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Neural oscillations during motor 
imagery of complex gait: an HdEEG 
study
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Gaia Bonassi3, Giovanna Lagravinese1,4, Alessandro Vato5, Dante Mantini2, 
Laura Avanzino4,6* & Elisa Pelosin1,4

The aim of this study was to investigate differences between usual and complex gait motor imagery 
(MI) task in healthy subjects using high-density electroencephalography (hdEEG) with a MI protocol. 
We characterized the spatial distribution of α- and β-bands oscillations extracted from hdEEG signals 
recorded during MI of usual walking (UW) and walking by avoiding an obstacle (Dual-Task, DT). We 
applied a source localization algorithm to brain regions selected from a large cortical-subcortical 
network, and then we analyzed α and β bands Event-Related Desynchronizations (ERDs). Nineteen 
healthy subjects visually imagined walking on a path with (DT) and without (UW) obstacles. 
Results showed in both gait MI tasks, α- and β-band ERDs in a large cortical-subcortical network 
encompassing mostly frontal and parietal regions. In most of the regions, we found α- and β-band 
ERDs in the DT compared with the UW condition. Finally, in the β band, significant correlations 
emerged between ERDs and scores in imagery ability tests. Overall we detected MI gait-related α- and 
β-band oscillations in cortical and subcortical areas and significant differences between UW and DT 
MI conditions. A better understanding of gait neural correlates may lead to a better knowledge of 
pathophysiology of gait disturbances in neurological diseases.

Gait is no longer considered a simple and automatic motor task, but it requires several non-motor functions (e.g., 
attention, visuo-spatial abilities). The contribution of these non-motor functions to locomotion is particularly 
evident in complex walking situations (e.g., avoiding hazards or obstacles or cognitive load that demands atten-
tion, planning and dual tasking1, where gait must be continuously adapted based on the environmental factors2. 
Beside a precise control over the execution of movement, gait modifications require an appropriate planning of 
the movement to be made. Indeed, when hazards or obstacles occur, humans have to determine how to modify 
in advance gait features, such as speed, step length, step height, in order to step over those obstacles while main-
taining smooth forward progress and postural stability. Therefore, a correct planning of such precise locomotor 
movements is crucial for an efficient and safe gait during everyday circumstances and to prevent falls. This is one 
of the reasons why in the last decade the understanding of neural control of usual and complex gait in humans 
received considerable attention.

To date, to investigate the neural processes associated with gait control, several imaging (e.g., functional mag-
netic resonance imaging, fMRI) and neurophysiological techniques (e.g., near-infrared spectroscopy3, nuclear 
neuroimaging4 and electroencephalography (EEG)5 have been used in combination with motor imagery (MI) 
paradigms.

Indeed, MI, defined as the mental simulation or rehearsal of an action without its actual execution6 is widely 
used for studying brain activity during walking, given the overlap of neural networks during simulated and 
actual gait7–9. Briefly, MI can be performed via two strategies: (i) visual MI (vMI), during which the subject “sees” 
movement execution by an internal or an external perspective and (ii) kinesthetic MI (kMI), which implies the 
feeling of the simulated action10.
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Regarding usual walking, results from numerous studies11–16 are consistent in demonstrating that several 
cortical (dorsal premotor cortex, superior parietal lobules, posterior rostral cingulate zone) and subcortical (basal 
ganglia, mesencephalic locomotor region, and cerebellum) regions are activated during gait MI.

In contrast to usual gait, little is known about the cortical contributions of complex gait tasks in healthy 
subjects. Two studies17,18 investigated possible differences in neural activation in healthy subjects during MI of 
simple (i.e., to imagine walking on a smooth path) and difficult (i.e., to imagine walking on irregular paths) gait 
tasks with fMRI. Overall, results showed a greater activation of cortical (superior temporal lobules, parietal, and 
frontal areas) and subcortical areas (right hippocampus and basal ganglia) during complex gait with respect 
to simple walking task. Later, using functional near-infrared spectroscopy (fNIRS)19–21, the specific role of the 
prefrontal cortex (PFC) during complex gait has been investigated in healthy young and old participants. So far, 
results are still controversial, however most of the studies reported an increase of PFC activity during complex 
gait tasks in healthy young subjects and a lower PFC activity in older adults who had difficulties in MI ability.

To our knowledge, no study has yet investigated differences between usual and complex gait motor imagery 
task in healthy subjects using high-density electroencephalography (hdEEG). In addition to neuroimaging 
approaches, which have highlighted the structural components of the cortical network engaged during complex 
walking, EEG can add interesting information about brain oscillations devoted to gait control, thus helping to 
better understand the functioning of this network. Furthermore, hdEEG has a greater spatial resolution compared 
to standard EEG and will allow us to gain information on the sources of the electrical oscillations underpinning 
MI processing with an optimal temporal resolution22.

The primary aim of this study was to evaluate the neural correlates of gait MI, looking at the differences in the 
electrophysiological response, and more specifically in the Event Related Desynchronizations (ERDs), among 
usual (UW) and dual-task (DT) walking conditions (i.e., obstacle crossing performance) in a population of 
healthy subjects. Furthermore, we assessed possible relationships between the activation of brain areas during MI 
tasks and the participants’ imagery ability. Precisely, we focused on analyzing changes in α and β bands, which 
have been shown to be the predominant oscillations involved in motor preparation, execution or imagination23. 
To this end, we applied a custom developed pipeline for performing source localization from hdEEG data. This 
pipeline is able to detect multiple brain networks that are spatially similar to those obtained from fMRI data24–27.

Methods
Subjects.  A total of 19 healthy adults (11 females) participated in the study at the Department of Neuro-
sciences (DINOGMI) of the University of Genoa. The age range was 20 to 49 years (mean ± SD: 34.89 ± 12.07). 
Written informed consent was obtained from all participants prior to the experimental session. Subjects who 
had experience with MI techniques or MI training were excluded from participation. None of the volunteers had 
any history of neurological diseases or was being treated with any medication that affected the central nervous 
system. The study conforms to the standard of the Declaration of Helsinki and was approved by the institutional 
ethical committee (Comitato Etico Regionle (CER) Liguria Ref.1293 of September 12th, 2018). Demographic 
characteristics are reported in Table 1.

Experimental design and procedure.  Baseline assessment.  To evaluate MI ability, we used two scales: 
(i) The Kinesthetic and Visual Imagery Questionnaire (KVIQ)28 and (ii) the Vividness of Movement Imagery 
Questionnaire-2 (VMIQ)29. The KVIQ evaluates the subject’s ability to mentally represent movements per-
formed with all body segments. A total of 10 actions are assessed with both the visual and the kinesthetic sub-
scales on a five-point ordinal scale, with a total score range from 0 to 50. The higher the score, the better is the 
subjective imagery ability. The VMIQ29 was designed to assess the vividness of imagery from three perspectives: 
internal visual imagery, external visual imagery, and kinesthetic imagery30,31. We selected this scale because all 
the 12 imagined actions are related to gait performance or lower-limb movements. The overall score ranges from 
12 to 60. The lower the score, the better is the individual’s perceived imagery ability.

Motor imagery task.  After the baseline assessment, participants were asked to sit down in front of a computer 
screen where two pictures representing a straight pathway with no obstacles (Fig. 1A) and a straight pathway 
with a hurdle positioned half-way on the right side (Fig. 1B) were displayed. In both images two red lines were 
placed at the beginning and at the end of the walking pathway. Participants were required to perform two MI 
tasks: (i) to imagine walking on the pathway with no obstacles (Usual Walking; UW); (ii) to imagine walking 

Table 1.   Demographic characteristics and behavioural data (mean ± standard deviation). KVIQ 
Kinesthetic and Visual Imagery Questionnaire, VI Visual Imagery, VMIQ Vividness of Movement Imagery 
Questionnaire-2.

Demographic characteristics and behavioral data

Gender (female) 11 (57.89%)

Age (years) 34.89 ± 12.07

Education (years) 19.11 ± 2.19

KVIQ-VI (score) 43.33 ± 6.29

VMIQ-External VI (score) 24.17 ± 9.87

VMIQ-Internal VI (score) 21.89 ± 9.00
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on the pathway and crossing the hurdle (Dual Task, DT). During both MI tasks, subjects were asked to visu-
ally imagine (i.e., vMI) themselves walking at their preferred speed starting from the first red line and stopping 
at the second red line (Fig. 1A). For the trials in which participants were asked to overcome an obstacle it was 
specified to visually imagine stepping over the obstacle with their right leg (Fig. 1B). Before each trial, subjects 
were instructed to press a push-button, start the MI performance at the “GO” of a 4-s audio countdown (“3, 2, 
1, GO”) and then press again the button immediately after having passed the second red line. We selected vMI 
because we were interested in better understanding “higher level processes” involved in gait motor control (such 
as navigation, planning sequential movements to overcome an obstacle) and because, for this specific task, vMI 
is the strategy most used in real life situation. A recent paper32 investigated the characteristics of kMI and vMI by 
using connectivity patterns and showed that the primary somatosensory cortex was significantly more activated 
and centralized in the kMI than in vMI, confirming the specificity of kMI in evoking sensory information of a 
given movement or action. In contrast, connectivity of premotor cortex was significantly higher in vMI than in 
kMI, supporting the specificity of vMI in activating areas involved in the planning and preparation of the actual 
movements. The vMI protocol was performed in a quiet room and participants kept their eyes open during the 
MI tasks. Each MI task (UW and DT) consisted of 30 trials grouped in 3 blocks (10 trials each) for a total of 60 
trials. A 3 s fixation cross was presented on the screen among each trial to avoid mental fatigue. The order of the 
blocks was randomly assigned, and the duration of the entire experiment was between 25 and 35 min.

EEG procedures.  Data recording.  Brain activity was recorded using a hdEEG (128-channel) system (Brain 
Products GmbH, Munich, Germany) with active wet (gel) electrodes set according to the 5–10 system33. A trig-
ger box was connected to the system for handling external signals. HdEEG data were recorded at 1000 Hz, using 
the electrode FCz as physical reference, as recommended by the manufacturer, to better separate and control 
the contribution and the signal quality of the reference channel. Horizontal and vertical electrooculographic 
(hEOG/vEOG) signals were also collected to account for ocular-related artifacts in offline EEG analyses. Elec-
trode impedance was checked with the Brainvision Recorder software (Brain Products, https://​brain​vision.​com/​
produ​cts/​recor​der/) and kept below 5 kΩ throughout the acquisition.

Data processing and source localization.  HdEEG data were analyzed using an automated pipeline introduced 
in previous studies24,26,34,35 and consisting in three main steps: (i) EEG signal preprocessing, (ii) realistic head 
model creation, (iii) source reconstruction.

(i) EEG signal preprocessing Raw data acquired on the scalp were first processed to identify and correct 
bad channels, by interpolating their time course from the neighboring channels. Between 0 and 26 channels 
(median = 7; IQR = 7) mostly located in the frontal part of the EEG cap were corrected in each participant. Then, 
sensors signals were filtered in the band (1–80 Hz) using EEGLab (https://​sccn.​ucsd.​edu/​eeglab). Ocular and 
muscular artifacts were rejected using the Independent Component Analysis (ICA)26. In particular, each IC was 
classified according to three parameters: the correlation of the power of the IC with the power of vEOG and 
hEOG signals; the coefficient of determination obtained by fitting the IC power spectrum with a 1/f function; 
the kurtosis of the IC time-course24,27. The thresholds for these parameters were set in accordance with previous 
studies24,36. The time courses of the ICs classified as bad were reconstructed at the channel level and then sub-
tracted from the hdEEG data. The number of artifactual ICs greatly varied among the datasets, in median 51.5 
components (IQR = 46) were classified as bad and consequently removed from the channel data. Finally, clean 
hdEEG recordings were re-referenced using the average re-reference approach37.

(ii) Realistic head model creation. The leadfield matrix required in the source activity reconstruction step was 
calculated from a head model built using a template MR head image and template electrode positions24,25,34. The 
MR image was segmented in 12 layers38 and the conductivity value of each layer was defined based on previous 
literature39. The matrices describing the transformation between the MNI and the participant’s head space were 
calculated to account for the individual variability in the EEG positions and allow the statistical comparison 
between results obtained for different subjects. Template electrode positions were rigidly co-registered to the 

Figure 1.   Motor imagery tasks. (A) Usual Walking (UW) condition. The picture shows a straight pathway; (B) 
Dual-Task (DT) condition. The picture shows a straight pathway with a hurdle positioned half-way on the right 
side. The black arrow indicates the task progression. The first red line (GO!) indicates the starting point of MI 
task; the second red line indicates the end of the MI task (STOP). The grey box (Baseline) indicates the time 
window selected as ERDs baseline analysis. The two grey boxes (UW and DT ERDs analysis) indicate the time 
window selected for ERDs analysis during UW and DT conditions.

https://brainvision.com/products/recorder/
https://brainvision.com/products/recorder/
https://sccn.ucsd.edu/eeglab
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head contour, defined as the outer layer of the skin compartment. Dipoles corresponding to cortical, subcorti-
cal and cerebellar gray matter sources were positioned according to a regular 6 mm grid. Then, the numerical 
approximation of the whole-head volume conduction model was calculated as a finite element model40 by using 
SimBio (https://​www.​mrt.​uni-​jena.​de/​simbio). Finally, based on this volume conduction model, the leadfield 
matrix expressing the scalp potentials corresponding to each source configuration was generated.

(iii) Source reconstruction. Artifact-free re-referenced scalp hdEEG data and the realistic head-model were 
provided as input to the exact low-resolution brain electromagnetic tomography algorithm (eLORETA)41, in 
order to estimate brain activity for each voxel within the source space. The eLORETA method is an optimized 
version of the weighted minimum norm inverse solution, where the weights are unique and the inverse solution 
provides exact localization for any point source in the brain.

ERD analysis.  For the analysis, we selected 66 regions of interest (ROIs) included in the AAL brain atlas42, 
defined in MNI space, each corresponding to one of the cortical areas that have been most commonly associated 
with MI of walking8,9,11,13,15,17,18,43–46. The list of ROIs corresponding to each mask is reported in the supplemen-
tary materials (Table S1). Using the matrix describing the transformation between the MNI and the participant’s 
head space, calculated in the previous steps, ROI coordinates were transformed into individual space. All voxels 
included in a spherical region centered in the ROI coordinates, with 6 mm radius, were considered to repre-
sent the ROI activity. Specifically, such activity was described by the principal component of these voxels’ time 
courses and was analyzed in the α (8 ÷ 13 Hz) and the β (13 ÷ 30 Hz) bands separately. The frequency dependent 
desynchronizations (ERDs) were assessed using source reconstructed data. A time–frequency decomposition 
was performed on each voxel time-course by means of the Short-Time Fourier Transform, with moving Ham-
ming window of 2 s and 50% overlap between consecutive windows. The resulting spectrogram was generated in 
the frequency range 1 ÷ 80 Hz, at steps of 1 Hz and epoched with a time window of 4 s.

To run ERD analysis, the mean time required to complete the imagery task, for each participant, was calcu-
lated for usual and complex gait separately. Then, a 4-s epoch (+ 2 s; − 2 s) was defined based on the midpoint of 
each imagery task. This epoch was selected because, prior to the experiment, with a mental chronometry test, 
we verified that in all participants the obstacle crossing occurred at about half the time needed to complete DT 
imagery task. Spectrogram epochs of usual and DT MI tasks were then averaged separately. Finally, the ERD 
intensity was calculated as the percentage value of the relative difference between the epoch power at a given time 
point and the average baseline power for both α and β bands (Zhao et al.26 or ERS

ERD(f ,t)
=

P(f ,t)−PB(f )
PB(f )

× 100% ). We 
chose as baseline the 2000 ms preceding the MI task.

For each condition, ERD spatial maps were created averaging the time–frequency values corresponding to the 
relevant frequencies within the same range. ERD maps reconstructed in individual space were then converted to 
MNI space according to the transformation defined on the template MR head image24,25,34.

Statistical analysis.  To assess individual ERD intensity changes induced by each MI task, a one-sample 
t-test between rest and usual walking and rest and dual task MI conditions was performed on the corresponding 
maps. This analysis was run separately for each ROI and for each frequency band. The significance level p was 
corrected for multiple comparisons according to the FDR procedure47 (pFDR < 0.05).

To assess the significant difference between the two MI conditions (UW vs DT) for each participant, frequency 
band and ROI, we first calculated the number of the desynchronized grey matter voxels [ dsv(i) ] as the number 
of negative voxels within the i-th ROI mask in the individual desynchronization map. Then, the dsv(i) values 
were normalized on the total number of voxels within the corresponding mask: ds%(i) = 100 ·

dsv(i)∑
vox(maski)

48. 
For each ROI, a one-sample one-sided paired t-test was used to test whether the number of desynchronized 
voxels was higher in the DT condition compared to the UW. All the results were corrected for age. Pearson’s 
correlation coefficients (R) were used to identify a possible relationship between motor imagery ability (i.e., 
KVIQ and VMIQ visual imagery scores) and cortical activity changes (i.e., ds%(i) ) in DT MI task. Furthermore, 
a multivariate linear regression analysis was run to evaluate which brain region contributes more to the predic-
tion of MI ability (KVIQ visual subscale, VMIQ-External VI and VMIQ-Internal VI scores). The significance 
level of the t-test was set to p < 0.05 and to pFDR < 0.05 after correction for multiple comparisons47. All analyses 
were conducted with MATLAB (R2018a, Math-Works, Natick, MA, USA).

Results
Participants’ demographic, KVIQ and VMIQ sub-scores are summarized in Table 1. The mean education level 
was 19.11 ± 2.19 years (range 14–21). To specifically measure the visual imagery (VI) ability of each participant 
we calculated the mean score of the KVIQ visual subscale and of the VMIQ part 1 (Internal VI) and part 2 
(External VI) separately. The mean (± SD) sub-scores of the KVIQ visual subscale and of the VMIQ-External 
VI and VMIQ-Internal VI were 43.33 ± 6.29, 24.17 ± 9.87, and 21.89 ± 9.00 respectively.

Group‑level analysis.  All the activations listed below for both the UW and the DT MI conditions resulted 
to be significant after correction for multiple comparisons (pFDR < 0.05).

ERDs during motor imagery of usual and dual task walking with respect to rest.  As shown in Fig. 2 both usual 
and DT gait MI led to significant activations in several cortical areas involved in MI. The areas that showed 
significant desynchronization in α and β bands during both gait imagery tasks (usual and dual task gait) with 
respect to rest are listed below.

https://www.mrt.uni-jena.de/simbio
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•	 Regarding frontal areas, for usual and DT gait MI both α and β bands showed a significant desynchronization 
in the superior frontal regions and in the medial frontal regions bilaterally, in the left middle frontal gyrus, 
in the supplementary motor areas (SMAs), in the right precentral, and in the paracentral lobule bilaterally. 
Moreover, in β-band only (panels C, D), during both motor imagery tasks, we found a significant desynchro-
nization of the right middle frontal region, and of the left precentral area with respect to rest condition.

•	 In parietal regions, we found significant α and β bands activation in the right postcentral region, in the right 
superior parietal lobule, in the right inferior parietal gyrus, in the precuneus bilaterally and in the right 
angular gyrus for both UW and DT motor imagery tasks respect to rest. For both tasks, α desynchronization 
in the right supramarginal gyrus and β desynchronization in the left postcentral area were also observed 
(panels A, B).

•	 In the temporal and occipital regions, during both MI tasks, significant α and β bands desynchronizations 
were found in the right superior occipital region whereas in the right middle occipital cortex, in the right 
cuneus and in the middle part of the right temporal cortex significant ERDs were observed in α-band only.

•	 Finally, during UW and DT gait MI tasks both α and β bands ERDs were seen in the right middle and pos-
terior cingulate cortices, whereas significant desynchronizations in the left middle and posterior cingulate 
regions and in the left insular cortex were seen only for β-band.

Below, the areas that showed significant desynchronization in α and β bands specifically during usual gait MI 
or dual task gait MI with respect to rest.

•	 DT motor imagery task was characterized by a significant β ERD increase in the supramarginal gyrus bilat-
erally and in the left superior temporal region (panel D) and by a significant α ERD increase in the left pre-
central and postcentral areas, in the left superior and inferior parietal regions, in the left cuneus and in the 
middle and posterior portions of the left cingulate cortex with respect to rest (panel B).

•	 UW motor imagery task was characterized by β ERD increase in the left superior parietal region, in the left 
anterior cingulate cortex, and, subcortically, in the left caudate and by α ERD increase in the right superior 
temporal cortex with respect to the rest condition (panel C).

Subject‑level analysis.  Usual walking vs dual task imagery conditions.  The comparison of the % of de-
synchronized grey matter voxels (i.e., ds%) between the two gait imagery tasks was performed for cortical areas 
showing significant desynchronization in α and β bands (Table 2). We found that several areas of the motor im-
agery network were more largely desynchronized, in both α and β-bands during imagination of DT gait respect 
to usual walking. Particularly, statistical analysis revealed a larger β-band desynchronization during DT gait 
compared to usual gait imagery tasks in the following brain regions: right precentral (p = 0.048), right superior 
and inferior parietal gyri (p = 0.04 and p = 0.01 respectively), and bilateral precuneus (left p = 0.04; right p = 0.02). 
Furthermore, increased α-band activity in the left postcentral gyrus (p = 0.01) and in the left inferior parietal 
area (p = 0.04) were found during DT gait task with respect to usual walking condition. Finally, no area showed 

Figure 2.   Group-level analysis: significant ERDs (t-values, pFDR < 0.05) in α and β bands in the two imagery 
conditions.
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a higher percentage of desynchronized grey matter voxels during usual walking with respect to DT gait imagery 
tasks. The resulted reported above did not remain significant after FDR correction.

Correlations.  MI ability tests and ds%(i).  Correlations results are shown in Fig. 3. When the percentage of 
desynchronized grey matter voxels (i.e., ds%(i)) was correlated with the imagery ability scores, significant cor-
relations during complex gait MI task (DT) in the β frequency band were observed. Specifically, we found signifi-
cant correlations between KVIQ score and ds% of the right precentral (r = 0.550, p = 0.018) and superior parietal 
areas (r = 0.480, p = 0.044), and of the bilateral precuneus (left: r = 0.65, p = 0.004; right: r = 0.635, p = 0.005). The 
multivariate linear regression analysis revealed that the ds% of the left precuneus was the only independent 
variable to explain KVIQ score (Beta 0.65, p = 0.004, IC 0.247–1.051). Finally, a negative significant correlation 
between left precuneus ds% and the VMIQ-E score (r = − 0.494, p = 0.037) was also found.

Discussion
The purpose of this study was to better investigate the neural substrate of complex walking using a MI paradigm 
in a sample of healthy adults’ population. To this aim, we compared temporal dynamics and spatial location of 
α-band and β-band neural oscillations associated to usual and dual-task visual gait motor imagery measured 
with hdEEG.

In line with previous studies11–21, during usual gait MI task, we found significant activation of several frontal, 
parietal, temporal and occipital areas, and cingulate cortex. As the task became more difficult (i.e., dual-task 
MI condition) an increased activity of specific brain regions in both α and β bands was also observed. Finally, 
exploring possible relationships between motor imagery perceived ability and changes in neural activation, the 
percentage of desynchronized grey matter voxels in β-band in the left precuneus was the only independent vari-
able to explain KVIQ score whereas the percentage of desynchronized grey matter voxels in β-band in the left 
precuneus correlated with VMIQ-E score.

First, both gait imagery tasks activated a large cortical-subcortical network encompassing mostly frontal, 
parietal, temporal, occipital, and cingulate cortex. Indeed, for both tasks, we found ERDs both in α and β bands 
in the superior and medial frontal regions bilaterally, left middle frontal gyrus, SMAs, right precentral and post-
central areas and paracentral lobules, bilateral precuneus, right superior and inferior parietal areas, the right 

Table 2.   Differences in ds% in the two imagery conditions. Reported p values refer to DT > UW comparison. 
ds% = normalized % of desynchronized voxels within the corresponding mask, UW = Usual Waking imagery, 
DT = Dual Task imagery, punc = uncorrected p values, pFDR = FDR corrected p values, L = left, R = right.

Mask x y z ds% UW ds% DT punc pFDR t-value

Beta band

Precentral R 41  − 8 52 59.13 (14.69) 63.90 (15.79) 0.048 0.38 − 1.75

Parietal Sup R 26 − 59 62 49.59 (19.12) 57.20 (9.58) 0.04 0.38 − 1.89

Parietal Inf R 46  − 46 50 66.72 (25.46) 83.86 (6.42) 0.01 0.31 − 2.79

Precuneus L  − 7  − 56 48 65.62 (23.35) 74.11 (15.05) 0.04 0.38 − 1.80

Precuneus R 10  − 56 44 59.52 (22.93) 69.75 (10.39) 0.02 0.38 − 2.27

Alpha band

Postcentral L  − 42  − 23 49 50.23 (27.78) 63.68 (21.30) 0.01 0.47 − 2.38

Parietal Inf L − 43 − 46 47 56.18 (31.02) 69.39 (22.41) 0.04 0.57 − 1.83

Figure 3.   β band correlations between MI ability test scores and ds%.
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angular gyrus, occipital areas and the right cingulate cortex compared with the rest condition. Furthermore, 
during both MI task execution, we observed an increased activation in β-band in the right middle frontal gyrus 
and in the left precentral, in the left postcentral area, in the left middle and posterior cingulate regions and in 
the left insular cortex and an increased ERD in α -band in the right middle occipital, right cuneus, and right 
middle temporal regions.

Concomitant α and β desynchronizations in sensorimotor areas have been consistently reported in previous 
studies49–51. Alpha oscillations are classically considered to reflect an “idling” cortical state that is interrupted by 
motor or sensory processes52,53, resulting in alpha ERD. However, it has been also suggested that α may index the 
active inhibition of sensory information during internally directed attentional tasks such as mental imagery54. 
For example, in order to facilitate mental imagery, one needs to inhibit or ‘reject’ incoming sensory information. 
Ray and Cole55,56 found increased α power in rejection tasks such as mental imagery and arithmetic especially at 
parietal sites. ERDs in α band only, observed for UW and DT gait imagery task in a number of parietal, temporal 
and occipital regions can be interpreted either as reflecting possible interruption of the resting state and as active 
inhibition of sensory information and multimodal sensory processing.

Beta ERD is seen in motor planning around movement onset, both for motor execution and imagination57–59. 
β ERD may indicate that a large part of the sensorimotor network is engaged in both the imagery tasks. Concern-
ing MI tasks, the activation of frontal areas (such as SMA) has been related to the mental representation of motor 
action per se60. Furthermore, it has also been shown that during mental simulation of walking, the activation of 
SMA and pre-SMA was specifically associated with gait initiation and with the maintenance of proper sequenc-
ing and timing of limb movements61. The parietal cortex, particularly the precuneus, was shown to be involved 
with visuo-spatial processing and attention processes, strongly required during mental simulation of walking. 
Similarly, increased activity in occipital areas during gait MI tasks was associated with visuo-spatial navigation 
and imagination of visual environment62–64.

Moreover, our results demonstrated that other areas showed significant ERD in α and β bands specifically 
during UW or DT gait imagery with respect to rest and that some cortical areas were more largely desynchro-
nized in DT respect to UW MI task.

For UW motor imagery task, we found β ERD in areas involved in aspects of attention and visuo-spatial 
perception as the left superior parietal and left anterior cingulate cortex and, subcortically, in the left caudate and 
α ERD in the right superior temporal cortex. Several studies, using fMRI technique, supported the involvement 
of the basal ganglia during motor imagery tasks, particularly for automatic or repetitive movements65–68. In this 
regard, the activation of the basal ganglia-thalamo-motor cortical circuit was constantly reported during the 
imagination of human gait9,17, corroborating the idea that acquired automatic movements rely on the activation 
of this network.

For DT vMI task, we found significant ERD in β band in the supramarginal gyri and in the left superior 
temporal region and a significant α ERD increase in the left precentral and postcentral areas, in the left superior 
and inferior parietal regions, in the left cuneus and in the middle and posterior portions of the left cingulate 
cortex with respect to rest.

When cortical activity during usual and complex vMI task were compared, we observed a larger ERD, in 
terms of number of desynchronized voxels, in β band in the right precentral area, right superior and inferior 
parietal gyri, bilateral precuneus and larger ERD in α band in the left postcentral gyrus and in the left inferior 
parietal areas with respect to UW. No area showed a higher percentage of desynchronized grey matter voxels 
during UW with respect to DT gait imagery task.

Regarding the larger frontal β-band activations during DT MI task respect to UW, our results are in line with 
previous findings exploring differences on neural correlates during usual and complex gait tasks. fNIRS studies 
revealed increased activity69 in these areas when subjects had to perform challenging walking compared to simple 
gait. Furthermore, a greater activation of prefrontal areas was also found during a complex gait imagery task. Van 
der Meulen and colleagues17, using fMRI data, showed a higher prefrontal activity when subjects were required 
to imagine walking on an irregularly surfaced path compared to a smooth one. Taken together, these findings 
support the idea that as the task became more difficult, the frontal areas became essential in the higher-order 
cognitive control of gait17. For the larger β-band ERD observed in the parietal cortex and the larger ERD in α 
band in left postcentral area and in right precuneus in DT with respect to UW, evidence strongly points to the 
role of the parietal cortex during motor imagery70, not only for sensory information processing and visuospatial 
navigation65,71–73 (when visual information is required) but also for coding actions goals74,75 and movements 
preparation, redirection, and intention76. Hence, the larger ERD in β-band within the parietal cortex observed 
during DT gait MI could likely reflect the higher cognitive demands required for accomplishing a more com-
plex task77. Indeed, a greater activation of the precuneus was already observed in previous studies investigating 
changes in cortical activity induced by increasing the complexity of the imagery tasks14,15,45,78 as well as during 
the imagery of complex gait, such as walking in presence of obstacles13,79.

A further result was that in most of the areas that showed a larger ERD, in terms of number of desynchronized 
voxels (ds%), in β band in DT respect to UW (right precentral, right parietal superior and bilateral precuneus) 
we found significant correlations between ds% during DT imagery task and KVIQ and VMIQ scores, showing 
that the higher was the volunteer’s perceived ability in performing MI, the larger were the desynchronized areas. 
However, the results of multivariate linear regression analysis showed that the ds% of the left precuneus was the 
only independent variable to explain KVIQ score. Notably, activity in the left precuneus also correlated with 
VMIQ-E score, supporting the crucial role exerted by this area in the imagery of complex gait.

Specific activations in the β band were observed for the DT gait imagery task only in the supramarginal 
gyri and in the left superior temporal region with respect to rest. These areas have been shown to be involved 
in allocentric processing, that is crucial when the obstacle overcoming should be planned80. Finally, we found 
specific ERD in α-band in parietal and cingulate cortex during DT gait imagery task. α ERD has been associated 
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to tasks requiring processing of relevant information in a variety of cognitive domains, but especially linked 
with visuo-spatial processing. It was thus hypothesized that the suppression of alpha activity may be related to 
the strength of attention to external objects or stimuli required by the task81. However, it is noteworthy to men-
tion on the potential impact of age heterogeneity of our study group (age range: 20 to 49 years) on the results. 
Indeed, it has been reported that MI ability might change with age, reflecting functional changes in the aging 
brain82. Although all the above reported results were corrected for age, it would be interesting in future studies 
to investigate ERD/ERS changes in MI-related brain areas across lifespan.

In this study there are some limitations that need to be considered. First, the limited sample size and the age 
heterogeneity decrease the strength of our results. Second, here, in line with previous studies24,26,34 we performed 
source localization using the eLORETA algorithm, however it should be considered that each source localiza-
tion method has different effects on EEG connectivity estimates83. Third, although cerebellar activity has often 
been reported in relation with neural correlates of MI, we did not find significant activation neither in α nor in 
β bands during the whole MI task. Although we used a high-density EEG montage, the ability of hdEEG and 
MEG techniques in detecting signals from the cerebellum is still under question84. Forth, due to the limited 
sample size the results related to the subject-level analysis, performed to compare usual vs complex gait imagery 
conditions, did not survive the correction for multiple comparisons. Nevertheless, our results indicate a trend of 
desynchronizations that, based on the available literature is coherent with the type of MI we analyzed. In order 
to compensate for the individual variability in the execution of the imagery, more participants will be needed 
to guarantee enough statistical power to confirm our findings also after correction for multiple comparisons. 
Alternatively, the inter-subject variability could be accounted for by using frequency bands defined from the 
individual alpha peaks. Although this strategy does not permit to compare the band-specific desynchroniza-
tion patterns at group level, it is an interesting approach to investigate how the MI-induced desynchronizations 
vary with the difficulty of the task within the same participant84. Fourth, our set-up lacked of leg muscle activity 
recording during EEG signal acquisition. However, we might assume that leg muscle activity during MI task 
had a negligible influence on EEG data since it has been recently demonstrated that EMG activity of distal leg 
muscles decreased during gait imagery tasks in the sitting whereas standing gait imagery tasks had faciliatory 
effect on proximal lower limb muscle activity85.

Our study provided new insights on the cortical contributions of usual and complex gait in healthy subjects 
by means of a MI paradigm. Overall, the results showed an increased activation of frontal, parietal and temporo-
occipital areas when subjects imagined a challenging walking task compared to a simple gait, supporting the idea 
that complex gait requires several non-motor functions (e.g., attention, visuo-spatial abilities). Furthermore, to 
the primary aim of the study, here we analyzed alpha and beta frequency band only, but new mechanism associ-
ated with gait MI may be described by studying other frequency bands. However, a better understanding of neural 
correlates underlying gait performance in healthy subjects may lead to a better knowledge of the pathophysi-
ological mechanism of gait disturbances in patients with neurological dysfunctions.

Data availability
Data supporting these findings are available from the corresponding author upon reasonable request.
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