
A Study of Value Trace Problems and Code
Modication Problems in Python Programming

Learning Assistant System

September, 2023

San Hay Mar Shwe

Graduate School of
Natural Science and Technology

(Doctor’s Course)
Okayama University

Dissertation submitted to
Graduate School of Natural Science and Technology

of
Okayama University

for
partial fulllment of the requirements

for the degree of
Doctor of Philosophy.

Written under the supervision of

Professor Nobuo Funabiki

and co-supervised by
Professor Satoshi Denno

and
Professor Yasuyuki Nogami

Okayama University, September 2023.

To Whom ItMay Concern

We hereby certify that this is a typical copy of the original doctor thesis of
Ms. San Hay Mar Shwe

Signature of Seal of

the Supervisor

Graduate School of

Prof. Nobuo Funabiki Natural Science and Technology

Abstract

Nowadays, Python programming has become very popular for various applications in both IT (in-
formation technology) and non-IT elds, due to rich libraries and short coding features. Then,
low-hurdling learning tools have been highly demanded for self-study of introductory Python
programming, since many users have no opportunities of taking Python programming courses
at schools. Previously, we have studied Java programming learning assistant system (JPLAS) to
assist self-study of Java programming.

Because of the importance of Python programming during these days, we are studying the
Python Programming Learning Assistant System (PyPLAS) as a self-study tool for various Python
programming topics. PyPLAS oers several types of exercise problems such as the grammar-
concept understanding problem (GUP), the value trace problem (VTP), the element ll-in-blank
problem (EFP), and the code writing problem (CWP) to cover various students at dierent learning
levels.

As the rst contribution of the thesis, I implement the value trace problem (VTP) for novice
learners to study grammar topics and basic programming skills through code reading. A VTP
instance asks tracing the values of important variables or output messages in a given source code.
The correctness of each answer is veried through string matching with the stored correct one. In
addition, I make the references that describe the least Python programming topics related to the
VTP instances, to assist novice learners in solving them.

However, any type of exercise problems in PyPLAS including VTP may not be suitable for
data visualization studies such as graphs, because they need illustrating gures. Therefore, as the
second contribution of the thesis, I introduce the code modication problem (CMP) for self-study
of data visualization studies in Python programming, as a new problem type for PyPLAS. In the
CMP instance, one source code and two images are given. The rst image represents the output
that is obtained by running the source code. Then, it asks to modify the source code to output the
second image. The correctness of the answer is checked through string matching with the correct
one.

Moreover, data analysis or data science is one of the important applications in Python program-
ming. For data analysis, Excel is often used to manipulate the large amount of data within short
durations and generate graphs as a powerful tool. It has become entrenched in business processes
worldwide for diverse functions and applications. Therefore, as the third contribution of the thesis,
I implement the code modication problem (CMP) for learning how to use Python programming
libraries to manipulate data in Excel les. As a new function, a hint function is implemented for
each CMP instance to assist learners in solving it.

In future works, I will continue studying other types of problems with useful functions for each
problem type for other Python programming topics in PyPLAS.

i

Acknowledgements

It is my great pleasure to thank those who have supported and encouraged me this dissertation
possible. Although it is very hard to express my gratitude with the proper words, I would like to
convey my greatest blessing in my life.

Foremost, I owe my deepest gratitude to my supervisor, Professor Nobuo Funabiki, who has
supported me throughout my thesis with his patience, motivation, encouragements, enthusiasm
and meaningful suggestions. I am greatly indebted to him, whose countless valuable suggestions
and advice from the beginning to the end enabled me to proceed this study, also even in daily life
in Japan. Moreover, he always gave me very precious ideas with fruitful kindness and consid-
erations about that how to survive in the study in Japan and how should be continued for future
plans. Thanks for making me, I received a lot of motivations and energy to complete my research
papers and for future survivals in life. Moreover, together with Mrs. Naomi Funabiki, he gave me
suggestions for solving ways in my social life in Japan. This makes me to feel warm and safety
environments, even I am far away from my family. Needless to say, it would not be possible to
complete this thesis without his guidance and active support.

I am deeply grateful to my co-supervisors, Professor Satoshi Denno and Professor Yasuyuki
Nogami, for their continuous supports, guidance, mindful suggestions, and proofreading of this
work. I wish to express my sincere gratitude to Associate Professor Minoru Kuribayashi for his
valuable suggestions during my research, and great ideas for composing wonderful presentations.
I would like to express my gratitude to the course teachers during my Ph.D. study for enlighten-
ing me with wonderful knowledge. And, I would like to convey my appreciation to Ms. Keiko
Kawabata for supporting required documents and necessary things during my study.

I would like to acknowledge the Ministry of Education, Culture, Sports, Science, and Technol-
ogy of Japan (MEXT) for nancially supporting my Ph.D. study, and all my respectful teachers in
the University of Technology (Yadanarpon Cyber City) for guiding a lot of valuable knowledge.

I would like to thank my friends, especially Myanmar friends, and colleagues from Japanese
class, and all the FUNABIKI Lab’s members who helped me in this study and shared the time with
me to have great experiences and unforgettable memories. I appreciate the supports at my tough
time during this study and the thoughts and experiences shared with me. I would like to tell my
special thanks to Dr. Htoo Htoo Sandi Kyaw, who gave me a lot of valuable advices and supports
to start my Ph.D study. I would like to say my special thanks to Ms. Ei Ei Htet. She supported me
a lot for everything like a sister.

Last but not least, I am eternally grateful to my beloved family and my soulmates, who are very
important to my existence. Without them, it would be not easy to survive my life. They always
encourage and support me not only in my study but also throughout my life. Your supports and
understanding gave me the strength, inspirations and peacefulness to share my enjoy moments and
overcome any diculty in my life. I am blissful to have you all.

ii

List of Publications

Journal Paper
1. San Hay Mar Shwe, Nobuo Funabiki, Yan Watequlis Syaifudin, Ei Ei Htet, Htoo Htoo

Sandi Kyaw, Phyu Phyu Tar, Nandar Win Min, Thandar Myint, Hnin Aye Thant, and Wen-
Chung Kao, “ Value trace problems with assisting references for Python programming self-
study,” International Journal of Web Information Systems, June 2021.

International Conference Paper

2. San Hay Mar Shwe, Nobuo Funabiki, Htoo Htoo Sandi Kyaw, Khaing Hsu Wai and Wen-
Chung Kao, “ A proposal of code modication problem for Python programming learning
assistant system,” International Symposium on Socially and Technically Symbiotic Systems
(STSS), November 15-17, 2021.

3. San Hay Mar Shwe, Nobuo Funabiki, Khaing Hsu Wai, Shune Lae Aung, and Wen-Chung
Kao, “A study of code modication problems for Excel operations in Python programming
learning assistant system,” 2022 10th International Conference on Information and Educa-
tion Technology (ICIET 2022), pp. 209-213, April 9-11, 2022.

iii

List of Figures

2.1 Server platform for JPLAS. 5
2.2 Software architecture for JPLAS. 5
2.3 Usage ow of Desktop-version JPLAS. 9
2.4 Operation ow for ofine answering function. 10
2.5 MVC model in JPLAS using Node.js. 11

3.1 VTP answer interface. 17
3.2 VTP answer interface with explanations in details. 18
3.3 Content page of DataFrame creation. 19

4.1 Source code with highlighting important parts. 33
4.2 CMP user interface. 36
4.3 CMP user interface with error messages. 36

5.1 Types of visualization charts. 40
5.2 CMP user interface for data visualizations. 42
5.3 Project lists. 45
5.4 Project interface example. 46
5.5 Hint function interface. 46

6.1 Three image for example CMP instance. 52
6.2 Answer interface for example CMP instance. 54
6.3 Project interface example for Excel CMPs. 56

iv

List of Tables

2.1 Files for distribution. 10

3.1 Index page of reference on pandas library. 20
3.2 VTP instances for basic grammar. 26
3.3 Solution results for basic grammar. 27
3.4 VTP instances for advanced grammar. 27
3.5 Solution results for advanced grammar. 28
3.6 VTP instances for data structures & algorithms. 28
3.7 Solution results for data structure algorithms. 29
3.8 VTP instances for numpy library. 29
3.9 Solution results for numpy library. 30
3.10 VTP instances for pandas library. 30
3.11 Solution results for pandas library. 30

5.1 Generated CMP instances for data visualizations. 43
5.2 Correct answer rate distribution for data visualizations. 44
5.3 Submission times distribution for data visualizations. 44

6.1 Generated CMP instances for excel operations. 57
6.2 Correct answer rate distribution for excel operations. 57
6.3 Submission times distribution for excel operations. 58

v

List of Codes

3.1 Source code example for VTP instance . 15
3.2 Input le example for VTP instance . 16
4.1 Source code example for CMP instance . 32
4.2 Modied source code as output code . 34
6.1 Source code example for excel CMP instance . 50
6.2 Output code example for excel CMP instance . 50

vi

Contents

Abstract i

Acknowledgements ii

List of Publications iii

List of Figures iv

List of Tables v

List of Codes vi

1 Introduction 1
1.1 Background . 1
1.2 Contributions . 2
1.3 Contents of This Dissertation . 3

2 Review of Programming Learning Assistant System 4
2.1 Overview of JPLAS . 4

2.1.1 Server Platform . 4
2.1.2 Software Architecture . 4
2.1.3 Implemented Problem Types . 6

2.2 Service Functions in JPLAS . 7
2.2.1 Teacher Service Functions . 7
2.2.2 Student Service Functions . 7

2.3 Desktop-version JPLAS . 8
2.4 Ofine Answering Functions in JPLAS . 8

2.4.1 Operation Flow . 9
2.4.2 File Generation . 9
2.4.3 Cheating Prevention . 9

2.5 Implementation of JPLAS Platform Using Node.js and Docker 10
2.6 Elaboration of PyPLAS . 11

2.6.1 Problem Types in PyPLAS . 12
2.7 Summary . 13

3 Value Trace Problem 14
3.1 Introduction . 14
3.2 Design of Value Trace Problem for Python Programming 14

vii

3.2.1 VTP Concept . 14
3.2.2 Generation Procedure of VTP . 15
3.2.3 Selection of Python Source Code . 15
3.2.4 Generating Assignments . 16
3.2.5 Answer Interface for VTP . 16
3.2.6 Assisting References . 18
3.2.7 Overview of generated VTP instances . 18

3.3 VTP for Basic Grammar . 20
3.3.1 Learning Objectives . 20
3.3.2 Generated VTP instances . 20
3.3.3 Solution Results . 20

3.4 VTP for Advanced Grammar . 21
3.4.1 Learning Objectives . 21
3.4.2 Generated VTP instances . 21
3.4.3 Solution Results . 21

3.5 VTP for Data Structures and Algorithms . 21
3.5.1 Learning Objectives . 21
3.5.2 Generated VTP instances . 22
3.5.3 Solution Results . 22

3.6 VTP for Numpy Library . 22
3.6.1 Learning Objectives . 22
3.6.2 Generated VTP instances . 23
3.6.3 Solution Results . 23

3.7 VTP for Pandas Library . 23
3.7.1 Learning Objectives . 24
3.7.2 Generated VTP instances . 24
3.7.3 Solution Results . 25

3.8 Summary . 25

4 Code Modication Problem 31
4.1 Introduction . 31
4.2 Overview of Code Modication Problem (CMP) 31
4.3 CMP Instance Generation Procedure . 32
4.4 Example of CMP Instance Generation . 32

4.4.1 Source Code Selection . 32
4.4.2 Finding Important Parts in Source Code 33
4.4.3 Preparing Another Source Code . 33
4.4.4 Input File for Generating CMP Instance 34
4.4.5 Adding Two images . 34
4.4.6 Problem Answer Interface . 34

4.5 Two-Level Answer Marking . 37
4.5.1 First-Level Marking . 37
4.5.2 Second-Level Marking . 37

4.6 Summary . 37

viii

5 Code Modication Problems for Data Visualization 38
5.1 Introduction . 38
5.2 Data Visualization in Python . 38

5.2.1 Data Visualization Concepts . 38
5.2.2 Types of Visualization Charts . 39

5.3 Learning Objectives . 40
5.4 CMP Instance Generation Procedure . 40
5.5 CMP User Interface . 41
5.6 Evaluation . 43

5.6.1 Discussion of generated CMP instances 43
5.6.2 Solution Results . 44

5.7 Project Assignments . 44
5.8 Summary . 46

6 Code Modication Problems for Excel Problems 47
6.1 Introduction . 47
6.2 Importance of Excel Operations using Python . 48
6.3 Python Pandas With Excel Sheet . 49
6.4 Learning Objectives . 49
6.5 Generation of CMP instances for Excel Operations 49

6.5.1 Source Code Selection . 50
6.5.2 Preparation of Output Source Code . 50
6.5.3 Generating Assignments . 50
6.5.4 Answer Interface . 51
6.5.5 Generated CMP Instances . 51

6.6 Application Results . 51
6.6.1 Correct Rate for Each Instance . 51
6.6.2 Correct Rate for Each Student . 51
6.6.3 Submission Times for each Student . 54

6.7 Project Assignments . 54
6.8 Summary . 54

7 Related Works 59

8 Conclusion 62

References 64

ix

Chapter 1

Introduction

1.1 Background
Information Technology (IT) has become increasingly important in recent years due to its perva-
sive presence in our lives and its role in driving innovation and eciency. IT encompasses a broad
range of activities related to managements, processing, and disseminations of various information
using computer systems and networks. It plays a crucial role in a lot of sectors, including busi-
ness, education, healthcare, communication, and entertainment. The rapid advancements in IT
have transformed the way we live, work, and interact with the world around us, making IT skills
increasingly important.

Teaching and learning programming languages becomes a crucial component of IT educations
and professional developments for individuals who want to work in IT elds, as it enables them to
develop the technical skills needed to create and maintain software systems. Recently, low-cost,
low-hurdling learning tools have been highly demanded for self-studies of programming languages
due to high demands for learning and teaching programming in the classroom lectures. A teacher
may be overloaded with the several student’s result verication and feedback comments during the
short period. A student may have no opportunities of taking programming courses at schools.

We have developed the Java programming learning assistant system (JPLAS) as a self-study
tool for learning Java programming. Both the online version and the desktop-based ofine version
have been implemented for JPLAS to deal with various environments. The online JPLAS adopts
Ubuntu for the operating system, Tomcat for the Web application server, JSP for the application
programs with HTML, and MySQL for the database for handling the problem descriptions and
the students’ data. The user can access to JPLAS through a web browser. Since the online JPLAS
may not be suitable for students in poor Internet access environments, the ofine JPLAS called
the Desktop-version JPLAS (D-JPLAS) has been implemented without the online database and the
web server [1]. In D-JPLAS, the assignment les and the answer text les can be shared between
the teacher and the students using USB memories, a le server or email.

In JPLAS, there are several types of exercise problems, such as the grammar concept under-
standing problem (GUP) [2], for studying keyword denitions, the value trace problem (VTP) [3],
for studying how to use keywords in the source code, the element ll-in-blank problem (EFP) [4],
with studying partially writing source code, and the code writing problem (CWP), for studying
fully writing source code to cover various students at dierent learning levels. The correctness of
any answer is automatically checked in the system, and the result will be automatically returned to
the learner so that he/she can instantly nd the mistakes and correct them.

Recently, Python programming has gained the signicant popularity and importance for use

1

in various groundbreaking elds in experiments, prototyping, embedded systems, and data sci-
ences, due to rich libraries and short coding features. The simplicity, versatility, strong community
supports, and relevances in emerging elds like data science and machine learning in Python pro-
gramming have contributed to its popularity and importance in the current technology landscape.
Therefore, we extended our previous JPLAS as Python Programming Learning Assistant System
(PyPLAS) for learning Python programming.

1.2 Contributions
Motivated by the above background in Python programming, in this thesis, I propose three im-
provements in Python Programming Learning Assistant System (PyPLAS) as contributions of this
thesis.

As the rst contribution of the thesis, I present the value trace problem (VTP) for novice learn-
ers to study grammar topics and basic programming skills through code reading. A VTP instance
asks a learner to trace the actual values of important variables or output messages in the given
source code with the design goals: 1) a variety of useful source codes for Python programming
study is depicted with full forms to novice learners, 2) a set of references describing the least
Python programming topics related to the VTP instances are provided to assist novice learners,
3) learners can correctly answer the questions by carefully reading and understanding the source
codes, and 4) any answer can be marked through string matching automatically.

For evaluations, 130 VTP instances are generated using Python codes in textbooks [24] and
websites [5] that cover basic/advanced grammar topics, fundamental data structures and algo-
rithms, and two common library usages (pandas and numpy libraries). Besides, assisting refer-
ences on Python programming topics related to the VTP instances are introduced to assist novice
learners in solving them eciently. The applications to 48 undergraduate students in Myanmar
and Indonesia conrm the validity of the proposal in Python programming self-studies by novice
learners.

However, any type of exercise problems in PyPLAS including VTP may not suitable for data
visualization study using various graphs, because they need illustrating gures. Therefore, as the
second contribution of the thesis, I present the code modication problem (CMP) for self-study of
Python programming, as a new problem type for PyPLAS. In the CMP instance, one source code
and two images are given. The rst image represents the output that is obtained by running the
source code. Then, it asks to modify the source code to output the second image. The correctness
of the answer is checked through string matching with the correct one.

For evaluations, a total of 25 CMP instances are generated to cover most important visualiza-
tion concepts in Python programming. First, I collect the relevant source codes from the website
[6]and the text book [7]. Then, I analyze important parts of the source codes that should be modi-
ed for understanding of visualization techniques clearly. After that, I generate the corresponding
CMP instances with HTML/CSS/JavaScript les for the ofine answering function of PyPLAS. To
evaluate the generated 25 CMP instances, I assign them to 22 students in Okayama University,
Japan. Their solution results show that the average correct rate for all of the 25 instances is at
least 97%. Thus, the diculty levels of the CMP instances are proper for the novice learners as
the viable self-study learning tool.

Moreover, data science and data analysis are important elds in today’s world due to the in-
creasing availability of data, the need for business to remain competitive, the importance of data
in scientic research and so on. Therefore, data analysis or data science is one of the important

2

applications in Python programming. For data analysis, Excel is often used to manipulate the large
amount of data within short duration and generate graphs as a powerful tool. Using Python with
Excel operations in data analysis and data science enhances the capabilities of Excel by enabling
to leverage Python’s extensive libraries for data manipulation, analysis, modeling, visualization,
and automation.

Therefore, as the third contribution of the thesis, we implemented CMP for learning how to use
Python programming libraries to manipulate data in Excel les. As a new function, a hint function
is also implemented for each CMP instance to assist learners in solving it. The goal of this study is
to give the students about the opportunities of learning how to use Python programming libraries
to manipulate data in Excel les with: 1) a variety of useful and practical source codes for studying
Python Excel operations is depicted with full forms to novice learners, 2) a learner can correctly
answer the questions of CMP by carefully reading the source code and modifying the required
parts in functions, variables, and parameters 3) any answer can be marked through string matching
automatically.

For evaluations, I generated 25 CMP instances using Python codes for various Excel opera-
tions using pandas and conrmed the validity from the application results to students in Okayama
University.

Moreover, to verify that whether or not each CMP instance is understood by the learner, I
introduce the project assignments. After solving the CMP instances completely, the learners need
to solve the project assignments for each topic, respectively. In future works, I will continue
studying other types of problems with useful functions for each problem type for other Python
programming topics in PyPLAS.

1.3 Contents of This Dissertation
The remaining part of the thesis is organized as follows: In Chapter 2, I review the overview of
Java Programming Learning Assistant System (JPLAS) with the explanation of server platform,
software architecture, implemented problem types. I also review various service functions, online
and ofine versions of JPLAS, and elaboration of PyPLAS in Chapter 2 . In Chapter 3 , I present
the value trace problem for ve topics of Python programming. In Chapter 4, I dene the code
modication problem, the generation procedure and two level answer marking function for CMP.
In Chapter 5, I present the code modication problem for studying data visualization concepts and
evaluate student answer results. In Chapter 6, I present the code modication problem for studying
Excel operations with the hint function implementation and analyze their application results. In
Chapter 7, I review the related works in literature. In Chapter 8, I conclude this thesis with some
future works.

3

Chapter 2

Review of Programming Learning Assistant
System

In this chapter, we introduce the outlines of Java Programming Learning Assistant System (JPLAS)
and Python Programming Learning Assistant System (PyPLAS).

2.1 Overview of JPLAS
Firstly, we overview the server platform, the software architecture, and the implemented problem
types of JPLAS.

2.1.1 Server Platform
Originally, JPLAS was implemented using JSP with Java 1.6.2 as the web application on a server.
It adopts Ubuntu-Linux 10.04 as the operating system running on VMware for portability. Tomcat
6.0.26 is used as the web application server to run JSP source codes that is a script language with
embedding Java codes within HTML codes. Tomcat returns the dynamically generated web pages
to the client web browser. MySQL 5.0.27 is adopted for managing the data in JPLAS. Figure 2.1
illustrates the server platform of JPLAS [8].

2.1.2 Software Architecture
The software architecture of JPLAS follows theMVCmodel as the common architecture of the web
application system. It basically uses Java for the Model (M), HTML/CSS/JavaScript for the View
(V), and JSP for the controller (C). The system implements the logic functions of JPLAS using
Java. For the independence from the view and controller, any input/output to/from the model uses
a string or its array that does not contain HTML tags. Servlet is not used to avoid the possible
redundancy that could happen between Java codes and Servlet codes where the same function
may be implemented. A design pattern called Responsibility Chain is adopted to handle marking
functions of the student answers, and the specic functions for the database access are implemented
such that the controller does not handle them. The view implements the user interfaces of JPLAS
by using a CSS framework to provide integrated interfaces using Cascading Style Sheet (CSS) in
the web standard. The user interface is dynamically controlled with Ajax to reduce the number
of JSP les. For the control architecture, the control in JPLAS is implemented by JSP. When it

4

Figure 2.1: Server platform for JPLAS.

receives a request from the view, it sends it to Java in the model and requests the corresponding
process. When Java in the model returns the processing results by strings, the control changes the
format for the view use HTML. The procedure is elaborated as follows:

1) to show the assignment list in the view, JSP in the control receives the list with strings in
the two dimensional array, changes them into the table format in HTML, and sends them to
JavaScript in the view,

2) to demonstrate the selected assignment in the view, JSP receives the details with strings,
changes them into the table in HTML, and sends it to JavaScript, and

3) to mark the answers from the student, JSP receives them from JavaScript in the view and
sends them to Java in the model. After completing the marking in the model, JSP receives
the marking results from Java, changes them into the table format in HTML, and sends it to
JavaScript in the view [9].

The overall software architecture in JPLAS can be seen in Figure 2.2.

Figure 2.2: Software architecture for JPLAS.

5

2.1.3 Implemented Problem Types
Currently, JPLAS has several types of exercise problems to accommodate a variety of students at
dierence learning levels. Problem types in JPLAS are as follows:

1) Grammar Concept Understanding Problem (GUP): This problem instance consists of a
source code and a set of questions on grammar concepts or behaviors of the code. Each
answer can be a number, a word, or a short sentence, whose correctness is marked through
string matching with the correct one. Also, the algorithm is used to automatically generate
a GUP instance from a given source code by: 1) extracting the registered keywords in the
source code, 2) selecting the registered question corresponding to each extracted keyword,
and 3) detecting the data required in the correct answer from the code [2].

2) Value Trace Problem (VTP): This problem requires students to trace the actual values of
important variables in a code when it is executed. The correctness of the answers is also
marked by comparing them with their correct ones stored in the server [3].

3) Element Fill-in-blank Problem (EFP) : This problem requires students to ll in the blank
elements in a given Java code. The correctness of the answers is marked by comparing them
with their original elements in the code that are stored in the server. The original elements
are expected to be the unique correct answers for the blanks [4]. To help a teacher generate
a feasible element ll-in-blank problem, the blank element selection algorithm has been
proposed [11].

4) Statement Fill-in-blank Problem (SFB): This problem asks students to ll in the blank state-
ments in a code. The correctness of the code is marked by using the test code on JUnit that
is an open source software for the test-driven development (TDD) method [12]. To help a
teacher select blank statements from a code, the program dependency graph (PDG) has been
used [10].

5) Code Writing Problem (CWP): This problem asks students to write a whole code from
scratch that satises the specications described in the test code [8]. The correctness of
the code of students is also marked by the test code.

6) Code Amendment Problem (CAP): In this problem type, a Java source code that has several
missing or error elements, called a problem code, is shown to student. A student needs to
identify the locations of missing or error elements in the code, and to ll in them or correct
them with the correct elements. The correctness of any answer will be marked through string
matching of the whole statement with the corresponding original one in the code [13].

7) Code Completion Problem (CCP): In this problem, a source code with several missing ele-
ments is shown to the students without specifying their existences. Then, a student needs to
locate the missing elements in the code and ll in the correct ones there. The correctness of
the answer from a student is veried by applying string matching to each statement in the
answer to the corresponding original statement in the code. Only if the whole statement is
matched, the answer for the statement will become correct. Moreover, merely one incorrect
element will result in the incorrect answer [14].

6

2.2 Service Functions in JPLAS
There are two services functions in JPLAS, namely, teacher service functions, and student service
functions.

2.2.1 Teacher Service Functions
The teacher service functions include the problem generation, the registration and management of
assignments, the creation of projects, and analyzing student performance by checking student’s
answers and viewing the number of submissions for individual problem by each student to eval-
uate the diculty of assignments, and compressions of students. If most of the students did a
lot of submissions for an assignment, the teacher need to consider that it will be too dicult for
the learners and if it is necessary, the teacher needs to change or replace that problem with easier
one. Sometimes, the teacher can implement hint functions, and recommendation functions for the
assignments to assist the students for better understanding. In addition, the teacher can also create
the references for each topic. On the other hands, if the teacher nds a student who submitted the
answers many times whereas other students did so fewer times, in this case, the teacher needs to
carefully instruct that student and check that student’s performing extraordinarily. Moreover, the
teacher can create the project assignment by summarizing all important concepts that was previ-
ously learned by the students to verify and evaluate the students’ situations about the corresponding
topics.

2.2.2 Student Service Functions
The student service functions include the view of the assignments, solving project assignments,
and the submissions of their answers for the assignments. For code writing problem type, the
student needs to write a source code for an assignment by reading problem statement, and the test
code where the student must use the class/method names, the types, and the other specications to
satisfy the given test code. The answer from a student is generally processed at the JPLAS by the
following steps:

1) When a student accesses to JPLAS, the list of the assigned problems to the student is dis-
played.

2) When a problem is selected by the student, the corresponding problem text in the database
is displayed.

3) The student writes the answers in the corresponding forms.

4) The answers submitted by the student are marked in the server, and both the answer and the
marking results will be saved in the database.

5) JPLAS oers feeds back to the student.

6) If necessary, the student could repeat the steps from (3).

The utilization procedure for both JPLAS functions by a teacher and a student are given as follows:

1) A teacher generates a new problem, and registers it to the database.

7

2) A teacher generates a new assignment by selecting proper problems in the database and
registers it to the database.

3) A student selects an assignment to be solved.

4) A student selects a problem in the assignment to be solved.

5) A student solves the questions in the problem and submits the answers to the server.

6) The server marks the answers and returns the marking results.

7) A student modies the incorrect answers and resubmits them to the server, if necessary.

8) A student refers to his/her solution results of the assignments.

9) A teacher refers to the solution results of all the students of the assignments.

2.3 Desktop-version JPLAS
As the previously mentions, JPLAS has been developed as a web application system. However,
it has been found that the online system can be used only in Internet-available environments and
it will be dicult in some areas where the Internet connection can’t access at all or may not be
stable due to the weak network infrastructure and the frequent power shortage, particularly in
developing countries. To avoid those diculties of the online JPLAS, we have implemented the
ofine Desktop-version JPLAS (D-JPLAS) as an ecient solution for schools and homes with the
poor Internet accesses. Unlike to the online JPLAS, D-JPLAS runs on the client PC only, without
the server access through the Internet. It keeps all the programs and data including the problems
and the student answers in the le system of the user’s PC, where it does not use the database.

Basically, the usage ow of ofine D-JPLAS can be process through the following steps.
Firstly, the teacher needs to create and assign the programming assignment. After that, he/she
distributes the created assignment problems to the students, who are learning programming lan-
guages for improving their skills. Students can solve the assignments repeatedly on their own PC
on ofine until they can get the correct answers. After that, the students need to submit their an-
swer les to the teacher who stores the les in the respective folder for each problem type and the
student. Finally, the teacher will manage and analyze the submitted answers on his/her own PC
using the answer analysis function, and give feedbacks to the students. The le exchange between
the teacher and student will be done through the USB memories, the le servers, or emails if the
Internet is accessible. Figure 2.3 illustrates the usage ow of Desktop-version JPLAS and Section
2.4 will discuss the ofine answering functions in JPLAS.

2.4 Ofine Answering Functions in JPLAS
As mentioned in Section 2.3, in addition to the online platform, the ofine answering function
has been implemented to allow students to answer the problems in JPLAS even if the students
cannot access to the JPLAS server when the Internet is unavailable. Therefore, this function is
very useful and actually inevitable in applying JPLAS. For solving the problem instances in this
ofine JPLAS, the problem assignment delivery and answer submission can be accomplished with
a USB. There are three mainly functions: operation ow, le generation, and cheating prevention
in ofine JPLAS.

8

Figure 2.3: Usage ow of Desktop-version JPLAS.

2.4.1 Operation Flow
The operation ow of the ofine answering function is as follows:

1) Problem instance download: a teacher accesses to the JPLAS server, selects the problem
instances for the assignment, and downloads the required les into the own PC on online.

2) Assignment distribution: the teacher distributes the assignment les to the students by using
a le server or USB memories.

3) Assignment answering: the students receive and install the les on their PCs, and answer the
problem instances in the assignment using Web browsers on ofine, where the correctness
of each answer is veried instantly at the browsers using the JavaScript program.

4) Answering result submission: the students submit their nal answering results to the teacher
by using a le server or USB memories.

5) Answering result upload: the teacher uploads the answering results from the students to the
JPLAS server to manage them.

2.4.2 File Generation
Table 2.1 shows the necessary les with their specications for the ofine answering function in
JPLAS. These les are designed for the problem view, the answer marking, and the answer storage.

2.4.3 Cheating Prevention
In ofine JPLAS, the correct answers need to be distributed to the students so that their answers
can be veried instantly on the browser. To prevent disclosing the correct answers, they will be
distributed after taking hash values using SHA256 [15]. In addition, to avoid generating the same
hash values for the same correct answers, the assignment ID and the problem ID are concatenated

9

with each correct answer before hashing. Then, the same correct answers for dierent blanks are
converted to dierent hash values, which ensure the independence among blanks [14].

Figure 2.4: Operation ow for ofine answering function.

Table 2.1: Files for distribution.

File name Outline
css CSS le for Web browser

index.html HTML le for Web browser
page.html HTML le for correct answers
jplas2015.js js le for reading the problem list
distinction.js js le for checking the correctness of answer
jquery.js js le for use of jQuery
sha256 js le for use of SHA256
storage.js js le for Web storage

2.5 Implementation of JPLAS PlatformUsing Node.js and Docker
Besides the online JPLAS and ofine JPLAS, we implemented the JPLAS platform with the newly
designed software architecture using Node.js and Docker without the internet connection, to avoid
the redundancy and improve the portability of previous implementations [16].

The students can solve the JPLAS problems without Internet connection by installing all the
system in their PCs. Node.js [17] is adopted as the popular web application server, where applica-
tion programs on both the server and client can be made using JavaScript. Besides, Express.js [18]
is used together as the framework to reduce the implementation cost of this platform. Furthermore,
the user interface is dynamically controlled with EJS that can avoid the complex syntax structure.

To avoid the software version problem on a PC when we distribute the system to the students,
we use Docker which provides the exibility and portability for running various software in dif-
ferent platforms. Docker [19]is adopted to make students easily install the platform software in
their own PCs, so that they can solve exercises in JPLAS without the Internet connections. Docker
has been designed to make it easier to create, deploy, and run an application program on various

10

platforms using the container. The Docker container [20] allows an application developer to com-
bine all the necessary software required to run the application program, such as the libraries, the
middleware, the parameters, and the other dependencies, into one package le called the container
image, to be shipped out. The Docker container image is a lightweight, standalone, and executable
package of all the software needed to run the application program. It may include the source codes,
the runtime environments, the system tools, the system libraries, and the settings.

As the software architecture,Mac OS is adopted for the operating system in the server platform.
Node.js is used as a web application server together with the Express.js framework. EJS is used
for the template engine. Any database system is not installed for managing the data. JUnit [21]
is used for testing the answer source codes in code writing problem [8]. Visual Studio Code (VS
Code) IDE is used for editing the source codes as a popular development environment. In our
architecture, Java is used for the model (M) to run JUnit, JS/CSS/JavaScript are for the view (V),
and JavaScript (Node/Express) is for the controller(C). It is a compact web application server and
can create both the client and server side of the application using only JavaScript. It can make
application program is easy, simple and reduce by using a exible framework as Express.js that
provides ready-made components for a web application. Node.js. The overall architecture can be
seen in Figure 2.5.

Figure 2.5: MVC model in JPLAS using Node.js.

2.6 Elaboration of PyPLAS
In today’s technology landscape, Python becomes a widely used and highly versatile programming
language that has gained immense popularity and importance in various domains. Some key rea-
sons why Python is considered an important programming language can be seen in the following
facts:

1. Easy to Learn and Readability

2. Wide Range of Applications

11

3. Large Standard Library and Third-Party Packages

4. Cross-Platform Compatibility

5. Strong Community and Support

6. Data Science and Machine Learning

7. Scripting and Automation

8. Integration and Extensibility

Therefore, Python is used by a great number of professionals, not just programmers or devel-
opers. The following lists are just a few of the careers where Python is a key skill:

• Back-end developer (server-side)

• Front-end developer (client-side)

• Full-stack developer (both client and server-side)

• Web designer

• Back-end developer (Python developer)

• Machine learning engineer

• Data scientist

• Data analyst

• Data engineer

• DevOps engineer (development operations)

• Software engineer

• Game developer

• Statistician

• SEO specialist

• And more. . . [22]

Due to the Python’s importance, we considered to extend our JPLAS to Python programming
learning, called Python Programming Learning Assistant System (PyPLAS).

2.6.1 Problem Types in PyPLAS
Currently, we have implemented various types of problems with automatic marking functions to
cover self-studies of Python programming at dierent levels by novice students. Namely, they
are Grammar Concept Understanding (GUP), Value Trace Problem (VTP), Comment Insertion
Problem (CIP), Code Modication Problem (CMP), and Code Writing Problem (CWP). Among
them, this thesis focuses on the VTP and CWP. In most of the problem types, the answers of
students are marked by string matching with correct codes and in some problem types, the answers
are marked by unit testing using test codes.

12

2.7 Summary
In this chapter, we reviewed JPLAS, including the functions in JPLAS and desktop versions of
JPLAS. Also, this chapter presented implementation of the JPLAS platform using Node.js and
Docker, and the elaboration of PyPLAS as the extension of JPLAS.

13

Chapter 3

Value Trace Problem

In this chapter, we present the Value Trace Problem (VTP) in Python Programming Learning As-
sistant System (PyPLAS) [23].

3.1 Introduction
The value trace problem (VTP) for self-study of Python programming asks a learner to trace the
actual values of important variables or output message in the given source code. Then, the correct-
ness of each answer is veried through string matching with the stored correct one. In this study,
we generated a total of 130 VTP instances to cover grammar concepts, fundamental data structures
or algorithms, and common libraries in Python programming. We collect the relevant source codes
from the websites [5] and a text book [24]. We also make the references that describe the least
Python programming topics related to the VTP instances, to assist novice learners in solving them.
To evaluate the generated VTP instances, we assign them to 48 undergraduate students in Myan-
mar, and Indonesia, most of them have never studied Python programming in the past. This chapter
will be organized as follows: the design of the VTP is rst introduced. Then, the generations of
VTP instances and their evaluations through applications to students are presented respectively.
Finally, the conclusion with future work is given for this chapter.

3.2 Design of Value Trace Problem for Python Programming
In this section, we present the design of the the value trace problem (VTP) for Python program-
ming.

3.2.1 VTP Concept
The goal of the VTP in PyPLAS for Python programming educations is to give students training
opportunities of profoundly reading and analyzing Python codes. This problem type focuses on
code reading because it plays an essential role in wring high quality codes for any programmer.
An VTP instance consists of a Python source code, a set of questions with the answer forms,
and the correct answers. A question asks answering the actual values of important variables or
output messages when the source code is executed. The values are supposed to be displayed
at the standard output in the code. Thus, to generate a new VTP instance, the corresponding
standard output statements need to be added in the source code. The important variables and output

14

messages to be traced are manually selected in our works. By carefully, reading and tracing the
source code in each VTP instance, the learner can improve their knowledge of the corresponding
study. Then, the design goals of the VTP are that:

1) a variety of useful source codes for Python programming study is depicted with full forms
to novice learners,

2) a set of references describing the least Python programming topics related to the VTP in-
stances are provided to assist novice learners,

3) learners can correctly answer the questions by carefully reading and understanding the source
codes, and

4) any answer can be marked through string matching automatically.

3.2.2 Generation Procedure of VTP
A VTP instance can be generated by a teacher with the following procedure:

1) to select a source code that is suitable for the topic to be studied,

2) to nd the important variables and messages to be traced in the code,

3) to add the corresponding standard output statements of them in the code,

4) to prepare the questions of asking the values/messages at the standard output and their correct
answers,

5) to put together the source code, the questions, and the correct answers into one text le,

6) to run the program with the text le as the input that generates the HTML/CSS/JavaScript
les for the ofine answering function, and

7) to include the generated VTP instance in the assignment to students.

Using the implemented Java program and the Bash script, this procedure can be executed automat-
ically.

3.2.3 Selection of Python Source Code
To clarify the generation procedure of VTP, I will explain the details by using the following source
code. This source code intends for learners to understand the various output formatting structure
of Python programming.

Listing 3.1: Source code example for VTP instance
1 # A quick−demo of Output formatting
2
3 x = 5
4 y = 10
5
6 print(’The value of x is {} and y is {}’.format(x,y))
7
8 #curly braces {} as placeholders and specify the order by using numbers (tuple index)

15

9 print(’I love {0} and {1}’.format(’bread’, ’butter’))
10 print(’I love {1} and {0}’.format(’bread’, ’butter’))
11
12 #keyword arguments to format the string
13 print(’Hello {name}, {greeting}’.format(greating = ’Goodmorning’, name = ’John

’))

3.2.4 Generating Assignments
After selecting the source code, the teacher needs to add the corresponding standard output state-
ments of them in the code, if necessary, and must prepare the questions of asking the values/mes-
sages at the standard output and their correct answers. Then, as the next step, the teacher needs to
put together the source code, the questions, and the correct answers into one text le as shown in
listing 3.2. Then, that le is passed as the input to run the program that generates the HTML/CSS/-
JavaScript les for the ofine answering function.

Listing 3.2: Input le example for VTP instance
1 # A quick−demo of Output formatting
2
3 x = 5
4 y = 10
5
6 print(’The value of x is {} and y is {}’.format(x,y))
7
8 #curly braces {} as placeholders and specify the order by using numbers (tuple index)
9 print(’I love {0} and {1}’.format(’bread’, ’butter’))
10 print(’I love {1} and {0}’.format(’bread’, ’butter’))
11
12 #keyword arguments to format the string
13 print(’Hello {name}, {greeting}’.format(greating = ’Goodmorning’, name = ’John

’))
14
15 The value of x is 1 and y is 2
16 I love 3 and 4
17 I love 5 and 6
18 Hello 7 , 8
19 5,10,bread,butter,butter,bread,John,Goodmorning

3.2.5 Answer Interface for VTP
The answer interface for the VTP instance is implemented on the web browser. It allows a student
to solve VTP instances both on online and ofine, since the answer marking is processed by running
the JavaScript program on the browser. The correct answers to the questions are encrypted using
SHA256 to avoid cheating by a student. Figure 3.1 illustrates the answer interface for an example
VTP instance that will be seen by the students. It asks the four standard output messages for
studying usages of various formatting styles in Python programming. The correct answers to
them are 5, 10, bread, butter, butter, bread, John, and Goodmorning. After a student lls in the
answer forms, he/she needs to click the ”Answer” button. Depending on his/her answers, the form
background will change to pink color if the answer is incorrect, otherwise, it will still remain the
white color as shown in Figure 3.2.

16

Figure 3.1: VTP answer interface.

17

Figure 3.2: VTP answer interface with explanations in details.

3.2.6 Assisting References
To assist novice learners solving the VTP instances eciently, simple reference documents are
made by covering the least concepts necessary to solve the related VTP instances. By reading
these references, learners can quickly access to the specic knowledge and information of Python
programming of the current instance. Then, any learner is expected to easily solve the VTP in-
stances, even if he/she has never studied Python programming. Table 3.1 shows the contents of
the index page of the reference to solve the VTP instances on pandas library. This page shows the
library concepts that will be studied in them, and their related VTP instance numbers. By clicking
the link embedded at the concept, the related content page will appear. Figure 3.3 illustrates the
content page on DataFrame Creation. It shows how to use the method .DataFrame() to create the
data frame, the fundamental step of the pandas operations and it’s corresponding output.

3.2.7 Overview of generated VTP instances
A total of 130 VTP instances are generated with the total of 805 answer forms. They are catego-
rized into the four groups of basic grammar, advanced grammar, data structure or algorithm, and
library usage. As common libraries, numpy and pandas are selected. The eectiveness of the VTP
instances are evaluated through applications to 48 undergraduate students. Among them, 12 are
the sixth-year students in a Myanmar university who have studied the Python programming for
two years, and 36 are the third-year students in an Indonesia university who have never studied it.

18

Figure 3.3: Content page of DataFrame creation.

19

Table 3.1: Index page of reference on pandas library.

Pandas Concepts Related VTPs Version Related Problem Numbers
dataframe creation VTP-5 1

indexing and selecting data VTP-5 6
excel le reading VTP-5 2
excel le writing VTP-5 3
what is CSV le? VTP-5 4, 5

iterate pandas dataframe VTP-5 7
aggregration in pandas dataframe VTP-5 8

pandas datetime function VTP-5 9
options and customizations VTP-5 10

3.3 VTP for Basic Grammar
First, we discuss the VTP instances for basic grammar category. They cover standard input/output,
operator usages, data types, control ows, and so on as base of Python programming.

3.3.1 Learning Objectives
Learning the basic grammar of Python is essential to understand its own set of rules and syntax
which is crucial for writing correct and functional programs. Also, it can improve code readability,
error identication and debugging process to identify and x syntax errors in the code. Learning the
basic grammar of Python provides the learners with a strong foundation, and enables the learners
to advance programming skills. Any leaner must master these concepts at the rst-step study of
Python programming.

3.3.2 Generated VTP instances
For this category, 47 instances are generated using Python source codes in [5]. Table 3.2 shows
the topic, the number of lines of the source code, the number of questions, the number of answer
forms, and the average correct answer rate by students for each instance.

3.3.3 Solution Results
The average correct rate in Table 3.2 by the students is 90% or higher for any instance, and the av-
erage one among all the instances is 96.5%. Many students have no experience of studying Python
programming. Thus, the VTP instances in the basic grammar category have proper diculty levels
for novice learners. As the summary of the solution results, Table 3.3shows the solution levels, the
range of the number of correctly answered forms, the number of students, the range of the number
of instances attempted to solve, and the average number of answer submissions with its standard
deviation (SD). 48 students in groups A and B submitted their answers 2.3 times on average for
each instance. It is noted that at least 47 submissions are necessary to solve 47 instances. One
student in group C gave up solving the VTP instances after attempting four instances.

20

3.4 VTP for Advanced Grammar
Second, we discuss the VTP instances for the advanced grammar category. They cover object ori-
ented programming concepts, arrays with various functions, JSON le usage, and other advanced
topics of Python programming. JSON is used at transmitting structured data over networks, and is
very popular in programming, although it is not familiar to novice learners.

3.4.1 Learning Objectives
Learning advanced grammar in Python builds upon the foundation of basic grammar and it can ex-
pand the programming skills, enhance code eciency, and gain the ability to tackle more complex
programming tasks. It also enables to write cleaner, more maintainable code, opening up oppor-
tunities for advanced projects and collaborations. In additions, understanding advanced grammar
is crucial for eectively utilizing Object Oriented Programming (OOP) concepts such as classes,
objects, inheritance, polymorphism, and encapsulation. OOP allows for creating modular and
reusable code, leading to better software design and maintainability. Moreover, it provides ro-
bust mechanisms for handling exceptions to gracefully handle errors and exceptions in the code,
improving its reliability and stability.

Therefore, as the overall, learning advanced grammar in Python empowers for writing more
ecient, modular, and powerful code. It expands the capabilities as a Python developer and enables
to tackle complex problems and build sophisticated applications.

3.4.2 Generated VTP instances
For this category, 17 instances in Table 3.4 are generated using source codes in [5].

3.4.3 Solution Results
For the VTP instances in this category, 38 students submitted their answers. Then, the average
correct rate in Table 3.4 is 94% or higher for any instance except for JSON data reading with
ID=13. The average correct rate of all the instances is 96.5%. The JSON data reading topic can
be hard for students because they have little knowledge on syntax structure of data reading from
JSON le. The improvement for this topic will be in future works.

The summary results in Table 3.5 show that 34 students in groups A and B correctly answered
at 100 or more forms among 108. For each instance, 24 students in group A submitted their
answers 2.8 times and 10 in group B submitted 6.1 times on average.

3.5 VTP for Data Structures and Algorithms
Third, we discuss the VTP instances for data structure and algorithm category. They cover stack,
queue, sorting, searching, graph, Dijkstra algorithm, and other related topics.

3.5.1 Learning Objectives
Data structures and algorithms play crucial roles in designing modular and reusable codes. By or-
ganizing data in appropriate data structures and implementing ecient algorithms, we can create

21

code components that can be easily reused across dierent projects. When working with exist-
ing codebases or using third-party libraries, having a good understanding of data structures and
algorithms allows the any developer to comprehend the underlying implementation and make in-
formed decisions on how to best utilize those libraries. In addition, by understanding dierent
data structures like arrays, linked lists, stacks, queues, trees, graphs, and algorithms like sorting,
searching, and traversals, we can easily gain the ability to analyze problems, design algorithms,
and implement solutions.

In summary, learning Python data structures and algorithms enables to manipulate data e-
ciently, solve problems eectively, optimize code performances, design modular code, and excel
in technical interviews. It forms the backbone of ecient programming and is essential for any
developer or data scientist working with Python. Any learner should know well these concepts
to write proper codes for handling data eectively. Therefore, this category is introduced at the
third-step study of Python programming.

3.5.2 Generated VTP instances
For this category, 24 instances in Table VI are generated using source codes in [5].

3.5.3 Solution Results
For the VTP instances in this category, 25 students submitted answers. The average correct rate in
Table 3.6 is 90% or higher for any instance, except for the six instances, where the inx to postx
conversion with ID=6 is only 79%. The average correct rate of all the instances is 92.4%, which is
smaller than the rates for previous categories. The topics in this category can be hard for students
because they do not have enough knowledge on data structure and algorithm. The improvements
for these topics will be in future works. The summary results in Table 3.7 shows that 11 students
in group A correctly answered all the forms and submitted answers 1.7 times for each instance on
average. 13 students in group B correctly answered 160 or more forms among 187 and submitted
answers 3.3 times on average. One student in group C gave up solving most VTP instances after
attempting ve ones.

3.6 VTP for Numpy Library
Fourth, we discuss the VTP instances for numpy library usage to study the fundamental package
for scientic computing and machine learning.

3.6.1 Learning Objectives
The numpy library is an essential tool for scientic computing and data analysis in Python. It
provides powerful data structures, numerical computing tools, and a collection of mathematical
functions to eciently work with large arrays and matrices. Some of the functions that can be
provided by numpy library are summarized as follows:

1. Ecient array operations: the main feature of numpy is the ndarray (n-dimensional array)
object, which allows for performing operations on large arrays of homogeneous data e-
ciently.

22

2. Mathematical functions and tools: numpy provides a wide range of mathematical functions,
including trigonometry, linear algebra, statistics, random number generation, and more.

3. Integration with other libraries: numpy is a foundational library in the Python scientic com-
puting ecosystem. It integrates well with other libraries such as scipy, pandas, matplotlib,
and scikit-learn.

4. Vectorized operations: numpy allows for performing on entire arrays or large subsets of data
without writing explicit loops.

5. Interoperability with other languages: numpy arrays can be easily shared with other libraries
and languages like C/C++, Fortran, and MATLAB. This makes it convenient to leverage
existing code and tools from dierent domains.

6. Data analysis and manipulation: numpy provides various functionalities for data manipula-
tion, such as reshaping, indexing, slicing, merging, and sorting. These operations are crucial
for data preprocessing and analysis tasks.

Overall, studying the numpy library is important for anyone working with data, scientic com-
puting, or numerical analysis in Python. It oers ecient array operations, mathematical func-
tions, memory optimization, integration with other libraries, and tools for data manipulation. By
mastering numpy, the learner can signicantly enhance the productivity and tackle complex com-
putational tasks more eectively. Therefore, we focus to generate VTP instances to this topic.

3.6.2 Generated VTP instances
For this category, 32 instances in Table 3.8 are generated using source codes in [5]

3.6.3 Solution Results
For the VTP instances in this category, 25 students submitted answers. The average correct rate
in Table 3.8 is 90% or higher for any instance, except for the six instances on array creation with
arrange method, shufing usage, and complex function usage. Among them, shufing strings with
ID=21 gives only 74%. The average correct rate of all the instances is 92.2%, which is similar
to the rate in the data structure and algorithm category. As the summary of the solution results,
Table 3.9 shows that two students in group A correctly answered all the forms and submitted
answers 2.3 times for each instance on average. 21 students in group B answered 150 or more
forms among 175 and submitted answers 2.9 times on average. One student in group D gave up
solving the VTP instances after attempting six ones.

3.7 VTP for Pandas Library
Last, we discuss the VTP instances for the pandas library usage by covering data frame creation,
excel and csv les reading and writing, indexing and selecting data, iteration on pandas, date time
creation and so on.

23

3.7.1 Learning Objectives
The pandas library is a powerful tool for data manipulation, analysis, and cleaning. It provides
a high-performance, easy-to-use data structure called DataFrame, which is designed to handle
structured data eciently. This library has been most widely used in data science, data analysis,
and machine learning. Some operations that are supported by the pandas library are summarized
as follows.

1. Data handling and manipulation: pandas simplies the process of loading, manipulating,
and cleaning data. It oers a wide range of data manipulation functions and methods, such
as ltering, sorting, grouping, merging, reshaping, and pivoting to eciently transform and
prepare data for analysis.

2. Tabular data representation: The DataFrame data structure in pandas provides a tabular
representation of data, similar to a spreadsheet or a SQL table for organizing, analyzing, and
manipulating data with rows and columns with structured data.

3. Data analysis and exploration: pandas provides a rich set of functions for descriptive statis-
tics, data summarization, and exploration. Additionally, pandas integrates with other li-
braries like numpy and matplotlib, allowing for seamless data analysis and visualization
workows.

4. Missing data handling: pandas oers exible tools to handle missing values, allowing to
drop or ll missing data based on the requirements to perform data analysis accurately and
eectively.

5. Time series analysis: pandas has extensive support for analyzing and working with time-
dependent data. It provides functionalities to handle and manipulate time-stamped data,
resample data at dierent frequencies, perform date/time calculations, and handle time zone
conversions.

6. Data input/output (I/O): pandas supports reading and writing data from various le formats,
such as CSV, Excel, SQL databases, and more. It simplies the process of importing and
exporting data, making it easier to work with dierent data sources and integrate with other
tools and systems.

7. Eciency and performance: pandas is built on top of numpy, which allows for ecient and
optimized data operations. It provides vectorized operations, which are much faster than
traditional loops, resulting in improved performance when working with large datasets.

In summary, studying and using the pandas library is important for anyone working with data
in Python. It oers a comprehensive set of tools for data manipulation, analysis, and cleaning,
simplifying the data wrangling process. The pandas library provides a exible and ecient way
to handle structured data, perform data analysis, and prepare data for further processing or visual-
ization. Therefore, since every Python programming learner should know how to use this library,
we introduced the VTP instances about this concept.

3.7.2 Generated VTP instances
For this category, 10 instances in Table 3.10 are generated using source codes in [5].

24

3.7.3 Solution Results
For the VTP instances in this category, 15 students submitted answers. The average correct rate in
Table 3.10 is 98% or higher for any instance, and the average rate for all the instances is 99.7%.
All the students can solve any instance correctly except for two instances with ID=6 and ID=7.

The summary results in Table 3.11 show that 11 students in group A correctly answered 47
or 48 forms among the 48, and four students in group B correctly answered at 31 or more. The
average number of answer submissions is 1.2 and 2.5 for each instance, respectively.

3.8 Summary
In this chapter, we present the ve categories of the Value Trace Problem (VTP) in PyPLAS with
130 instances by collecting a set of source codes from textbooks, and websites. Besides, assist-
ing references on Python programming topics related to the VTP instances were introduced to
assist novice learners in solving them eectively. Then, all of the problem instances are assigned
to 48 undergraduate students in Myanmar, and Indonesia. Then, we analyzed the student’s solu-
tion results including their submission times to know individual student’s performances, generated
problem instances’ diculties, and to conrm the eectiveness as the viable self-study learning
tool. The future studies include the generation of value trace problem for the remaining categories
to cover other useful libraries for machine learning, deep learning, mutimedia, and so on.

25

Table 3.2: VTP instances for basic grammar.

ID basic grammar concept # of lines # of questions # of forms avg correct rate
1 standard input/output 6 3 3 99%
2 formatting usage 6 4 8 98%
3 implicit type 12 9 9 94%
4 explicit type 9 5 5 94%
5 arithmetic operators 8 6 6 98%
6 comparison operators 7 5 5 98%
7 logical operators 5 3 3 98%
8 identity operators 9 3 3 98%
9 membership operator 6 4 4 98%
10 various dataTypes 29 18 27 93%
11 sep and end keyword 14 1 20 91%
12 if else statement 9 2 2 98%
13 if-elseif-else 9 1 18 98%
14 nested-if-else 7 1 2 98%
15 for loop usage 5 1 4 98%
16 for loop with range 4 1 1 90%
17 while loop usage 4 1 3 98%
18 while-else usage 6 1 5 98%
19 nested while loop 7 1 6 95%
20 break statement 6 1 5 97%
21 continue statement 4 1 3 98%
22 pass statement usage 11 1 6 94%
23 accessing string 6 1 5 98%
24 slicing operation 6 5 5 93%
25 string concatenation 7 2 2 92%
26 string replication 4 2 2 98%
27 string membership 7 3 3 98%
28 relational operator 6 2 2 98%
29 tuple usage 7 1 6 98%
30 negative tuple index 3 1 2 97%
31 nested tuple usage 3 1 2 98%
32 changing tuple elements 4 1 10 98%
33 slicing on tuple 6 1 15 97%
34 tuple membership 6 1 10 91%
35 iteration on tuple 3 1 4 98%
36 list usage 7 1 6 97%
37 slicing on list 5 1 16 98%

26

ID basic grammar concept # of lines # of questions # of forms avg correct rate
38 negative index usage 4 1 3 97%
39 addition on list 7 1 16 91%
40 updating list elements 5 1 8 97%
41 deletion on list 6 1 8 98%
42 three deletion methods 7 1 10 97%
43 dictionary usage 3 2 2 94%
44 changing dict elements 7 4 4 98%
45 adding dictionary entry 4 2 2 98%
46 loop through dictionary 3 6 6 98%
47 deletion on dictionary 8 1 7 98%

average 6.7 2.5 6.1 96.5%
total 317 117 287 SD: 2.4%

Table 3.3: Solution results for basic grammar.

level group

range of
correctly
solved forms

of
students

of
attempted
instances

ave. # of
submissions

(SD)
A 287 23 47 109.2 (51.0)
B 286-250 24 47-46 109.9 (33.2)
C 12 1 4 17

Table 3.4: VTP instances for advanced grammar.

ID advanced grammar concept # of lines # of questions # of forms avg correct rate
1 object creation 8 1 3 99%
2 default constructor 7 1 1 97%
3 parameterized constructor 16 1 3 100%
4 object’s information 15 6 8 100%
5 array creation 10 2 6 97%
6 adding array items 21 4 14 100%
7 accessing array items 7 4 4 100%
8 removing array items 16 4 10 98%
9 slicing array items 16 3 8 97%
10 searching array items 10 3 8 100%
11 sep and end keyword 14 3 12 99%
12 if else statement 5 1 5 94%
13 if-elseif-else 10 1 3 75%
14 nested-if-else 27 1 6 96%
15 for loop usage 10 1 12 97%
16 for loop with range 7 1 2 95%
17 while loop usage 6 1 3 97%

average 12.1 2.2 6.4 96.5%
total 205 38 108 SD: 5.9%

27

Table 3.5: Solution results for advanced grammar.

level group

range of
correctly
solved forms

of
students

of
attempted
instances

ave. # of
submissions

(SD)
A 108 24 17 48.1 (32.8)
B 107-100 10 17-16 103.8 (2.0)
C 99-81 4 17 93.3 (8.3)

Table 3.6: VTP instances for data structures & algorithms.

ID data structure or algorithm # of lines # of questions # of forms avg correct rate
1 stack operations 25 7 7 100%
2 parentheses checker 22 1 7 89%
3 symbols checker 29 1 7 98%
4 decimal to binary 16 8 8 88%
5 decimal to any base 17 4 4 84%
6 inx-to-postx 33 1 6 79%
7 postx evaluation 25 4 4 84%
8 queue operations 24 7 7 96%
9 deque operations 28 5 5 96%
10 palindrome checker 16 1 8 92%
11 bubble sort 14 1 13 91%
12 selection sort 12 1 12 92%
13 insertion sort 14 1 12 96%
14 shell sort 19 2 12 92%
15 merge sort 31 10 11 96%
16 quick sort 31 1 12 96%
17 sequential search 13 1 9 96%
18 binary search 19 6 10 96%
19 hash table usage 64 1 4 92%
20 graph implementation 56 1 12 86%
21 breadth rst search 28 1 4 96%
22 depth rst search 24 1 4 96%
23 Dijkstra algorithm 40 1 5 92%
24 Prim algorithm 39 4 4 96%

average 26.6 3.0 7.8 92.4%
total 639 71 187 SD: 5.1%

28

Table 3.7: Solution results for data structure algorithms.

level group

range of
correctly
solved forms

of
students

of
attempted
instances

ave. # of
submissions

(SD)
A 187 11 24 41.7 (17.1)
B 184-160 13 24-21 73.7 (55.1)
C 32 1 5 93.3 (50)

Table 3.8: VTP instances for numpy library.

ID numpy library concepts # of lines # of questions # of forms avg correct rate
1 numpy array creation 23 8 9 91%
2 basic operations 12 7 10 96%
3 array characteristics 7 5 5 95%
4 arranging array elements 6 4 4 86%
5 reshaping array elements 9 4 6 99%
6 index arrays 8 3 3 93%
7 basic slicing usage 8 3 4 96%
8 boolean indexing 24 5 4 96%
9 iterating over array 14 4 18 93%
10 modifying array elements 10 3 3 88%
11 broadcasting iteration 13 1 9 91%
12 bitwise operations 19 3 3 96%
13 rounding function 13 3 5 96%
14 arithmetic functions 27 6 9 95%
15 complex functions 9 2 2 88%
16 string operations 9 6 6 91%
17 accessing string 10 6 6 93%
18 string comparisons 19 7 8 96%
19 shufing usage 13 3 7 85%
20 shufing two lists 14 3 4 90%
21 shufing strings 7 2 2 74%
22 dot operations 11 3 4 96%
23 maximum operation 19 3 3 92%
24 minimum operation 19 3 3 93%
25 arithmetic mean 10 4 4 96%
26 variance operation 13 3 3 82%
27 standard deviation 10 4 4 91%
28 vertically stacking 13 1 2 91%
29 append function 17 4 10 94%
30 sorted function 8 2 4 96%
31 argument sorting 9 2 4 96%
32 lexsort usage 8 1 7 96%

average 12.8 3.7 5.5 92.2%
total 411 118 175 SD: 5.1%

29

Table 3.9: Solution results for numpy library.

level group

range of
correctly
solved forms

of
students

of
attempted
instances

ave. # of
submissions

(SD)
A 175 2 32 75
B 174-150 21 32-31 92 (47.7)
C 130 1 32 53.7 (64)
D 30 1 6 93.3 (55)

Table 3.10: VTP instances for pandas library.

ID pandas library concept # of lines # of questions # of forms avg correct rate
1 data frame creation 12 1 6 100%
2 excel le reading 8 1 5 100%
3 excel le writing 11 1 5 100%
4 csv le reading 15 1 3 100%
5 csv le writing 10 1 3 100%
6 index and select data 16 1 9 99%
7 iteration on pandas 8 1 8 98%
8 aggregation on pandas 7 1 3 100%
9 date time creation 10 1 4 100%
10 pandas options 12 2 2 100%

average 10.9 1.1 4.8 99.7%
total 100 11 48 SD: 0.7%

Table 3.11: Solution results for pandas library.

level group

range of
correctly
solved forms

of
students

of
attempted
instances

ave. # of
submissions

(SD)
A 48-47 11 10 12 (1.4)
B 46-31 4 10 25 (16.8)

30

Chapter 4

Code Modication Problem

In this chapter, we present the overview of Code Modication Problem (CMP), its generation
procedure, and example of CMP instance generation in details with two level answer marking in
Python Programming Learning Assistant System (PyPLAS).

4.1 Introduction
In the previous chapter, we discussed VTP in PyPLAS to oer code reading study of various gram-
mar concepts and common libraries. A VTP instance asks a learner to trace the actual values of
the important variables or output messages in the given source code. Unfortunately, VTP and any
type of exercise problems in PyPLAS may not suitable to study some Python topics that need the
illustrating gures such as bar charts, line charts, pie charts, and so on. Therefore, we introduce
the code modication problem (CMP) for self-study of Python programming, as a new problem
type for PyPLAS.

The rest of this chapter is organized as follows. Firstly, the overview of CMP is introduced.
Then, the next section will present the step by step generation procedure of CMP instance. After
that, it will show the example of CMP instance generation with appropriate source code selection,
user interface, and so on. Then, it will review the two level answer marking function. Finally, the
conclusion is given for this chapter.

4.2 Overview of Code Modication Problem (CMP)
In the CMP instance, basically, one source code, and two images are shown to the learner. The rst
image shows the web page that will be obtained by running the source code. Then, the learner will
need to modify the source code so that it can generate the second image. The learner is requested
to carefully check the dierences between the two images for the correct answers. The correctness
of the student answer is veried through string matching at each statement in the answer to the
corresponding original statement in the source code. The design goals of CMP are described by:

1. A variety of useful and practical source codes for studying Python topics is depicted with
full forms to novice earners,

2. A learner can correctly answer the questions of CMP by carefully reading the source code
and modifying the required parts in the functions, variables, and parameters.

31

3. Any answer can be marked through string matching automatically.

4.3 CMP Instance Generation Procedure
In this section, the generation procedure of the new code modication problem (CMP) is presented.
An instance of CMP can be generated through the following steps:

1. To select a source code from a website or a text book that is suitable for the current topic,

2. To nd the important parts (functions, variables, parameters) in the source code to be modi-
ed so that the learner can study the instance topic,

3. To prepare another source code by replacing the modied parts from the original source
code,

4. To put together the source code, the modied source code, and the correct answers into one
text le,

5. To run the answer interface generation program with the text le as the input to generate the
CMP instance with HTML/CSS/JavaScript les for the ofine answering function,

6. To obtain the two images by running the original and modied source codes and add them
into the generated CMP instance, and

7. To assign the generated CMP instance to students.

By using the Java programs and the Bash script, this procedure can be executed automatically.

4.4 Example of CMP Instance Generation
In this section, we present the details of each step for the CMP instance generation using a sample
source code.

4.4.1 Source Code Selection
A proper source code should be selected to be studied by the students. Here, the source code in
Listing 6.1 is selected for further discussions. This source code uses the donut chart and its related
functions.

Listing 4.1: Source code example for CMP instance
1 import matplotlib.pyplot as plt
2 religion names = ’Islam’, ’Christians’, ’Hindu’, ’Buddha’, ’Others’,
3 total number = [2000, 2700, 2400, 2100, 1200]
4 male number = [1200, 1300, 1250, 1000, 700]
5 female number = [800, 1400, 1150, 1100, 500]
6 my circle = plt.Circle((0, 0), 0.7, color=’white’)# Create a circle for the center of the plot

for look like donut chart
7 # Draw Circle
8 plt.pie(male number, labels=religion names, autopct=’%0.f%%’, colors=[’red’, ’green’

, ’blue’, ’skyblue’, ’black’])
9 p = plt.gcf()

32

10 p.gca().add artist(my circle)
11 plt.legend(religion names,title=’religions’, loc=’lower left’)#specify the location

of the legend object
12 plt.title(’Religion analysis for male(Donut Chart)’)
13 plt.saveg(’D:/donut1.JPG’) # save the donut chart as JPG

4.4.2 Finding Important Parts in Source Code
After selecting the appropriate source code, the teacher needs to nd the important parts (functions,
variables, parameters) in the source code such that they should be studied and understood clearly
by the students. Figure 4.1 illustrates the important parts that will signicantly aect the output
results in the above source code to be modied.

Figure 4.1: Source code with highlighting important parts.

4.4.3 Preparing Another Source Code
Then, as the third step, the teacher has to prepare another source code by replacing the important
parts in the original source code that are previously mentioned in Section 4.4.2. Listing 4.2 illus-
trates the newly created source code with the modications of line 6, line 8, line 11, and line 12
that are needed to be solved by the students.

33

Listing 4.2: Modied source code as output code
1 import matplotlib.pyplot as plt
2 religion names = ’Islam’, ’Christians’, ’Hindu’, ’Buddha’, ’Others’,
3 total number = [2000, 2700, 2400, 2100, 1200]
4 male number = [1200, 1300, 1250, 1000, 700]
5 female number = [800, 1400, 1150, 1100, 500]
6 my circle = plt.Circle((0, 0), 0.7, color=’gray’)# Create a circle for the center of the plot

for look like donut chart
7 # Draw Circle
8 plt.pie(female number, labels=religion names, autopct=’%0.f%%’, colors=[’black’, ’

skyblue’, ’blue’, ’green’, ’red’])
9 p = plt.gcf()
10 p.gca().add artist(my circle)
11 plt.legend(religion names,title=’religions’, loc=’upper right’)#specify the location

of the legend object
12 plt.title(’Religion analysis for female(Donut Chart)’)
13 plt.saveg(’D:/donut2.JPG’) # save the donut chart as JPG

4.4.4 Input File for Generating CMP Instance
Then, as the next step, the teacher needs to put together the source code, the modied source code,
and the correct answers into one text le with the appropriate format to satisfy the required speci-
cations from the CMP generator and pass it as the input le to run the CMP generation program
to generate the CMP instance with the HTML/CSS/JavaScript les for the answering interface. For
checking the students’ results, we implement two level answer marking that will be discussed in
Section 4.5.

4.4.5 Adding Two images
After generating a CMP instance from the generator, the teacher needs to add two images obtained
by running the original and modied source codes into the generated CMP instance so that the
learner can carefully read the source code to know dierence between the two images for the
correct answer.

4.4.6 Problem Answer Interface
The answer interface for a CMP instance is implemented on the web browser. It allows a learner to
solve the CMP instance both on online and ofine, since the answer marking is applied by running
the JavaScript program on the browser. The correct answers to the questions are encrypted using
SHA256 to avoid cheating by a student.

Figure 4.2 illustrates the user interface design of the example CMP instance on a web browser.
“Source Code” shows the problem source code of the CMP instance. “the output” shows the
answer forms where each line corresponds to one statement in the problem source code that may
need to modify. By understanding the given source code and the rst image, the learner is requested
to modify the corresponding lines in the source code of the output area to obtain the second image
by running the modied code. After the modication, the “Answer” button should be clicked. If
the answer is not correct, the background color of the corresponding input form becomes pink,
otherwise, it is white that can be seen in Figure 4.3. It is possible to submit answers repeatedly
until all the answers become correct.

34

35

Figure 4.2: CMP user interface.

Figure 4.3: CMP user interface with error messages.

36

4.5 Two-Level Answer Marking
When a student clicks the answer button in the interface, the two-level marking is applied for
marking the student answers. The answer is marked through the string matching of the whole
statement using the Java program at the web server for online, or using the JavaScript program
at the student browser for ofine. The statement in the student answer and the corresponding
statement in the original code are compared.

This marking process is executed at two levels in our implementation. The rst level marking
examines the statements after removing the spaces and tabs from the answers. To avoid confusions
of novice students on use of spaces or tabs, this rst level marking does not consider the spaces
and tabs in the string matching.

However, to encourage a student to be aware of a readable code, the correct insertions of tabs
and spaces are important in the code. Also, the indentation is of utmost importance in Python
programming and plays a vital role in determining the syntax, structure, and readability of the
code. Therefore, we need to carefully consider spaces, tabs, and indentations in program codes.
As the result, the second level marking marks the statements including the spaces and tabs. If
the answer statement contains a missing tab or space, or extra one, the warning message will be
returned to the student in the answering interface.

4.5.1 First-Level Marking
First, the rst-level marking applies to the answer. Here, after every space and tab is removed from
the answer code, each statement is compared with the correct one without a space or tab. If they
are dierent, the corresponding input form of the statement is highlighted by the pink background
to suggest that at least one character in the answer statement is dierent from the correct one.
Otherwise, the following second-level marking is applied.

4.5.2 Second-Level Marking
In the second-level marking, the whole statement, including the spaces and tabs, will be compared
between the answer code and the original code. If they are dierent, it is highlighted by the yellow
background. Otherwise, the form is not highlighted at all.

4.6 Summary
In this chapter, we reviewed the Code Modication Problem (CMP) and its generation procedure.
Then, we presented the example CMP instance generation using a sample source code. Finally, we
discussed two level answer marking for checking the answers in the CMP instance.

37

Chapter 5

Code Modication Problems for Data
Visualization

This chapter presents the code modication problem (CMP) for data visualization in Python Pro-
gramming Learning Assistant System (PyPLAS) [25].

5.1 Introduction
Data analysis or data science is one of the important applications in Python programming. Here,
data visualization is necessary to graphically illustrate data using graphs or charts. In the CMP
instance, one source code and two images showing graphs or charts are given. The rst image
represents the output one that is obtained by running the given source code. Then, it asks to
modify the source code to output the second image. The correctness of the answer is checked
through string matching with the correct one.

The rest of this chapter is organized as follows: Firstly, data visualization concepts are in-
troduced. Secondly, the learning objectives of CMP instances related with data visualization are
presented. Thirdly, the generation procedure of a CMP instance and the user interface are pre-
sented. Fourthly, the evaluation results through applications to students are presented. Finally, the
conclusion of this chapter is presented.

5.2 Data Visualization in Python
In this section, we review the data visualization in Python.

5.2.1 Data Visualization Concepts
In today’s world, a lot of data is being generated everyday. To analyze this data for certain trends,
data visualization comes into play [27]. Data visualization is the graphical representation of in-
formation and data in pictorial or graphical formats such as charts, graphs, tables, and maps. It
provides a good, organized pictorial representation of data and makes it easier to understand, ob-
serve, analyze. Data visualization tools support to see and understand trends, patterns in data,
and outliers in data analysis. Therefore, data visualization tools and technologies are essential to
analyzing massive amounts of information and making data-driven decisions.

38

Python has grown into a large community, further fueling the growth with new contributors
and ecosystems. Python has many visualization tools/libraries to provide excellent features. They
are easy to implement. They support all types of visual, live, customized charts. Most used Python
libraries for data visualization are summarized as follows:

1. Matplotlib: It is a low-level library that provides much freedom to customize.

2. Pandas Visualization: Built on Matplotlib, it has an easy-to-use interface and makes visu-
alization a breeze.

3. Seaborn: It has a high-level interface and many default styles.

4. Bokeh: It supports unique visualizations like network graphs, geospatial plots, etc.

5. Plotly: It can create interactive plots [26].

Data visualization in Python is essential for understanding data, communicating insights, mak-
ing data-driven decisions, storytelling, exploration, analysis, and error detection. It enhances data
understanding, facilitates eective communication, and empowers data-driven decision-making
processes. In this thesis, we mainly focus on Matplotlib and pandas libraries for data visualiza-
tion.

5.2.2 Types of Visualization Charts
By using the visualizations libraries, the following visualizations can be created [26]:

• Line Chart: A line chart is used to display trends over time. The X-axis usually represents
a period, and the Y-axis represents the quantity associated with the period on the X-axis.

• Area Chart: An area chart is a line chart with the areas below the lines lled with colors. A
stacked area chart displays each value’s contribution to a total over some time.

• Bar Chart: A bar chart displays trends over time. In the case of multiple variables, a bar
chart can make it easier to compare the data for each variable at every moment.

• Histogram: A histogram presents data using bars of dierent heights. Usually, each bar
groups the numbers into ranges in a histogram. The taller the bars, the more data falls in that
range. It displays the shape and the spread of continuous data set samples.

• Scatter Plot: A scatter plot is used to nd correlations. If a data XY exists, a scatter plot is
used to nd the relationship between variables X and Y.

• Bubble Chart: A bubble chart is evolved from a scatter plot. Unlike a scatter plot, each
data point is assigned a label or a category and is shown as a bubble. It is used to show and
compare the relationship between the labeled circles. A bubble chart makes it hard to read
with multiple bubbles, so it has a limited data set size capacity.

• Pie Chart: A pie chart is a circular graph representing the data set in which each pie slice
represents a numeric proportion. A pie charts is used to show the contribution of a data point
inside a whole data set.

39

• Heat Map: A heat map uses color like a bar chart’s height and width. A heat map can
identify whether the phenomenon is clustered or varies over space.

Figure 5.1 illustrates the above mentioned charts respectively.

Figure 5.1: Types of visualization charts.

5.3 Learning Objectives
To understand the benets of data visualization, we generated 25 CMP instances with gures for
important charts such as histogram, scatter plot, pie chart, venn diagram, and so on in Table 5.1.

5.4 CMP Instance Generation Procedure
A CMP instance can be generated through the following seven steps:

1. To select a source code from a website or a text book that is suitable for the current topic,

2. To nd the important parts (functions, variables, parameters) in the source code to be modi-
ed so that the learner can study the instance topic,

3. To prepare another source code by replacing the modied parts from the original source
code,

4. To put together the source code, the modied source code, and the correct answers into one
text le,

5. To run the answer interface generation program with the text le as the input to generate the
CMP instance with HTML/CSS/JavaScript les for the ofine answering function,

40

6. To obtain the two images by running the original and modied source codes and add them
into the generated CMP instance, and

7. To assign the generated CMP instance to students.

By using the Java programs and the Bash script, this procedure can be executed automatically.

5.5 CMP User Interface
The answer interface for a CMP instance is implemented on the web browser. It allows a learner
to solve the CMP instance both on online and ofine, since the answer marking is processed by
running the JavaScript program on the browser. The correct answers to the questions are encrypted
using SHA256 to avoid cheating by a student.

Figure 5.2 illustrates the answer interface for an example CMP instance. It asks three lines
(line 9, line 10, and line 11) to be modied in the “Output” form. The rst image was generated
by running the given source code that illustrates the pie chart of male attendance on the respective
courses. Then, to generate the right image, this problem asks the learner to properly modify the
source code. Actually, it requests to change ”male students” in line 9 to ”female students”, ”Male
attendance to the courses” and ”green” to ”Female attendance to the courses” and ”blue” in line
10, and ”pie1.JPG” to ”pie2.JPG” in line 11. In this Figure, the learner still needs to modify line
10.

By understanding the given source code and the both images, the learner needs to modify the
corresponding lines in the source code to obtain the second image by running the modied code.
After the modication, the “Answer” button should be clicked. If the answer is not correct, the
background color of the corresponding input form becomes pink. Otherwise, it is white. It is
possible to submit answers repeatedly until all the answers become correct.

41

Figure 5.2: CMP user interface for data visualizations.

42

5.6 Evaluation
In this section, the evaluation of the proposal is discussed.

Table 5.1: Generated CMP instances for data visualizations.

Problem no Problem name Total blanks Average Correct Rate
1 histogram 17 99%
2 scatter plot 20 100%
3 pie chart 11 100%
4 bar chart 16 99%
5 line graph 14 100%
6 stacked bar 17 98%
7 bubble chart 18 100%
8 lollipop 15 100%
9 wafe chart 9 98%
10 donut chart 13 98%
11 heatmap chart 24 99%
12 broken bar chart 15 98%
13 slopeplot chart 17 99%
14 area ll chart 12 100%
15 time series chart 20 100%
16 treemap chart 10 100%
17 venn diagram 9 100%
18 wordcloud chart 13 97%
19 multiple columns chart 12 100%
20 dumbbell chart 17 99%
21 sorted bar 11 98%
22 wedge pie chart 10 97%
23 stepplot chart 10 97%
24 combine several plots 14 100%
25 horizontal bar chart 12 100%

average 14.24 99%
total 356 SD: 1.1%

5.6.1 Discussion of generated CMP instances
For this evaluation, a total of 25 CMP instances are generated using source codes from the web-
site[6] and the text book [7]. Table 5.1 shows the problem ID, the problem name, the total number
of blanks and the average correct rate for each CMP instance by the students. As the topics, the
bar chart, the line chart, the pie chart and others are selected. The validity of the CMP instances
is evaluated through applications to 22 students in Okayama University who have studied Python
programming.

43

Table 5.2: Correct answer rate distribution for data visualizations.

Correct Rate Range # of Students
100% 13
99% 5

96%-98% 4

Table 5.3: Submission times distribution for data visualizations.

Submission Times Range Avg.# of Submission(SD) # of Students
25-65 40.8 (11.6) 8
66-106 98.7 (4.2) 5
107-147 112.5 (4.1) 4
148-188 167.7 (12.7) 3
189-229 207 1
230-270 265 1

5.6.2 Solution Results
Table 5.1 shows that the average correct rate of the students is at least 97% for any instance, where
the average correct rate is 99% and the average standard deviation SD is 1.1%. Thus, the generated
CMP instances for data visualization are not dicult for these students.

Table 5.2 illustrates the distribution of the correct answer rates of the students. This table shows
that 13 students among 22 correctly solved all the problems and ve students achieved 99% correct
rate. Only four students did it between 96% and 98%.

Table 5.3 shows the distribution of the number of answer submission times by the students.
From this table, eight students submitted answers 1.6 times for each instance on average. It is
noted that at least 25 submission times are necessary to solve all of the 25 instances. One student
has this least number of submission times. One student spent 10.6 times on average for each
instance. Therefore, these results clearly show that the generated CMP instances are generally
proper to study the visualization concepts of Python programming.

5.7 Project Assignments
After assigning the generated CMP instances to the students, we implemented the project assign-
ments to write the whole source code completely in the ”Code area” that cover some of the gener-
ated CMP instances. The objective is to conrm whether or not students have actually understood
the assigned CMP instances. The project lists and the user interface for an example project can
be seen in Figure 5.3 and Figure 5.4. The hint function in Figure 5.5 is added in each project to
assist the students. After nishing the each project assignment, the students can save their source
codes by clicking ”Save Code” button and send them to the teacher through the USB memories, or
emails.

44

Figure 5.3: Project lists.

45

Figure 5.4: Project interface example.

Figure 5.5: Hint function interface.

5.8 Summary
This chapter presented the code modication problem (CMP) for data visualization and the project
assignments in Python learning programming assistant system (PyPLAS). 25 CMP instances were
generated using source codes in textbooks and websites that cover visualization such as line chart,
bar chart, and so on. The application results to 22 students in Okayama University conrmed the
eectiveness of the generated instances for self-study of Python programming. In future works, we
will continue to generate CMP instances for other popular libraries such as scikit-learn and spicy.

46

Chapter 6

Code Modication Problems for Excel
Problems

This chapter presents the code modication problem (CMP) for Excel Operations in Python Pro-
gramming Learning Assistant System (PyPLAS) [28].

6.1 Introduction
In Chapter 5, we presented Code Modication Problem (CMP) for studying data visualization
operations. In this chapter, we present CMP for Excel operations by extending the works. For data
analysis, Excel is often used to manipulate a large amount of data and generate required graphs in
short time. It has become entrenched in business processes worldwide for diverse functions and
applications.

In this chapter, we focus on CMP for learning how to use Python programming libraries to
manipulate data in Excel les. In a CMP instance for Excel operations in this chapter, generally,
one source code and three images showing Excel les are given to the learner. The rst image
shows the input data le to the source code that will generate the output le from it. The output le
is illustrated in the second image. The third image does another output le that will be generated
by the answer source code that should be completed by the learner.

The answer code will be made by modifying the given source code after carefully checking the
dierences between the second and third images. By solving the CMP instances, the learner can
master how to use Python libraries for common Excel operations. The correctness of the answer
code is veried through string matching of each statement with the original code. A hint function
is implemented for each CMP instance to assist learners in solving it.

We generated 25 CMP instances that cover Python libraries for important Excel operations
through four steps. First, we collect the relevant source codes in the website and the text book.
Second, we nd and modify the important parts in each source code for understanding the Excel
operations. Third, we run both the original and modied codes to obtain the outputs, and convert
them into the image les. Finally, we generate theHTML/CSS/JavaScript les for this new instance
that will be used in the PyPLAS answer function using a web browser.

The rest of this chapter is organized as follows: Firstly, the importance of Excel operations
and learning objectives are introduced. Secondly, the CMP instance generation procedure, the
user interface, and the generated CMP instances are presented. Thirdly, their evaluation results are
described and analyzed. Finally, the conclusion of this chapter with future works is presented.

47

6.2 Importance of Excel Operations using Python
Excel is a common tool for data analysis across a range of elds, including banking, healthcare,
and marketing, thanks to its versatility and usability. With Excel, the user can readily modify,
examine, and display huge amounts of data, which makes it simpler to gain insights and make
better choices. Excel’s versatility lets users carry out a variety of data analysis activities from
straightforward math operations to intricate statistical analysis.

However, it might often nd repeating mundane tasks on a daily basis when working with
Excel. These tasks may include copying and pasting data, formatting cells, and creating charts,
among others. Over time, this can become monotonous and time-consuming, leaving the user with
less time to focus on more important aspects of data analysis, such as identifying trends, outliers,
and insights [29].

The drawbacks should be solved by automating Excel workows with Python. The tasks like
the spreadsheet consolidation, the data cleaning, and the predictive modeling can be done automat-
ically using a simple Python script on Excel les. Excel users can also create a scheduler in Python
that runs the script automatically at dierent time intervals, dramatically reducing the amount of
human interventions required to perform the same tasks again [30].

Excel operations play signicant roles in Python for various reasons. Here are some key points
highlighting the importance of Excel operations in Python:

1. Data Manipulation and Analysis: Python allows reading, writing, and manipulating Excel
les for data analysis tasks using libraries like Pandas and NumPy.

2. Automation: Excel is widely used for storing and managing data, but it can be time-
consuming and error-prone to perform repetitive tasks manually. Python provides libraries
like pandas and openpyxl to automate Excel operations.

3. Integration with Other Libraries: Python oers extensive libraries and frameworks for
machine learning, data visualization, and scientic computing. Excel operations in Python
can integrate with these libraries. For example, Excel data can be read into a pandas data
frame, and train a machine learning model using scikit-learn or TensorFlow. The results will
be back to Excel for reporting purposes.

4. Excel as a Data Source: Many organizations use Excel as data sources for various appli-
cations. With Python, data from Excel les can be extracted and integrated into software or
database systems to streamline data pipelines and automate data extraction processes.

5. Customization and Advanced Functionality: The capabilities of Excel can be extended
by using Python libraries to implement advanced mathematical operations, create complex
formulas, generate charts, apply conditional formatting, and perform sophisticated data ma-
nipulations.

6. Collaboration and Version Control: By using Python, data can be extracted from Ex-
cel, and be processed independently. The results can be merged together, which enables
smoother collaborations and version controls, allowing dierent team members to work on
their parts of the analysis simultaneously.

The ability to perform Excel operations in Python increases the strengths of Excel and Python,
and will provide a powerful combination for data manipulations, automations, integrations with

48

other libraries, and customization options, making it an essential skill for data scientists, analysts,
and developers working with Excel data in various domains. In this thesis, we mainly focus on
pandas libraries for Excel operations with Python.

6.3 Python Pandas With Excel Sheet
pandas is the fast, powerful, exible and easy library for open source data analysis and manipu-
lations, built on top of the Python. It simplies Excel operations in Python by providing a rich
set of functionalities for data manipulations, analysis, integrations, data processing, visualizations,
automations, and reproducibility, making it a valuable tool for working with Excel data in various
domains. pandas is also useful for other data analysis tasks, such as:

• quick Exploratory Data Analysis (EDA)

• drawing attractive plots

• feeding data into machine learning tools like scikit-learn

• building machine learning models on the data

• taking cleaned and processed data to any number of data tools [31]

6.4 Learning Objectives
To study the benets and practical use of Excel operations in Python, we generated 25 CMP in-
stances using pandas library for important functions, such as merging one le to another le,
creating pivot tables, searching value, replacing null value and so on in Table 6.1.

6.5 Generation of CMP instances for Excel Operations
A CMP instance can be generated through the following procedure:

1. To select one relevant Python source code from a website or a text book that contains the
target library functions for this instance,

2. To prepare the input Excel le to the source code,

3. To nd the important parts (functions, variables, or parameters) in the source code that
should be modied by the learner to study this library,

4. To make the answer code by replacing the modied parts in the original source code,

5. To run the original and modied source codes to obtain the corresponding output Excel les,

6. To put together the source code, the modied source code, and the correct answers into one
text le,

7. To run the program with this text le to generate the HTML/CSS/JavaScript les for the
PyPLAS answer interface,

49

8. To modify the HTML le to add the images, and,

9. To assign the generated CMP instance to learners,

6.5.1 Source Code Selection
To explain the generation procedure of CMP for Excel operations, the following source code is
used. This source code intends for learners to understand the sorting functions (ascending or
descending order) of the required values via column names.

Listing 6.1: Source code example for excel CMP instance
1
2 import pandas as pd
3 import openpyxl
4 if name == "__main__":
5 # read excel le
6 data = pd.read excel(’D:\Sortingvalues.xlsx’)
7 df = pd.DataFrame(data)
8 # sorting the required values via column names and ascending or descending order
9 df=df.sort values(by=[’Code_no’,’Name’], ascending = True)
10 # saving to new excel le
11 df.to excel(’D:\Sortingvalues1.xlsx’, index=True, header=True)

6.5.2 Preparation of Output Source Code
After selecting the source code, the teacher has to prepare another source code by nding and
replacing the important parts in the original source code that should be focused on by the learner
for the respective topic. Listing 6.2 illustrates the newly created source code with the modications
of line 9, and line 11 that are needed to be solved by the students.

Listing 6.2: Output code example for excel CMP instance
1
2 import pandas as pd
3 import openpyxl
4 if name == "__main__":
5 # read excel le
6 data = pd.read excel(’D:\Sortingvalues.xlsx’)
7 df = pd.DataFrame(data)
8 # sorting the required values via column names and ascending or descending order
9 df=df.sort values(by=[’No’,’Name’], ascending = False)
10 # saving to new excel le
11 df.to excel(’D:\Sortingvalues2.xlsx’, index=True, header=True)

6.5.3 Generating Assignments
To generate the CMP instance with the HTML/CSS/JavaScript les for the answering interface, the
teacher needs to put together the source code, the modied source code, and the correct answers
into one text le with the required format for the CMP generator, and pass it as the input le to
run the CMP generation program. After that, the teacher needs to add the required images to each
generated HTML le so that the learner can carefully read the source code to know dierence
between the images for the correct answer. Then, the correct answers will be checked through
string matching of two level answer marking.

50

6.5.4 Answer Interface
The answer interface for a CMP instance is implemented using a web browser. It allows a learner
to solve the instance both on online and ofine, since the answer marking is processed by running
the JavaScript program on the web browser. Since the correct answers need to be distributed to the
learners, they are encrypted using SHA256 to avoid cheating.

Figure 6.1 and Figure 6.2 illustrate the answer interface for the example CMP instance. In
this instance, two lines (line 8 and line 10) in “Source Code” are requested to be modied in by a
learner who needs to modify the corresponding lines in “Output”.

The rst image in Figure 6.1 represents the input Excel le for the given code and the modied
code. The second image represents the output Excel le that is generated by running the given
source code. It sorts the lines in the input le in ascending order of ‘Code no’ where the tie is
resolved by ‘Name’. The third image does the output le that is obtained by sorting the lines in
descending order of ‘No’ instead. Actually, it requests to change ‘Code no’ and ‘ascending = True’
to ‘No’ and ‘ascending = False’ in line 8, and ‘Sortingvalues1.xlsx’ to ‘Sortingvalues2.xlsx’in line
10. Figure 6.2 shows that the learner still needs to modify line 10.

After the learner modies the source code in the input forms, he/she should click the “Answer”.
If the answer is not correct, the background color of the corresponding input form becomes pink.
Otherwise, it is white. It is possible to submit answers repeatedly until all the answers become
correct. Moreover, the ‘Hint’ button is implemented for helping the learner by explaining the
running steps of the modied source code.

6.5.5 Generated CMP Instances
In this chapter, we generated 25 CMP instances using source codes in the website [32] and the text
book [33]. Table 6.1 shows the instance number, the topic, the number of blanks for each CMP
instance. Here, the average correct rate of the students in the next section is also included.

As the topics, we selected important Excel operations such as operations on multiple sheets,
replacing missing values, sorting data values. These operations are essential in data analysis by
cleaning, transforming, or reducing data.

6.6 Application Results
In this section, we evaluate the 25 CMP instances through applications to 13 undergraduate stu-
dents in Okayama University, Japan, who have not studied Python programming.

6.6.1 Correct Rate for Each Instance
Table 6.1 indicates that the average correct rate among the students is 100% for the instances except
for #1, #5, and #8, where the rate of the three instances is 99%. The overall average rate for all
the instances is 99.89% and the standard deviation(SD) is 1.1%. Therefore, the generated CMP
instances are not dicult for the students.

6.6.2 Correct Rate for Each Student
Table 6.2 shows the distribution of the correct answer rates of the students. It suggests that 10
students among 13 correctly solved all the CMP instances and three students achieved the 99%

51

Figure 6.1: Three image for example CMP instance.

52

53

Figure 6.2: Answer interface for example CMP instance.

correct rate.

6.6.3 Submission Times for each Student
Table ?? shows the distribution of the number of answer submission times by the students. This
table suggests that for one instance, the minimum average number is 1.88 and the maximum one
is 5.96. Therefore, the students can easily solve all the CMP instances. Thus, our proposal is
generally proper to study Python programming libraries for Excel operations.

6.7 Project Assignments
After assigning the generated CMP instances, we implemented the project assignments to write the
whole source code completely in the ”Code area” that cover some of the generated CMP instances
to conrm whether or not students have actually understood the assigned CMP instances. The user
interface for an example project can be seen in Figure 6.3. The hint function is added in each
project to assist the students. After nishing the each project assignment, the students can save
their source codes by clicking ”Save Code” button and send them to the teacher through the USB
memories, or emails.

6.8 Summary
This chapter presented the code modication problem (CMP) for studying Python programming
libraries on Excel operations in Python Programming Learning Assistant System (PyPLAS). 25
CMP instances were generated using source codes in a textbook and a website that cover common
Excel operations. The application results to 13 students in Okayama University conrmed the va-
lidity of the proposal with almost 100% correct rate for all instances and evaluated its eectiveness
as a viable self-study tool. In future, we will generate CMP instances for other popular libraries
for IoT (Internet of Things), machine learning, and multimedia.

54

55

Figure 6.3: Project interface example for Excel CMPs.

56

Table 6.1: Generated CMP instances for excel operations.

inst. # topic # of blanks average correct rate
1 reading and writing excel les 5 99%
2 removing columns 4 100%
3 removing rows 5 100%
4 nding duplicate rows 5 100%
5 replacing null value 3 99%
6 calculating current age 3 100%
7 nding maximun and minimun date 4 100%
8 nding days of week 2 99%
9 operations on given date 3 100%
10 assigning new columns 4 100%
11 adding columns based on conditions 10 100%
12 renaming column names 9 100%
13 replacing multiple values 13 100%
14 sorting data values 11 100%
15 searching value 10 100%
16 separating les 10 100%
17 pivot table creation 7 100%
18 merge one le to another le 5 100%
19 merge on specic column 4 100%
20 concatenation of multiple sheets 5 100%
21 operations on multiple sheets 6 100%
22 writing data into csv le 4 100%
23 creating multiple csv les 5 100%
24 converting text le into csv le 5 100%
25 appending a new row to an existing csv le 6 100%

average 5.92 99.89%
total 148 (1.1%)

Table 6.2: Correct answer rate distribution for excel operations.

correct rate # of students
100% 10
99% 3

57

Table 6.3: Submission times distribution for excel operations.

submission
times range

average # of
submissions (SD)

average # of
submissions for
one instance

of
students

25-50 47 (0) 1.88 1
51-76 69.5 (4.9) 2.78 2
77-102 97.5 (3.9) 3.9 4
103-128 113 (9.5) 4.52 3
129-154 149 (3.6) 5.96 3

58

Chapter 7

Related Works

In this section, we introduce related works to this thesis.
In [34], Garner presented learning resources and tools to aid novices learn programming. It is

well known that the development of an introductory software is a dicult task for many students.
The author discussed several resources and tools that are available or have been experimented with
might be of interests to instructional designers of programming in the context of the four phases of
the software lifecycle. The author analyzes the problem, designs a solution algorithm, implements
the algorithm, and tests and revises the algorithm. The discussed tools include micro-worlds,
video-clips, owchart interpreters, and program animators.

In [35], Abu-Naser et al. presented an intelligent tutoring system for learning Java objects.
By bringing together recent developments of tutoring systems, cognitive science, and articial
intelligence, they constructed an intelligent tutor system to help students learn Java programing.

In [36], Osman et al. introduced a visualized learning system to enhance the education of the
data structure course. This system has the capability to display data structure graphically as well
as allowing its graphical manipulations for a student to observe the execution result and to track
the algorithm execution.

In [37], Li et al. presented a game-based learning environment to support novice students
learning programming. It exploits game construction tasks to make the elementary programming
more intuitive to learn, and comprises concept visualization techniques, to allow students to learn
key concepts in programming through game object manipulation.

In [38], Hwang et al. proposed the web-based programming assisted system for designing
learning activities for facilitating cooperative programming learning, and investigated cooperative
programming learning behaviors of students and the relationships with learning performances.

In [39], Cai et al. studied performances of scientic applications with Python programming.
They investigated several techniques for improving computational eciencies of serial Python
codes and discussed basic programming techniques for parallelizing serial scientic applications.

In [40], Bogdanchikov et al. suggested Python use for teaching programming to novice stu-
dents, because the programming language has neatly organized syntax and powerful tools to solve
any task. They gave some examples of program codes written in Java, C++, and Python, and made
comparisons between them. They also pointed advantages of Python.

In [41], Adawadkar described the main features of Python programming and listed out the
dierences between Python and other programming language with helps of some codes. The
author discussed applications of Python programming and showed good examples.

In [42], Alshaigy et al. presented a planned investigation on how learning styles and peda-
gogical methodologies can be embedded into an e-learning tool to assist learning programming.

59

Their main objective was to test the hypothesis that combining multiple teaching methods to ac-
commodate dierent learners’ preferences will signicantly improve comprehensions of concepts,
which in turn, increases students’ condences and performances in programming. An interactive
learning tool to teach Python programming to students, called PILeT, had been developed to test
the hypothesis. This tool is adaptable to the student’s learning style and will teach programming
using several techniques in visual, textual, and puzzles to appeal to each preference.

In [43], Zhang et al. provided new concepts and ideas for revealing human brain cognitive
processes and promoting brain-inspired computing models. They used Python programming and
its powerful technology ecosystem to provide supports for teaching and practicing the brain science
as materials. They discussed how to use Python programming and corresponding development
tools to complete the neuroimaging data preprocessing, the functional connectivity analysis, the
multivoxel pattern analysis, and the searchlight analysis in the brain science teaching, where the
corresponding practice processes were demonstrated with examples. From the results, the authors
veried that students can better integrate with articial intelligence technologies while learning
brain science research techniques.

In [44], Brusilovsky et al. proposed the integrated practice system for learning programming
in Python that provides an organized unied access to multiple types of smart practice contents.

In [45], Wang et al. designed programming exercises with computer assisted instructions by
generating exercises at dierent levels of diculty and sharing their experiences in design of teach-
ing and learning activities for computer programming with large class size.

In [46], the author presented online Python tutor so that the teachers and students can write
Python programs directly in the web browser (without installing any plugin), step forwards and
backwards through executions to view the run-time state of data structure, and share their program
visualizations on the web.

In [47], Helminen et al. introduced a program visualization and programming exercise tool for
Python by aiming to target students apparent fragile knowledge of elementary programming, which
manifests as diculties in tracing and writing even simple programming. It provides an environ-
ment for visualizing the line-by-line execution of Python programs and for solving programming
exercises with support for immediate automatic feedback and an integrated visual debugger.

In [48], the author applied a programming education tool called pgtracer, which they had de-
veloped as a Moodle plug-in, at an actual programming course to provide homework assignments
to the students. They developed ll-in-the-blank questions based on the course syllabus at each
week and evaluated the activities of students by using various functions provided by pgtracer.
They also provided the analysis results to the teacher about the activities and achievements of the
students for better collaborations between lectures and homeworks. They achieved the positive
feedbacks by interviewing the teacher and surveying student’s activities about the usefulness of
pgtracer.

In [49], Rowe et al. implemented VINCE as an online tutorial tool for teaching introductory
programming to allow the execution of a C program to be graphically displayed. The tool is written
in Java, allowing it to be used on the web so that the student can enter their own C code, or select
from a menu of pre-written tutorials, each illustrating a particular aspect of programming.

In [50], Sajaniemi et al. introduced a program animation system, PlanAni, based on the concept
of the role of variables, which represents schematic uses of variables that occur in programs over
and over, and a set of nine roles cover practically all variables in novice-level programs.

In [51], the author presented an automatic technique for generating maintainable regression
unit tests for programs according to two main reasons compared to previous studies. First, they
designed test generation techniques and evaluated upon libraries rather than applications. Second,

60

they designed them to nd bugs rather than to create maintainable regression test suites: the test
suites that they generated were brittle and hard to understand. Thus, they presented a suite of
techniques that address these problems by enhancing an existing unit test generation system. In
experiments using an industrial system, the generated tests achieved good coverage and mutation
kill scores, were readable by the product’s developers, and required few edits as the system under
test evolved.

In [52], Elenbogen et al. described a set of developed interactive web exercises and develop-
ment environments designed to facilitate language acquisition in a beginning course in C++.

In [53], Stasko presented TANGO, a framework and system for algorithm animations by devel-
oping a conceptual framework with formal models and precise semantics for algorithm animations.
The framework contains facilities for dening operations in an algorithm, designing animations,
and mapping the algorithm operations to their corresponding animations.

In [54], Levy et al. developed the Jeliot 2000 program animation system intending for teaching
an introductory computer science to high school students with the goal of helping novices under-
stand basic concepts of algorithms and programming such as assignment, I/O and control ow,
whose dynamic aspects are not easily grasped just by looking at the static representation of an
algorithm in a programming language.

61

Chapter 8

Conclusion

In this thesis, I presented the results of the three studies of exercise problems for Python Program-
ming Learning Assistant System (PyPLAS).

Firstly, I presented the value trace problem (VTP) for novice learners to study four groups of ba-
sic grammar, advanced grammar, data structure and algorithm, and library usage. For evaluations,
I generated 130 source codes in Python programming textbooks or websites for the respective cate-
gories, and assigned them to 48 undergraduate students in Myanmar and Indonesia, and conrmed
the validity of the proposal in Python programming self-studies by novice learners.

Secondly, I presented the code modication problem (CMP) for self-study of data visualizations
in Python programming, as a new problem type for PyPLAS. For evaluations, 25 CMP instances
were generated to cover important visualization concepts, and were assigned to 22 students in
Okayama University, Japan. Their solution results show that the average correct rate for all of the
25 instances is at least 97%. Therefore, it conrmed that the diculty levels of the CMP instances
are proper for the novice learners as the viable self-study learning tools.

Thirdly, I presented the code modication problem (CMP) for studying how to use Python pro-
gramming libraries to manipulate data in Excel le with the hint function implementation. For
evaluations, I generated 25 CMP instances using Python codes for various Excel operations using
pandas library and conrmed the validity of the proposal as a viable self-study tool with almost
100% correct rates for all instances to students in Okayama University. In future studies, I will
further improve the self-study environments of Python by oering the remaining learning topics
with various levels, including useful libraries (scikit-learn, spicy, etc.) for machine learning, deep
learning, multimedia, IOT (Internet of Things), and so on for VTP, and CMP instances. More-
over, I will continue studying other types of problems with useful functions for each problem type
for other Python programming topics in PyPLAS. Then, I will continue to assign the generated
problems to students in programming courses.

62

Bibliography

[1] S. S. Wint, N. Funabiki, andM. Kuribayashi, “Design and implementation of desktop-version
Java programming learning assistant system,” Proc. HISS, pp. 254-257, Nov. 2018.

[2] S. T. Aung, N. Funabiki, Y. W. Syaifudin, H. H. S. Kyaw, S. L. Aung, N, K. Dim, and W.-C.
Kao, ”A proposal of grammar- concept understanding problem in Java programming learning
assistant system, “ to appear in J. Adv. Inform. Tech. (JAIT), Oct. 2021.

[3] K. K. Zaw, N. Funabiki, and W.-C. Kao, ”A proposal of value trace problem for algorithm
code reading in Java programming learning assistant system,” Inform. Eng. Exp., vol. 1, no.
3, pp. 9-18, Sep. 2015

[4] N. Funabiki, H. Masaoka, N. Ishihara, I-W. Lai, and W.-C. Kao, ”Ofine answering function
for ll-in-blank problems in Java programming learning assistant system,” in Proc. ICCE-
TW, pp. 324-325, May 2016.

[5] “Python Programs,” Internet: https://www.geeksforgeeks.org/python-

programming-examples/, Access June 19, 2023.

[6] “Top 50 matplotlib Visualizations – The Master Plots (with full python code),” In-
ternet:https://www.machinelearningplus.com/plots/top-50-matplotlib-
visualizations-the-master-plots-python/, Access June 19, 2023.

[7] “Mastering Python Data Visualization,” Internet: https://media.oiipdf.com/pdf/

2447570f-0166-4f18-a2c0-15f7c3268605.pdf, Access June 19, 2023.

[8] N. Funabiki, Y. Matsushim, T. Nakanishi, K.Watanabe, and N. Amano, “A Java programming
learning assistant system using test-driven development method,” IAENG Int. J. Comput.
Sci., vol. 40, no. 1, pp. 38-46, Feb. 2013.

[9] N. Ishihara, N. Funabiki, M. Kuribayashi, and W.-C. Kao, “A software architecture for Java
programming learning assistant system,” J. Comp. Soft. Eng., vol. 2, no. 1, Sept. 2017.

[10] N. Ishihara, N. Funabiki, andW.-C. Kao, “A proposal of statement ll-in-blank problem using
program dependence graph in Java programming learning assistant system,” Info. Engr. Exp.,
vol. 1, no. 3, pp. 19-28, Sept. 2015.

[11] N. Funabiki, Tana, K.K. Zaw, N. Ishihara, and W.-C. Kao, ”A graph- based blank element
selection algorithm for ll-in-blank problems in Java programming learning assistant system.
IAENG Int J Computer Science 44: 2.

[12] K. Beck, Test-driven development: by example, Addison-Wesley,2002.

64

[13] H.H.S. Kyaw, N. Funabiki, and W.-C. Kao, “A proposal of code amendment problem in Java
programming learning assistant system,” International Journal of Information and Education
Technology (IJIET), vol. 10, No. 10, pp. 751-756, Oct. 2020.

[14] H.H.S. Kyaw, S.S. Wint, N. Funabiki, and W.-C. Kao, “A code completion problem in Java
programming learning assistant system,” IAENG International Journal of Computer Science
(IJCS), vol. 47, No. 3, pp. 350-359, Sept. 2020.

[15] “SHA-256 Cryptographic Hash Algorithm,” Internet: http://www.movable\protect\

discretionary{\char\hyphenchar\font}{}{}type.co.uk/scripts/sha256.

html/, Access June 20, 2023.

[16] S. T. Aung, N. Funabiki, L. H. Aung, H. Htet, H. H. S. Kyaw, and S. Sugawara, ” An
Implementation of Java Programming Learning Assistant System Platform Using Node.js,”
ICIET International Conference of Information and Education Technology (ICIET), pp. 47-
52, Apr.2022.

[17] D. Herron, Node.js web development, Birmingham, UK, 2016.

[18] “Express,” Internet: https://expressjs.com/., Access June 20, 2023.

[19] R. McKendrick, Monitoring Docker, United Kingdom, 2015.

[20] A. Mouat, Using Docker: developing and deploying software with containers, USA, 2015.

[21] “JUnit 5,” Internet: https://junit.org/junit5/, Access June 20, 2023. .

[22] “What is Python The most versatile programming language,” Internet: https://www.

datacamp.com/blog/all-about-python-the-most-versatile-programming-

language/, Access June 20, 2023.

[23] S. H. M. Shwe, N. Funabiki, Y. W. Syaifudin, E. E. Htet, H. H. S. Kyaw, P. P. Tar, N. W.
Min, T. Myint, H. A. Thant, and W.-C. Kao, “Value trace problems with assisting references
for Python programming selfstudy,” International Journal of Web Information Systems, Jun.
2021.

[24] “A Byte of Python,” Internet: https://www.ibiblio.org/swaroopch/byteofpython/
files/120/byteofpython_120.pdf, Access June 19, 2023.

[25] S. H. M. Shwe, N. Funabiki, H. H. S. Kyaw, K. H. Wai and W.-C. Kao, “A proposal of
code modication problem for Python programming learning assistant system,” International
Symposium on Socially and Technically Symbiotic Systems (STSS), November 15-17, 2021.

[26] “Importance And Benets of Data Visualization,” Internet: https://www.mindbowser.

com/benefits-of-data-visualization/, Access June 19, 2023.

[27] “Data Visualization with Python,” Internet: https://www.geeksforgeeks.org/data-

visualization-with-python/, Access June 19, 2023.

[28] S. H. M. Shwe, N. Funabiki, K. H. Wai, S. L. Aung, and W.-C. Kao, “A study of code mod-
ication problems for Excel operations in Python programming learning assistant system,”
2022 10th International Conference on information and Education Technology (ICIET 2022),
pp. 209-213, April 9-11, 2022.

65

[29] “How to automate Excel tasks with Python,” Internet: https://www.freecodecamp.org/
news/automate-excel-tasks-with-python/, Access June 19, 2023.

[30] “Python Excel tutorial: the denitive guide,” Internet: https://www.datacamp.com/

tutorial/python-excel-tutorial/, Access June 19, 2023.

[31] “Tutorial using Excel with Python and Pandas,” Internet: https://www.dataquest.io/

blog/excel-and-pandas/, Access June 19, 2023.

[32] “Working with excel les using Pandas,” Internet: https://www.geeksforgeeks.org/

working-with-excel-files-using-pandas/, Access June 19, 2023.

[33] “Working with Excel spreadsheets,” Internet: https://automatetheboringstuff.com/
chapter12.pdf, Access June 19, 2023.

[34] S. S. Garner, ”Learning resources and tools to aid novices learn programming,” in Proc. Int.
Conf. Informing Science, vol. 2, no. 2, June 2003.

[35] S. Abu-Naser, A. Ahmed, N. Al-Masri, A. Deeb, E. Moshtaha, and M. Abu-Lamdy, ”An
intelligent tutoring system for learning Java objects,” Int. J. Art. Intell. Appli., vol. 2, no. 2,
pp. 68-77, April 2011.

[36] W. I. Osman and M. M. Elmusharaf, ”Eectiveness of combining algorithm and program
animation: a case study with data structures courses,” Issue. Inform. Sci. Inform. Tech., vol.
11, pp. 155-168, 2014.

[37] F. W. B. Li and C. Watson, ”Game-based concept visualization for learning programming,”
in Proc. MTDL, pp. 37-42, Dec. 2011.

[38] W.-Y. Hwang, R. Shadiev, C.-Y. Wang, and Z.-H. Huang, ”A pilot study of cooperative pro-
gramming learning behavior and its relationship with students’ learning performance,” Com-
put. Edu. vol. 58, pp. 1267–1281, 2012.

[39] X. Cai and H. P. Langtangen, ”On the performance of the Python programming language for
serial and parallel scientic computations,” Sci. Programm., vol. 13, no. 1, pp. 31-56, Jan.
2005.

[40] A. Bogdanchikov, M. Zhaparov, and R. Suliyev, ”Python to learn programming,” J. Physics:
Conf. Series, vol. 432, 2013.

[41] K. Adawadkar, ”Python programming - applications and future,” Sci. J. Impact Factor, April
2017.

[42] B. Alshaigy, B. Alshaigy, S. Kamal, F. Mitchell, C. Martin, and A.Aldea, ”PILeT: an interac-
tive learning tool to teach Python,” in Proc. WiPSCE, pp. 76-79, Nov. 2015.

[43] X. Zhang, J. Huang, Y. Yang, X. He, R. Liu, and N. Zhong, ”Applying Python in brain science
education,” in Proc. IJCIME, Dec. 2019.

[44] P. Brusilovsky, L. Malmi, R. Hosseini, J. Guerra, T.Sirkia, and K.Pollari-Malmi, ”An inte-
grated practice system for learning programming in Python: design and evaluation,” RPTEL
vol. 13, no. 18, 2018.

66

[45] F. L. Wang and T. Wong, “Designing programming exercises with computer assisted instruc-
tion,” in Proc. Int. Conf. ICHL, Aug 2008.

[46] P. J. Guo, ”Online Python tutor: embeddable web-based program visualization for CS educa-
tion,” in Proc. ACM Tech. Symp. Comput. Sci. Edu., pp. 579-584, Mar. 2013.

[47] J. Helminen and L. Malmi ”JYPE- a program visualization and programming exercise tool
for Python,” in Proc. Int. Symp. Soft. Visual., pp 153-162, Oct. 2010.

[48] T. Kakeshita and M. Murata, ”Application of Programming Education Support Tool pgtracer
for Homework Assignment,” J. Learn. Tech. Learn. Envr, vol. 1. no.1, pp. 41-60, Mar. 2018.

[49] G. Rowe, and G. Thorburn, “VINCE - an on-line tutorial tool for teaching introductory pro-
gramming,” in Proc. ACM SIGCSE Bulletin, vol. 30, no. 3, Sept. 1998.

[50] J. Sajaniemi, and M. Kuittinen, ” Program animation based on the roles of variables,” in Proc.
ACM Symp. Soft. Visual., pp. 7-16, Jun. 2003.

[51] B. Robinson, M. D. Ernst, J. H. Perkins, V. Augustine and N. Li, ”Scaling up automated test
generation: Automatically generating maintainable regression unit tests for programs,” 26th
IEEE/ACM Int. Conf. on Auto. SW Eng. (ASE 2011), pp. 23-32, 2011.

[52] B. S. Elenbogen, B. R. Maxim, and C. McDonald, ”Yet, more web exercises for learning
C++,” in Proc. ACM SIGCSE Bulletin, vol. 32, no.1, pp. 290-294, May. 2000.

[53] J. T. Stasko, “Tango: a framework and system for algorithm animation,” IEEE Computers,
vol. 23, no. 9, pp. 27-39, Sept. 1990.

[54] R.B.Levy, M.Ben-Ari, and P.A.Uronen, “The jeliot 2000 program animation system”, Com-
put. Edu., vol. 40, no. 1, pp. 1-15, Jan. 2003.

67

