Western Kentucky University

TopSCHOLAR®

Masters Theses & Specialist Projects Graduate School

12-2023

Index Bucketing: A Novel Approach to Manipulating Data
Structures

Jeffrey Myers
Western Kentucky University, jeffrey.myers648@topper.wku.edu

Follow this and additional works at: https://digitalcommons.wku.edu/theses

6‘ Part of the Databases and Information Systems Commons, and the Theory and Algorithms Commons

Recommended Citation

Myers, Jeffrey, "Index Bucketing: A Novel Approach to Manipulating Data Structures" (2023). Masters
Theses & Specialist Projects. Paper 3695.

https://digitalcommons.wku.edu/theses/3695

This Thesis is brought to you for free and open access by TopSCHOLAR®. It has been accepted for inclusion in
Masters Theses & Specialist Projects by an authorized administrator of TopSCHOLAR®. For more information,
please contact topscholar@wku.edu.


https://digitalcommons.wku.edu/
https://digitalcommons.wku.edu/theses
https://digitalcommons.wku.edu/Graduate
https://digitalcommons.wku.edu/theses?utm_source=digitalcommons.wku.edu%2Ftheses%2F3695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.wku.edu%2Ftheses%2F3695&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.wku.edu%2Ftheses%2F3695&utm_medium=PDF&utm_campaign=PDFCoverPages

INDEX BUCKETING:
A NOVEL APPROACH TO MANIPULATING NESTED DATA STRUCTURES

A Thesis submitted in partial fulfillment
of the requirements for the degree
Master of Science

Department of Computer Science
Western Kentucky University
Bowling Green, Kentucky

by
Jeffrey Myers 11
December, 2023



DocuSign Envelope ID: CB51ABEE-F06B-4FB4-989B-78FDCF483BB6

Title:INDEX BUCKETING:A NOVEL APPROACH TO MANIPULATING NESTED DATA STRUCTURES

Name:Jeffrey Myers II

12/1/2023
Date Recommended

——DocuSigned by:

Yaser Mowaf

;RDR7{‘IARRRE\RE4(‘R

Chair

——DocuSigned by:

tuanging Nauy

\___ac++rlsoordrazs

Committee Member

——DocuSigned by:

Lusshang Yo

\___o0s070r 05828485

Committee Member

Committee Member

DocuSigned by:

Joanifr ammonds

EBE3858E068F42D

Interim Director of the Graduate School




ABSTRACT

INDEX BUCKETING:
A NOVEL APPROACH TO MANIPULATING NESTED DATA STRUCTURES

Handling nested data collections in large-scale distributed systems poses considerable chal-
lenges in query processing, often resulting in substantial costs and error susceptibility. While
substantial efforts have been directed toward overcoming computation hurdles in querying
vast data collections within relational databases, scant attention has been devoted to the
manipulation and flattening procedures necessary for unnesting these data collections. Flat-
tening operations, integral to unnesting, frequently yield copious duplicate data and entail
a loss of information, devoid of mechanisms for reconstructing the original structure. These
challenges exacerbate in scenarios involving skewed, nested data with irregular inner data
collections. Processing such data demands an extravagant number of operations, leading to
extensive data duplication and imposing challenges in ensuring balanced distribution across
partitions. Consequently, these factors impede performance and scalability. This research
introduces a pioneering approach that amalgamates upfront computations with data manip-
ulation techniques, specifically focusing on flattening procedures. This methodology aims
to mitigate the adverse implications of data duplication and information loss while effec-
tively addressing both skewed and irregular nesting structures. The efficacy of the proposed
approach is assessed through comprehensive evaluations conducted on prominent datasets
such as SQuAD, QuAC, and NewsQA, comparing its performance against existing methods
like Pandas and recursive, iterative flattening implementations. These evaluations serve as
a critical yardstick for gauging the effectiveness and viability of this novel approach in real-

world scenarios.

Keywords: Irregular Schema, Skewed Distribution, Information Loss, Duplication Explo-

sion, Nested Data Structures

il



In deep gratitude, I dedicate this work to the King of my heart and my life, whose subtle
but essential guidance and providence I am convinced shaped the journey that lead to my
discoveries. I am deeply grateful for God’s grace, love, and mercy. He is with me through

every step, never leaving my side and carrying me through where I fail.

”So do not fear, for I am with you; do not be dismayed, for I am your God. I will
strengthen you and help you; I will uphold you with my righteous right hand.”
— Isaiah 41:10

v



ACKNOWLEDGMENTS

First and foremost, I'd like to thank my advisor and mentor Dr. Yaser Mowafi for his
crucial support and guidance throughout my research journey and for his constant encour-
agement. ['ve learned a lot from you, and I could not have done it without you!

To Drs. Guangming Xing, Huanjing Wang, Zhonghang Xia, Michael Galloway, and
Mustafa Atici, thank you all for what you have taught me during my time at Western
Kentucky University. Your guidance and support have been invaluable, and it has been my
pleasure to study under your tutelage.

I am eternally grateful to my family for their unwavering, unconditional support and love
through the ups and downs. Thanks Dad for believing in me and showing me patience and
love, even during my worst moments. Thanks Mom for the sacrificial love and support that
you demonstrate every day by what you do. Thanks to Denise, my other Mom who I am so
blessed to have in my life. You're always there for me when I need words of encouragement or
someone who will endure listening to my ramblings. Another thanks to my brother, David.
We may butt heads a lot of the time, but I wouldn’t have it any other way. Of those I
consider my best friends, you are the best of the best. I love you all so much!

Last but not least, I want to thank those at Glasgow Bible Church whose fellowship has
been a beacon of light to me and whose faithfulness has given me strength to persevere in
life and in faith. I am eternally grateful for your love and support. You will always be in my

heart, no matter where life takes me.



TABLE OF CONTENTS

List of Tables ... vii
List of Figures ... viii
List of Algorithms ... ... . ix
Introduction .. ... 1
Background ... 3
Challenges ... o 8
Index Bucketing Framework . ... . . 9
Experimental Evaluation ... .. 22
CONCIUSION ..o 30

vi



LIST OF TABLES

SOUTCES (SIC) ottt ettt et ettt e e e e e 3
QUESEIONS (GST) vttt 3
ADSWETS (A11S) .ottt 4
Plausible Answers (DIS) ..ot 4
Index Bucketing on SQUAD ... 23
Index Bucketing on QUAC ... 24
Index Bucketing on NewsQA ... 24
Pandas on SQUA D ... 25
Pandas on QUAC . 25
Basic on SQUA D . 26
Basic on QUAC .. 26
Basic on NewsQ A ..o 26

vil



LIST OF FIGURES

Balanced QAS Tree ... 5
Irregular QAS Tree ..o 6
Skewed QAS Tree oo 7
Skewed Irregular QAs Tree .. ... 7
Total Time Evaluation Plots ... ... . 27
Initialization Time Evaluation Plots ...... ... .. . . 28
Execution Time Evaluation Plots ... .. .. 29

viii



LIST OF ALGORITHMS

TyPE ALIASES oottt 10
Node Class ..o 11
Leaf Classes .o 12
Branch Classes . ... i 14
ROt Classes .o 16
Tree Class oo 18
Tree Leaf Method ... .. o 19
Tree Branch Method ... . 19
Tree Root Method ... o 20
Generator Implementation ... ... .. 21

X



INTRODUCTION

The widespread rise in big data analytics has spurred interest in query processing sys-
tems that allow for performing complex analytical tasks over distributed data structures
of arbitrary data types including nested data collections. Implementations of language-
integrated query systems are evidenced in large-scale distributed data processing platforms
such as Spark [2], Flink [4], Hadoop [7], and Microsoft LINQ [13]. Despite their vaunted
support of nested data, these systems provide no direct processing for nested data over
different distributed collections, whose values may themselves be collections. For example,
previous work has demonstrated that nested algebra’s lack of compositional operators of
relational operators makes it unfeasible to directly express arbitrarily nested iterations over
nested collections [5]. Expressing such complex computations on more complex data like
nested collections often has a great impact on the overall execution cost, caused by so-called
impedance mismatch issues. A term that refers to the problems arising when a data model
defined by the user in the general-purpose programming language has to be flattened to
match the tabular data model of the domain-specific language [6, 17].

To avoid this penalty, declarative language-integrated querying approaches have been pro-
posed for processing nested APIs to integrate relational database queries with programming
languages. For example, several proposals for this work provide embedded data-intensive
scalable computing procedures that target current data analysis languages’ query nesting
and normalization for several distributed processing frameworks [1, 9, 10, 12, 21]. Similar to
this is the exploration in calculus rules for mapping both set and multiset collection types
and vice-versa for normalizing queries whose normal forms can be translated to SQL [16].
The work offers examples that do not appear straightforward to translate to SQL. Building
on this calculus, Apache Hive [8], Google’s F1 [18], and Spanner [3] provide SQL-like high-
level languages with extensions for querying nested structured data at scale. The motivation
for this work is to transform nested queries into efficient forms using relational algebra or

set-oriented operators [11, 15, 22, 24]. Work committed by A. Ulrich [23] offers a review on



query flattening and descriptions of query flattening in database theory. It allows program-
mers to perform complex data analysis tasks, such as PageRank and matrix factorization
using data-intensive scalable computing, called DIQL, that can run on various Big Data

platforms, i.e., Apache Spark, Apache Flink, and Twitter’s Cascading/Scalding [12].

MoTIVATION - Navigating the complexities of handling nested data collections poses con-
siderable computational hurdles, exacerbated by the inherent generation of copious dupli-
cated data and redundant computations during unnesting procedures. These challenges are
amplified within skewed nested data structures characterized by irregular inner data collec-
tions, where the endeavor to enforce balance across partitions escalates runtime inefficiencies
and scalability limitations, exacerbating disk spillage and load imbalance issues [20].

This thesis is partly inspired by the work on an implementation technique for nested
multisets, known as Query Shredding, which converts a nested complex query to a fixed
number of flat query results [5]. The correspondence between the queries’ multisets is main-
tained through binding semantics of indexed results for each shredded query. A recent work
proposes a framework that translates a program manipulating nested collections into a set
of semantically equivalent shredded queries of a sequence of queries, where both inputs and
outputs may be nested and efficiently evaluated [20]. The work proposes a framework that
flattens nested data queries by necessarily avoiding the nested structure entirely and instead
utilizes a series of preprocessing and post-processing algorithms referred to as: Query Shred-
ding and Query Stitching. While this approach has exhibited effectiveness in addressing
many of these issues, it necessitates computationally intensive mechanisms due to the inher-
ent lack of support for nested data structures within the confines of traditional relational

database environments.

OBJECTIVE - This work introduces a novel approach to addressing aggregation and flatten-
ing stages in both recent relational database methodologies and native document-oriented

database systems, notably focusing on NoSQL databases like MongoDB [14] that inherently



support nested data structures. Despite the native querying support in document-oriented
databases, their deficiency in providing an efficient process for manipulating nested struc-
tures perpetuates the challenges encountered in relational databases.

The proposed approach presented in this research offers a comprehensive solution capable
of mitigating irregular nesting, skewed distribution, information loss, duplication explosion,
and data partitioning challenges. Its efficacy extends beyond the scope of traditional rela-
tional database queries, addressing a persistent challenge in handling nested data structures

efficiently.

BACKGROUND

RELATIONAL DATA TABLES - To elucidate the functionality of the Index Bucketing al-
gorithm and underscore the challenges it seeks to address; a straightforward question-and-
answer dataset is employed. This dataset intricately articulates the nuances of skewed dis-
tribution and irregular schema, encapsulating its structure within four relational database
tables: Sources, Questions, Answers, and Plausible Answers. For the sake of clarity and

brevity, the number of records within a table is denote as n.

id (i) | context (ctx) id (j) | text (txt) | i
INC STR INC STR FK
Table 1: Sources (src) Table 2: Questions (gst)

Table 1 comprises source records featuring ¢d and context fields. The id field encompasses
incremental integers ¢ = {1,...,n}, while context stores textual excerpts extracted from
source documents, such as paragraphs or articles. Table 2 incorporates id, text, and i fields.
The id field embodies incremental integers j = {1,...,n}, housing textual representations
of questions like ”How much time did John need to finish his book?” The i field functions

as a foreign key referencing records in Table 1.



id (k) | start (srt) | end | j id (1) | start (srt) | end | ]

INC INT INT | FK INC INT INT | FK

Table 3: Answers (ans) Table 4: Plausible Answers (pls)

Table 3 encompasses id, start, end, and j fields. The ¢d field spans incremental integers
k ={1,...,n}, while start and end signify the index positions of answers within the context
of the related resource. The j field acts as a foreign key referring to records in Table 2,
establishing nested relationships and facilitating the illustration of balanced and skewed
data distribution. Introducing Table 4 enriches the dataset by mirroring fields akin to those
in Table 3, with [ = {1,...n} representing its incremental id. This table accommodates
plausible yet indeterminate answers to questions, acknowledging instances where a definitive
answer might be unattainable.

These interconnected tables establish a nested relationship structure, delineating diverse
data distribution patterns while exemplifying irregular schema through the inclusion of Table
4. This comprehensive dataset provides an adequate landscape for illustrating the Index
Bucketing algorithm’s process to grapple with the complexities inherent in managing skewed

distributions and irregular schemas.

DATA TREE REPRESENTATIONS - To further visualize the nested data structure portrayed
by the relational tables, tree structures can be used to represent them. Figure 1, Figure 2, and
Figure 3 are delineated to exemplify balanced, irregular, and skewed structures, respectively.
Figure 4 amalgamates properties from Figure 2 and Figure 3, showcasing a blend of skewed
and irregular characteristics. Within these tree representations, it becomes evident that
sources might lack associated questions, and questions might encompass answers, plausible
answers, both, or neither. This variability extends to the varying counts of answers and
plausible answers within each question, along with fluctuations in the number of questions
within each source. Such variability typifies an irregular nested structure marked by skewed

data distribution.



SIC —

ctx STR
txt STR
- 0 srt
end
ans
srt
k —
qst end
txt STR
. srt
—J 7 0+
end
ans
srt
k —
end
ctx STR
txt STR
srt
04 0
end
ans
srt
k —
qst — end
txt STR
. srt
—J 7 0+
end
ans
srt
k —
end

Figure 1: Balanced QAs Tree

INT
INT
INT
INT

INT
INT
INT
INT

INT
INT
INT
INT

INT
INT
INT
INT



SIC —

ctx STR
txt STR
srt
04 0
end
ans
srt
k —
qst end
txt STR
. srt
—J 7 0+
end
ans
srt
k —
end
ctx STR
txt STR
srt
04 0
end
L—— pls
srt
L—— st — L
4 end
txt STR
. srt
—J 7 0+
end
L—— pls
srt
] -
end

Figure 2: Irregular QAs Tree

INT
INT
INT
INT

INT
INT
INT
INT

INT
INT
INT
INT

INT
INT
INT
INT



Src

SIc —

0 ctx STR
ctx STR
i— 0 txt STR
L st txt STR
o srt
J 0+
end
ans
srt
k —
end
Figure 3: Skewed QAs Tree
ctx STR
I 0 txt STR
qst txt STR
o srt
J 0 —
end
ans
srt
k —
end
ctx STR
L 0 txt STR
qst txt STR
o srt
J 0 —
end
— pls
srt
]
end

Figure 4: Skewed Irregular QAs Tree

INT
INT
INT
INT

INT
INT
INT
INT

INT
INT
INT
INT



This visualization not only illustrates the structural diversity but also hints at the ap-
plicability of the Index Bucketing algorithm within this context. The algorithm’s nature,
rooted in a tree-based framework, aligns with the illustrated tree structures and underscores
the importance of indexes 4, j, k, and [ in comprehending and leveraging the Index Buck-
eting algorithm effectively. Considering nested data structures as akin to data trees lays
the foundation for an algorithmic perspective essential in formulating efficient manipulation

strategies for these complex structures.

CHALLENGES

Addressing the complexities within nested data structures entails grappling with sev-
eral formidable challenges, each posing unique obstacles that demand innovative solutions.
Overcoming these multifaceted challenges necessitates innovative solutions, and the Index
Bucketing algorithm emerges as a promising contender in mitigating these complexities. Its
inherent efficiency in addressing issues of data duplication, skewed distributions, irregular
schemas, and information loss within nested data structures positions it as a potential so-
lution. As subsequent sections will delve into greater detail, Index Bucketing’s capacity to
optimize memory utilization, streamline data distribution, manage irregularities in schemas,
and minimize information loss marks it as a valuable asset in navigating the intricacies of

nested data manipulation.

DUPLICATION EXPLOSION - Also known as data avalanche or data storm, duplication ex-
plosion is a phenomenon characterized by an overwhelming proliferation of duplicated data
during the flattening process [19]. As the term implies, this explosion results in an excessive
replication of data, often leading to severe memory utilization issues and potential system
failures, especially when handling extensive datasets. Current flattening solutions, primarily

relying on recursion, fail to mitigate the adverse effects of this rampant data duplication.



SKEWED DISTRIBUTION - Another hurdle to overcome is skewed distribution, manifesting
in nested data collections as unbalanced distributions of information [19]. When flattening
such data, ensuring that each flattened instance contains all requisite keys introduces a prob-
lem akin to duplication explosion. However, in this case, missing keys necessitate filling with
null values, requiring comprehensive parsing of the dataset to gather all keys. The challenge
lies in devising an efficient algorithm to distribute these missing keys throughout the flat-
tened data. Strategies may involve parsing before flattening, allowing simultaneous filling,
or conducting a secondary traversal after flattening, although the former, while superior,

presents implementation complexities.

IRREGULAR SCHEMA - Akin to skewed distribution, solving irregular schema involves filling
missing keys throughout the dataset. However, it presents an even more intricate challenge.
Here, disparate data collections within the dataset may contain entirely different keys at the

same nesting level, significantly complicating parsing and filling algorithms.

INFORMATION LoOSs - The final challenge, information loss, poses a critical concern, de-
scribing the repercussions of flattening nested data structures. The flattened data loses
crucial information required for reconstructing the original nested form. Without incorpo-
rating metadata into the flattened dataset, reconstructing the initial hierarchical structure
becomes unfeasible. Reverting to the original data necessitates reloading the data file, which

could be time-consuming and impractical for subsequent uses, especially with large datasets.

INDEX BUCKETING FRAMEWORK

The architecture of the Index Bucketing framework, rooted in a tree-based algorithmic
approach, aligns seamlessly with the original nested data, preserving its inherent structure
and circumventing potential information loss. This structural integrity stands as a robust
solution within the algorithm, fundamentally resolving issues tied to data loss. Moreover,

Index Bucketing strategically employs proactive processes, effectively ofoading computa-



tional overheads that might impede performance during data flattening stages. During the
initialization phase, comprehensive dataset analysis is executed, enabling the algorithm to
adeptly navigate challenges stemming from skewed data distributions. This proficiency is
achieved by aggregating index paths into an index bucket, a strategic mechanism facilitating
efficient queries on nested data, ultimately producing flattened records. Addressing irregu-
lar schema, the initialization process includes constructing a flat template—a critical step
ensuring every flattened record encompasses all absent keys filled with null values. This
section delineates a concise implementation of the Index Bucketing framework, accentuating
the algorithm’s prowess in surmounting diverse challenges encountered in data management.
The core attributes of this approach stand evident, exhibiting its adeptness in handling and

mitigating a spectrum of complexities inherent in nested data structures.

TyPE ALIASES - For the sake of simplicity, custom type aliases are introduced to represent
types listed in their respective alias definitions. Additionally, the following types have been

shortened for brevity:

Mapping

String | Integer | Float | Complex | Boolean | Array | Tuple

STR INT Frr Cprx BLN ARR | Tup Map

Algorithm 1 Type Aliases

alias Kpx € {STR, INT}

alias Num € {InT, FrLT, CPX}

alias BASE € {NuM, STR, BLN, NULL}

alias IPATH € {ARR[INT|, TUP[INT]}

alias KPATH € {ARR[STR], STR}

alias IBCckT € {SET[IPATH], ARR[IPATH]}
alias KBoKT € {SET[KPATH|, ARR[KPATH]|}
alias ITER € {ARR, MAP, SET, TUP}

alias VAL € {ITER, BASE}

10



Algorithm 2 Node Class

class NODE

function NODE(kdz : KDX, value : VAL, level : INT, parent : NODE)
this.kdx : KDX < kdx
this.value : MAP[NODE] or BASE « value
this.level : INT <« level
this.parent : NODE < parent

function IPATH — IPATH

 return this.parent.IPATH ()

function KPATH — KPATH

 return this.parent. KPATH()

function IBUCKET(depth : INT) — IBCKT
ibucket <— new SET[IPATH]()
for all child € this.value do
 ibucket.UPDATE (child. IBUCKET (depth))
return new ARR/(ibucket).SORT()

function FLATTEN(ipath : IPATH) — MAP

BAse NODE DEFINITIONS - As a foundational base class, the NODE class serves as the
common blueprint inherited by the LEAF, BRANCH, and ROOT classes within the Index
Bucketing framework. The NODE class lays out the essential structural elements shared

across all inheriting classes:

e NODE — This is the shared base constructor for all inheriting node classes and is
responsible for setting the shared node attributes — kdz, value, level, and parent. The
kdx attribute is a key or index value used for gathering index and key paths. The value
attribute contains a collection of child NODE types or serves as a BASE value type for
leaves. The [evel attribute is used to determine the depth of the node within the tree.

The parent attribute is used to establish a link to the node’s parent node.

e IBUCKET — By collecting a set of index paths, each aligning with the maximum depth

of the nested data tree, this method is responsible for gathering the index bucket.

This standardized class structure established by the NODE class ensures coherence and

consistency in defining and organizing nodes across the Index Bucketing framework.

11



Algorithm 3 Leaf Classes

class LEAF inherits Node
function LEAF(kdx : KDX, value : BASE, parent : NODE)
 SUPER(kdz, value, parent.level, parent)
function IBUCKET(depth : INT) — IBCKT
ibucket < new SET[IPATH]()
if this.level = depth then
 return ibucket.ADD (this.IPATH())
else return ibucket
function FLATTEN(ipath : IPATH) — MAP
. return new MAP (this.KPATH(), this.value)

class INDEXEDLEAF inherits Leaf // /Leaf or [LF
function 1IPATH — IPATH
L ipath < this.parent.IPATH()
return new TUP[INT| (ipath.APPEND (this.kdz))
function KPATH — KPATH
. return new STR(”.”).JOIN (this.parent. KPATH())

class KEYEDLEAF inherits Leaf // KLeaf or KLF
function IPATH — IPATH
 return new TUP[INT] (this.parent.IPATH())
function KPATH — KPATH
L kpath < this.parent. KPATH ()
return new STR(”.”).JOIN (kpath.APPEND (this.kdz))

LEAF NODE DEFINITIONS - Within the framework, the LEAF class, along with its inher-

iting classes — INDEXEDLEAF and KEYEDLEAF — fulfill the role of nodes encapsulating the

terminus of nested data structures. These classes define essential functionalities pivotal to

handling leaf nodes within the Index Bucketing framework:

e LEAF — Rather than directly receiving the level parameter argument, the LEAF con-

structor derives its level value from the parent node, ensuring hierarchical consistency

within the tree structure.

e IBUCKET — This method accepts the maximum depth value of the tree as a param-

eter argument. It validates whether the depth value matches its [evel, subsequently

12



returning its index path enclosed in an index bucket set object if true; otherwise, an
empty index bucket set object is returned. Employing a bottom-to-top algorithm, this
method is invoked by non-leaf nodes to update and collate their child leaf node value

fields into a set collection.

e FLATTEN — Disregarding the index path parameter argument, ipath, when invoked by
the leaf node’s corresponding parent, this method returns a new mapping of the leaf
node’s key path and value, adhering to a top-to-bottom calling sequence and resulting

in a bottom-to-top return sequence.

e IPATH & KPATH — Defined in the INDEXEDLEAF and KEYEDLEAF classes which serve
to differentiate leaves based on their indexing nature: indexed with integers or keyed
with strings during tree initialization, these class methods manage bottom-to-top index
paths or key paths by integrating the leaf node’s kdz field along with its parent’s index
or key path, respectively. In cases where index paths are gathered, the leaf node

converts arrays of index values into tuples of the same size.

By segregating leaves between indexed and keyed types during tree initialization, the
classes circumvent the need for conditional evaluations. This strategic segregation bolsters

performance and scalability, especially in managing larger datasets.

13



Algorithm 4 Branch Classes

class INDEXED
function 1PATH — IPATH
. return this.parent.IPATH (). APPEND (this.kdz)

class KEYED
function KPATH — KPATH
 return this.parent. KPATH().APPEND (this.kdz)

class BRANCH inherits Node

class INDEXINGBRANCH inherits Branch
function INDEXINGBRANCH(kdz : INT, value : MAP[NODE]|, parent : NODE)
. supER(kdz, value, parent.level + 1, parent)
function FLATTEN(ipath : IPATH) — MAP
idz : INT < ipath.AT (this.level)
if idx € this.value.KEYS() then
child : NODE < this.value.GET (idz)
return child. FLATTEN (ipath)
else return new MAP()

class KEYINGBRANCH inherits Branch
function KEYINGBRANCH(kdz : STR, value : MAP[NODE], parent : NODE)
L SUPER (kdz, value, parent.level, parent)
function FLATTEN(ipath : IPATH) — MAP
flat <~ new MAP()
for all child € this.value do
. flat.UPDATE (child. FLATTEN (ipath))
return flat

class I2BRANCH inherits Indexed, IndexingBranch // /253
class KIBRANCH inherits Keyed, IndexingBranch // KB
class IKBRANCH inherits Indexed, KeyingBranch // /KB
class K2BRANCH inherits Keyed, KeyingBranch // K25

BrANCH NODE DEFINITIONS - The BRANCH class integrates into various specialized nodes,
including I2BRANCH, KIBRANCH, IKBRANCH, and K2BRANCH which are defined by in-
heriting combinations of INDEXED and KEYED classes with INDEXINGBRANCH and KEY-

INGBRANCH classes.

14



e INDEXED — The INDEXED class encapsulates nodes indexed with integers, defining the

IPATH method to append the current node’s index value to the parent’s index path.

e KEYED — The KEYED class represents nodes keyed with strings, providing the KPATH

method to append the node’s key value to the parent’s key path.

e INDEXINGBRANCH — The INDEXINGBRANCH class inherits from BRANCH, designed
for indexed branches. Its constructor sets attributes based on the provided values and
parent node, and the FLATTEN method retrieves the corresponding child node based

on the index path.

e KEYINGBRANCH — The KEYINGBRANCH class, also extending BRANCH, targets keyed
branches. Its constructor initializes attributes, and the FLATTEN method iterates

through child nodes, updating a map with their flattened results.
e [2BRANCH — I2BRANCH combines INDEXED and INDEXINGBRANCH functionalities.
e KIBrRANCH — KIBRANCH combines KEYED and INDEXINGBRANCH functionalities.
e IKBRANCH — IKBRANCH combines INDEXED and KEYINGBRANCH functionalities.

o K2BRANCH — K2BRANCH combines KEYED and KEYINGBRANCH functionalities.

These specialized branch classes cater to different scenarios, providing distinct methods
for handling various types of nested data collections. Each class offers unique functionalities

for efficient execution, minimizing conditional evaluations during execution.

15



Algorithm 5 Root Classes

class ROOT inherits Node
function RooT(value : MAP[NODE], level : INT)
. SUPER(null, value, level, null)
function 1PATH — [PATH
. return new ARR()
function KPATH — KPATH
. return new ARR()
function FLATTEN(ibucket : IBCKT, template : MAP) — ARR[MAP]

class INDEXINGROOT inherits Root // [l2oot or IRT
function INDEXINGROOT(value : MAP[NODE])
. SUPER(value, 0)
function FLATTEN(ibucket : IBCKT, template : MAP) — ARR[MAP]
flats < new ARR[MAP]()
for all ipath € ibucket do
flat < template.COPY ()
idz : INT < ipath.AT (this.level)
child : NODE < this.value.GET (idz)
flat. UPDATE (child. FLATTEN (ipath))
flats.APPEND (flat)
return flats

class KEYINGROOT inherits Root // KRoot or KRT
function KEYINGROOT(value : MAP[NODE])
. SUPER(value, -1)
function FLATTEN(ibucket : IBCKT, template : MAP) — ARR[MAP]
flats <~ new ARR[MAP]()
for all ipath € ibucket do
flat + template.COPY()
for all child € this.value do
. flat. UPDATE (child. FLATTEN (ipath))
flats.APPEND (flat)
return flats

RooT NoDE DEFINITIONS - The Root class, and its inheriting classes, marks the starting

point of top-to-bottom processes and the conclusion of bottom-to-top processes within the

Index Bucketing framework.

16



e ROOT — Inheriting from the Node class, the base Root class undergoes constructor
modification, accepting solely wvalue and level parameters. Root nodes lack kdz or
parent attributes. Consequently, both the IPATH and KPATH methods return new
empty arrays. Notably, the FLATTEN method’s signature undergoes modification, now
accepting the index bucket, ibucket, and flat template as parameters, and returning an

array of flat mappings rather than a single mapping as seen in prior class definitions.

e INDEXINGROOT — This class inherits the base ROOT class, but its constructor con-
figures the root node’s level to 0 during instantiation, aligning its child node calling
behavior with that of INDEXINGBRANCH nodes. Its FLATTEN method iterates over the
index bucket, IBUCKET, dispatching each index path to the appropriate child nodes for
further processing. An array of flat mappings, each of which are applied to a copy of

the flat template, is gathered from the child nodes and is returned.

e KEYINGROOT — Also inheriting from the base ROOT class, the KEYINGROOT class
sets its level to -1 within the constructor since its child calling behavior does not utilize
the indexes from the index bucket. Its FLATTEN method operates in kind by passing
index paths, IPATH, from the index bucket, IBUCKET, to its child nodes for further
processing. Likewise, an array of flat mappings, each of which are applied to a copy of

the flat template, is gathered from the child nodes and is returned.

By distinguishing between KEYINGROOT and INDEXINGROOT nodes, the tree’s root
node ensures that subsequent level attributes are set appropriately during initialization and

the index bucket is distributed accordingly during execution.

17



Algorithm 6 Tree Class

class TREE
function TREE(data : ITER)
this.depth : INT < 0
this.kbucket : KBCKT < new SET()
this.tree : ROOT < this.ROOT (data)
this.ibucket : IBCKT < this.tree.IBUCKET (this.depth)
this.template < new MAP()
for all kpath € this.kbucket do
| this.template.UPDATE (new MAP (kpath, null))
function FLATTEN — ARR[MAP]
. return this.tree. FLATTEN (this.ibucket, this.template)
function LEAF(kdz : KDX, data : BASE, parent : NODE) — LEAF
function BRANCH(kdz : KDX, data : ITER, parent : NODE) — BRANCH or LEAF
function rROOT(data : ITER) — RoOT

TREE STRUCTURE DEFINITIONS - The Tree class serves as the foundational structure to

organize the nested dataset for the execution of the Index Bucketing algorithm.

e TREE — In the constructor, the initialization commences by setting the depth field
to 0 and creating an empty set object for the key bucket, kbucket. These fields are
then used to analyze the data parameter’s nested structure while the tree itself is
constructed and stored within the tree field which acts as a reference to the root node.
Next, the algorithm gathers the index bucket, ibucket. Additionally, it constructs the
template by iterating through the key bucket, compiling all key paths into a mapping
with initial null values for each key path. This flat template formation streamlines the

subsequent data organization process.

e FLATTEN — To facilitate the flattening process, the Tree class defines its own FLATTEN
method. This method initiates the root node’s FLATTEN method, passing along the

index bucket and flat template.

Additionally, the Tree class establishes three methods — LEAF, BRANCH, and ROOT — to

assemble the appropriate node types for building the tree structure.

18



Algorithm 7 Tree Leaf Method

function LEAF(kdz : KDX, data : BASE, parent : NODE) — LEAF

leaf : LEAF < null

if TYPE(kdz) = INT then

 leaf + new INDEXEDLEAF (kdz, data, parent)
else leaf < new KEYEDLEAF (kdz, data, parent)
this.depth <— MAX (this.depth, leaf.level)
this.kbucket. ADD (leaf. KPATH())

return leaf

Unlike the other node methods defined in the TREE class, the LEAF method not only

initializes the relevant LEAF class node, it also identifies the maximum depth of the tree. This

DEPTH determination is crucial for collecting index paths into the index bucket. Moreover,

the method aggregates key paths into the key bucket and, finally, returns the instantiated

Leaf node.

Algorithm 8 Tree Branch Method

function BRANCH(kdz : KDX, data : ITER, parent : NODE) — BRANCH or LEAF

if LENGTH(data) > 0 then
branch : BRANCH <— null
if TYPE(data) # MAP then
data <— ENUMERATE (data)
if TYPE(kdz) = STR then
 branch + new KIBRANCH (kdz, new MAP(), parent)
else branch < new 12BRANCH (kdz, new MAP(), parent)
else if TYPE(kdz) = STR then
 branch < new K2BRANCH (kdz, new MAP(), parent)
else branch < new IKBRANCH (kdz, new MAP(), parent)
for all kdx,value € data.ITEMS() do
node : NODE <« null
if TYPE(value) = ITER then
. node + this.BRANCH (kdz, value, branch)
else node < this.LEAF (kdz, value, branch)
branch.value.UPDATE (kdz, node)
return branch
else return this.LEAF (kdx, null, parent)

19



In the BRANCH method, if the passed data collection is not empty, this method initializes
the appropriate BRANCH class node. Conversely, if the collection is empty, it delegates
the parameter arguments to the LEAF method with null passed as the data parameter’s
argument. When the BRANCH method’s data parameter isn’t empty, it also iterates through
the collection. Depending on the nested data type, it further directs nested information to
either another BRANCH method call or a LEAF method call. Lastly, the constructed BRANCH

node is returned.

Algorithm 9 Tree Root Method

function ROOT(data : ITER) — RooT
if LENGTH (data) > 0 then
root : ROOT < null
if TYPE(data) # MAP then
data < ENUMERATE (data)
root < new INDEXINGROOT(new MAP())
else root < new KEYINGROOT(new MAP())
for all kdx,value € data.1TEMS() do
node : NODE < null
if TYPE(value) = ITER then
‘ node < this.BRANCH (kdz, value, branch)
else node < this.LEAF (kdz, value, branch)
root.value.UPDATE (kdz, node)
return root
. else return null

Differing from the BRANCH method, the ROOT method returns null when the data param-
eter is an empty collection, indicating that no data is present. However, when the collection
holds nested information, the ROOT method initializes the appropriate ROOT class node. It
then systematically traverses through the nested data of the collection. Depending on the
nested data type, it appropriately calls either the BRANCH method or the LEAF method. Fi-

nally, the method returns the constructed Root node, forming the basis of the tree structure.

20



Algorithm 10 Generator Implementation

class INDEXINGROOT inherits Root
function FLATTEN(ipath : IPATH, template : MAP) — MAP
idz : INT < ipath.AT (this.level)
child : NODE < this.value.GET (idz)
flat + template.coPY ()
flat. UPDATE (child. FLATTEN (ipath))
return flat

class KEYINGROOT inherits Root
function FLATTEN(ipath : IPATH, template : MAP) — MAP
flat < template.cOPY ()
for all child € this.value do
. flat.UPDATE (child. FLATTEN (ipath))
return flat

class TREE
function TREE(kdz : KDX, data : ITER)
this.count : INT < 0
this.depth : INT < 0
this.kbucket : KBCKT <— new SET()
this.tree : ROOT < this.ROOT (kdz, data)
this.ibucket : IBCKT < this.tree.IBUCKET (this.depth)
this.template < new MAP()
for all kpath € this.kbucket do
| this.template.UPDATE (new MAP (kpath, null))
function FLATTEN — MAP
if this.count > LENGTH (this.ibucket) then
L this.count < 0
return null
this.count < this.count + 1
ipath : TPATH < this.ibucket. AT (this.count)
return this.tree. FLATTEN (ipath, this.template)

Up to now, the implementation used for this thesis has been defined and described.
However, to demonstrate the implementation flexibility of the Index Bucketing algorithm,
an alternative implementation is presented. Through subtle modifications to the RooT
and TREE class definitions, the framework transforms into a generator capable of delivering

flattened data incrementally rather than in a single instance. Instead of the ROOT node

21



managing the index bucket within its FLATTEN method, this responsibility is shifted to
the TREE class’s FLATTEN method. Introducing a count field, initialized at 0, enables the
tracking of index bucket progress. When count reaches the end of the index bucket, it is
reset to 0, and null is returned to signal completion. This generator-style implementation
offers a method to alleviate the adverse effects of duplication explosion which can otherwise
overload memory usage. The adaptability of Index Bucketing as an algorithm allows for
diverse implementations, offering various advantages to address challenges that stem from

previous approaches.

EXPERIMENTAL EVALUATION

To assess the efficacy of the Index Bucketing algorithm, evaluations delved into perfor-
mance measurements across three prominent question-answering datasets: SQuAD, QuAC,
and NewsQA. These datasets vary in file size: 44.3 MB, 73.4 MB, and 151 MB respectively.
The Index Bucketing algorithm was juxtaposed against two alternative flattening implemen-
tations: one leveraging the Pandas Python package, and another employing a basic solution
that combines recursive and iterative techniques. The Pandas Python package is used as
a baseline for comparison, as it offers an explode function that can quickly flatten nested
data collections. The basic implementation, on the other hand, serves to demonstrate the
worst-case effects of each challenge previously described.

Evaluations spanned various subsets of each dataset incrementally from a Fibonacci-
based sequence on the range 0.1% — 100% to gauge scalability. Each subset underwent three
evaluations, and the average runtimes across these executions were recorded to ensure more
robust assessments. Each evaluation observed initialization, execution, and total runtimes.

The ensuing graphs are organized by implementation and dataset, plotting subset size,
measured in bytes, against runtime, measured in seconds. These evaluations were conducted
on an MSI GP63 Leopard 8RE laptop, with specifications of 32GB RAM and an Intel Core

i7-8750H CPU clocking in at a base frequency of 2.20GHz, capable of reaching a maximum

22



turbo frequency of 4.10GHz.

It’s important to note that these evaluations were performed without parallel processing,
and a stringent maximum time limit of thirty minutes was set to avoid prolonged executions,

triggering a timeout exception if exceeded. Framework and experimental implementation can

be found in the Github project repository at:

EvALUATION TABLES - The following tables detail the evaluation results. Subsequent sub-
sections summarize this information in plotted graphs, and observations for each set of
evaluations are discussed. Note that a missing table signifies that the implementation failed

on that dataset, while missing rows signify that the implementation timed out for those

https://github.com/JeffMII/Index-Bucketing

subsets.
Ratio | Count | Initial Time | Execution Time | Total Time | Initial Size
0.001 1 0.0168962 0.0114848 0.0283811 205947
0.002 1 0.0513001 0.0071109 0.0584110 205947
0.003 1 0.0216508 0.0069941 0.0286450 205947
0.005 2 0.0304157 0.0135179 0.0439336 404577
0.008 3 0.0753669 0.0162261 0.0915931 523935
0.013 6 0.1111545 0.0271083 0.1382629 851257
0.021 10 0.1419780 0.0437985 0.1857765 1443481
0.034 16 0.2510539 0.0704269 0.3214808 2368409
0.055 26 0.3615115 0.0925745 0.4540860 3075819
0.089 42 0.4877568 0.1274244 0.6151813 4203649
0.144 68 0.7213556 0.1938976 0.9152533 6368153
0.233 111 1.1571026 0.3174184 1.4745210 10066704
0.377 179 1.7752043 0.4970038 2.2722082 16464241
0.61 290 2.9855251 0.8255536 3.8110788 | 27363292
0.987 | 470 5.0167932 1.4272351 6.4440283 | 45424399
1.0 477 5.1734913 1.5167224 6.6902138 46494152

Table 5: Index Bucketing on SQuAD

23




Ratio | Count | Initial Time | Execution Time | Total Time | Initial Size
0.001 12 0.0026879 0.0013852 0.0040731 69326
0.002 25 0.0072623 0.0030416 0.0103039 150958
0.003 37 0.0087714 0.0054370 0.0142084 221714
0.005 62 0.0151363 0.0072584 0.0223948 372253
0.008 100 0.0538734 0.0165209 0.0703943 586960
0.013 163 0.0697477 0.0174856 0.0872334 946716
0.021 263 0.0928620 0.0288163 0.1216783 1541099
0.034 | 427 0.1619864 0.0471399 0.2091264 2515197
0.055 | 691 0.2654181 0.0746883 0.3401064 4084462
0.089 | 1118 0.4096990 0.1256608 0.5353599 6623965
0.144 | 1809 0.7218658 0.2061604 0.9280263 10685287
0.233 | 2928 1.0858766 0.3170777 1.4029543 17187531
0.377 | 4737 1.7819539 0.5162077 2.2981617 | 27841109
0.61 7665 2.8399793 0.8583483 3.6983276 | 45035848
0.987 | 12403 | 4.9677818 1.7010544 6.6688363 | 75588570
1.0 12567 | 5.0548561 1.7414888 6.7963450 | 77044015
Table 6: Index Bucketing on QuAC
Ratio | Count | Initial Time | Execution Time | Total Time | Initial Size
0.001 12 0.0085266 0.0053094 0.0138360 73736
0.002 25 0.0143535 0.0088745 0.0232280 156085
0.003 38 0.0252807 0.0166043 0.0418851 264572
0.005 63 0.0410175 0.0275607 0.0685782 421730
0.008 101 0.1697030 0.0437680 0.2134710 682251
0.013 165 0.2187332 0.0718318 0.2905651 1150158
0.021 267 0.2858403 0.1145694 0.4004098 1873578
0.034 | 433 0.4969543 0.1957834 0.6927378 3058549
0.055 700 0.6991990 0.3014860 1.0006851 4888043
0.089 | 1134 1.2761940 0.4917707 1.7679648 7941941
0.144 | 1835 2.0246188 0.8012632 2.8258821 12875802
0.233 | 2969 3.1936919 1.3475715 4.5412634 | 20863684
0.377 | 4804 5.0125851 2.0572125 7.0697977 | 33613282
0.61 7773 7.9774706 3.2619555 11.2394261 | 54097739
0.987 | 12578 | 12.5392207 5.2448907 17.7841115 | 86775720
1.0 12744 | 12.7942890 5.1597726 17.9540617 | 87916829

Table 7: Index Bucketing on NewsQA

24




Ratio | Count | Initial Time | Execution Time | Total Time | Initial Size
0.001 1 0.0002762 0.0746655 0.0749418 205947
0.002 1 0.0002634 0.0760294 0.0762928 205947
0.003 1 0.0002606 0.0764116 0.0766722 205947
0.005 2 0.0002826 0.0932931 0.0935757 404577
0.008 3 0.0002847 0.1042973 0.1045820 523935
0.013 6 0.0003005 0.1646125 0.1649130 851257
0.021 10 0.0004242 0.2297497 0.2301740 1443481
0.034 16 0.0004159 0.3446137 0.3450296 2368409
0.055 26 0.0003610 0.4462409 0.4466020 3075819
0.089 42 0.0005614 0.5559562 0.5565177 4203649
0.144 68 0.0004827 0.8514183 0.8519010 6368153
0.233 111 0.0005594 1.2751993 1.2757587 10066704
0.377 179 0.0004956 2.0982393 2.0987350 16464241
0.61 290 0.0007402 3.5251046 3.5258449 | 27363292
0.987 | 470 0.0008452 6.2241778 6.2250231 45424399
1.0 477 0.0010821 6.4968896 6.4979718 | 46494152
Table 8: Pandas on SQuAD
Ratio | Count | Initial Time | Execution Time | Total Time | Initial Size
0.001 12 0.0003564 0.1230967 0.1234532 69326
0.002 25 0.0002728 0.1300340 0.1303068 150958
0.003 37 0.0003091 0.1374667 0.1377758 221714
0.005 62 0.0003536 0.1520365 0.1523902 372253
0.008 100 0.0004118 0.1716765 0.1720884 586960
0.013 163 0.0004774 0.2128723 0.2133498 946716
0.021 263 0.0006955 0.2583871 0.2590826 1541099
0.034 | 427 0.0009579 0.3451617 0.3461197 2515197
0.055 | 691 0.0013662 0.5085468 0.5099131 4084462
0.089 | 1118 0.0019558 0.7457041 0.7476599 6623965
0.144 | 1809 0.0019939 1.1232026 1.1251966 10685287
0.233 | 2928 0.0038892 1.7710431 1.7749323 17187531
0.377 | 4737 0.0048408 2.8533043 2.8581451 27841109
0.61 7665 0.0076718 4.6776418 4.6853137 | 45035848
0.987 | 12403 | 0.0131796 8.1195218 8.1327015 75588570
1.0 12567 | 0.0131604 9.0104400 9.0236004 77044015

Table 9: Pandas on QuAC

25




Ratio | Count | Initial Time | Execution Time | Total Time | Initial Size
0.001 1 0.0 0.2359724 0.2359724 205947
0.002 1 0.0 0.2413332 0.2413332 205947
0.003 1 0.0 0.2325857 0.2325857 205947
0.005 2 0.0 1.3330778 1.3330778 404577
0.008 3 0.0 2.6223285 2.6223285 523935
0.013 6 0.0 11.5684023 11.5684023 851257
0.021 10 0.0 50.8342733 50.8342733 1443481
0.034 16 0.0 176.8247058 176.8247058 2368409
0.055 26 0.0 335.1017868 335.1017868 3075819
0.089 42 0.0 680.1228720 680.1228720 4203649
0.144 68 0.0 1715.3059863 | 1715.3059863 | 6368153
Table 10: Basic on SQuAD
Ratio | Count | Initial Time | Execution Time | Total Time | Initial Size
0.001 12 0.0 0.0170995 0.0170995 69326
0.002 25 0.0 0.0430601 0.0430601 150958
0.003 37 0.0 0.0761557 0.0761557 221714
0.005 62 0.0 0.1495611 0.1495611 372253
0.008 100 0.0 0.2990935 0.2990935 586960
0.013 163 0.0 0.6933944 0.6933944 946716
0.021 263 0.0 4.8759892 4.8759892 1541099
0.034 | 427 0.0 21.5186237 21.5186237 2515197
0.055 | 691 0.0 83.0441016 83.0441016 4084462
0.089 | 1118 0.0 262.8868047 262.8868047 | 6623965
0.144 | 1809 0.0 768.5876779 768.5876779 | 10685287
Table 11: Basic on QuAC
Ratio | Count | Initial Time | Execution Time | Total Time | Initial Size
0.001 12 0.0 0.0435486 0.0435486 73736
0.002 25 0.0 0.1434285 0.1434285 156085
0.003 38 0.0 0.3722347 0.3722347 264572
0.005 63 0.0 1.3329352 1.3329352 421730
0.008 101 0.0 6.3334334 6.3334334 682251
0.013 165 0.0 32.0920742 32.0920742 1150158
0.021 267 0.0 109.3982449 109.3982449 1873578
0.034 | 433 0.0 351.9411959 351.9411959 3058549
0.055 700 0.0 1000.5315140 | 1000.5315140 | 4888043

Table 12: Basic on NewsQA

26




[Bucket (SQuAD) [Bucket (QuAC) [Bucket (NewsQA)

20
15
10
0
10 Pandas (SQuAD) Pandas (QuAC) Pandas (NewsQA)
5 /
0 Failed
Basic (SQuAD) Basic (QuAC) Basic (NewsQA)
Timeout
1500 | -
1000 . imeout
500 Timeout
0 1
0 20M 40M 0 20M40M 60M 80M 0 50M

Initial Size(bytes) vs Total Time(seconds)

Figure 5: Total Time Evaluation Plots

ToTAL TIME - Before delving into the detailed examination of initialization and execu-
tion runtimes, an initial analysis of total runtimes across implementations provides valuable
insights.

Notably depicted in Figure 5, the basic algorithm showcases an exponential growth pat-
tern in total runtimes, vividly illustrating the cost escalations attributed to challenges that
the Index Bucketing algorithm aims to address. A closer inspection reveals a near align-
ment between the runtimes of Index Bucketing and Pandas implementations. However,
Index Bucketing consistently demonstrates superior performance, more notable the larger
the dataset. Another important observation is that, during evaluations with NewsQA data,
Pandas encounters failures due to duplicated data instances within the original dataset.
While Pandas offers potential solutions to address these errors, implementing such remedies

remains complex and non-trivial based on existing knowledge.

27



[Bucket (SQuAD) [Bucket (QuAC) [Bucket (NewsQA)

10
0
Pandas (SQuAD) Pandas (QuAC) Pandas (NewsQA)
0.01
0.005
() ewe-o—e—e g Failed
| Basic (SQuAD) Basic (QuAC) Basic (NewsQA)
0.5
0 Timeout Timeout Timeout
-0.5
-1 0 20M  40M 0 20M40M 60M 80M 0 50M

Initial Size(bytes) vs Initial Time(seconds)

Figure 6: Initialization Time Evaluation Plots

INITIALIZATION TIME - Following the dataset’s loading into memory, both the Index Buck-
eting and Pandas implementations undergo specific initialization procedures. In contrast,
the basic implementation, lacking a framework encapsulating the dataset, doesn’t involve
any observed initialization times, therefore they are recorded as 0. For Pandas, its very
small initialization times are attributed to the creation of a DataFrame object where the
nested data resides. As DataFrame objects don’t directly interpret nested data collections,
their initialization times are nearly 0, as shown in Table 10 and Table 11.

Conversely, Index Bucketing allocates significant time during initialization for compre-
hensive dataset analyses. Consequently, the initialization time for the Index Bucketing
implementation significantly surpasses that of the other approaches. Despite this longer
initialization period, the scalability remains linear. These observations highlight how the

Index Bucketing framework strategically shifts a considerable workload to the initialization

28



process, optimizing subsequent execution times, as evident in the ensuing evaluation plots.

[Bucket (SQuAD) [Bucket (QuAC) [Bucket (NewsQA)
4
2
10 Pandas (SQuAD) Pandas (QuAC) Pandas (NewsQA)
5 /
0 Failed
Basic (SQuAD) Basic (QuAC) Basic (NewsQA)
Timeout
1500
1000 : Timeout
500 Timeout
O !
0 20M  40M 0 20M 40M 60M 80M 0 50M

Initial Size(bytes) vs Execution Time(seconds)

Figure 7: Execution Time Evaluation Plots

ExecuTioN TIME - In observing the execution runtimes in Figure 7, it’s apparent that
Index Bucketing significantly surpasses the other implementations in performance. This
superiority stems from the strategic allocation of workloads during the initialization phase,
directly impacting execution runtime.

By preserving the original dataset structure, Index Bucketing eliminates the need for
dataset reacquisition during subsequent executions. For instance, considering a scenario
where the flattening process is repeated 100 times for each implementation, Index Bucket-
ing showcases substantial performance superiority. Although multiple iterations of flatten-
ing might not align with typical real-world scenarios, this comparison demonstrates Index
Bucketing’s exceptional efficiency in executing additional feature implementations beyond
flattening. Tasks like conditional filtering or attribute selection can be executed notably

more efficiently with Index Bucketing compared to other implementations. This robust per-

29



formance exemplifies the enduring advantages of the Index Bucketing approach in handling

repetitive operations and processing complex tasks swiftly.

CONCLUSION

Numerous strategies have been devised to tackle intricate challenges inherent in the
manipulation of nested data structures. These complexities often stem from the presence
of irregular schema, skewed distribution, information loss, and duplication explosion when
performing queries on relational databases. Existing approaches addressing these issues
necessitate computationally intensive mechanisms and the confines of traditional relational
database environments inherently lack direct support for nested data structures. Index
Bucketing introduces a novel framework to addressing aggregation and flattening stages in
recent relational database methodologies and can be easily supported by document-oriented
NoSQL database systems. The work explores an intuitive approach for mitigating irregular
schema, skewed distribution information loss, and duplication explosion challenges. The
efficacy of the proposed approach is assessed on prominent datasets such as SQuAD, QuAC,
and NewsQA, comparing its performance against a competative Pandas implementation
and a basic recursive, iterative implementation. Index Bucketing compares favorably in
performance to these techniques, exemplifying the enduring advantages of Index Bucketing
in handling repetitive operations and processing complex tasks. More insights can be gleaned
from further evaluations expanding to other datasets and implementations. Future work will
focus on extending the scope of the Index Bucketing algorithm and framework as well as

evaluating parallel and distributed implementations.

30



[10]

REFERENCES

A. B. Alexandrov et al. “Implicit Parallelism through Deep Language Embedding”.
In: SIGMOD Rec. 45 (2016), pp. 51-58.

M. Armbrust et al. “Spark SQL: Relational Data Processing in Spark”. In: Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data.

Melbourne, Victoria, Australia, 2015.

D. F. Bacon et al. “Spanner: Becoming a SQL System”. In: Proceedings of the 2017
ACM International Conference on Management of Data. Chicago, Illinois, USA, 2017.

P. Carbone et al. “Apache flink: Stream and batch processing in a single engine”. In:

The Bulletin of the Technical Committee on Data Engineering 38.4 (2015).

J. Cheney, S. Lindley, and P. Wadler. “Query Shredding: Efficient Relational Eval-
uation of Queries over Nested Multisets”. In: Proceedings of the 2014 ACM SIG-
MOD International Conference on Management of Data. 2014, pp. 1027-1038. DOI:

10.1145/2588555.2612186.

S. Chlyah et al. “On the Optimization of Iterative Programming with Distributed Data

Collections”. In: (2022). Retrieved from https://inria.hal.science/hal-02066649.

J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing on Large Clus-
ters”. In: Commun. ACM 51.1 (2008), pp. 107-113.

R. Diestelkamper. “Explaining Existing and Missing Results over Nested Data in Big

Data Analytics Systems”. In: (2021).

L. Fegaras. “An Algebra for Distributed Big Data Analytics”. In: Journal of Functional

Programming 27 (2017), €27.

L. Fegaras. “Compile-time query optimization for Big Data analytics”. In: Open Jour-

nal of Big Data (OJBD) 5.1 (2019), pp. 35-61.

31



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[19]

[20]

[21]

L. Fegaras and D. Maier. “Optimizing Object Queries Using an Effective Calculus”.
In: ACM Trans. Database Syst. 25.4 (2000), pp. 457-516.

L. Fegaras and M. H. Noor. “Compile-time code generation for embedded data-intensive

query languages”. In: 2018 IEEE International Congress on Big Data. July 2018.

E. Meijer, B. Beckman, and G. Bierman. “Ling: reconciling object, relations and xml
in the. net framework”. In: Proceedings of the 2006 ACM SIGMOD international con-

ference on Management of data. 2006.
MongoDB. https://www.mongodb.com/. Accessed in November 2023.

D. M. Quan Wang. Algebraic Unnesting for Nested Queries: Oregon Graduate Institute

School of Science € Engineering. Tech. rep. 1999.

W. Ricciotti and J. Cheney. “Mixing set and bag semantics”. In: Proceedings of the
17th ACM SIGPLAN International Symposium on Database Programming Languages.

Phoenix, AZ, USA, 2019. por: 10.1145/3315507 .3330202.

W. Ricciotti and J. Cheney. “Query Lifting: Language-integrated query for heteroge-
neous nested collections”. In: Lecture Notes in Computer Science. Springer Interna-
tional Publishing, 2021, pp. 579-606. 1SBN: 9783030720193. po1: 10.1007/978-3-

030-72019-3_21. URL: http://dx.doi.org/10.1007/978-3-030-72019-3_21.

B. Samwel et al. “F1 query: declarative querying at scale”. In: Proc. VLDB Endow.
11.12 (2018), pp. 1835-1848.

J. Smith. “Declarative nested data transformations at scale and biomedical applica-

tions”. In: 2021. URL: https://api.semanticscholar.org/CorpusID:252163669.

J. Smith et al. “Scalable querying of nested data”. In: arXiv preprint arXiw:2011.06381

(2020).

J. Smith et al. “TraNCE: transforming nested collections efficiently”. In: Proc. VLDB

Endow. 14.12 (2021), pp. 2727-2730.

32



[22] D. Suciu. “Parallel programming languages for collections”. In: (1995).

23] A. Ulrich. Query Flattening and the Nested Data Parallelism Paradigm. Tech. rep.

Universitat Tiibingen, 2019.

[24] J. Van den Bussche. “Simulation of the nested relational algebra by the flat relational
algebra, with an application to the complexity of evaluating powerset algebra expres-

sions”. In: Theoretical Computer Science 254.1-2 (2001), pp. 363-377.

33



Copyright Permission
Name: Myers, Jeffrey

Email (to receive future readership statistics): jeffrey.myers648 @topper.wku.edu

Type of document: ['Thesis']
Title: Index Bucketing: A Novel Approach to Manipulating Data Structures

Keywords (3-5 keywords not included in the title that uniquely describe content): Irregular Schema,
Skewed Distribution, Information Loss, Duplication Explosion

Committee Chair: Yaser Mowafi
Additional Committee Members: Zhonghang Xia Huanjing Wang

Select 3-5 TopSCHOLAR® disciplines for indexing your research topic in TopSCHOLAR®: Theories and
Algorithms Databases and Information Systems Computer Science

Copyright Permission for TopSCHOLAR® (digitalcommons.wku.edu) and ProQuest research repositories:

| hereby warrant that | am the sole copyright owner of the original work.

| also represent that | have obtained permission from third party copyright owners of any material
incorporated in part or in whole in the above described material, and | have, as such identified and
acknowledged such third-part owned materials clearly. | hereby grant Western Kentucky University the
permission to copy, display, perform, distribute for preservation or archiving in any form necessary, this
work in TopSCHOLAR® and ProQuest digital repository for worldwide unrestricted access in perpetuity.
| hereby affirm that this submission is in compliance with Western Kentucky University policies and the
U.S. copyright laws and that the material does not contain any libelous matter, nor does it violate third-
party privacy. | also understand that the University retains the right to remove or deny the right to
deposit materials in TopSCHOLAR® and/or ProQuest digital repository.

['l grant permission to post my document in TopSCHOLAR and ProQuest for unrestricted access.']
The person whose information is entered above grants their consent to the collection and use of their
information consistent with the Privacy Policy. They acknowledge that the use of this service is subject

to the Terms and Conditions.

['l consent to the above statement.']


mailto:jeffrey.myers648@topper.wku.edu

	Index Bucketing: A Novel Approach to Manipulating Data Structures
	Recommended Citation

	Myers.800784410.computerscience.thesis - Combined
	Myers.800784410.computerscience.thesis
	Jeffrey Myers
	Myers.800784410.computerscience.thesis

	myers-cp

