in-sample mean-variance frontier is a biased estimator of the real

efficient frontier, see [17]. Many authors, see for instance [1] and [18], consider

the estimation uncertainty the cause of instability in the model. This issue gets

worse as the size of the portfolio increases, considering that the number of the

parameters to be estimated grows quadratically in the number portfolio’s assets,

see [28]. Moreover, the solution of the QP depends on the computation of the

inverse of the covariance matrix, that is potentially ill-conditioned and close to a

singular matrix when the returns of the assets are almost collinear. To improve

the numerical stability, a bunch of alternative proposals have been discussed in

the literature: among the others we recall the Bayesian approach, see [11], the

shrinkage approach, see [22], robust optimization techniques, see [19] and [30],

and Lasso techniques, see [4]. As it is clear from the previous enumeration, the

literature focuses on the role of the covariance matrix and, consequently, on the

objective function of the optimization problem. Unfortunately, even when the

approaches mentioned above are able to control the instability depending on

the objective function, a potential source of instability remains hidden in the
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restrictions of the problem, as we highlight in this paper.

For this reason, starting from a QP defined as the minimization of a quadratic

objective function under linear equality constraints, we focus on the potential

numerical instability elicited by the ill-conditioning of the restrictions matrix,

exploiting the closed form solution of the problem, generalizing and improving

the approach proposed in [10]. We note that the numerical issues are related

to the presence of badly scaled and/or almost collinear restrictions, but while

bad scaling is relatively simple to manage, almost collinearity usually consti-

tutes a fatal issue. The approach we propose is showed to be effective also

when ill-conditioning depends on almost collinearity, solving apparent unfeasi-

ble numerical problems. We propose to substitute the original problem with

an equivalent optimal conditioned reformulation, obtained through a singular

value decomposition (SVD). Moreover, we show, through a new theoretical re-

sult (Theorem 3.1) and two toy examples (Examples 3.1 and 3.2), that the

proposed reformulation of the original problem is able to improve the numer-

ical stability. Then we apply our approach to the special case of Markowitz

portfolio optimization model, a QP with two linear constraints. It is relevant to

notice that the two linear constraints in Markowitz model, the budget constraint

and the restriction on portfolio expected return, structurally suffer from almost

collinearity and bad scaling. This makes the portfolio optimization problem

arising in the financial context so interesting for our analysis that we decided

to entirely devote the empirical examples to this case.

Very often in empirical applications additional restrictions to the original

problem are needed; for example, it is common in practice to require portfolios to

be long only, restricting the solution to a non-negative vector. Also in this case,

the proposed equivalent optimal conditioned reformulation of the problem looks

very promising. We note that the solution of such QP needs to be computed

through a numerical procedure, as no closed form formula is available for it.

We compare the performances of MatLab R©’s built-in function quadprog using

Gurobi R© as a benchmark representing one of the state-of-the-art solvers. The

most relevant evidence of our empirical applications on real financial data is
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that the proposed equivalent reformulation of the original problem significantly

impacts both softwares’ performances with respect to the original formulation:

the algorithms improve in terms of convergence rate to the optimal solution,

number of iterations and computational time.

The paper is organized as follows. In Section 2 the paper’s notation and

some useful technical results are presented; Section 3 contains the main the-

oretical results of the paper on the reformulation of the proposed QP and its

conditioning; in Section 4 the addressed problem is restricted to the case of two

linear equality constraints directly referring to the Markowitz model; Section 5,

entirely devoted to the portfolio optimization framework, adapts our proposed

reformulation to the QP with additional inequality constraints and offers sev-

eral examples on real financial data to empirically support its efficiency; finally,

Section 6 concludes the paper.

2. Notation and Technical Results

In this section, we first recall some basic notions of linear algebra and the

notation useful throughout the paper, see textbooks [3] and [14]. Then, we

prove technical results that will be used in Section 3 to reformulate the QP and

evaluate the improvements in terms of conditioning.

Let m,n be positive integers and Matm×n(R) be the set of m × n real ma-

trices. Let A ∈ Matm×n(R). We denote by At the transpose of A and by

A† the Moore-Penrose pseudoinverse of A. We recall that an orthogonal ma-

trix is any square matrix whose columns and rows are orthogonal unit vec-

tors, that is orthonormal vectors. A rectangular matrix A ∈ Matm×n(R), with

m > n, is called orthonormal if and only if AtA = In. We refer to the Sin-

gular Value Decomposition (SVD) of A as the unique factorization of the form

A = UΣV t, where U ∈ Matm×m(R), V ∈ Matn×n(R) are orthogonal ma-

trices and Σ ∈ Matm×n(R) is a rectangular diagonal matrix with diagonal

elements, listed in non-increasing order, Σii = σi(A) > 0, i = 1, . . . , r, and

Σii = 0, i = r + 1, . . . ,m, where r = rank(A) is the rank of A. The elements
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σ1(A) ≥ . . . ≥ σr(A) > 0 are the singular values of A; in the special case in

which A is a n × n symmetric and positive definite matrix, the singular values

σi(A), i = 1, . . . , n, are the eigenvalues of A.

Throughout the paper we use the sign function defined over the reals by

sign(x) = |x|
x for each x 6= 0 and sign(0) = 0. Further, we use the standard

scalar product 〈·, ·〉 and the Euclidean norm (2-norm) ‖ · ‖ of Rn while 1n =

(1, . . . , 1) ∈ Mat1×n(R) denotes the vector of ones.

We recall the definition of condition number of a matrix, see [3, Section 2.1].

Let A ∈ Matm×n(R) be a full-rank matrix; the (2-norm) condition number of

A, denoted by K2(A), is given by:

K2(A) := ‖A‖ ‖A†‖ or equivalently K2(A) :=
σ1(A)

σr(A)
,

with r = min{m,n} = rank(A). Note that, in the special case m = n, the

previous relations simply become

K2(A) := ‖A‖ ‖A−1‖ or equivalently K2(A) :=
σ1(A)

σn(A)
.

The condition number is classically used to provide a measure of linear sys-

tem sensitivity, see [14]. A matrix with a large condition number4 is said to be

ill-conditioned and characterized by a warning about the potential numerical in-

stability of the associated linear systems’ solution. In this paper the condition

number is used as the principal instrument to detect and quantify numerical

issues.

In the following we prove some basic results of numerical linear algebra useful

for a complete understanding of the paper.

Proposition 2.1. Let A = (aij) ∈ Matn×n(R) be a symmetric and positive

definite matrix.

(i) Let B ∈ Matm×m(R), with m < n, be a principal submatrix of A; then

K2(B) ≤ K2(A).

4Note that this property depends on the chosen norm and on the definition of “large”, for

a further study we refer to [14].
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(ii) If n = 2 then

K2(A) ≥ max{a11, a22}
min{a11, a22}

.

Proof.

(i) The principal submatrix B is symmetric and positive definite since A is

symmetric and positive definite. Let λ1(A) ≥ . . . ≥ λn(A) > 0 and

λ1(B) ≥ · · · ≥ λm(B) > 0 be the eigenvalues of A and B respectively,

which coincide with their singular values. Due to a consequence of the

Eigenvalue Interlacing Theorem [14, Theorem 8.1.7], the following inequal-

ities hold:

λn(A) ≤ λm(B) and λ1(B) ≤ λ1(A).

Therefore, recalling the definition of condition number, it follows that

K2(B) =
λ1(B)

λm(B)
≤ λ1(A)

λn(A)
= K2(A).

(ii) Since A is symmetric and positive definite, then a12 = a21, aii ≥ 0, i = 1, 2.

Let λ1(A) ≥ λ2(A) > 0 be the eigenvalues of A which, by definition, satisfy

the equation λ2 − (a11 + a22)λ+ (a11a22 − a212) = 0. Therefore

K2(A) =

(
a11 + a22 +

√
(a11 − a22)2 + 4a212

)2
4(a11a22 − a212)

≥ (a11 + a22+ | a11 − a22 |)2

4a11a22
.

Considering the two cases a11 ≥ a22 or a11 < a22, the right-hand-side of

the above inequality becomes a11
a22

or a22
a11

, which proves the proposition.

Theorem 2.2. Let A = (aij) ∈ Mat2×n(R) be a full-rank matrix, Ai = (aij)
n
j=1 ∈

Mat1×n(R) be the ith row of A, i = 1, 2, and s = sign(〈A1, A2〉). Assume that

‖A1‖2 = ‖A2‖2 = α. Then the singular values of A are σ1 = (α+ | 〈A1, A2〉 |)
1
2

and σ2 = (α− | 〈A1, A2〉 |)
1
2 . Further, A = UΣ2W

t
2 , where

Σ2 =

σ1 0

0 σ2

 ,
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U ∈ Mat2×2(R) is an orthogonal matrix and W2 ∈ Matn×2(R) is an orthonormal

matrix, defined according to the following cases: if 〈A1, A2〉 6= 0 then

U =
1√
2

s −s

1 1

 and W2 =
1√
2

(
σ−11 (sAt1 +At2) σ−12 (−sAt1 +At2)

)
; (1)

otherwise, if 〈A1, A2〉 = 0 then

U =

1 0

0 1

 and W2 = σ−11

(
At1 At2

)
. (2)

Proof. The singular values of A can be computed as the square roots of the

eigenvalues of AAt; therefore an easy computation yields that σ1 and σ2 are the

singular values of A. To conclude the proof, it is enough to observe that the

matrices U and W2 as defined in (1) and in (2) are orthogonal and orthonormal

matrices respectively, and that, in both cases, A = UΣ2W
t
2 .

3. Optimization problem

We consider the special case of QP: the problem of minimizing a quadratic

objective function of several variables subject to linear equality constraints, see

[26]. As discussed in the introduction of the paper, this class of optimization

problems has been widely studied and proposed in different branches of applied

mathematics. In the empirical section we will focus on an application in the

financial context for portfolio allocation problems.

Let Q ∈ Matn×n(R) be a symmetric and positive definite matrix, let A ∈

Matm×n(R), with m < n, be a full-rank matrix and b ∈ Matm×1(R) be a column

vector. We consider the following problem.

Problem 3.1:

Minimize xtQx

subject to Ax = b.

It is immediate to verify that the unique solution of Problem 3.1 is:

x = Q−1AtB−1b (3)
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with

B = AQ−1At. (4)

For a general approach to the problem’s solution see [24]; for the solution in

the special case of the financial context see [7]. Though solution (3) is explicitly

given, it is straightforward to notice that, in practice, computing it can lead to

a high rate of numerical instability, since it depends on the inversion of matrices

Q and B. If Q is ill-conditioned and/or almost singular, the definition of matrix

B in equation (4) could be meaningless. We enumerated in the Introduction

many papers, in the financial context, proposing alternative estimations of the

matrix Q to mitigate potential instability and sensitivity of the solution arising

from the misspecification of the objective function. For this reasons, in the rest

of the paper, we assume that Q is well-conditioned not causing any numerical

issue to the solution in equation (3). Such assumption permits to focus on the

independent potential source of instability that may naturally arise from the

linear constraints Ax = b. In order to mitigate this phenomenon, we introduce

an alternative equivalent formulation of Problem 3.1.

We consider the singular value decomposition (SVD) of the matrix A:

A = UΣW t, (5)

where U ∈ Matm×m(R), W ∈ Matn×n(R) are orthogonal matrices and Σ ∈

Matm×n(R) is a rectangular diagonal matrix with Σii = σi(A) > 0, i = 1, . . . ,m.

Let Σm ∈ Matm×m(R) and Wm ∈ Matn×m(R) be the matrices made up of the

first m columns of Σ and W respectively; in particular, note that Σm is diag-

onal and Wm is orthogonal. Then A = UΣmW
t
m and the equality constraints

of Problem 3.1 may also be equivalently written as W t
mx = Σ−1m U tb. This ap-

proach allows us to formulate Problem 3.2 as an alternative equivalent version

of Problem 3.1.

Problem 3.2:

Minimize xtQx

subject to W t
mx = Σ−1m U tb.
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Note that Problems 3.1 and 3.2 share the same quadratic objective function

xtQx, whereas the equations of their equality constraints, which define the same

geometrical object, are provided through the two different linear systems Ax = b

and W t
mx = Σ−1m U tb. It is immediate to verify that the unique solution of

Problem 3.2 is:

x = Q−1WmC
−1v

with v = Σ−1m U tb and

C = W t
mQ
−1Wm. (6)

It is worth noting that the advantage of dealing with the alternative formu-

lation Problem 3.2 stands in the substitution of the linear equality constraints

Ax = b, which could happen to be ill-conditioned, with W t
mx = v, where Wm is

orthonormal. The proposed reformulation of the restrictions is computationally

efficient and, in general, not worse in terms of conditioning, substituting to the

original matrix A the orthonormal matrix Wm that has, by construction, the

minimum condition number. In the following result, in order to support the

intuitive idea that such reformulation could increase the numerical stability of

the problem solution, we compare the equivalent Problems 3.1 and 3.2. Our

analysis is based on the notion of condition number, whose definition is recalled

in Section 2.

Theorem 3.1. In the setting of Problems 3.1 and 3.2 the following inequalities

hold:

K2(C) ≤ K2(Q) and K2(B) ≤ K2
2 (A)K2(Q).

Further, denoting C = (cij)
m
i,j=1, it holds:

K2(B) ≥ K2
2 (A) if c11

cmm
≥ 1

K2(B) >
K2

2 (A)
K2(Q) if 1

K2
2 (A)

≤ c11
cmm

< 1.

Proof. By formula (6) the matrix C is the principal submatrix of order m of

W tQ−1W , where the orthogonal matrix W is defined in (5). Since the matrix Q
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is symmetric and positive definite, so it is W tQ−1W and its condition number

is

K2(W tQ−1W ) = K2(Q−1) = K2(Q).

Using the last equality and Proposition 2.1-(i) applied to W tQ−1W and C, it

follows that K2(C) ≤ K2(Q).

From (4), using (6) and the equality A = UΣmW
t
m, we get

B = UΣmW
t
mQ
−1WmΣmU

t = UΣmCΣmU
t.

Let G = ΣmCΣm; since U is orthogonal, then

K2(B) = K2(G). (7)

Further, since K2(Σm) = K2(A) and K2(C) ≤ K2(Q), the following inequalities

hold:

K2(G) ≤ K2(Σm)2K2(C) = K2(A)2K2(C) ≤ K2(A)2K2(Q). (8)

From (7) and (8), we get K2(B) ≤ K2(A)2K2(Q).

For the last part of the proof, we recall that the diagonal elements σ1 ≥ . . . ≥

σm > 0 of Σm are the singular values of A and that K2(A) = σ1

σm
. Further, we

denote the elements of G by gij , i, j = 1, . . . ,m, so that, by definition of G, it

holds gij = σiσjcij , for each i, j = 1, . . . ,m. We let I = {1,m} and consider the

two principal submatrices CI = (cij)i,j∈I and GI = (gij)i,j∈I of C and G:

CI =

 c11 c1m

c1m cmm

 GI =

 σ2
1c11 σ1σmc1m

σ1σmc1m σ2
mcmm

 .

From (7) and using Proposition 2.1-(i) applied to G and GI we get:

K2(B) = K2(G) ≥ K2(GI). (9)

Further, the hypothesis c11
cmm

≥ 1
K2

2 (A)
=

σ2
m

σ2
1

implies σ2
1c11 − σ2

mcmm ≥ 0, thus

applying Proposition 2.1-(ii) to GI we get

K2(GI) ≥
σ2
1c11

σ2
mcmm

=
c11
cmm

K2
2 (A). (10)
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Relations (9) and (10) yield:

K2(B) ≥ c11
cmm

K2
2 (A). (11)

If c11
cmm

≥ 1, relation (11) becomes K2(B) ≥ K2
2 (A). Otherwise, if 1

K2
2 (A)

≤
c11
cmm

< 1, from Proposition 2.1-(i) applied to C and CI , and Proposition 2.1-(ii)

applied to CI we get K2(C) ≥ K2(CI) >
cmm

c11
, so that

c11
cmm

>
1

K2(C)
. (12)

Therefore, using relation (11), (12) and the inequality K2(C) ≤ K2(Q) it follows

that K2(B) >
K2

2 (A)
K2(Q) , which concludes the proof.

We list in the following remarks some important observations.

Remark 3.1: Under the standing assumption that Q is well-conditioned, we

observe that the alternative equivalent formulation 3.2 of Problem 3.1 is always

preferable. In fact, from the inequality K2(C) ≤ K2(Q) of Theorem 3.1, it

follows that the matrix C is well-conditioned, and this is completely independent

from the conditioning of matrix A. On the other hand, if A is ill-conditioned,

so it is the matrix B, as its condition number approximately behaves as the

quantity K2
2 (A), a factor which is present in both the provided lower and upper

bounds of K2(B).

Remark 3.2: The ratio c11
cmm

∈ (0,+∞) while the union of the alternative

conditions given in Theorem 3.1 restricts c11
cmm

∈
[

1
K2

2 (A)
,+∞

)
. Nevertheless,

in the case of interest for our approach, the matrix A of the restrictions is ill-

conditioned, its condition number is high and the two intervals become very

similar.

Remark 3.3: We note that the proposed equivalent formulation 3.2 of Problem

3.1 could show poor improvements if the matrix A is nearly rank-deficient. In

this case, exploiting the notion of numerical rank (see [14, 16]), we slightly

modify our approach as follows. If r < m is the numerical rank of A, then the

equation of the equality constraints in Problem 3.2 becomes W t
rx = Σ−1r U trb,

where Ur ∈ Matm×r(R) and Wr ∈ Matn×r(R) are the matrices containing the
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first r columns of U and W respectively, and Σr ∈ Matr×r(R) is the leading

principal submatrix of order r of Σ. An illustrative instance is provided in

Example 3.2.

We end the section with two illustrative toy examples to show, in some

simple cases, the effect of the proposed reformulation of the original problem to

the numerical stability of the closed form solution.

Example 3.1 is designed on purpose to illustrate the effectiveness of our

proposal. Despite its artificial aspect, it results both qualitatively and quanti-

tatively very similar to real financial data scenarios occurring in portfolio opti-

mization applications, as it will be more clear from the examples in Section 5.

In Example 3.1 we note that the norms of the two rows of A are almost equal

(they differ by less than δ). As a consequence, the problem’s numerical issues

exclusively depend on the matrix’s near collinearity.

Example 3.1: We consider the setting of Problem 3.1 with n = 3, m = 2 and

Q equal to the identity matrix I3. In this case K2(I3) = 1, so that the potential

numerical instability only depends on the problem’s restrictions Ax = b. Let

δ = 10−8 and

A =

 1 1 1 + δ

1 1 1

 and b =

 1.1

1

 .

We note that the singular values of A are 2.4495 and 5.7735 · 10−9, so that A

has full numerical rank; its condition number is K2(A) = 4.2426 · 108.

Using the provided explicit formula (3) and through symbolic computations,

the solution of Problem 3.1 is

x∗ =


−0.05δ−1 + 0.5

−0.05δ−1 + 0.5

0.1δ−1

 = 107 ·


−0.5(1− 10−7)

−0.5(1− 10−7)

1

 .

Let x1 and x2 be the numerical solutions of Problem 3.1 and its equivalent

reformulation, Problem 4.1, respectively, computed by MatLab R© using formulas
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(3) and (19):

x1 = 107 ·


0.4290613400000006

0.4290613400000006

−0.858122660000001

 x2 = 107 ·


−0.499999949077899

−0.499999968776829

1.000000017854728


We note that the condition numbers of the matrices B and C (see (4) and (6))

involved in the closed form solutions are approximately K2(B) = 1.8 · 1016 and

K2(C) = 1.0.

By a comparison with x∗, it is evident that x2 is close to the solution of the

proposed minimization problem. Further, as shown below, x1 does not satisfy

the linear constraints Ax = b at all, whereas x2 exactly satisfies the second

linear equality provided by Ax = b and shows a rounding error of about 10−9

in the first linear constraint:

| Ax1 − b |=

0.9858

0.8000

 | Ax2 − b |= 10−8 ·

0.1490

0

 .

Note that this example highlights the effectiveness and the improvements in

terms of numerical stability related to our proposed reformulation, even when

the solution is computed using numerical solvers instead of the available explicit

formula. To this aim we consider the well-known mathematical optimization

solver functions included in Matlab R© and Gurobi R©. Starting from Problem 3.1,

because of numerical issues, the MatLab R©’s function quadprog returns a mes-

sage asserting that no feasible solution is found, while Gurobi R© computes the

suboptimal solution (0.3667, 0.3667, 0.3667)t. On the contrary, starting from the

equivalent reformulation Problem 4.1, both the solvers converge to a solution

(approximately) equal to x2.

Finally, Example 3.2 considers the case of a QP problem whose coefficient

matrix of the equality constraints is numerically rank deficient (the numerical

rank is computed with respect to the machine precision 10−16).

Example 3.2: We consider the setting of Problem 3.1 with n = 8, m = 6 and

Q equal to the identity matrix I8. Let δ = 10−8; let A = (aij) ∈ Mat6×8(R) be

14



such that all aij = 1 except for the following values: a18 = 1 + δ, a38 = 1 − δ,

a45 = 1 + 3δ, a58 = 1 + 4δ, a61 = 1− δ. Let b ∈ Mat6×1(R) be the vector of the

arithmetic means of the rows of A. We list the singular values of A:

σ1 = 6.9282 σ2 = 3.8518 · 10−8 σ3 = 2.3299 · 10−8

σ4 = 8.0737 · 10−9 σ5 = 1.2628 · 10−24 σ6 = 4.8463 · 10−25,

and note that the numerical rank of A is r = 4 (such computation has been

performed with respect to the machine precision 10−16, see [16]). Let x1 and x2

be the solutions of Problem 3.1 and 4.1 (where Remark 3.3 has been employed)

computed by MatLab R© using formulas (3) and (19):

x1 = (−0.1648,−0.1648,−0.1648,−0.1648, 0.0905,−0.1648,−0.1648, 0.2563)t

x2 = (0.1250, 0.1250, 0.1250, 0.1250, 0.1250, 0.1250, 0.1250, 0.1250)t,

from which it is evident that x2 is the correct solution of the proposed mini-

mization problem.

4. The special case of two linear constraints

In this section we consider the optimization Problem 3.1 in the special case

of m = 2 linear equality constraints and formulate an alternative version of it.

In Section 3, in the general case, we introduced a constructive approach,

essentially relying upon the SVD computation of the coefficient matrix of the

problem’s linear constraints, to define the equivalent Problem 3.2. In the fol-

lowing, by exploiting Proposition 2.2, which provides an explicit formula for

the SVD of any 2 × n full-rank matrix, we introduce an equivalent version of

Problem 3.1, holding in the special case m = 2.

We consider Problem 3.1 with m = 2 and linear equality constraints DAx =

Db, where

D =

 1
‖A1‖ 0

0 1
‖A2‖

 ∈ Mat2×2(R) , (13)
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and Ai denotes the ith row of A, i = 1, 2. Applying Theorem 2.2 to DA, we get

that σ1 and σ2, where

σ1 =

(
1 +
| 〈A1, A2〉 |
‖A1‖‖A2‖

) 1
2

and σ2 =

(
1− | 〈A1, A2〉 |

‖A1‖‖A2‖

) 1
2

, (14)

are the singular values of DA and that DA = UΣ2W
t
2 , where

Σ2 =

σ1 0

0 σ2

 ∈ Mat2×2(R), (15)

U ∈ Mat2×2(R) and W2 ∈ Matn×2(R) are orthogonal and orthonormal matrices

defined according to the following cases: if 〈A1, A2〉 6= 0 then

U =
1√
2

s −s

1 1

 (16)

and

W2 =
1√
2

(
σ−11

(
s
At

1

‖A1‖ +
At

2

‖A2‖

)
σ−12

(
−s At

1

‖A1‖ +
At

2

‖A2‖

))
(17)

where s = sign(〈A1, A2〉); otherwise, if 〈A1, A2〉 = 0 then

U =

1 0

0 1

 and W2 =
(

At
1

‖A1‖
At

2

‖A2‖

)
. (18)

According to the previous discussion, we introduce an alternative equivalent

version of Problem 3.1.

Problem 4.1:

Minimize xtQx

subject to W t
2x = Σ−12 U tDb.

where D,Σ2, U , W2 are defined in (13), (15), (16), (17) and (18).

The unique solution of Problem 4.1 is:

x = Q−1W2C
−1v (19)

with v = Σ−12 U tDb and C = W t
2Q
−1W2.
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4.1. The portfolio selection problem

In this section we recall the mean-variance portfolio model developed by [25]

and, based on the results of Section 4, we formulate an equivalent version of the

classical portfolio selection problem.

In the setting of portfolio optimization, each entry xi of the vector x, with

i = 1 . . . n, denotes the share of the investor’s wealth allocated to the ith asset

in the portfolio, so that x is the vector of the weights and n is the number of

risky investment opportunities. For each i = 1 . . . n, the expected return of the

ith asset is denoted by µi, so that µ = (µ1, . . . , µn) ∈ Mat1×n(R) contains the

expected returns. The scalar products 〈x, 1n〉 and 〈x, µ〉 are respectively equal

to the budget constraint, the restriction assuming that all the available wealth

is allocated in the portfolio, and the expected return of the portfolio, µp in the

following. We assume that not all the elements of µ are equal. The covariance

matrix of the returns is denoted by V ∈ Matn×n(R); by construction, V is

symmetric and positive definite. Finally, the variance of portfolio’s returns is

σ2
p = xtV x.

In this framework, the portfolio selection problem is stated as Problem 4.2

and, equivalently, as Problem 4.3.

Problem 4.2:

Minimize σ2
p = xtV x

subject to

 µ

1n

x =

µp
1

 .

Problem 4.3:

Minimize σ2
p = xtV x

subject to W t
2x = Σ−12 U tD

µp
1

 .

where D =

 1
‖µ‖ 0

0 1√
n

, Σ2 =

σ1 0

0 σ2

 ∈ Mat2×2(R), with

σ1 =

(
1 +

1√
n‖µ‖

|
n∑
i=1

µi |

) 1
2

and σ2 =

(
1− 1√

n‖µ‖
|
n∑
i=1

µi |

) 1
2

,
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and U ∈ Mat2×2(R), W2 ∈ Matn×2(R) are orthogonal and orthonormal matrices

defined according to the following cases: if
∑n
i=1 µi 6= 0 then

U =
1√
2

s −s

1 1

 and W2 =
1√
2

(
σ−11

(
s µt

‖µ‖ +
1tn√
n

)
σ−12

(
−s µt

‖µ‖ +
1tn√
n

))
,

where s = sign (
∑n
i=1 µi); otherwise, if

∑n
i=1 µi = 0 then

U =

1 0

0 1

 and W2 =
(
µt

‖µ‖
1tn√
n

)
.

5. Long-only portfolio optimization and computational results

In this section we focus on Problems 4.2 and 4.3, restricting the application

to the portfolio optimization framework, both for its relevance in financial lit-

erature and its suitability to highlight the effectiveness of our proposal. To this

aim we introduce Problem 5.1, a variation of Problem 4.2 obtained adding the

further restriction that all the components xi are non-negative, i.e. no short

positions are allowed in the optimal portfolio. The long-only constraint is so

common in practice that it is often not perceived as a constraint and its impact

on the performance with respect to long-short strategies has been widely stud-

ied, see [6]. Exploiting the results of Section 4.1, the equivalence of Problems

5.1 and 5.2 directly follows from the equivalence of Problems 4.2 and 4.3.

Problem 5.1:

Minimize xtV x

subject to

 µ

1n

x =

µp
1


xi ≥ 0 i = 1, . . . , n.

Problem 5.2:

Minimize xtV x

subject to W t
2x = Σ−12 U tD

µp
1


xi ≥ 0 i = 1, . . . , n.
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where the matrices D, Σ2, U , W2 are defined in Problem 4.3.

Though Problem 5.1, including also inequality constraints among its re-

strictions, differs from the optimization problems treated so far, the equivalent

reformulation provided by Problem 5.2 could show strong improvements in the

solution’s numerical behaviour. This is a consequence of the nature of the in-

volved restrictions: if the equality constraints are described by an ill-conditioned

system, then small perturbations may cause large variations in the problem’s

feasible set, with a subsequent significant change in the solution of the opti-

mization problem. This idea is intuitively described by means of the following

illustrative example, in which the worst case of almost collinearity between the

vectors µ and 1n is considered.

Example 5.1: We consider the set of constraints of Problem 5.1 in which

µ = (µi) ∈ Mat1×n(R), with µi = 1, for each i = 1, . . . , n − 1, µn = 1 + δ,

δ ∈ R, and µp = 1 + α, α ∈ R. The set of points verifying the constraints is

D =

{
(x1, . . . , xn) ∈ Rn |

n−1∑
i=1

xi = 1− α

δ
, xn =

α

δ
, xi > 0, i = 1, . . . , n

}
.

If 0 < α
δ < 1 then D is not empty and geometrically corresponds to the con-

traction, with a factor of 1 − α
δ , of the (n − 2)-dimensional standard simplex

of Rn−1. Especially in the case in which α
δ is close to 1, a small variation of δ

may lead to an extreme change of the set D (with a relative error on the points

coordinates which is proportional to α
δ−α ) which eventually becomes the empty

set.

A substantial improvement in the numerical stability of the solution of Prob-

lem 5.2 is also expected as a consequence of the application of numerical tech-

niques. Indeed, since Problems 5.1 and 5.2 admit no closed form solution, the

computation of the optimal portfolio necessarily requires the use of appropri-

ate iterative methods, whose convergence speed and solution accuracy strictly

depend on the condition number of the involved matrices (see [14, 23, 29]). In

these terms, our approach shares the classical goal of “preconditioning”, namely

to decrease the condition number so to make the computations faster and more
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reliable.

In the following examples, the numerical solution is obtained applying the

MatLab R©’s function quadprog, a numerical solver to optimize quadratic ob-

jective functions with linear constraints, and the mathematical optimization

solver Gurobi R©. We use these softwares in their default settings, apart from

the maximum number of algorithm’s iterations allowed in quadprog, which for

some computations is set to be equal to 106, the maximum number of iterations

managed by MatLab R©. All computations have been performed on a Quad-Core

Intel Core i5 processor (at 2.3 GHz) running macOS.

The following examples are constructed on a dataset containing the historical

daily returns from January 3rd, 2000 to September, 17th 2020 of the 10 sec-

tors of the S&P index. The analysis is performed adopting a “rolling-sample”

approach, in which the covariance matrix and the vector of expected returns

are iteratively computed on the data contained in a sliding window of length

we = 240 days. Specifically, at the ith iteration, we address Problems 5.1 and 5.2

where V and µ are computed using the data collected from ith to (we+ i−1)th

day and the expected return µp is randomly chosen within the interval detected

by the minimum and the maximum of the elements of µ. We underline that the

economic comments on the asset allocation is beyond the scope of the current

paper, while we want to stress the fact that numerical issues can be found on

real data applications and not only in ad hoc theoretical examples. Moreover,

numerical issues appear with relatively small optimization problems; our ex-

amples are built on 10-asset portfolios, confirming that portfolio’s size is not

necessary to generate computational difficulties.

Example 5.2: At each instance of the rolling window, Problems 5.1 and 5.2

are addressed by applying quadprog, both in its default setting or extending its

maximum number of iterations to 106 (we will refer to such setting as quadprog

(MaxIt)), and using software Gurobi R©. The relevant variables of the 5165

computations are gathered in Tables 1 and 2. We briefly summarize the rep-

resented fields: Conv.rate contains the algorithm’s percentage of convergence,
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while the fields Time and Iterations, contain the subfields min, max, mean,

std, total which report the minimum value, the maximum value, the arithmetic

mean, the standard deviation and the sum of the computational time across all

5165 computations and number of iterations respectively. Note that the com-

putational time refers to the entire time to execute the corresponding problem,

including the initial SVD computation.

Table 1: Performances of the solvers quadprog, quadprog(MaxIt) and Gurobi in case of Ex-

ample 5.2: results for Problem 5.1.

quadprog quadprog(MaxIt) Gurobi

Conv. rate 99.71% 99.98% 100%

Time max 0.0200 s 0.0300 s 0.1000 s

mean 0.0053 s 0.0064 s 0.0070 s

std 0.0059 s 0.0064 s 0.0085 s

total 27.5500 s 32.8600 s 36.2100 s

Iterations min 4 4 6

max 201 769 13

mean 6.3748 6.4848 9.5332

std 3.1175 10.7237 0.9368

Tables 1 and 2 contain the performances of the three considered solvers,

quadprog, quadprog(MaxIt) and Gurobi, applied to Problems 5.1 and 5.2 re-

spectively: for all of them the improvements are remarkable. The values of

the convergence rate show that, while Gurobi always converges to the optimal

solution, quadprog fails to solve the problem in the original formulation in a sig-

nificant number of cases. In particular, the frequency of convergence depends

on the maximum number of iterations allowed: if we raise it (see the entry

corresponding to quadprog (MaxIt)), the convergence rate increases, nonethe-

less there exist still cases in which it fails to converge. On the other hand, in

the case of the problem’s equivalent reformulation, quadprog (MaxIt) shows a

convergence rate of 100% making it competitive with Gurobi. Regarding the
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Table 2: Performances of the solvers quadprog, quadprog(MaxIt) and Gurobi in case of Ex-

ample 5.2: results for Problem 5.2.

quadprog quadprog(MaxIt) Gurobi

Conv. rate 99.98% 100% 100%

Time max 0.0300 s 0.2300 s 0.0700 s

mean 0.0023 s 0.0018 s 0.0048 s

std 0.0043 s 0.0039 s 0.0069 s

total 11.7900 s 9.5100 s 24.7200 s

Iterations min 4 4 7

max 201 769 14

mean 6.3164 6.4263 9.7164

std 2.9785 10.6847 0.9152

computational time we notice for all the solvers a significant reduction passing

from Table 1 to Table 2. In particular, quadprog reduces the execution time

up to approximately 70%, showing a value which is competitive with that of

Gurobi which registers a reduction of approximately 30%. The number of iter-

ations seems to be invariant under the problem’s reformulation; finally, a direct

comparison of its values is inappropriate among different solvers as different

algorithms are employed.

In order to stress the role of the restrictions as a source of numerical in-

stability, we modify the allocation problem of the previous example, see Prob-

lem 5.1, by substituting the covariance matrix V with the identity In. In this

case, K2(In) = 1 and consequently the eventual numerical instability of the

model necessarily depends on the restrictions. This formulation is different from

Markowitz portfolio optimization model. Nevertheless, it is common in financial

applications to define new portfolio optimization models simply modifying the

objective function in Problem 5.1 and maintaining the restrictions. In particu-

lar, a bunch of financial literature looks for the portfolio that maximize a given

diversification measure, see for example [5]. When we substitute V with In in
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the objective function, we obtain the Herfindahl concentration Index, see among

the others [21], that is a very popular measure of concentration.5 We further

note that, independently from the economic interpretation, xtInx = ‖x‖2.

Example 5.3: Using the same approach outlined in Example 5.2, Problems

5.1 and 5.2, with V = I10, are addressed applying the three solvers quadprog,

quadprog (MaxIt) and the software Gurobi. Tables 3 and 4 summarize the

behaviour of the main variables (we refer to Example 5.2 for an explanation of

the represented fields).

Table 3: Performances of the solvers quadprog, quadprog(MaxIt) and Gurobi in case of Ex-

ample 5.3: results for Problem 5.1.

quadprog quadprog(MaxIt) Gurobi

Conv. rate 95.35% 97.31% 100%

Time max 0.0700 s 7.7600 s 0.0500 s

mean 0.0045 s 0.0081 s 0.0057 s

std 0.0057 s 0.1082 s 0.0065 s

total 23.4800 s 41.8500 29.2000 s

Iterations min 4 4 7

max 201 106 13

mean 13.5109 241.4736 8.9400

std 31.5483 1.3974 · 104 0.8388

Comparing Tables 3 and 4, we observe that Example 5.3 is qualitatively

very similar to Example 5.2, so that the comments and observations expressed

in Example 5.2 are still valid. Additionally, it is interesting to notice how the

numerical issues are more noticeable in this case, as well as the performance im-

provements when passing from Problem 5.1 to Problem 5.2. In Table 3 quadprog

5Deepening the details on the relation between concentration and diversification is beyond

the scope of this paper. It is intuitive that minimizing concentration is somehow equivalent

to maximize diversification.
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Table 4: Performances of the solvers quadprog, quadprog(MaxIt) and Gurobi in case of Ex-

ample 5.3: results for Problem 5.2.

quadprog quadprog(MaxIt) Gurobi

Conv. rate 100% 100% 100%

Time max 0.0200 s 0.0200 s 0.0400 s

mean 0.0023 s 0.0019 s 0.0039 s

std 0.0043 s 0.0040 s 0.0057 s

total 12.0300 s 9.9700 s 20.1000 s

Iterations min 4 4 7

max 9 9 13

mean 5.6705 5.6705 8.9400

std 0.7947 0.7947 0.8388

shows a convergence rate of about 95.35% which increases to the total success

of 100% in Table 4. The performance improvements for all the solvers are also

evident when considering the computational time and the number of iterations,

whose values conspicuously decrease in the case of the problem’s reformulation

(in particular, note that the huge values of quadprog(MaxIt) entries in Table

3 refer to the occurrence of several non-convergence cases). These results, ob-

tained when the objective function depends on the identity matrix, empirically

support our idea of treating the equality restrictions to possibly improve the

problem’s numerical stability.

6. Conclusions

In this paper we analyze the numerical stability of QP problems focusing

our investigation on the restrictions of the problem as a prominent potential

source of ill-conditioning. We propose an equivalent version of the original

problem that is showed, both theoretically and empirically, to overcome numer-

ical issues related to ill-conditioning. Our approach has the appealing feature to

efficiently handle almost collinearity besides the most manageable bad-scaling

24



issue. Strong empirical evidence on real financial data in portfolio optimization

context supports the idea that the proposed approach significantly impacts the

performances of numerical solvers. We think that the cost of rewriting the model

in the proposed equivalent version is negligible if compared to the improvements

in terms of numerical stability.
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