
Citation: Delzanno, G.; Caputo, L.;

D’Agostino, D.; Grosso, D.; Mustajab,

A.H.; Bixio, L.; Rulli, M. Automatic

Passenger Counting on the Edge via

Unsupervised Clustering. Sensors

2023, 23, 5210. https://doi.org/

10.3390/s23115210

Academic Editors: Sebastià Galmés

and Barış Atakan

Received: 13 March 2023

Revised: 11 May 2023

Accepted: 16 May 2023

Published: 30 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Automatic Passenger Counting on the Edge via
Unsupervised Clustering
Giorgio Delzanno 1,*, Luca Caputo 1, Daniele D’Agostino 1 , Daniele Grosso 2 , Abdul Hannan Mustajab 1,
Luca Bixio 3 and Matteo Rulli 3

1 DIBRIS, University of Genoa, via Dodecaneso, 35, 16146 Genoa, Italy; caputoluca48@gmail.com (L.C.)
2 DIFI, University of Genoa, via Dodecaneso, 33, 16146 Genoa, Italy
3 Flairbit S.r.l., via Maragliano, 6/5, 16121 Genoa, Italy
* Correspondence: giorgio.delzanno@unige.it

Abstract: We present a device- and network-based solution for automatic passnger counting that
operates on the edge in real time. The proposed solution consists of a low-cost WiFi scanner device
equipped with custom algorithms for dealing with MAC address randomization. Our low-cost
scanner is able to capture and analyze 802.11 probe requests emitted by passengers’ devices such as
laptops, smartphones, and tablets. The device is configured with a Python data-processing pipeline
that combines data coming from different types of sensors and processes them on the fly. For the
analysis task, we have devised a lightweight version of the DBSCAN algorithm. Our software artifact
is designed in a modular way in order to accommodate possible extensions of the pipeline, e.g., either
additional filters or data sources. Furthermore, we exploit multi-threading and multi-processing
for speeding up the entire computation. The proposed solution has been tested with different types
of mobile devices, obtaining promising experimental results. In this paper, we present the key
ingredients of our edge computing solution.

Keywords: IoT; WSN; edge computing; artificial intelligence

1. Introduction
1.1. Background, Motivations and Challenges

Currently, data coming from automatic passenger counting (APC) systems are a source
of knowledge for solving a wide variety of urban transport issues, ranging from strategic
reasoning on possible improvements of public services to real-time responses to critical
traffic situations. These types of data are becoming a standard for developing concepts
related to smart cities both for transport companies and authorities. Due to the increasing
spread of low-cost video cameras and sensors, new technologies have been introduced to
complement traditional methods based on manual counting, interviews and questionnaires;
see e.g., [1–3].

According to the taxonomy presented in [1], in this paper, we are particularly interested
in device- and network-based solutions in order to exploit passengers’ smartphones as
signal emitters at the cost of designing customized receiving stations able to produce crowd
density estimations. In this class of APC systems, there exist solutions based on wireless
network signal processing, e.g., detection of WiFi or Bluetooth beacon messages emitted
by passengers’ devices. For instance, it is well known that Bluetooth scanners can be used
to compute a rough estimation of the number of nearby Bluetooth devices (smartphones,
headphones, smart watches, etc.). WiFi scanners represent, at least in principle, a more
robust and accurate method. A WiFi scanner can detect (2.4 and 5.8 GHz) signals in a
range compatible with the size of a bus. Furthermore, WiFi probe messages, used for
instance in the 802.11 WiFi protocol, include the sender MAC address in clear. At least
in principle, they could be used for a precise counting of nearby devices (and therefore

Sensors 2023, 23, 5210. https://doi.org/10.3390/s23115210 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23115210
https://doi.org/10.3390/s23115210
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2649-0071
https://orcid.org/0000-0002-0699-3459
https://doi.org/10.3390/s23115210
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23115210?type=check_update&version=2

Sensors 2023, 23, 5210 2 of 27

passengers). However, since 2017, iOS producers such as Apple and Android have started
introducing the use of fake MAC addresses to reduce privacy violations. Fake addresses
are generated via randomization algorithms in every procedure that requires some form
of initial handshake or broadcasting in clear. Real MAC addresses are exchanged only
after a communication channel has been established. The use of fake MAC addresses
currently represents a main challenge for automatic passenger counting based on WiFi
scanning [4–10].

1.2. Research Question

Our research question is whether, in the presence of fake MAC addresses, an 802.11 WiFi
probe scanner could still be used for designing an effective, real-time automatic passenger
counting procedure operating on the edge, i.e., without the need for transmitting collected
data for off-line processing to an external server, therefore preserving data privacy.

1.3. Our Contribution

Our technical contribution can be divided into three main parts.

• We first designed a low-cost WiFi scanner able to analyze and process 802.11 probe
requests emitted by passengers’ devices (smartphones, tablets, etc.). Our scanner
consists of a Raspberry Pi 4 equipped with a SIM7600X 4G hat and an external
BrosTrend AC650 WiFi adapter [11]. The 4G hat is used for LTE communications and
for acquiring GPS positions in real time. The AC650 adapter is used both to achieve
wide-area reception and to create a wireless network interface dedicated to packet
sniffing. In our prototype, we considered 802.11 WiFi probe messages [12,13] collected
via the tcpdump open source library [14]. These types of messages contain probe
requests, i.e., message frames that contain the MAC address of the sender device. Our
scanner captures 802.11 WiFi probe requests observed in a given time window and
stored them locally in batches, for further processing.

• We designed a processing pipeline capable of combining data coming from different
types of sensors (WiFi probe requests, GPS data, etc.), processing them on the fly using
unsupervised clustering, namely a lightweight version of the DBSCAN algorithm [15],
named DBSCANL, and sending different types of aggregate and anonymized data to
a cloud endpoint via the 4G SIM7600X hat.

• DBSCAN is a well-known method for unsupervised clustering. The main feature of
this iterative algorithm is that it does not require to specify a priori the number of
clusters used to partition elements. Clusters are dynamically adjusted via metrics
used to evaluate the sparsity of the sets in the current partitioning.

• The DBSCANL algorithm is a simplified version of the DBSCAN algorithm. Our algo-
rithm partitions an initial list of addresses according to two different features, namely
RSSI and data rates, with an additional step based on other possible clustering criteria.
Differently from the original version of DBSCAN, our algorithm only labels noise
points, therefore maintaining labels assigned in previous steps. In other words, it
does not merge overlapping clusters as in DBSCAN. This strategy seems to give better
results in the considered case study.

• Concerning prototype implementation, the Python code that implements the algorithm
is designed in a modular way in order to accommodate possible extensions of the
pipeline, e.g., additional filters, data sources (e.g., Bluetooth data), and processing
algorithms. Each module runs in a separate Python thread (e.g., communication tasks
and data processing). To reduce overhead, Linux pipes are used to pass data between
different stages of the pipeline (i.e., the standard output of a module is redirected to
the standard input of the next module via a pipe channel). Threading is applied here in
order to create producer–consumer pipelines within the same program, share the same
address space, and thus gain in efficiency. Multiprocessing is used to define the Python
(parallel) pipeline that implements the different steps required by the algorithm (probe
sniffing, data preparation, estimate generation, and data distribution). At boot time,

Sensors 2023, 23, 5210 3 of 27

a graceful initialization process of the entire pipeline is used in order to take into
consideration possible delays due to the GPS receiver and the 4G SIM7600 module
cold-start procedure.

• We tested our edge device to collect benchmarks and datasets in indoor scenarios
using different types of mobile devices including Android smartphones, iPhones and
tablets. In the experiments in controlled scenarios, e.g., with a fleet of devices known
in advance, the prototype returned estimation with 75–80% precision.

In addition to the technical contribution, we obtained promising results not only for
what concerns crowd estimations in real scenarios but also useful information, in a sort
of reverse engineering process, on the different randomization procedures (frequency of
probe requests, smartphone status in which beacons are generated, shape of fake MAC
addresses, etc.) adopted in different types of operating systems. These additional data
could be applied for further refinements of the proposed solution in controlled scenarios
(e.g., for monitoring a fleet of devices in emergency operations, etc.) and, more in general,
for future extension of the proposed algorithms.

1.4. Originality and Reproducibility

This paper includes original work carried out during a collaboration between the
University of Genoa and Flairbit S.r.l.. The source code of the entire system can be requested
by contacting the authors.

1.5. Plan of the Paper

In Section 2, we discuss related work with a particular focus on non-image-based ap-
proaches. In Section 3, we summarize the main concepts underlying the 802.11 probe hand-
shaking protocol and all issues related to MAC address randomization. In Section 4, we
present the physical components of our edge device, together with some details on its configu-
ration. In Section 5, we present the pipeline used for device detection. In Section 6, we present
the software architecture used in the pipeline. In Section 7, we discuss the experimental
results obtained with different types of smartphones and tablets in a variety of supervised
and unsupervised scenarios. Finally, in Section 8, we address some conclusions and discuss
future directions for our work.

2. Related Work

In this section, we discuss related work mainly focusing on wireless network signal
processing techniques, e.g., detection of WiFi or Bluetooth beacon messages emitted by
passengers’ devices. In [1], the authors present a survey of non-image-based approaches
classified into device-free, namely RF-based and sensor-based (i.e., they do not expect
participants to carry additional devices), and device-based, namely acoustic-based and
network-based.

We focus the discussion of related work on device- and network-based approaches.
In [16], the authors present a fixed system for crowd density estimations based on WiFi
probe requests. Sentinel [17] is a system that estimates occupancy in commercial buildings
based on existing WiFi infrastructures. WiPin [18] is a system equipped with a front-end
module on the WiFi router for occupancy estimation performed in real time, which also
takes into account historical data in a back-end module. In [2], the authors proposed to
use a mathematical model in conjunction with MAC addresses extracted from WiFi probe
messages. They applied Kalman Filters to fit the considered model in order to provide
estimations even in cases of missing historical data. The above-mentioned approaches do
not take into consideration the additional noise due to MAC address randomization, a real
challenge for using WiFi probe messages generated by smartphones [9].

In [19], the authors proposed a de-randomization algorithm to compute the probability
that two random MAC addresses correspond to the same device. More precisely, they
computed a score for each pair of random MAC addresses identified based on the timestamp
and the frame sequence number (a 12 bit code in the Seq-ctl field). In [10], the author

Sensors 2023, 23, 5210 4 of 27

generates fingerprints of probe requests sent by a single device using information elements,
inter-burst times and classification procedures based on the KNN algorithm. The results
showed an accuracy of 75%. Inter-frame time has been considered in other approaches
such as in [20].

In [4–6], the authors extend the above-mentioned approaches by considering context-
dependent information contained in probe requests in a adaptive way, e.g., by considering
the length of information elements as a further parameter for their clustering algorithm.

Some works merge static and dynamic information for improving the accuracy of the
estimation. In [21], the authors developed a statistical model used to predict the number of
on-board passengers traveling on buses based on manual passenger counts and logging of
wireless data frames. The results are very interesting, but they are based on a ground truth
of the model represented by the manual count of passengers and the fact that in 2017, only
a few Android smartphones used randomization techniques.

In the same applicative context, the work of [3] faces the problem of classifying MAC
addresses of passengers and pedestrians by collecting probe messages with GPS informa-
tion acquired by the scanner. This information is then coupled with static information as
bus stop zoning and bus route circulation. While the results are interesting, a key drawback
is that the authors assumed that each passenger carried only one WiFi device that can be
uniquely associated with one passenger inside the bus.

In [7], an approach that can cope with commercial sensors as well as simple ad hoc
scanning devices was proposed. This work represents an evolution of [19,22]. In [22], the
authors aimed to infer flow densities and directions of transit of people on some areas
(city streets or campuses), in particular with the goal of associating each device with
the most likely path across a given set of predefined possibilities. However, this paper
considers the use of real MAC address. This is the reason why it has been coupled with
the de-randomized schema presented in [19] and an original ML-based technique for flow
detection of people associated with real randomized MAC addresses.

In [8], the authors start from the considerations that most related works focus on
either small supervised tests, e.g., campuses, offices or small, well-known city areas, or
on extensive unsupervised tests in small cities. In the first case, the test bed is associated
with reliable ground truth but suffers from a joint biased user base and typology. In the
other case, instead, the tests lack the ground truth data to support classification. This is the
reason why they propose a study based on data collected over a period of four years in five
different location typologies (fair, football stadium, nightclub, plazas, and transport). The
result is that the collected patterns mark different trends for each location, and therefore,
models need to be tuned for each case of location.

3. 802.11 WiFi Protocol and MAC Address Randomization

In this section, we review the key elements of the 802.11 probe request protocol used in
this work to identify distinct devices. According to the 802.11 WiFi protocol, mobile stations
broadcast probe requests to discover 802.11 networks within their proximity. Probe requests
advertise the mobile stations’ supported data rates and 802.11 capabilities. Access points
(APs) receiving the probe request check to see if the mobile station has at least one common
supported data rate. If they have compatible data rates, a probe response is sent advertising
the SSID (wireless network name), supported data rates, encryption types if required, and
other 802.11 capabilities of the AP.

3.1. 802.11 Probe Request Frames Structure

A probe request message frame is structured as follows. The frame header contains
the following fields:

• Frame control, 2 bytes;
• Duration, 2 bytes;
• Destination Address (DA), 6 bytes;
• Source Address (SA), 6 bytes;

Sensors 2023, 23, 5210 5 of 27

• BSSID, 6 bytes;
• Seq-ctl, 2 bytes.

The frame body contains the following fields:

• SSID and supported rates of variable length;
• FCS, 4 bytes.

Among the most important information is the SA (source address), which is the MAC
address of the device requesting to establish the connection, and the SSID (service set
identifier), which is used to specify the name of the network to connect to. Probe requests
are actually sent in broadcast mode, i.e., received by all access points in the proximity of
the device.

3.2. Device Detection via Probe Requests

Although all 802.11 frames exchanged between devices and access points can be
captured and analyzed to obtain the estimated number of passengers, the idea of using
only probe requests allows for a reduction in the number of data to be processed. This is
important when considering that the system will have to process data arriving in real time.
In addition, they are sent by clients only looking for a network to connect to, which leads
to being able to focus on passenger devices and not on access points. Furthermore, probe
requests are predominantly sent by devices that are not currently connected to any network
when the device is in use. This is a common scenario for a transportation vehicle. Probe
requests, being sent in the clear and therefore unencrypted, can be captured by a network
traffic analysis tool, using an antenna tuned to the same frequency channel as the device
that is transmitting the request. Our experiments were carried out mainly with tcpdump.
The antenna used for packet capture must be set to monitor mode, so that all traffic on a
particular channel can be listened to without being hooked to a particular network. The
tcpdump tool can be used to filter and select 802.11 probe requests as in Figure 1.

sudo tcpdump -i wlan1 -S -e -s 0 -l type mgt subtype probe-req

Figure 1. Use of tcpdump command for sniffing probe-requests.

The option -i is used to specify the network interface in which listening and subse-
quent packet capture takes place. Using Linux terminology, wlan1 is specified, since the
antenna used for capture, once installed and configured, will lock onto that interface. If the
argument is not specified, listening takes place on the default network interface. The option
-e is used to print the data link layer headers, while -s specifies how many bytes to capture
per packet, thus the length in bytes of what to capture. The default value, indicated via -s
0, is 65535 bytes. The parameter type mgt subtype is used to specify the types of packets
to capture, so that it filters all incoming packets by returning only those of a specific type.
In this case, wanting to filter probe requests, we need to specify probe-req. An example of
a record produced by tcpdump is shown in Figure 2.

13:42:06.109147 6.0 Mb/s 5240 MHz 11a –71 dBm signal
BSSID:Broadcast DA:Broadcast SA:[secret] (oui Unknown)
Probe Request () [6.0 9.0 12.0 18.0 24.0 36.0 48.0 54.0 Mbit]

Figure 2. Record returned by tcpdump.

The record contains information about the received probe request:

• A timestamp indicating when the probe request was captured, expressed in the format
hh:mm:ss.frac;

• A number indicating the data rate supported at that particular time by the device,
expressed in Mbits per second or Mb/s;

• The signal strength with which the message was received, expressed in signal dBm;
tt will be seen, later, that it can be used to determine the distance of the device from
the antenna;

Sensors 2023, 23, 5210 6 of 27

• The BSSID, which is the MAC address of the access point on the network that the
device is trying to contact if it was connected to it in the past, or broadcast if looking
for new ones;

• The DA (destination address), the MAC address of the recipient of the request; it is
usually broadcast so that all access points will see it;

• The MAC address of the device that is sending the request, i.e., the SA (source address);
• The type of frame being sent, in this case a probe request (); usually inside () is the

SSID of the network the device is looking for if it is looking for one; otherwise, it
remains empty;

• The list of data rates supported by the device sending the request that may be useful in
the communication between the device and access point, indicated inside square brack-
ets.

In the rest of the section, we focus our attention on the analysis of the following
elements: MAC addresses and probe frequency, RSSI level, and supported data rates.

3.3. MAC Address Randomization

Until a few years ago, APC systems could count passengers on the basis of the MAC
address alone, as each distinct address was potentially a passenger. This was because it is a
physical address, used at the data link level, uniquely assigned to the device and inserted
into the network card during production; thus, it is also used to uniquely identify the
device globally.

A MAC address is composed of 48 bits divided into 6 octets of 8 bits, each representing
a hexadecimal number; thus, they have the following structure and format: 00:00:00:00:00
to ff:ff:ff:ff:ff. The first three bytes are intended to represent the manufacturer of the device,
whose numbers are assigned by the IEEE Registration Authority, and are named OUI
(organizational unique identifier), while the second three bytes represent the network
card (network interface controller), assigned by the manufacturer itself. It can be inferred
from the above description that since these are unique addresses assigned to the device,
they are potentially the best way to identify a passenger. However, to date, more and
more devices implement MAC address randomization algorithms in order to avoid device
tracking based on it and more specifically to ensure user privacy, which means that the
probe requests will no longer contain the real MAC address, but rather one generated via
software. Such addresses can be distinguished by the second byte, in that it is always
equal to one of the following hexadecimal numbers: 2, 6, a, e. There is no unique way to
implement randomization; each manufacturer implements it in its own way. For example,
Apple began adding MAC address randomization starting with iOS 8, when devices are
not associated with any WiFi network and with the screen off, while now it is also used
when devices are connected to a network and with the screen on. Google, on the other
hand, began implementing MAC address randomization starting with Android 8 when
devices are looking for a network to connect to, while Android 9 included the ability to
enable a developer option for a device to use a randomized MAC address when it is already
connected to a network. The use of the randomized address while the device is already
connected to a network, this time user-side, was instead included starting with Android
10, becoming the default setting in some manufacturers (e.g., Samsung). To evaluate the
effective use of randomization, we examined a number of devices with different types of
operating systems such as an Asus Zenfone 3 with Android 8 2016, a Samsung Galaxy
M12 with Android 11 2021, and an Apple iPhone 6s with iOS 9 2015. Our experiments
confirmed that iOS and Android operating system phones are, over time, increasingly
switching to randomization mechanisms, making it clear that counting the MAC addresses
alone in a distinct manner is not enough, as one risks having a much higher number of
potential passengers than the real and actual number. Therefore, in the following sections,
we explore probe requests with randomized MAC addresses and their contents, and we
identify features to be used for classification tasks.

Sensors 2023, 23, 5210 7 of 27

3.4. Frequency of Probe Requests

Devices that send probe requests using randomized MAC addresses tend to change
MAC addresses frequently if they are not connected to any access point. It has been noted
that there is a tendency for probe requests to be sent especially when the screen is on,
which is useful considering that a large proportion of passengers use their smartphones
during their trips, if only at certain times. In addition, the manufacturers themselves do not
provide much information about how the randomization of MAC addresses takes place,
and there is a possibility that without looping in all possible frequency channels when
capturing probe requests, some information will be lost.

From a series of experimental results, we observed that the Samsung Galaxy M12 sends
about three probe requests per minute, while the iPhone 6s seems to have a noisier trend,
that is, an average of about 4.1 probe requests per minute, but starting from 7 captured
addresses in the first minute and then dropping and flattening out to only 3 captured
addresses. From here, it can be said that, apart from potential spikes, smartphones send
probe requests with a certain number of distinct randomized MAC addresses over a period
that fluctuates between 3 and 4 addresses per minute. Using frequency in this sense can be
useful in order to associate a certain number of MAC addresses with a single device.

3.5. RSSI Data

RSSI, short for received signal strength indicator, is a measure that indicates how well
one device can hear another during a communication. The unit of measurement is decibels
on a logarithmic scale, i.e., dBm, which represents the signal strength captured in milliwatts.
RSSI and dBm are two units of measurement that represent the same thing, namely the
power of a signal. However, RSSI is a measurement designed to represent the relative
quality of a given signal; thus, it is a relative value. The IEEE 802.11 standard states that
RSSI is a value between 0 and 255, but each chip manufacturer can decide its maximum
value within the number 255. The higher the value, the higher the signal strength. The dBm,
on the other hand, is a logarithmic value that indicates the received signal power; thus,
the closer it is to 0 dBm, the higher the power, and the farther away, the worse it becomes.
Received signal power is inversely proportional to the distance between the access point
and the device that requires connection with it. In Table 1, we show a set of probe requests
with the first MAC address of the Samsung Galaxy M12 captured during a WiFi survey.

Table 1. Example of RSSI data extracted via tcpdump.

08:22:06.305161 −92 dBm signal SA:3e:c1:b7:1e:dc:38 08:22:07.335281 −18 dBm signal SA:3e:c1:b7:1e:dc:38
08:22:06.567528 −38 dBm signal SA:3e:c1:b7:1e:dc:38 08:22:07.372982 −18 dBm signal SA:3e:c1:b7:1e:dc:38
08:22:06.640095 −38 dBm signal SA:3e:c1:b7:1e:dc:38 08:22:07.660441 −38 dBm signal SA:3e:c1:b7:1e:dc:38
08:22:06.876389 −18 dBm signal SA:3e:c1:b7:1e:dc:38 08:22:07.699966 −38 dBm signal SA:3e:c1:b7:1e:dc:38
08:22:06.914380 −18 dBm signal SA:3e:c1:b7:1e:dc:38 08:22:08.027113 −54 dBm signal SA:3e:c1:b7:1e:dc:38
08:22:06.952107 −18 dBm signal SA:3e:c1:b7:1e:dc:38 08:22:08.064867 −56 dBm signal SA:3e:c1:b7:1e:dc:38
08:22:07.031088 −16 dBm signal SA:3e:c1:b7:1e:dc:38 08:22:08.102936 −54 dBm signal SA:3e:c1:b7:1e:dc:38
08:22:07.068810 −18 dBm signal SA:3e:c1:b7:1e:dc:38 08:22:08.181699 −58 dBm signal SA:3e:c1:b7:1e:dc:38
08:22:07.106561 −16 dBm signal SA:3e:c1:b7:1e:dc:38 08:22:08.222457 −60 dBm signal SA:3e:c1:b7:1e:dc:38
08:22:07.297354 −18 dBm signal SA:3e:c1:b7:1e:dc:38 08:22:08.260062 −56 dBm signal SA:3e:c1:b7:1e:dc:38

In Table 1, we show a set of probe requests with the first MAC address of the Samsung
Galaxy M12 captured during a 269 WiFi survey. As can be seen, a device usually sends
not just one probe request with the same MAC address, but a whole group, which usually
starts at a lower RSSI value, then rises and finally returns. The highest value is the one to be
considered, since it is the one that can be used as an estimate of the distance to the antenna.
In the previous example, the value in question is −16 dBm, which indicates a good signal
and therefore good proximity to the antenna. The question that arises is whether RSSI
values can actually suffice to distinguish devices within a transport medium, as well as
whether they are actually stable. The following are some results of a test in which we tried

Sensors 2023, 23, 5210 8 of 27

to capture probe requests with different MAC addresses from the same smartphone, but at
different locations each time. For each new MAC address, only the probe request with the
highest rate is reported.

The time series in Table 2 refers to a survey in which the device is less than one meter
from the scanner.

Table 2. RSSI data extracted via tcpdump, with distances smaller than 1 m.

12:57:00.305354 −28 dBm signal SA:52:b2:f8:04:50:bf
12:57:22.066625 −30 dBm signal SA:02:a0:dc:7c:05:aa
12:57:30.671233 −28 dBm signal SA:be:37:03:70:9e:5d
12:57:47.670341 −30 dBm signal SA:3a:0c:28:c9:6d:24
12:57:59.750892 −32 dBm signal SA:86:10:0c:f5:8e:96

The time series in Table 3 refers to a survey in which the device is more than four
meters away from the scanner. In general, somewhat lower values are obtained, a sign
that one has moved away from the antenna, but one still has a MAC address sent with
−32 dBm, a value already found when one is much closer to the antenna, presented in
the first time series. These data have been obtained by moving the device and by turning
on and off the screen (to simulate a bus trip). More stable values have been observed in
less dynamic scenarios. In general, using RSSI can be very useful to infer the hypothetical
distance between the passenger and the antenna. At the same time, however, this value can
be quite unstable and inaccurate, and thus if used alone, it may not be entirely effective.

Table 3. RSSI data extracted via tcpdump, distance greater than 4 m.

13:44:37.113393 −44 dBm signal SA:16:60:64:de:4c:76
13:44:47.656279 −32 dBm signal SA:b6:02:ef:16:d1:ee
13:44:52.950555 −36 dBm signal SA:9e:c9:07:ad:72:d8
13:45:04.041955 −36 dBm signal SA:42:6b:e4:8f:ff:00
13:45:26.143811 −38 dBm signal SA:56:5c:cd:5f:0a:04

3.6. Supported Data Rates

The last parameter for our experiments is the list of supported data (transfer) rates
(or data rates), which are sent directly from the device, which is precisely why they are
part of the 802.11 frame. They can be defined as the amount of data transferred over
a connection within one second, and they cannot be greater than the bandwidth of the
connection. They are also called bits per second or bit rate. Each device sends messages
with the entire list containing all the data rates supported by the device, which is useful
for future communications with the access point to which one will connect. Data rates
can be used as an additional distinguishing element. For instance, Samsung Galaxy M12
supports higher speeds than the iPhone 6s, which is actually older. Therefore, when many
probe requests are captured with very similar values for RSSI, data rates might be used to
discover that they are sent from two or more different devices.

3.7. Other Similarity Measures

In general, device manufacturers do not provide much information about how MAC
address randomization is performed, except for Microsoft, which is known to use a hashing
with the SHA algorithm in which it inserts some information inside, including the actual
MAC address of the device and the SSID of the network to connect to, but it is very likely
that other manufacturers also use some kind of hashing algorithm, which is very difficult
to de-randomize. However, this does not exclude the possibility of finding any similarities
between the MAC addresses. One idea that has been experimented with is to use a
textual distance algorithm, e.g., Hamming distance, between the captured randomized
MAC addresses. The Hamming distance identifies, within two strings of the same length,

Sensors 2023, 23, 5210 9 of 27

the number of positions at which the symbols are different. Consider for instance the MAC
addresses in Figure 3.

3e:c1:b7:1e:dc:38 5e:5d:b1:f4:80:50

Figure 3. Comparison of MAC addresses.

Assuming that the separator “:” is not part of the string, the Hamming distance would
be 10, since to be equal, out of 12 symbols, are only those in the second position and the one
in the fifth position. Given that in general addresses are different from each other and it is
rather difficult to find similar ones, the idea is to use textual similarity rather than distance,
and in the above-mentioned example, the Hamming similarity would be 2. Given a set
of collected MAC addresses, it is possible to use Hamming similarity to find addresses
with the greatest number of the same symbols in the same locations within the same set, in
order to reduce the number of addresses found to a number of devices consistent with the
number present within the bus. At the same time, however, we want to understand “how
many” symbols may be needed to classify MAC addresses as potentially part of the same
device. We can take as an example the addresses coming from a Samsung Galaxy M12 in
Table 4.

Table 4. MAC addresses from Galaxy M12.

3e:c1:b7:1e:dc:38 a6:e1:2c:e0:26:04
5e:5d:b1:f4:80:50 ae:14:f1:ba:70:a4
5e:3a:57:af:23:81 16:a8:b1:d3:89:d7
1e:d5:49:00:c5:2d 3a:4d:61:50:c7:87
ea:97:3b:5b:15:0b 52:29:27:e5:04:4b
8e:db:07:d9:79:f6 c6:fd:ec:9c:3c:6a
02:f6:ee:10:de:25 22:f9:97:c1:ca:a1
d2:9e:17:ab:6c:1d f6:45:66:5f:d2:bf

aa:11:3d:97:97:14

When trying to compare all the MAC addresses with each other, the maximum Ham-
ming similarity that can be found within this list is three equal symbols. This table takes
MAC addresses that have at least one correspondent with a similarity of three and groups
them together as in Table 5.

Table 5. MAC addresses from Galaxy M12.

1 5e:5d:b1:f4:80:50 ae:14:f1:ba:70:a4 16:a8:b1:d3:89:d7
2 a6:e1:2c:e0:26:04 aa:11:3d:97:97:14
3 ae:14:f1:ba:70:a4 5e:5d:b1:f4:80:50 aa:11:3d:97:97:14
4 16:a8:b1:d3:89:d7 5e:5d:b1:f4:80:50
5 3a:4d:61:50:c7:87 f6:45:66:5f:d2:bf
6 52:29:27:e5:04:4b 22:f9:97:c1:ca:a1
7 22:f9:97:c1:ca:a1 52:29:27:e5:04:4b
8 f6:45:66:5f:d2:bf 3a:4d:61:50:c7:87
9 aa:11:3d:97:97:14 a6:e1:2c:e0:26:04 ae:14:f1:ba:70:a4

The classes can be, for example, divided according to where intersections are present;
thus, groups 1, 2, 3, 4 and 9 are part of the same class, as are 5 and 8, and finally 6 and 7, for
a total of three possible classes, which could correspond to three possible devices within
the list. In general, the more randomized MAC addresses are sent, the easier it is to find at
least two with gradually increasing similarity as the MACs increase.

Sensors 2023, 23, 5210 10 of 27

4. The WiFi Scanner Device

Our low-cost WiFi scanner is built on top of a Raspberry Pi4 Model B [23]. Pi4 Model
B is equipped with the 64 bit quad-core Broadcom BCM2711 Cortex-A72 ARM v8 1.5 GHz
processor and 4 Gb of RAM. It can be configured with the Raspberry Pi OS, an operating
system based on Debian. Figure 4 illustrates the physical architecture of the scanner. The left
picture shows the case containing the different modules and the external WiFi and GNSS
antennas. The center picture shows the Raspberry Pi 4 computer connected, via a USB port,
to a 4G SIM7600X hat and an LTE antenna. The right picture show the SIM7600X only.

Figure 4. Prototype of the WiFi scanner with external BrosTrend AC650 WiFi antenna (left); the
Raspberry Pi4 with LTE antenna and 4G hat (center); the SIM7600X 4G hat (right).

The Waveshare SIM7600 4G HAT [24] is a 4G/3G/2G communication and GNSS
positioning module, which supports LTE CAT4 up to 150 Mbps for downlink data transfer.
It is based on the SIM7600X-H SIMCom 4G LTE Cat-4 Module [25]. The 4G HAT provides
an RPi 40PIN GPIO extension header. It provides an onboard USB interface and a CP2102-
USB-to-UART converter. The 4G hat is equipped with a SIM card slot and a TF card slot for
storing data. More details on the hardware schematics are available on the manufacturers’
websites [24,25].

The SIM7600X 4G hat is connected via coaxial cables to the LTE and GNSS antennas.
The 4G hat can be used to connect to the LTE network (2G/3G/4G) and to communicate
over the Internet through standard protocols such as TCP/UDP and HTTP. It can also be
used to obtain GPS coordinates in real time via an internal GNSS receiver. The 4G hat is
equipped with USB ports, used to receive AT commands from the Pi4 computer, as well as
a SIM card slot and LEDs to indicate its operation status.

A 1Nce sim card [26] is used for LTE communication. The 1Nce sim card, made
specifically for IoT projects, provides 500 Mb of data volume, guaranteeing 1 Mb/s of data
speed, and supports 3G and 4G cellular technologies. The connection to the 1nce mobile
network service is implemented through the 1Nce APN, which assigns a private (class A)
IP address to the device.

The internal WiFi antenna of the Pi4 Model B cannot be used in monitor mode, an
operation mode needed for WiFi beacon detection. For this reason, we equipped the scan-
ner with an external WiFi adapter. More specifically, we used the BrosTrend AC650 WiFi
antenna compatible with the Raspberry OS. The adapter handles both 433 Mbps over 5 GHz
band and 200 Mbps on 2.4 GHz WiFi signals and expands coverage by ensuring better WiFi
signal strength (5 dBi) at long range. The antenna can be rotated 180 degrees horizontally
and 90 degrees vertically. It also supports WPA/WPA2 encryption and has universal com-
patibility with any router/gateway. This antenna is one of the most important components
of the entire system, since it enables capturing probe requests sent by the devices.

According to the above-mentioned architecture, the Pi4 module can be configured
in order to access the Internet via the LTE network through the USB connection with the
4G hat. Using Linux terminology, it is possible to associate the usb0 interface with the

Sensors 2023, 23, 5210 11 of 27

LTE communication module enabled for Internet navigation via the 1Nce Mobile Network
Service directly from boot time. In our application, this functionality can be used to establish
a communication channel with a remote service, e.g., a cloud platform, via TCP or HTTPS
requests. The configuration of the 4G LTE module is based on a series of AT commands
sent in a specific initialization script executed in the Pi4. Concerning WiFi communication,
through the use of the external WiFi adapter, two separate network wireless interfaces are
obtained, namely wlan0 corresponding to the internal network card of the Pi4 and wlan1
corresponding to the external adapter, both of which rest on the same subnet. By default,
both interfaces are in managed mode, which means that the antenna will only be able to
capture the packets with the MAC address of the device as their destination. To capture
packets such as probe requests, the external antenna must be set to monitor mode. This way,
wlan1 remains dedicated to packet capture, whereas wlan0 can still be used to connect to
the Pi4 during development and testing, e.g., via ssh.

5. Unsupervised Clustering Algorithm on the Edge

In Section 3, we introduced probe request and MAC address randomization and
presented some experiments carried out in order to extract information to be used to
classify captured MAC addresses. To obtain a possible partitioning of collected MAC
addresses, hence an estimation of the number of devices in the range of the scanner, we
employ the DBSCAN (density-based spatial clustering of application with noise) algorithm,
an unsupervised clustering algorithm used in machine learning and data mining. The name
comes from the fact that it takes as input a set of points in a given space, clusters neighboring
ones based on a given distance, and marks as noise those that are alone in low-density
areas. This feature makes it very advantageous in that it does not need to specify a number
of clusters a priori (i.e., unsupervised clustering) but must be derived using the notion of
density that will be introduced later.

The DBSCAN algorithm [15] requires two parameters: minPts, which is the minimum
number of points needed to form a cluster, as well as the threshold for considering a
region of dense points, eps, which is a measure indicating the distance within which a
point is considered part of the “neighborhood” of another point. These parameters can be
understood if two density-related notions are introduced:

• Reachability: Point p is reachable from q if their distance is within the eps parameter.
• Connectivity: Points p1 and pn are connected if there exist p2, p3... pn−1 such that pi+1

is reachable from pi for each i : 1, . . . , n− 1.

As shown in Figure 5, there are three types of points within the considered search space:

• Core points are the points having at least minPts points at distance eps;
• Border points are the points having at least one core point at distance eps;
• Noise points are neither core points nor border points.

Figure 5. DBSCAN search space.

Sensors 2023, 23, 5210 12 of 27

The DBSCAN algorithm works as follows.

1. Given a set S of points, for every P, in S, repeat the following steps until all points
have been visited.

(1) If P has not been visited, we search for its set N of neighbors within the chosen
eps distance and via a function indicating the type of distance to be computed
distFunc. This step may require exploration of the entire dataset.

(2) If the number of collected points in N is greater than or equal to minPts, then a
new cluster C is created with them; otherwise, the analyzed point P is classified
as a noise point.

(3) For each point Q in the cluster C obtained in step (2), if it had been labeled as a
noise point or was not visited, then it is given the label of the cluster obtained
in that step as its label, and then, we expand the cluster recursively in the same
way.

In the rest of the section, we describe a lightweight version of the DBSCAN algorithm,
named DBSCANL, customized on the types of data resulting from the preliminary analysis
of the key elements of probe request frames analyzed in Section 3.

5.1. The Lightweight DBSCAN Algorithm

The DBSCANL algorithm is a simplified version of DBSCAN that partitions an initial
address list according to two different features, namely RSSI and data rates, with an
additional step based on other possible clustering criteria. Differently from the original
version of the DBSCAN algorithm, in our algorithm, we do not merge overlapping clusters.
The algorithm inserts in the current label only noise points, maintaining labels assigned in
previous steps. In this paper, we focus on three possible variants of the algorithm, named
standardCount, bruteforceCount and wordDistanceCount.

Every version of the algorithm uses the rangeQuery procedure defined in Algorithm 1
and takes in input two separate MAC address lists, one with the real addresses and the
other with randomized addresses computed via a preliminary analysis of the address
structure as the one discussed in Section 3. The latter list in particular must have the
maximum RSSI with which the address was identified, as well as the list of supported data
rates. In addition to these two lists, we consider three parameters: minPts, the RSSI-based
eps parameters, and the weps parameters used in the wordDistanceCount algorithm.

Algorithm 1 The rangeQuery procedure

Require: m: address
Require: t: metric type (rssi, dr, wd); eps: rssi range, weps: hamming range
Ensure: rangeQuery returns the vicinity of address m according to the selected metrics.

function RANGEQUERY(m, t, M)
C = ∅
for m′ ∈ M do

if (D(t,m,m’)=true) then
C = C ∪ {m′}

end if
end for
return C

end function where D(rssi, m, m′) ≡ (|rssi(m) − rssi(m′)| ≤ eps) D(dr, m, m′) ≡

(dr(m) = dr(m′))

D(wd, m, m′) ≡ (Hamming_similarity(m, m′) ≥ weps)

Sensors 2023, 23, 5210 13 of 27

Given a set of addresses M, a partitioning is defined via a labeling mapping label
that assigns cluster identifiers to elements in M. We assume here that cluster identifiers
are natural numbers associated with the type of distance function, namely rssi, dr, wd,
considered in the labeling algorithm. For instance, a cluster with label (rssi, 1) can be
partitioned in the subclusters with labels (dr, 1) and (dr, 2), and so on. Furthermore, we
assume that addresses can also be labeled as noise or unde f .

The three variants of the algorithm are defined on top of two functions, namely
getCluster and clustering. More specifically, getCluster(i, t, M) denotes the cluster with
label i (a number) obtained with distance of type t (e.g., dr, wd) from the set of addresses M.
The function clustering described in Algorithm 2 computes a set of clusters created on
the basis of the given distance type. The function rangeQuery in Algorithm 2 is used here
to identify the set of elements in the proximity of a given element passed as the argument.

Algorithm 2 The DBSCANL algorithm in pseudo-code

Require: M: set of addresses, label: mapping from M to address labels
Ensure: label: updated with new cluster ids’ (numbers)

function CLUSTERING(t, M)
Id = 0
for m ∈ M do

if label(m) ∈ {noise, unde f } then
C = rangeQuery(m, t, M)
if |C| ≤ minPts then

label(m) = noise
else

Id = Id + 1
label(m) = Id
for m′ ∈ C do

if label(m′) ∈ {noise, unde f } then
label(m′) = Id

end if
end for

end if
end if

end for
return Id

end function

5.1.1. First Variant: standardCount

The first version of the algorithm, namely the standardCount function in Algorithm 3,
is defined as follows. In the first phase, given as input a list of randomized MAC addresses,
the algorithm, via the function clustering, computes clusters created on the basis of the
distances between RSSI signals. In the second phase, taking the set of clusters created in
the first phase as input, an additional clustering step is carried out by using a distance
defined as the equality of support data races. The estimated number of devices obtained
from the randomized MAC addresses is then the number of subclusters that is formed
upon termination of the second phase.

5.1.2. Second Variant: standardCount

The first phase of the bruteForceCount variant of the algorithm, see Algorithm 4,
is the same as that of standardCount. The second step however consists of a subcluster
division operation based on what is the estimated number of randomized MAC addresses
sent by a device per minute. In this version, it is required to specify both the duration
of the time window in which the randomized MAC addresses were collected (win_size),
as well as an estimated number of MAC addresses sent via probe requests from a device
per minute (no_probes_per_device), which is normalized into the duration of the time
window. Namely, for each identified subcluster, the following formula is applied:

Sensors 2023, 23, 5210 14 of 27

(subcluster_length)/((no_probes_per_device) ∗ (win_size))

Algorithm 3 The standardCOUNT procedure

Require: real: set of real addresses;
Require: f ake: set of fake addresses;
Ensure: the function returns an estimation of the number of devices.

function STANDARDCOUNT(real, f ake)
N = cluster(rssi, f ake)
f akeDevices = 0
for k ∈ [1, . . . , N] do

C = getCluster(k, rssi, f ake)
Id = clustering(dr, C)
f akeDevices← f akeDevices + Id

end for
return |real|+ f akeDevices

end function

Algorithm 4 The bruteForceCOUNT procedure

Require: real: set of real addresses;
Require: f ake: set of fake addresses;
Ensure: the function returns an estimation of the number of devices.

function BRUTEFORCECOUNT(real, f ake)
N = cluster(rssi, f ake)
f akeDevices = 0
for k ∈ {1, N} do

C = getCluster(k, rssi, f ake)
Id = clustering(dr, C)
f akeDevices← f akeDevices + Id
for p ∈ [1, . . . , Id] do

C = getCluster(p, dr, C)
est f ake = round(|C|/(no_probes_as_device ∗ winSize))
if est f ake ≥ 2 then

f akeDevices← f akeDevices + est f ake− 1
end if

end for
end for
return |real|+ f akeDevices

end function

The estimated number of passengers is then the sum of the results obtained by ap-
plying the above formula, with rounding, to which the number of actual MAC addresses
is added.

In this variant, we refine clusters that contain similar devices, either as signal strength
or as support data rates, and find an easy way to handle crowded situations in transport
means; no_probes_per_device should be derived experimentally.

5.1.3. Third Variant: wordDistanceCount

In the wordDistanceCount variant, see Algorithm 5, we add an additional clustering
phase on top of that obtained via standardCount. The refinement is based on the Ham-
ming similarity of randomized MAC addresses. The parameter weps must be specified to
create the clusters this time based on the number of equal symbols for each MAC address.
The estimated number of passengers in this case is the sum of the number of real MAC
addresses and the total number of Hamming-based subclusters identified.

Sensors 2023, 23, 5210 15 of 27

We remark that, differently from the original DBSCAN algorithm, our clustering
procedure does not merge overlapping clusters. The algorithm labels only noise points,
maintaining labels assigned in previous steps. In our tests, the merge step produced a rough
underestimation of the set of actual devices with reference to the adopted labeling strategy.

In the rest of the paper, we discuss experimental results obtained with the three variants
of the algorithm implemented in the our edge device as explained in the next section.

Algorithm 5 The wordDistanceCOUNT procedure.

Require: real: set of real addresses;
Require: f ake: set of fake addresses;
Ensure: the function returns an estimation of the number of devices.

function WORDDISTANCECOUNT(real, f ake)
N = cluster(rssi, f ake)
f akeDevices = 0
for k ∈ [1, . . . , N] do

C = getCluster(k, rssi, f ake)
Id = clustering(dr, C)
f akeDevices← f akeDevices + Id
for p ∈ [1, . . . , Id] do

C = getCluster(p, dr, C)
WId = clustering(wd, C)
if WId ≥ 2 then

f akeDevices← f akeDevices + WId− 1
end if

end for
end for
return |real|+ f akeDevices

end function

6. Edge Computing Pipeline Architecture

The software artifact used to control the Raspberry Pi and the 4G hat consists of the
components executed periodically via the launch_apc script defined as follows:

sudo tcpdump -i wlan1 -e -s 0 -l type mgt subtype probe-req | \
python3 -u counter.py | python3 send_module.py

Multiprocessing is used to define the Python pipeline that implements the different
steps required by the algorithm (probe sniffing, data preparation, estimate generation, and
data distribution). The pipeline consists of the following components.

The tcpdump network traffic analysis tool remains listening on the AC650 antenna set
in monitor mode on the wlan1 network interface, in order to capture all frames containing
probe requests sent by devices in its vicinity. The data are printed on standard output with
no buffering (option -l).

The counter Python script is the core of the pipeline. It takes as input the output
produced by the tcpdump tool and performs two types of operations via separate threads.

• The first thread is in charge of preparing a dataset containing the collected MAC
addresses, the timestamps corresponding to their first detection within the current
epoch, the maximum RSSI with which it was detected, the list of date rates extracted
from the probe request, and a classification tag distinguishing real and randomized
addresses; the latter is also used to create two separate lists of MAC addresses. Filtering
operations are also applied in this thread on the basis of the RSSI to avoid considering
devices with low signals as potential passenger devices.

• The second thread processes the resulting data through one of the algorithms described
in Section 5. The algorithm computes an estimate of the number of passengers and
then produces as an output a json containing the estimate along with other data,

Sensors 2023, 23, 5210 16 of 27

including the number of real and randomized addresses found in the considered
time window.

Threading is used here in order to apply the producer–consumer pattern using com-
ponents working on the same address space, i.e., processing data in main memory only.

The send_module Python script manages LTE communication with the Senseioty
cloud server via a custom API class flairbitAPI and collects GPS position via a dedicated
script that control the GNSS receiver via AT commands. The component takes in input
the json data produced by counter script and combines the crowd estimate with GPS
data by updating a shared object kept in main memory. An additional task dumps the
data to the remote server via a Rest invocation using an LTE-enabled Internet connection.
The operations described above are all punctuated by a time window (epoch) in which
collection takes place, construction of data lists, and at the end, estimation of passengers,
cleaning of data lists and then starting again from collection. Inside the json, the headers
section contains the name of the device assigned to the platform (serial), the timestamp for
sending the data, and a payload section containing the GPS coordinates and the values
of the measures obtained as a result of the send_module.py, which are, in addition to
the timestamp:

• APC estimation: A string that represents a numerical range relative to the number of
passengers, which can take the values 0–10, 10–25, 25–50 and more than 50, and is
derived from the value of the APC-Counter.

• APC counter: the count obtained by the counter module by applying the algorithm.

– REAL counter and FAKE counter: consist of the lengths of real and randomized
MAC lists, respectively.

– Used mode: the different modes introduced in Section 5. It can take the values
MODE_0 (sum of real and randomized MAC addresses), MODE_1, MODE_2,
MODE_3 (standardCount, bruteForceCount, wordDistanceCount, respectively).

Figure 6 illustrates the data displayed in the Senseioty dashboard [27]. Numerical val-
ues have two icons, the first of which is used to display the history of the data sent, which
can be useful for further analysis, while the second is used to display some statistics on
the data, such as the maximum or the daily average value. In addition, the names of the
measures must coincide with those used in the scripts.

Figure 6. Dashboard.

Figure 7 shows the main part of the counter script including the part for processing
the data captured by tcpdump, and for creating the dataset with the MAC addresses and
related information.

Sensors 2023, 23, 5210 17 of 27

Figure 7. Counter script main loop

In each iteration of the loop of Figure 7 the script parses each row produced by tcpdump
to extract three values, through the regular expressions illustrated in the Python code of
Figure 8: the MAC address, the RSSI, and the list of supported data speeds. RSSI checks are
also carried out, in which everything that is below a certain threshold (in this case –60 dBm)
is discarded in order to avoid devices that are presumably out of the means of transport,
and it is also converted to absolute value to be able to handle it more easily. After that, it is
checked whether the MAC is randomized or not, and after a last possible check with RSSI
update in case this is already present, the relative tuple is created in the dataset that will
contain, respectively: MAC address, timestamp of first detection, classification in real or
randomized, highest RSSI with which it was detected and list of supported data speeds.
The data will take the following names, respectively: mac, timestamp, type, rssi, data rates.

Figure 9 illustrate the main part of send_module. The flairbitAPI object is created
to communicate with the Flairbit server, through which an access token provided by the
company is passed. After that, two separate threads are started to which the created object
is passed, one to update the fields with the data obtained from the counter (count_thread)
and one for the actual sending of the data complete with GPS location.

Sensors 2023, 23, 5210 18 of 27

Figure 8. Threshold and regular expressions.

Figure 9. The send_module main part.

The read_buf thread, defined in Figure 10, takes the data sent from the counter
module and updates the flairbitAPI object fields.

Figure 10. The read_buf procedure.

Sensors 2023, 23, 5210 19 of 27

Figure 11 illustrates the body of the thread, which is temporally synchronized with the
sending of data from the counter script as indicated by the respective time sleep. It takes
the data sent by the counter script from the input stream and then refreshes the flairbitAPI
fields. The json message format used to send the data to the cloud server is shown in
Figure 11. The send_task method builds the json message to be sent to Senseioty with data
via POST method.

Figure 11. The send_task method.

The epoch (time window) used for data acquisition is set in number of seconds,
compatible with the functions to manage time sleep in Python, and it is possible, as already
introduced previously, to divide the window into smaller ones, which is useful if for
example there is a want to return an average of estimated values rather than just one (for
example, for long-distance routes).

The artifact includes a simulation script, a program that takes into input two datasets of
real and randomized MAC addresses in the form of .csv files and executes all three variants
of the algorithm with different parameter values, and then returns, for each execution,
the result obtained.

Sensors 2023, 23, 5210 20 of 27

7. Experimental Evaluation
7.1. Motivations

Our tests were performed in different locations at our university campus with the aim
of recreating different scenarios that may occur inside a bus and, in the meantime, to have
more structure information on the set of devices used in the experiments. The tests are
intended to learn thresholds to be used in the algorithms, as well as questioning choices
made when creating the algorithms. More in detail, we considered the following scenarios.

7.2. Unsupervised Test

This test tries to simulate the bus so that we cannot know anything about the devices
of the users. The goal here to determine if the estimated number of passengers obtained is
similar to the counted people number in the test place. The test was carried out in a study
place with around 30 or 35 students, all equipped with a smartphone/laptop. To capture
WiFi probe signals, we positioned the antenna in one of the entrances to the area. We
did not known whether or not both student devices were connected to the university
WiFi network. The program discarded each frame with less than −60 dBm, since we
assumed from previous experiments that it corresponds to the standard size of a bus. For
real-time testing and data acquisition, we used the bruteForceCount, as it was considered
the most promising solution, with the following parameters: minPts = 2, rssiEps = 2 and
noProbesAsDevice = 4. For winSize, we initially chose 120 as the value, which corresponds to
two minutes, as we wanted to try to simulate a bus with frequent stops, but we tried to
perform a manual merge to obtain windows of six minutes as well (winSize = 360) composed
of three small windows, due to uncertainty related to the correct acquisition time and to
the possibility of having datasets easier to analyze and manage. Six-minute datasets were
composed by following the same code execution rules, so that for each MAC address, we
had an RSSI with the highest value found, and the first list of data rates appeared.

The test lasted about an hour. Table 6 is related to the two-minute windows experi-
ment. Looking at the Estimated passengers number column, the table shows a minimum of
9 passengers and a maximum of 23 passengers; thus, the range is very wide, as we start
from high numbers at the beginning, and then, they decrease to lower and more stables
values (except 22 in the observation 12:07:16). If we divide the table into three equal parts,
the first has an average of 18.5 estimated passengers, while the last ones have an average
of 15.4 and 15.3 passengers. This trend is consistent with the fact that at the beginning,
there was a break time; thus, there were more students than the usual walking around with
their smartphones. To confirm this, it is possible, for example, to observe the number of
randomized MAC addresses: in the first part, there is an average of 44.4 MAC addresses,
while in the last one an average of 32. In other words, there is some sensitivity to noise.

Table 7 is related to the six-minute windows experiment. Looking at the Estimated
passengers number column, we have a range between 26 and 33 (excluding the peak of 20 at
11:50:35). If we split the table in two halves, we have an average of 31 passengers in the
first half and 26,4 in the second half. Thus, we have now a more realistic and stable range,
and we can confirm the size of the time window matters, as more data are being processed.

However, considering the coverage range concerns, the results from Table 6 seem
more related to the first half of the study area, while the results from Table 7 seem more
related to the study area in its entirety.

By increasing the minPts parameter to 4 and 8 in the six-minute dataset, we obtained
the results shown in Table 8.

Sensors 2023, 23, 5210 21 of 27

Table 6. Unsupervised test results with original two-minute time window.

Timestamp Estimated
Passengers Number

Processed Real MAC
Addresses

Processed
Randomized MAC

Addresses

11:15:09 21 12 62
11:17:14 23 15 44
11:19:19 16 8 42
11:21:24 15 10 30
11:23:29 18 11 30
11:25:34 21 13 39
11:27:39 16 10 39
11:29:45 19 10 65
11:31:50 21 12 56
11:33:55 15 10 37
11:36:00 21 12 39
11:38:05 21 11 47
11:40:10 20 8 64
11:42:15 17 7 60
11:44:20 14 8 29
11:46:25 10 6 21
11:48:30 9 5 27
11:50:35 11 6 27
11:52:40 15 9 24
11:54:45 15 9 21
11:56:50 15 9 27
11:58:56 14 9 23
12:01:01 14 9 32
12:03:06 14 7 45
12:05:11 15 8 35
12:07:16 22 14 32
12:09:21 15 7 30
12:11:26 15 7 28
12:13:31 13 5 43
12:15:36 17 13 25

Table 7. Unsupervised test results with adapted six-minute time window.

Timestamp Estimated
Passengers Number

Processed Real MAC
Addresses

Processed
Randomized MAC

Addresses

11:19:19 32 21 146
11:25:34 31 19 92
11:31:50 29 18 158
11:38:05 30 18 118
11:44:20 33 15 150
11:50:35 20 11 73
11:56:50 26 17 69
12:03:06 27 17 96
12:09:21 31 21 90
12:15:36 28 14 106

Sensors 2023, 23, 5210 22 of 27

Table 8. Results of Table 2 with different values for minPts.

Timestamp Estimated Passengers
Number with minPts = 4

Estimated Passengers
Number with minPts = 8

11:19:19 28 27
11:25:34 26 24
11:31:50 25 24
11:38:05 24 23
11:44:20 26 22
11:50:35 17 14
11:56:50 25 21
12:03:06 23 22
12:09:21 28 27
12:15:36 23 20

According to Table 8, with minPts = 4, we have a range between 23 and 28 (excluding
the peak of 17); thus, if we divide the results into two halves, we have an average of 25.8 for
the first half and 23.2 for the second; thus, there is less difference, and it seems to be useful
for reducing noise. However, the results are not similar to Table 6, even with minPts = 8,
and the more that minPts increases, the more it may be necessary to increase the size of the
time window, in order to not underestimate the results.It is not easy to identify the source
of the noise. One cause is probably the presence of more people. In Figure 12, we can see
that there are many MAC address captured with −58 dBm as the maximum RSSI, which
is close to the threshold, and the possible explanation is that the study place was bigger
than a bus. Thus, even if the students might seem close, they were not at all. In addition,
the coverage range could be large; thus, maybe the farther the device is, the more likely
it will be captured but with low signals (in our situation, from −50 to −59 dBm). Thus,
it could potentially lead to noise. Fixing a value of minPts that depends on the observed
RSSIs could be an interesting strategy to consider.

Figure 12. Example of acquired dataset from the unsupervised test with randomized MAC addresses.

Table 7 seems to be more accurate than Table 6. Table 9 elaborates the data discussed
thus far with the three different algorithms but while maintaining the value used for
parameters in Table 7 (rssiEps = 2, minPts = 2).

We can see that standardCount and bruteForceCount, with its difference in parameters
values, gave similar results, but it is still better to use the latter since it gives us extra

Sensors 2023, 23, 5210 23 of 27

precision due to the experiments related to the average number of MAC addresses sent
by a device. In addition, with noProbesAsDevice = 3, we obtain a slightly higher value than
noProbesAsDevice = 4.

Table 9. Results of Table 2 with different algorithms and values for parameters.

Timestamp standardCount
bruteForceCount,

noProbesAsDevice
= 3,4,5

wordDistanceCount,
wdEps = 3,4,5

11:19:19 32 33, 32, 32 65, 36, 32
11:25:34 31 31, 31, 31 38, 31, 31
11:31:50 28 31, 29, 28 82, 41, 28
11:38:05 29 30, 30, 29 61, 41, 29
11:44:20 32 33, 33, 32 64, 40, 32
11:50:35 20 20, 20, 20 34, 21, 20
11:56:50 26 26, 26, 26 29, 26, 26
12:03:06 27 27, 27, 27 43, 30, 27
12:09:21 31 31, 31, 31 46, 33, 31
12:15:36 28 28, 28, 28 39, 28, 28

Regarding wordDistanceCount, the result seems to be more uncertain, since with wdEps
being smaller than 3, the value is too high, with wdEps equal to 4, we have a peak of 41;
thus, it is quite reasonable but still too high, with wdEps being greater than or equal to
5, the results are more similar to standardCount. Thus, it is still difficult to understand if
wordDistanceCount could be useful or not.

In conclusion, we can say that we have tested the algorithm in an environment of
35 people without having any control over the devices, and we have obtained the follow-
ing outcomes:

• The algorithm (bruteForceCount) and parameters chosen at the beginning gave promis-
ing results, even if we had to “artificially” increase the size of the time window to
obtain a satisfactory result

• We cannot confirm where the noise comes from, but we tried to analyze the dataset,
and the solution could be to handle the coverage range differently or to increase the
minPts parameter value to 4.

7.3. Supervised Test

The supervised test consisted of using a fixed number of devices in a room, with the
aim of understanding whether the number of passengers is similar to the actual number
of devices used for the test, as well as being able to control the devices, for example by
turning the screen on or off.

As already mentioned, partial tests were conducted during the internship but only
with very few devices; thus, we decided to conduct a similar test with a group of devices
owned by the university, which were around 20 tablets used to simulate passengers, all
of them produced by Lenovo with the exception of one. All the tablets were in the same
condition as on a bus, thus with the WiFi turned on but not connected to any access point.
Not all of the tablets worked; thus, the actual number of devices was 16 or 17, in which we
added the two smartphones of the people that were in the test site, the two laptops and the
Raspberry Pi. Thus, the total was around 21 or 22 active devices.

In this test, we faced the following obstacles, although it was an interesting “case
study”: The test was conducted in the small office; thus, the tablets were not well spaced.
However, it could be useful in order to test a crowded environment and specifically to
verify if the algorithm is able to distinguish the devices Except for five devices, the tablets
were all produced by Lenovo. Although it might be unrealistic for all users to have a device
from the same producer, this scenario allowed us to check how the algorithm performs in a
crowded place with some additional information coming from controlled devices.

Sensors 2023, 23, 5210 24 of 27

The data were acquired for approximately 26 min, divided into two halves, with
screens turned off and turned on. Time windows were again of two minutes, but the results
with six minutes are displayed as well, since it could be used as confirmation that one of the
two is more suitable. The algorithm and parameters were the same as for the unsupervised
test, but the final results with the other configurations are provided as well.

Table 10 shows the results of the two-minute table and thus the results of the real-
time test.

Table 10. Supervised test results with original two-minute time window.

Timestamp Estimated
Passengers Number

Processed Real MAC
Addresses

Processed
Randomized MAC

Addresses

14:23:09 10 2 36
14:25:14 9 3 40
14:27:19 10 3 33
14:29:24 12 2 65
14:31:29 13 3 46
14:33:34 12 2 54
14:35:39 8 2 30
14:37:44 8 3 16
14:39:49 4 3 6
14:41:55 8 4 17
14:44:00 12 4 38
14:46:05 6 1 25

Table 11 shows the corresponding six-minute table.

Table 11. Supervised test results with adapted six-minute time window.

Timestamp Estimated
Passengers Number

Processed Real MAC
Addresses

Processed
Randomized MAC

Addresses

14:27:19 14 4 119
14:33:34 20 3 165
14:39:49 13 3 52
14:46:05 17 4 79

In Table 11, we can confirm a better precision, since in the observation 14:33:34, we
obtained 20 as the estimated passenger number, very close to the real device number. In
addition, the number of real devices matches the number of devices we already knew
would use their real MAC address, which were a smartphone, a laptop and the Raspberry
Pi itself. Thus, according to the promise, the estimation is good.

However, there is a different balance if we divide both the tables into two halves.
For example, if we take Table 11, both halves have an average of 3.5 real MAC addresses,
but the first half has an average of 142 fake MAC addresses and the second one an aver-
age of 91.5.

This behavior is related to the fact that devices had screens turned off in the first half
and screens turned on in the second half. This is different than what was stated in the
experiments before the development of the algorithm, as most devices send more MAC
addresses when the screen is turned on, and thus it may depend on the manufacturer.

As shown in Figures 13 and 14, many addresses with da:a1:19 as the prefix were
found (which is used for randomized MAC addresses) and were often captured with a
large RSSI range, from −26 to −50. This should prove that those addresses come from
different devices in the room. Regarding the difference of the two pictures, the addresses
of Figure 13 were captured in 18 s, while the addresses of Figure 14 were captured in 47 s;
thus, it should be confirmed that not all devices send probes with screens turned on, and

Sensors 2023, 23, 5210 25 of 27

it depends more on the producer of the device. In addition, the devices sometimes send
a different data rate list, but this is rare; thus, sub-clustering based on them is still very
useful.

Table 12 shows the results from Table 11, with all three algorithms and the different
parameter values. We can see that the wordDistanceCount has a different result compared
to the unsupervised test, as the results are more similar to those of the other two algo-
rithms, because the MAC addresses of Lenovo tablets all have the same prefix. Thus, the
algorithm struggles to create clusters based on word distance, where, at this point, the
wordDistanceCount is quite unstable, at least with this implementation.

Figure 13. First example of acquired dataset from the supervised test with randomized MAC addresses.

Figure 14. Second example of acquired dataset from the supervised test with randomized MAC addresses.

Table 12. Results of Table 6 with different algorithms and values for parameters.

H,M,S Observation Estimated Passengers
Number with standardCount

Estimated Passengers
Number with

bruteForceCount and
noProbesAsDevice

= 3,4,5

Estimated Passengers
Number with

wordDistanceCount and
wdEps = 3,4,5

14:27:19 13 15, 14, 13 13, 13, 13
14:33:34 19 21, 20, 19 23, 21, 19
14:39:49 13 13, 13, 13 18, 13, 13
14:46:05 17 17, 17, 17 19, 17, 17

In conclusion, we can say that we tested the algorithm with a set of controlled devices,
all in the conditions to send probes, but with difficulties related to the same producer and
the considered environment. However, we inferred the following considerations: the choice
of algorithm and parameter values used can be confirmed to be good in the considered
experiments; not all devices behave the same when sending probe requests; some types of
device send probes only when the screen is turned off.

8. Conclusions

In this paper, we presented a solution for computing crowd density estimations via
WiFi scanning and AI algorithms deployed on edge devices in order to ensure data privacy.
The prototype was tested in supervised and unsupervised testing. Software architecture
was implemented in order to facilitate possible extensions.

Although inspired by AI algorithms such as those applied in [4–6,10], one distin-
guished feature of our approach was the use of a hierarchical clustering algorithm that
adjusts clusters via a sort of incremental refinement procedure. Another interesting feature

Sensors 2023, 23, 5210 26 of 27

of our approach is that the processing pipeline is highly modular. Furthermore, the entire
procedure was implemented on the edge for preserving data privacy and was tested and
executed on a custom device built on top of low-cost components. We also differentiated
the testing phase by considering both supervised and unsupervised scenarios to compare
the results, e.g., with a fleet of known a priori or unknown devices.

A combination of different clustering methods, using for instance a consensus strategy
or ensemble clustering techniques to combine multiple clustering results into a more robust
clustering, is a possible future direction for extending our approach and software artifact.
For instance, in our experiments, we did not consider sequence numbers as in [19], and we
applied instead other types of similarity metrics. Additional metrics could be particularly
useful when combining different sniffing tools.

Author Contributions: Conceptualization, G.D., L.B. and M.R.; methodology, G.D., D.D., D.G. and
A.H.M.; software, G.D., D.D., D.G. and A.H.M.; validation, L.C. and A.H.M.; formal analysis, G.D.;
investigation, G.D., L.C. and A.H.M.; resources, D.D. and D.G.; data curation, G.D., A.H.M.; writing—
original draft preparation, L.C., G.D., D.D., D.G., A.H.M., L.B. and M.R.; writing—review and editing,
L.C. and G.D.; visualization, L.C.; supervision, G.D., L.B. and M.R.; project administration, L.B. and
M.R.; funding acquisition, L.B. and M.R.. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Project GETUP (GreEn MaaS for adapTive Urban Planning),
POR FESR Regione Liguria 2014-2020, Asse 1 RICERCA E INNOVAZIONE (OT1), Azione 1.2.4.

Institutional Review Board Statement: Ethical review and approval were waived for this study since
we did not collect personal data from devices used in the experiments: MAC addresses considered in
the experiments are anonymized via randomization.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: Data can be made available to interested readers by contacting the
authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kouyoumdjieva, S.T.; Danielis, P.; Karlsson, G. Survey of Non-Image-Based Approaches for Counting People. IEEE Commun.

Surv. Tutorials 2019, 22, 1305–1336. [CrossRef]
2. Vieira, T.; Almeida, P.; Meireles, M.; Ribeiro, R. Public Transport Occupancy Estimation using WLAN Probing and Mathematical

Modeling. Transp. Res. Procedia 2020, 48, 3299–3309. [CrossRef]
3. Hidayat, A.; Terabe, S.; Yaginuma, H. Estimating bus passenger volume based on a Wi-Fi scanner survey. Transp. Res. Interdiscip.

Perspect. 2020, 6, 100142. [CrossRef]
4. Uras, M.; Cossu, R.; Ferrara, E.; Bagdasar, O.; Liotta, A.; Atzori, L. WiFi Probes Sniffing: An Artificial Intelligence Based Approach

for MAC Addresses De-Randomization. In Proceedings of the 2020 IEEE 25th International Workshop on Computer Aided
Modeling and Design of Communication Links and Networks, Pisa, Italy, 14–16 September 2020.

5. Pintor, L.; Atzori, L. A dataset of labelled device Wi-Fi probe requests for MAC address de-randomization. Comput. Netw. 2022,
205, 108783. [CrossRef]

6. Uras, M.; Ferrara, E.; Cossu, R.; Liotta, A.; Atzori, L. MAC address de-randomization for WiFi device counting: Combining
temporal- and content-based fingerprints. Comput. Netw. 2022, 218, 109393. [CrossRef]

7. Gebru, K. A Privacy-Preserving Scheme for Passive Monitoring of People’s Flows through WiFi Beacons. In Proceedings of the
2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC), Las Vegas, NV, USA, 8–11 January 2022.

8. Ribeiro, M.; Nunes, N.; Nisi, V.; Schöning, J. Passive Wi-Fi monitoring in the wild: A long-term study across multiple location
typologies. Pers. Ubiquitous Comput. 2022, 26, 505–519. [CrossRef] [PubMed]

9. Vanhoef, M.; Matte, C.; Cunche, M.; Cardoso, L.S.; Piessens, F. Why MAC Address Randomization is not Enough: An Analysis of
Wi-Fi Network Discovery Mechanisms. In Proceedings of the 11th ACM on Asia Conference on Computer and Communications
Security, AsiaCCS 2016, Xi’an, China, 30 May–3 June 2016; pp. 413–424.

10. Matte, C.; Cunche, M.; Rousseau, F.; Vanhoef, M. Defeating MAC Address Randomization Through Timing Attacks. In
Proceedings of the 9th ACM Conference on Security and Privacy in Wireless and Mobile Networks, WISEC 2016, Darmstadt,
Germany, 8–22 July 2016; pp. 15–20.

11. BrosTrend AC650. Available online: https://www.brostrend.com/ (accessed on 2 March 2023).

http://doi.org/10.1109/COMST.2019.2902824
http://dx.doi.org/10.1016/j.trpro.2020.08.122
http://dx.doi.org/10.1016/j.trip.2020.100142
http://dx.doi.org/10.1016/j.comnet.2022.108783
http://dx.doi.org/10.1016/j.comnet.2022.109393
http://dx.doi.org/10.1007/s00779-020-01441-z
http://www.ncbi.nlm.nih.gov/pubmed/32958999
https://www.brostrend.com/

Sensors 2023, 23, 5210 27 of 27

12. IEEE 802.11: LAN/MAN Wireless Lans. Available online: http://standards.ieee.org/getieee802/802.11.html (accessed on 4 May 2023).
13. IEEE 802.11TM Wireless Local Aarea Networks. The Working Group for WLAN Standards. Available online: https://www.ieee8

02.org/11/ (accessed on 4 May 2023).
14. TCPDUMP and Libcap. Available online: https://www.tcpdump.org/ (accessed on 4 May 2023).
15. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with

Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland,
Oregon, USA, 2–4 August 1996; pp. 226–231.

16. Handte, M.; Iqbal, M.U.; Wagner, S.; Apolinarski, W.; Marrón, P.J.; Navarro, E.M.M.; Martinez, S.; Barthelemy, S.I.; Fernández,
M.G. Crowd Density Estimation for Public Transport Vehicles. In Proceedings of theWorkshops of the EDBT/ICDT 2014 Joint
Conference (EDBT/ICDT 2014), Athens, Greece, 28 March 2014; pp. 315–322.

17. Balaji, B.; Xu, J.; Nwokafor, A.; Gupta, R.; Agarwal, Y. Sentinel: Occupancy Based HVAC Actuation Using Existing WiFi
Infrastructure within Commercial Buildings. In Proceedings of the The 11th ACM Conference on Embedded Network Sensor
Systems (SenSys ’13), Rome, Italy, 11–15 November 2013; pp. 17:1–17:14.

18. Lu, X.; Wen, H.; Zou, H.; Jiang, H.; Xie, L.; Trigoni, N. Robust Occupancy Inference with Commodity WiFi. In Proceedings of
the 12th IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, WiMob 2016,
New York, NY, USA, 17–19 October 2016; pp. 1–8.

19. Nitti, M.; Pinna, F.; Pintor, L.; Pilloni, V.; Barabino, B. iABACUS: A Wi-Fi-Based Automatic Bus Passenger Counting System.
Energies 2020, 13, 1446. [CrossRef]

20. Franklin, J.; McCoy, D. Passive Data Link Layer 802.11 Wireless Device Driver Fingerprinting. In Proceedings of the15th USENIX
Security Symposium, Vancouver, BC, Canada, 31 July–4 August 2006.

21. Myrvoll, T.A.; Håkegård, J.E.; Matsui, T.; Septier, F. Counting Public Transport Passenger Using WiFi Signatures of Mobile
Devices. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama,
Japan, 16–19 October 2017; pp. 1–6.

22. Gebru, K.; Casetti, C.; Chiasserini, C.F.; Giaccone, P. IoT-based Mobility Tracking for Smart City Applications. In Proceedings of
the 2020 European Conference on Networks and Communications (EuCNC), Dubrovnik, Croatia, 15–18 June 2020; pp. 326–330.
[CrossRef]

23. Raspberry Pi 4 Model B. Available online: https://www.raspberrypi.com/products/raspberry-pi-4-model-b/ (accessed on 2
March 2023).

24. SIM7600 4G Hat. Available online: https://www.waveshare.com/wiki/SIM7600X_4G_&_LTE_Cat-1_HAT (accessed on 4 May 2023).
25. SIM7600X SIMCom. Available online: https://www.simcom.com/product/SIM7600X-H.html (accessed on 4 May 2023).
26. 1NCE Connect. Available online: https://1nce.com/ (accessed on 4 May 2023).
27. Senseioty. Available online: https://flairbit.com/senseioty-iiot-solution/ (accessed on 4 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://standards.ieee.org/getieee802/802.11.html
https://www.ieee802.org/11/
https://www.ieee802.org/11/
https://www.tcpdump.org/
http://dx.doi.org/10.3390/en13061446
http://dx.doi.org/10.1109/EuCNC48522.2020.9200941
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.waveshare.com/wiki/SIM7600X_4G_&_LTE_Cat-1_HAT
https://www.simcom.com/product/SIM7600X-H.html
https://1nce.com/
https://flairbit.com/senseioty-iiot-solution/

	Introduction
	Background, Motivations and Challenges
	Research Question
	Our Contribution
	Originality and Reproducibility
	Plan of the Paper

	Related Work
	802.11 WiFi Protocol and MAC Address Randomization
	802.11 Probe Request Frames Structure
	Device Detection via Probe Requests
	MAC Address Randomization
	Frequency of Probe Requests
	RSSI Data
	Supported Data Rates
	Other Similarity Measures

	The WiFi Scanner Device
	Unsupervised Clustering Algorithm on the Edge
	The Lightweight DBSCAN Algorithm
	First Variant: standardCount
	Second Variant: standardCount
	Third Variant: wordDistanceCount

	Edge Computing Pipeline Architecture
	Experimental Evaluation
	Motivations
	Unsupervised Test
	Supervised Test

	Conclusions
	References

