
SecCo: Automated Services to Secure Containers
in the DevOps Paradigm

Luca Verderame∗
DIBRIS - University of Genova

Genova, Italy
luca.verderame@dibris.unige.it

Luca Caviglione
Consiglio Nazionale delle Ricerche

Genova, Italy
luca.caviglione@cnr.it

Roberto Carbone
Fondazione Bruno Kessler

Trento, Italy
carbone@fbk.eu

Alessio Merlo
Centre for High Defense Studies

Rome, Italy
alessio.merlo@casd.difesa.it

ABSTRACT
Containers are core building blocks for creating applications based
on the microservice paradigm. However, assessing their security
is complex, especially when deployed in distributed and hetero-
geneous scenarios. Moreover, developers and IT operators should
only focus on integration and delivery processes without dealing
with tasks to guarantee securing requirements. To overcome such
issues, in this paper, we introduce the ideas at the basis of Project
SecCo (Securing Containers), i.e., an architecture for extending
and improving current security assessment methodologies into the
continuous integration and continuous delivery DevOps pipeline.
To this end, SecCo proposes a framework able to orchestrate new
automatic security services to prevent and reduce security vulnera-
bilities in the design, implementation, and deployment phases, and
to identify and mitigate, at runtime, attempts to exploit them. The
paper also showcases the main research challenges to be addressed
for pursuing the vision of SecCo.

CCS CONCEPTS
• Security and privacy → Virtualization and security; Secu-
rity requirements; Distributed systems security; Intrusion detection
systems; Vulnerability scanners.

KEYWORDS
Container security, DevSecOps, CI/CD security

ACM Reference Format:
Luca Verderame, Luca Caviglione, Roberto Carbone, and AlessioMerlo. 2023.
SecCo: Automated Services to Secure Containers in the DevOps Paradigm.
In International Conference on Research in Adaptive and Convergent Systems
(RACS ’23), August 6–10, 2023, Gdansk, Poland. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3599957.3606222

∗Corresponding Author.

RACS ’23, August 6–10, 2023, Gdansk, Poland
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0228-0/23/08.
https://doi.org/10.1145/3599957.3606222

1 INTRODUCTION
DevOps often refers to a software development paradigm that aims
at improving the lifecycle of an application via a strict interaction
between developers and IT operators. Such a process can also be
used to support Continuous Integration and Continuous Delivery
(CI/CD), where the idea is that the application is kept constantly
under development and testing, and updated versions are released
very often (e.g., daily). As a result, the application development
lifecycle becomes a fast-paced, iterative process.

To pursue such a vision, functionalities of a full-featured appli-
cation are broken down into a set of small, independent pieces of
software, commonly defined as microservices [9]. Microservices
naturally fit the DevOpsmodel as they can bemaintained, improved,
and released far more rapidly than full-fledged and monolithic ap-
plications. Furthermore, such smaller components can be reused
and constitute the standard architectural model for cloud-native
applications. Deploying microservices in cloud scenarios (e.g., to
reduce costs and enforce scalability properties) mainly requires con-
tainers. A container provides a lightweight execution environment
and an interface to the “outside world”, i.e., to other microservices
or external applications. Containers also provide an abstraction
layer to ease the migration between different physical servers (e.g.,
to enforce load balancing) as well as to support several architectural
blueprints (e.g., cloud, edge, and mobile) [19].

Unfortunately, current heterogeneous and container-oriented
scenarios exacerbate security issues and require a thorough under-
standing of the overall development process [27]. A large portion
of the security space characterizing cloud-based microservice appli-
cations tightly depends on the properties of individual containers,
including their interactions with the hosting environment [26]. In
addition, an increasing number of publicly available containers
have relevant security vulnerabilities that can be exploited quite
straightforwardly [23], [15], thereby indicating that current security
practices are far from being reliable. For example, a recent survey
[28] showcased the 51% of ∼4million images hosted in Docker Hub
exhibit exploitable vulnerabilities.

In this perspective, current limitations characterizing container
security can be mitigated by decoupling the CI/CD phase from
the securing one. Specifically, developers and IT operators should
only focus on the CI/CD process without dealing with security-
oriented tasks. For instance, security operations should be provided
by a trusted third-party service that implements the best hardening

This work is licensed under a Creative Commons Attribution-
NonCommercial International 4.0 License.

https://orcid.org/0000-0001-7155-7429
https://orcid.org/0000-0001-6466-3354
https://orcid.org/0000-0003-2853-4269
https://orcid.org/0000-0002-2272-2376
https://doi.org/10.1145/3599957.3606222
https://doi.org/10.1145/3599957.3606222
https://creativecommons.org/licenses/by-nc/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3599957.3606222&domain=pdf&date_stamp=2023-08-29


RACS ’23, August 6–10, 2023, Gdansk, Poland L. Verderame et al.

strategies to secure the containers hosting the application. Besides,
specific security constraints related to the execution environment
may entail static and runtime guarantees.

To prevent the CI/CD team from managing container security
and to promote the diffusion of cloud-native applications, this work
presents the main ideas at the basis of the Project SecCo (Securing
Containers). In essence, SecCo aims to design and develop a novel
service to secure containers used in microservice-based cloud ap-
plications automatically. At the same time, it also allows to truly
combine development (Dev), security (Sec), and operations (Ops).
To support such a vision, the proposed solution is built around
three main modules, each in charge of a specific task, i.e., harden-
ing, compliance verification, and runtime monitoring.

Summing up, the contribution of this paper is twofold: it provides
a thorough discussion of the architecture envisioned in SecCo, and it
presents themain challenges and research questions to be addressed
for partially filling the gap in container security.

The rest of the paper is structured as follows. Section 2 reviews
past works assessing and enforcing container security, while Sec-
tion 3 discusses the reference scenario. Section 4 introduces the
architecture proposed in SecCo, and Section 5 presents the main
challenges and gaps to be addressed. Lastly, Section 6 concludes
the paper and outlines future research directions.

2 RELATEDWORK
Owing to the importance of the topic, a vast body of research
has started to emerge in the field of container security. However,
according to a recent survey [17], the main research trend is to
solve hazards by focusing on the development phase. As possible
examples, some works take advantage of vulnerability analysis
mechanisms [10],[13], while others deploy mitigation strategies
based on well-defined patterns or best practices [4],[8]. Another
popular approach to improve container security is built around
static analysis tools, which can be used to reveal the presence of
known CVEs in container images (see, e.g., [5], [6]). Unfortunately,
many de-facto standard mechanisms do not consider vulnerabilities
of application packages or third-party libraries and have a limited
detection rate [14]. In addition, many tools exploiting static analysis
techniques only consider a single container image, thereby missing
the evaluation of the possible interactions with the container engine
or the other microservices (either on local or remote scales).

For the specific case of Docker containers, the work in [16] deals
with an evaluation process taking advantage of the information on
the relationship of vulnerable software packages and documented
issues of Docker images. The outcome of the process can be fur-
ther exploited to prevent the diffusion of insecure Docker images.
Another possible mechanism relies upon the static analysis of Dock-
erfiles, especially to search for potential vulnerabilities of the used
software components and libraries [7].

On the other hand, the literature also proposes frameworks for
securing the CI/CD pipelines using the DevSecOps paradigm built
around the Docker ecosystem. As an example, the work in [1] in-
troduces a comprehensive solution that integrates existing security
analysis tools (e.g., SonarQube) to improve global security proper-
ties. Dynamic testing techniques can also be used to further advance
in performance. For instance, the work in [25] demonstrates how to

Figure 1: Typical DevSecOps scenario for cloud-native appli-
cations.

“orchestrate” three different automated dynamic testing techniques,
i.e., Web Application Security Testing, Security API Scanning, and
Behaviour Driven Security Testing. Another valuable approach is
based on the creation of specific profiles. To this aim, the work in
[18] exploits AppArmor to produce profiles to enforce access poli-
cies and mitigate risks caused by zero-day vulnerabilities. Access
control has also been used in more general settings. For instance, ap-
propriate access control rules are presented in [26], while the work
in [24] suggests the use of suitable cryptographic protocols (e.g.,
TLS and OAuth) to enhance the security of a container ecosystem.

A relevant case to consider to fully assess container security deals
with the orchestration phase, significantly improving cloud-native
applications. However, most cloud-oriented security platforms still
need a comprehensive process to enforce security within the stan-
dard operation flow. To this extent, the work in [12] showcases a
Secure Container Orchestrator engine exploiting hardware-based
trusted execution environment technologies for data protection,
i.e., Intel SGX. Instead, for the specific case of Kubernetes, the
work in [29] takes again advantage of AppArmor policies to secure
cloud-native deployments.

Alas, most efforts dealing with container security mainly aim
at reducing (part of) the attack surface or focusing on a specific
vulnerability, threat, use case, or subsystem. Consequently, to our
knowledge, we advocate for a comprehensive security analysis of
the entire container ecosystem, especially from image creation to
distribution processes.

3 REFERENCE SCENARIO
A typical DevSecOps scenario considered in Project SecCo is de-
picted in Figure 1. In more detail, the design of a cloud-native appli-
cation involves creating a set of containers, each hosting a different
component or functionality. The CI/CD team preliminary plans the
requirements for each container and starts the development phase.
The security properties of a container are tested by considering best
practices and guidelines. To this aim, suitable static and dynamic
methodologies are used to identify security issues, which should
be addressed before the delivery phase. The next step is the deploy-
ment of the containers implementing the cloud-native application.
This phase can be completed with a runtime monitoring activity,



SecCo: Automated Services to Secure Containers in the DevOps Paradigm RACS ’23, August 6–10, 2023, Gdansk, Poland

Figure 2: Overall architecture for SecCo and interfaces with the DevOps pipeline.

providing a vast array of feedback information. It is worth noticing
that, both test and runtime monitoring phases can further include
functional testing activities, e.g., static test cases and adherence
to performance indexes. Those feedback information can help the
CI/CD team to fix the code or re-organize part of the microservice
architecture.

However, automatizing security procedures in production-quality
or realistic scenarios requires facing several challenges simultane-
ously. First, guidelines, requirements, and tools should be clearly
outlined and built around some consistency properties. Second, the
identification and definition of vulnerabilities could be fragmented
and prone to the “viewpoints” of the teams involved in the CI/CD
process. For instance, a team could give more value to business
support constraints, whereas another could prefer to focus on data.



RACS ’23, August 6–10, 2023, Gdansk, Poland L. Verderame et al.

Third, the security analysis is traditionally a fine-grained procedure,
which could be difficult to abstract. Specifically, the security of vir-
tualized environments is primarily enforced on a per-container or
per-application basis. As a consequence, when in the presence of
large-scale or complex applications, ordinary “per-app” security
assessments exhibit severe scalability issues1. Moreover, modern ap-
plications could require to deploy and orchestrate a vast amount of
microservices, which could be also organized in different functional
tiers [11].

In the following, we will introduce the functional components
envisioned in SecCo to support automatically the pipeline depicted
in Figure 1 and to cope with the aforementioned limitations.

4 ARCHITECTURE
This section presents the most relevant architectural components
envisaged in SecCo and the main interfaces for interacting with the
DevOps pipeline. Figure 2 depicts the overall blueprint. As shown,
the main idea is to deploy new services to “automatize” the process
of securing containers at the basis of the modern microservice
paradigm. In more detail, the SecCo architecture implements the
following modules:

• Hardening: This module provides a set of containers hard-
ened according to security best practices, CI/CD team re-
quirements, and application-specific constraints.

• Compliance Verification: this module supports the CI/CD
teams in defining several security requirements (i.e., a secu-
rity policy) that the single container or the set of containers
must comply with at rest and runtime. First, SecCo must ver-
ify the compliance of the containers with the set of security
requirements that can be evaluated at rest (hereafter, the
static security policy). The compliance and verification pro-
cess must also clearly indicate how to customize/instrument
containers to support their runtime evaluation.

• Runtime Monitoring: this module provides a monitoring
service for the “online” evaluation of security requirements
and to reveal unexpected runtime interactions among con-
tainers (e.g., using anomaly detection capabilities).

In the following, the three components at the basis of SecCo will
be briefly discussed.

4.1 Hardening
The Hardening module (cf. Hardening in Figure 2) supports the
CI/CD team in exploiting hardened containers to develop the mi-
croservice application.

During the planning phase, the CI/CD team designs the appli-
cation’s architecture and identifies a set of containers that will be
used to host the required logic. Furthermore, the team can also
define constraints that insist on one or more containers. Examples
of constraints could include the supported and verified [3] net-
work protocols, exposed transport ports and services, or the type
of third-party libraries installed on the containers.

The module processes the set of requested containers and the
security constraints of the CI/CD team to check the availability of

1https://netflixtechblog.medium.com/scaling-appsec-at-netflix-6a13d7ab6043 [Last
Accessed: May 2023]

already-hardened containers from the Hardened Container data-
base. In this way, the CI/CD team can directly download already-
hardened, standard containers to avoid the burden of building a
container and securing it from scratch.

Instead, for any new container, the module triggers the Harden-
ing Service. First, the service checks for existing suitable containers
from external repositories (e.g., Docker Hub). Then, it performs
the threat and vulnerability assessments of the candidate contain-
ers to evaluate the primary attack vectors, identify their security
hazards/vulnerabilities, and determine the best strategies to patch
or mitigate the detected security issues. The patching phase can
include the modification of the container specification (e.g., the
Dockerfile of a Docker container) and the injection (cf. SecService
Injection) of on-demand security services and libraries that can pro-
vide the proper confidentiality, authentication, and authorization
functionality to the container, without the need for the container
to implement them on its own. Examples of security services in-
clude a TLS service (e.g., termination proxy), an Identity Provider,
and an OAuth module. Finally, the service executes the configura-
tion/customization procedures to release the hardened container.

4.2 Compliance Verification
The Compliance Verification module receives two inputs from the
CI/CD team: i) the set of hardened containers hosting the devel-
oped microservice application, and ii) the security policy of the
application scenario. Possible examples of security requirements
include the use of non-root users, restrictions of network traffic,
and limitations in gaining additional permissions at runtime2. The
module first analyzes the security policy to derive the security re-
quirements to be evaluated at rest (i.e., the Static security Policy -
SP) and runtime (Dynamic security Policy - DP).

To verify whether the containers comply with the SP, the Compli-
ance Verification module includes a service to infer the behavioral
model of a specific hardened container. The output of this phase is
expressed as a model describing all the (at least security-sensitive)
interactions of the container among its inner layers, with other
containers (either local or remote) and the container engine.

Depending on the SP, the behavioral models of containers can
be combined by the Model Graph Composer to obtain a model
describing the interactions of a set of containers. Then, the Static
Compliance Verifier exploits automated security verification tech-
niques (e.g., model-checking [2]) for verifying the model’s compli-
ance concerning the SP. If the verification is not conclusive or if the
model is not compliant (either partially or entirely) with the static
security policy, the module use risk-based methodologies (cf. Risk
Assessment Module in Figure 2) to automatically analyze — when
doable statically — the risk exposure of assets (e.g., container or
security sensitive operations in the graph) to the set of attackers
and threats in container-based applications. The objective is to
identify assets exposed to high levels of risk to allow prioritizing
the runtime monitoring activities.

2https://success.myshn.net/Skyhigh_Cloud_Infrastructure_(CNAPP)/CSPM/
Configuration_Audit/Configuration_Audit_Templates_and_Policies/Policy_
Templates_for_CSPM [Last Accessed: May 2023]

https://netflixtechblog.medium.com/scaling-appsec-at-netflix-6a13d7ab6043
https://success.myshn.net/Skyhigh_Cloud_Infrastructure_(CNAPP)/CSPM/Configuration_Audit/Configuration_Audit_Templates_and_Policies/Policy_Templates_for_CSPM
https://success.myshn.net/Skyhigh_Cloud_Infrastructure_(CNAPP)/CSPM/Configuration_Audit/Configuration_Audit_Templates_and_Policies/Policy_Templates_for_CSPM
https://success.myshn.net/Skyhigh_Cloud_Infrastructure_(CNAPP)/CSPM/Configuration_Audit/Configuration_Audit_Templates_and_Policies/Policy_Templates_for_CSPM


SecCo: Automated Services to Secure Containers in the DevOps Paradigm RACS ’23, August 6–10, 2023, Gdansk, Poland

4.3 Runtime Monitoring
Concerning Runtime Monitoring, this module verifies the compli-
ance of dynamic and static security policies. To this aim, it takes
advantage of a set of techniques that allow the runtime monitoring
of the various container interactions in a non-invasive way while
granting the minimum overhead in terms of performance decay of
the microservices.

This monitoring phase then aims at the definition of an approach
able to recognize and monitor the most relevant security-sensitive
interactions of containers, possibly in a transparent way. To this
end, techniques like code layering, kernel augmentation, and moni-
tor synthesis based on temporal logic can be adopted. In more detail,
the Runtime Monitoring module exploits a set of probes to verify
the behavior of the running containers against the DP and the part
of SP requiring a runtime evaluation. Also, the module includes an
anomaly detection service to evaluate “live” interactions among
containers and the underlying environment (e.g., hardware and
network components). The monitoring service is also expected to
support evaluating corner cases and unexpected runtime interac-
tions among containers, such as collusive attack templates. Finally,
the Runtime Monitoring module will include proper mechanisms
for automatic security enforcement, i.e., to tame an interaction
that violates some dynamic security policies while guaranteeing a
minimum impact on the application’s functioning.

5 CHALLENGES
To effectively implement all the services and techniques envisaged
in SecCo, a wide range of research and engineering challenges must
be faced.

The first question to be addressed concerns the definition of a
detailed architecture specification, mainly to find functional rela-
tionships. The complex blueprint depicted in Figure 2 accounts for
the interplay of many services and technologies, which could be dif-
ficult to have in real deployments or production-quality scenarios.
Hence, precise design and engineering efforts are mandatory.

In parallel, creating the advanced mechanisms envisioned in
SecCo accounts for an appropriate amount of research.

First, the design of an automated hardening pipeline requires
sound methodologies to ensure the identification of the main se-
curity issues of the involved containers and the definition of the
appropriate security hardening strategies. In more detail, this phase
requires a study of the primary attack vectors of containers and
security hazards, explicitly focusing on the interaction among the
containers composing cloud-native applications to define a compre-
hensive security knowledge base. Then, it must involve the design
of a vulnerability assessment methodology for containers exploit-
ing novel verification techniques and state-of-the-art approaches
to cope with the analysis of the composition of containers and their
mutual interactions.

Also, a prominent challenge of the compliance verification phase
consists in determining the proper formalisms to model the runtime
behavior of containers along with the definition — and automatic
identification — of relevant assets to protect, such as sensitive re-
sources and services. Similarly, a suitable specification language
shall be designed for expressing security policies on containers and

their interactions as well as the corresponding analysis methodolo-
gies — following a risk-based approach — to automatically check
the compliance of the containers with the policy and, if necessary,
prioritize the protection of the considered assets based on risk levels.
Consequently, it is paramount to define how to protect the assets
previously considered through the runtime monitoring and identifi-
cation of anomalous behaviors (e.g., interactions among containers
and between a container and its host through system calls).

Finally, the creation of the runtime monitoring module needs
suitable approaches to monitor the behavior of containers reliably.
In more detail, the monitoring mechanism must comply with the
strict performance requirements of the DevOps paradigm, i.e., little
or negligible overheads on the containerized application should be
experienced. At the same time, the monitoring techniques must be
sound and complete from a security standpoint, i.e., the monitor-
ing activity must cover all security-sensitive operations that the
containers can carry out. Even if runtime monitoring of containers
and software environment is an emerging and open problem, a
promising approach concerns the extended Berkeley Packet Filter
(eBPF) [20]. A successful runtime monitoring service should also
be able to check the adherence of a running container against a set
of security policies. In parallel, information gathered at runtime
can be used to implement anomaly detection functionalities. To
this aim, artificial intelligence can be considered a technological
enabler to identify whether the container deployment is the target
of external attacks or if used to implement collusive or offensive
schemes [30].

6 CONCLUSIONS AND FUTUREWORK
In this paper, we presented the founding ideas of the SecCo, which
is aimed at providing a complete pipeline for securing containers at
the basis of many modern microservice applications. The main goal
of our framework is to allow developers and IT operators to only
focus on the integration and delivery processes without considering
tasks related to cybersecurity aspects. The three main modules
envisioned in SecCo, i.e., hardening, compliance verification, and
runtime monitoring, can be “composed” to fully support the life-
cycle of containerized applications.

Future works aim to perform various research activities, allowing
full architecture development. For instance, suitable threat mod-
eling is needed to enable the hardening and configuration of con-
tainers. Besides, efficient data gathering techniques [22],[21] are
needed to not impact run-time on containers’ performances while
feeding AI-based models to spot anomalous working conditions or
potential attacks.

ACKNOWLEDGMENTS
This work was partially supported by project SERICS (PE00000014)
under the NRRP MUR program funded by the EU - NGEU.

REFERENCES
[1] Manish Kumar Abhishek and D. Rajeswara Rao. 2021. Framework to Secure

Docker Containers. In 2021 Fifth World Conference on Smart Trends in Systems
Security and Sustainability (WorldS4). 152–156.

[2] Alessio Merlo Luca Verderame Alessandro Armando, Gabriele Costa. 2014. En-
abling BYOD through secure meta-market. 219–230. https://doi.org/10.1145/
2627393.2627410

https://doi.org/10.1145/2627393.2627410
https://doi.org/10.1145/2627393.2627410


RACS ’23, August 6–10, 2023, Gdansk, Poland L. Verderame et al.

[3] Roberto Carbone Alessio Merlo Davide Balzarotti Alessandro Armando, Gian-
carlo Pellegrino. 2012. From model-checking to automated testing of security
protocols: Bridging the gap. 7305 LNCS (2012), 3–18. https://doi.org/10.1007/978-
3-642-30473-6_3

[4] Nera Besic. 2021. Microservices Security: Challenges and Best Practices. https:
//brightsec.com/blog/microservices-security/. (2021). Accessed: July 12, 2023.

[5] Nera Besic. 2023. Container Vulnerability Scanning. https://anchore.com/
container-vulnerability-scanning/. (2023). Accessed: July 12, 2023.

[6] Clair. 2023. Vulnerability static analysis for containers. https://github.com/quay/
clair. (2023). Accessed: July 12, 2023.

[7] Thien-Phuc Doan and Souhwan Jung. 2022. DAVS: Dockerfile Analysis for
Container Image Vulnerability Scanning. CMC-COMPUTERS MATERIALS &
CONTINUA 72, 1 (2022), 1699–1711.

[8] Docker. 2019. Security best practices. https://docs.docker.com/develop/security-
best-practices/. (2019). Accessed: July 12, 2023.

[9] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: yes-
terday, today, and tomorrow. Present and ulterior software engineering (2017),
195–216.

[10] Ana Duarte and Nuno Antunes. 2018. An empirical study of docker vulnerabilities
and of static code analysis applicability. In 2018 Eighth Latin-American Symposium
on Dependable Computing (LADC). IEEE, 27–36.

[11] Christof Ebert and Lorin Hochstein. 2023. DevOps in Practice. IEEE Software 40,
1 (2023), 29–36. https://doi.org/10.1109/MS.2022.3213285

[12] Gabriel P. Fernandez and Andrey Brito. 2019. Secure Container Orchestration in
the Cloud: Policies and Implementation. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing (SAC ’19). Association for Computing Machin-
ery, New York, NY, USA, 138–145. https://doi.org/10.1145/3297280.3297296

[13] Olivier Flauzac, Fabien Mauhourat, and Florent Nolot. 2020. A review of native
container security for running applications. Procedia Computer Science 175 (2020),
157–164.

[14] Omar Javed and Salman Toor. 2021. An evaluation of container security vulnera-
bility detection tools. In Proceedings of the 2021 5th International Conference on
Cloud and Big Data Computing. 95–101.

[15] Bhupinder Kaur, Mathieu Dugré, Aiman Hanna, and Tristan Glatard. 2021. An
analysis of security vulnerabilities in container images for scientific data analysis.
GigaScience 10, 6 (2021), giab025.

[16] Soonhong Kwon and Jong-Hyouk Lee. 2020. DIVDS: Docker Image Vulnerability
Diagnostic System. IEEE Access 8 (2020), 42666–42673. https://doi.org/10.1109/
ACCESS.2020.2976874

[17] Tiina Leppänen, Anne Honkaranta, and Andrei Costin. 2022. Trends for the
DevOps Security. A Systematic Literature Review. In International Symposium on
Business Modeling and Software Design. Springer, 200–217.

[18] Fotis Loukidis-Andreou, Ioannis Giannakopoulos, Katerina Doka, and Nectarios
Koziris. 2018. Docker-sec: A fully automated container security enhancement
mechanism. In 2018 IEEE 38th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 1561–1564.

[19] Lele Ma, Shanhe Yi, and Qun Li. 2017. Efficient service handoff across edge
servers via docker container migration. In Proceedings of the Second ACM/IEEE
Symposium on Edge Computing. 1–13.

[20] Sebastiano Miano, Fulvio Risso, Mauricio Vásquez Bernal, Matteo Bertrone, and
Yunsong Lu. 2021. A framework for eBPF-based network functions in an era
of microservices. IEEE Transactions on Network and Service Management 18, 1
(2021), 133–151.

[21] M. Migliardi and A. Merlo. 2011. Modeling the energy consumption of distributed
IDS: A step towards Green security. 1452–1457.

[22] M. Migliardi and A. Merlo. 2013. Improving energy efficiency in distributed
intrusion detection systems. 19, 3 (2013), 251–264. https://doi.org/10.3233/JHS-
130476

[23] Rene Millman. 2020. Most Docker container images have critical
flaws. https://www.itpro.com/development/containers/357984/most-docker-
container-images-have-critical-flaws. (2020). Accessed: July 12, 2023.

[24] Caterina Munoz, Francisco Montoto, Francisco Cifuentes, and Javier Bustos-
Jiménez. 2017. Building a threshold cryptographic distributed HSM with docker
containers. In 2017 CHILEAN Conference on Electrical, Electronics Engineering,
Information and Communication Technologies (CHILECON). IEEE, 1–5.

[25] Thorsten Rangnau, Remco v Buijtenen, Frank Fransen, and Fatih Turkmen. 2020.
Continuous security testing: A case study on integrating dynamic security testing
tools in ci/cd pipelines. In 2020 IEEE 24th International Enterprise Distributed Object
Computing Conference (EDOC). IEEE, 145–154.

[26] Sari Sultan, Imtiaz Ahmad, and Tassos Dimitriou. 2019. Container security: Issues,
challenges, and the road ahead. IEEE access 7 (2019), 52976–52996.

[27] Junzo Watada, Arunava Roy, Ruturaj Kadikar, Hoang Pham, and Bing Xu. 2019.
Emerging trends, techniques and open issues of containerization: a review. IEEE
Access 7 (2019), 152443–152472.

[28] Ann Yi Wong, Eyasu Getahun Chekole, Martín Ochoa, and Jianying Zhou. 2021.
Threat modeling and security analysis of containers: A survey. arXiv preprint
arXiv:2111.11475 (2021).

[29] Hui Zhu and Christian Gehrmann. 2022. Kub-Sec, an automatic Kubernetes
cluster AppArmor profile generation engine. In 2022 14th International Conference
on COMmunication Systems & NETworkS (COMSNETS). IEEE, 129–137.

[30] Marco Zuppelli, Matteo Repetto, Andreas Schaffhauser, Wojciech Mazurczyk, and
Luca Caviglione. 2022. Code Layering for the Detection of Network Covert Chan-
nels in Agentless Systems. IEEE Transactions on Network and Service Management
19, 3 (2022), 2282–2294.

https://doi.org/10.1007/978-3-642-30473-6_3
https://doi.org/10.1007/978-3-642-30473-6_3
https://brightsec.com/blog/microservices-security/
https://brightsec.com/blog/microservices-security/
https://anchore.com/container-vulnerability-scanning/
https://anchore.com/container-vulnerability-scanning/
https://github.com/quay/clair
https://github.com/quay/clair
https://docs.docker.com/develop/security-best-practices/
https://docs.docker.com/develop/security-best-practices/
https://doi.org/10.1109/MS.2022.3213285
https://doi.org/10.1145/3297280.3297296
https://doi.org/10.1109/ACCESS.2020.2976874
https://doi.org/10.1109/ACCESS.2020.2976874
https://doi.org/10.3233/JHS-130476
https://doi.org/10.3233/JHS-130476
https://www.itpro.com/development/containers/357984/most-docker-container-images-have-critical-flaws
https://www.itpro.com/development/containers/357984/most-docker-container-images-have-critical-flaws

	Abstract
	1 Introduction
	2 Related Work
	3 Reference Scenario
	4 Architecture
	4.1 Hardening
	4.2 Compliance Verification
	4.3 Runtime Monitoring

	5 Challenges
	6 Conclusions and Future Work
	Acknowledgments
	References



