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Francisco Maciá Pérez , Iren Lorenzo Fonseca

PII: S2542-6605(24)00037-4
DOI: https://doi.org/10.1016/j.iot.2024.101095
Reference: IOT 101095

To appear in: Internet of Things

Received date: 4 August 2023
Revised date: 30 September 2023
Accepted date: 27 January 2024

Please cite this article as: Lucia Arnau Muñoz , José Vicente Berná Martı́nez ,
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Abstract 

The inclusion of IoT in digital platforms is very common nowadays due to the ease of deployment, low 

power consumption and low cost. It is also common to use heterogeneous IoT devices of ad-hoc or 

commercial development, using private or third-party network infrastructures. This scenario makes it 

difficult to detect invalid packets from malfunctioning devices, from sensors to application servers. These 

invalid packets generate low quality or erroneous data, which negatively influence the services that use 

them. For this reason, we need to create procedures and mechanisms to ensure the quality of the data 

obtained from IoT infrastructures, regardless of the type of infrastructure and the control we have over 

them, so that the systems that use this data can be reliable. In this work we propose the development of an 

Anomaly Detection System for IoT infrastructures based on Machine Learning using unsupervised 

learning. We validate the proposal by implementing it on the IoT infrastructure of the University of 

Alicante, which has a multiple sensing system and uses third-party services, over a campus of one million 

square meters. The contribution of this work has been the generation of an anomaly detection system 

capable of revealing incidents in IoT infrastructures, without knowing details about the infrastructures or 

devices, through the analysis of data in real time. This proposal allows to discard from the IoT data flow 

all those packets that are suspected to be anomalous to ensure a high quality of information to the tools 

that consume IoT data. 
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1. Introduction 

IoT infrastructures are now widely deployed in our society. They were first driven mainly by 

the needs of large companies to control certain processes, speed up and improve their efficiency, 

or reduce the occurrence of errors [1]. Subsequently, due to their use in Smart City 

environments, for any type of use, such as air quality monitoring, traffic monitoring, waste 

management or citizen safety [2]. Nowadays, they have become common sensor systems in 

                  



Digital Twin platforms [3], where a realistic representation of the controlled world requires 

knowledge of the real-time state of the system. It is precisely in these latter environments, where 

data quality is crucial to achieve the objectives. 

These systems also generate new challenges and problems, some of them concerning the proper 

functioning of the infrastructures themselves. These types of problems related to monitoring anomalies in 

the performance of infrastructures have been widely addressed from the perspective of traditional TCP/IP 

ethernet networks, using for example network intrusion detection systems (IDS), which is just a subtype 

of anomaly detection systems (ADS) [4] but focused on the use of infrastructures. Such systems are 

capable of monitoring events occurring in the infrastructure, detecting anomalies of various nature, and 

generating an automated and controlled processing of these events to ensure the proper functioning of the 

system [5]. The strength of these systems lies in the use of highly standardised and accepted protocols, 

such as TCP/IP, and services whose behaviour is tightly controlled, such as HTTP, FTP, STMP, etc. 

However, in IoT networks we find a large number of technologies, encodings, packaging, applications 

and in general much more heterogeneous systems where we cannot analyse headers as is done in 

traditional IDSs over Ethernet networks [6]. In addition, in IoT environments it is common to use 

infrastructures based on Open Source initiatives, such as TTN [7], and therefore the data-emitting devices 

cross intermediate networks that are beyond the control of the administrator of the IoT sensors that emit 

data, so there is even metadata over which there is no control or access. It is also very common to find 

that, in our control system platform, Smart City platform or digital twin, the information that is being 

integrated comes from different subsystems, manufactured by different companies, with different 

technologies and different natures. In order for these tools to work as expected, it is necessary to ensure 

that the data with which we are going to feed them are valid and have an adequate degree of quality, 

discarding anything that may come from an element of the infrastructure that exhibits a malfunction. 

Likewise, it is necessary to do so even when we do not have details about the infrastructure that originates 

the data. That is why, to ensure the quality of the data generated by the IoT infrastructure, it is necessary 

to conceive mechanisms and procedures to be applied on these IoT data flows, of which the types of 

incidents that can be detected are unknown. That is, to create an Anomaly Detection System (ADS) that is 

capable of working on information generated by the IoT, detecting everything that is out of the expected 

normality. 

For an ADS to work correctly and efficiently when detecting possible threats or anomalous elements, it is 

necessary to follow a series of processes [8]: data collection to obtain the parameters of the packet to be 

analysed; generation of rules and algorithms for the definition of anomalies; execution of filters and 

analysis using the rules and algorithms on the collected packets; and detection and treatment of the 

detected anomalies. Only the systematisation of the processes to be carried out can ensure a good result, 

and, in addition, these processes must be adapted to the scope of the problem to be addressed, since the 

search for anomalies or outliers requires techniques and strategies coupled to the environment [9]. If we 

look at some of the contributions that review the different techniques for the creation of anomaly 

detection systems [10], we can see that the systematic treatment of the data is one of the first tasks to be 

completed before moving on to the selection and training of the Machine Learning (ML) algorithms. 

                  



Once the data adequacy process has been completed, it is essential to select an algorithm in accordance 

with the objective to be achieved, so that the resulting trained model can correctly ensure the operation of 

the infrastructure. This work proposes the development of an ADS on IoT infrastructures based on 

Machine Learning, so that the system can be sufficiently generic to cover a wide range of platforms and at 

the same time be able to detect anomalies in the infrastructures. The objective is not to diagnose the 

infrastructures, to know the exact incident that is occurring, but to be able, on real-time traffic, to classify 

the data packets we receive as valid or invalid, regardless of their content or origin. In this way, a filter 

can be generated prior to the injection of this data on the applications that use it and prevent incorrect 

information from contaminating the services.  

The paper proposes the design and development of an ADS system based on Machine Learning and also 

to validate its operation, it is instantiated on the Smart City platform of the University of Alicante, in 

which several IoT systems coexist, thus generating the previous data analysis that ensures the quality of 

the data before being used by the platform.  The motivation to propose, develop and implement this 

model in our platform comes from the need to control a large infrastructure, in which different 

interconnected sensorization areas coexist, in which being aware of each anomaly that may occur is a 

complex and laborious work for the people responsible for its management. The rest of the work is 

organised into the following sections: section 2 contains a preliminary study of the techniques and 

problems related to the project objectives; section 3 shows the design of the ADS proposal and the 

processes and algorithms involved; section 4 carries out the instantiation of the system on a real platform, 

the Smart University platform of the University of Alicante; section 5 finally draws the main conclusions 

of the work and sets out the lines of future work. 

2. Background and related work 

With the increasing evolution of cities and the lifestyle of the citizens living in them, IoT environments 

are evolving faster and faster, mainly due to the number of devices in these environments, using different 

communication protocols, great diversity of data to be sent, and varied formats and packaging for 

transmission. This is why the level of complexity for their control also increases along with the evolution 

of these systems, and with it, the need to develop solutions that can guarantee their security, efficiency, 

and reliability in these heterogeneous systems [11]. 

This complexity has derived in a need to expand research to find feasible solutions to the control of these 

systems, and over the last few years, the use of Machine Learning based applications has been chosen, so 

that they can be applied to IoT environments, since they are already implemented in many different areas 

of our daily life, such as medicine, in research or applications such as cancer detection [12].  

Moreover, within the new difficulties that these environments already present when controlling them, 

even with the use of artificial intelligence, we must consider the aforementioned heterogeneity of the 

sensorisation devices, both in terms of the values they emit and the rest of the parameters they present, 

including their semantics and syntax [13], since they are still systems with a dynamic nature. This is why 

developing an automated model for this type of detection is a challenge to say the least, since the data for 

training cannot always be labelled, as required in some Machine Learning algorithms, as it can be very 

                  



difficult to categorise them for this purpose. In addition, the data often contains noise and other types of 

values that can interfere with the reliability of the data, thus resulting in false anomalies [14]. Even today, 

even with the information available to address this problem, there is still no definitive solution due to the 

diversity of these environments, coupled with the lack of standardisation in the IoT domain. 

Although today's IoT environments are still very much in flux, AI-based techniques have managed to 

provide a new approach from which to work and continue to gain knowledge. In AI, there are different 

valid techniques for anomaly detection, which already take into account this diversity of the system, both 

in the data sent and in the device that sends it [15], with approaches focused on Machine Learning to 

adjust to these changes in the data, or other techniques used in the transformation of the data itself, such 

as its normalisation before the application of the algorithm [16].  

Some of the most outstanding algorithms, mainly due to their great adaptive capacity, are Neural 

Networks [17], Support Vector Machines (SVM) [18], or Random Forest [19], working satisfactorily in 

systems where the data used have a heterogeneous and uncategorized nature [20].  Some examples of 

their use are SPAM detection [21], mainly developed using supervised learning techniques, such as 

collaborative approaches, or content-based models [22] or the detection of malicious URLS [23], using 

techniques such as Decision Trees or Random Forest [24], mainly due to the large amount of features that 

must be extracted for this type of detections. 

Within the field of anomaly detection systems development, algorithms based on the creation of random 

trees and decision trees show high efficiency and accuracy in detecting such anomalies, testing these 

algorithms with different types of datasets [25]. In the context of IoT, the Isolation Forest [26] algorithm 

has been one of the most prominent ones currently, due to its effectiveness in such varied, heterogeneous, 

and dynamic environments, as well as presenting good results when working with a large amount of data 

volumes, such as data broadcasts from IoT devices. Some of the reasons for its effectiveness is that it 

does not require a lot of training data when developing the model, and its decision making returns a 

concrete yes or no result, identifying the anomaly or not [27]. An example of the use of this technique can 

be found in the detection of fraudulent banking transactions [28]. However, these proposals tend to focus 

detection on already identified anomalies and have not been applied to open and uncertain scenarios. 

Table 1. Comparative summary of the main techniques used for anomaly detection. 

Algorithm Type Description Typical IoT 

applications 
Advantages Disadvantages 

Random Forest Supervised Set of decision trees. Classification 
and regression 

Good performance and 
handling 

characteristics. 

Requires adjustment 
of hyperparameters. 

Neural 

Networks 
Supervised Model inspired by the 

human brain. 
Pattern 

recognition 
Ability to learn 

complex relationships. 
Requires large data 

sets and 
computation 

SVM Supervised Finds a hyperplane 

that maximizes 

margin. 

Anomaly 

detection 
Efficient in high-

dimensional spaces. 
Requires adjustment 

of hyperparameters. 

Isolation Forest Not 

Supervised 
Based on construction 

of random trees. 
Anomaly 

detection 
Efficient and scalable. Sensitive to noise. 

 

                  



3. Proposed solution 

For the development of our proposal, we will use a sequence of independent processes that form the 

framework, as shown in Fig. 1. The aim of this framework is to provide a generic procedure that can be 

extrapolated to any IoT infrastructure. 

 

Figure 1. Framework for general anomaly detection in IoT. 

The first process is responsible for collecting the dataset from the IoT infrastructure and 

performing the pre-analysis of the data. In this process, data capture from IoT data channels is 

performed and stored in persistence systems, and meticulous observation of the data is 

performed to know the types of data captured. The following process performs a processing of 

the data in such a way that invalid or incomplete data is cleaned, feature engineering is carried 

out to determine which of all the data received are necessary for the study, the construction of 

processable data vectors is performed and finally a data representation is made in order to be 

able to observe the distribution of the dataset. This obtained dataset is divided into three subsets 

with a ratio of 70-20-10. The first subset will be used for training, the second will be used for 

testing the training, and the third for validating the testing and therefore the trained model. 

Through these processes of testing and validation, or cross-validation, we can ensure that the 

trained model meets its objectives. Finally, the last process will be the evaluation of the model 

through its implementation in a real scenario. 

3.1 Data collection and pre-analysis 

To develop our proposal, we used a dataset collected directly from the IoT infrastructures of the 

University of Alicante. The use of open-source datasets such as those provided by Kaggle [29] could 

allow us to follow strategies and proposals from other authors and compare results more easily, but it did 

not provide us with a realistic context, nor would it be useful to apply it to our infrastructures. It was 

therefore decided to generate our own dataset. For this purpose, a packet collector was developed using 

Message Queuing Telemetry Transport (MQTT) to connect to the IoT management system based on 

TheThingStack [30]. A dataset of approximately 320,000 packets has been collected, the equivalent of 

                  



one day of sensing on the platform. Each packet consists of 117 features. This dataset is made up of 

sensor packages from different sources: 

 Climatology: sensorisation data on environment such as outdoor temperature, relative humidity, 

light level, UV rays, rain. 

 Quality&Comfort: sensorisation related to indoor spaces of buildings such as temperature, 

humidity, air quality, CO2 concentration, suspended particles, presence of harmful gases, etc.  

 Consumption: information related to infrastructure consumption, water, electricity, and gas 

consumption. 

 Production: sensorisation of the energy generation of photovoltaic plants.  

 Recharging electric vehicles: data on the use and consumption of electric vehicle charging 

stations. 

 WIFI: data on the real-time use of the campus wireless network infrastructures. 

 Luminaire: data concerning lighting systems including outdoor streetlights, signage, monument 

courtesy lights, etc. 

 Others: other sensorisations, where data received that do not belong to any previous collection 

will be dumped. 

In addition, the amount of data generated by each sensor group is different. Fig 2 shows the distribution 

of data per set. 

 

Figure 2. Percentage of data of the total collected by type of sensorisation. 

In the pre-analysis, all fields in each packet were inspected and from the initial 117, only 47 fields were 

selected. All fields that are unique tokens, additional timestamps or unique identifiers are eliminated. 

These are fields that do not correlate or do not provide useful information in principle. 

3.2. Processing 

The use of Machine Learning techniques requires the ability to explore the dataset, i.e., it must be able to 

undergo classification techniques. This involves processing the dataset to perform several operations. 

[CELLRANGE]% 
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First, null or invalid values must be dealt with, cleaning the dataset of these records to avoid 

contamination. Unexpected values are also analysed in order to treat them and transform them into 

expected values. The aim is to have a dataset that can be processed by the algorithms. 

On the set of 47 selected features, a study of the entropy of the data has been carried out through 

correlation, to decide which ones are determinant in the Machine Learning algorithms. Fig. 3 shows the 

result of the study. As can be seen, there are many variables that, although important from a technical 

point of view, such as the timestamp of the data emission, do not contribute value within the correlation, 

because they are fields that will always grow. 

 

Figure 3. Results of the correlation study. 

Through the correlation matrix it was decided to finally select 18 characteristics, which are shown in table 

2.  

Regarding the decision factors for feature selection, we have focused on two determining elements, the 

numerical factor obtained in the correlation study, from the perspective of "Pearson's Correlation" [31], 

and also on the know-how of the technical staff, since the experience gained from daily work with IoT 

traffic helps us to know which attributes can contribute to indicate infrastructure failures. 

The elements that were finally selected have correlation indexes from 0.1 to 0.99, indicating different 

levels of correlation between the different values. If we look at the central part of Figure 3, we realize that 

most of the values present fall within this range of correlation values between each other. After this first 

indicator, we move on to the experience factor of the technical staff. During data transmission, there are 

essential values to control such as the noise signal, the received signal strength indicator, the byte packet 

sent, or the gateway that received the packet, among others. For this reason, these attributes will be taken 

into account in the analysis regardless of their correlation factor. 

                  



The discarded values are fundamentally unique values, credentials to be exact, which are repeated during 

data sending, providing information such as the cluster in which the device is located, or the fixed port 

through which it works, so it did not provide us with useful information for the detection of anomalies in 

our system. 

Table 2. List of attributes to be used for algorithm training. 

Attributes Description 

received_at The date and time the data packet was received at the TTN server. 

uplink_message.session_key_id The uplink message session key identifier. This key is used in data encryption. 

uplink_message.frm_payload The raw data field of the uplink message. 

uplink_message.decoded_payload.bytes The decoded data contained in the uplink message, expressed in bytes. 

gateway_ids.gateway_id The unique identifier of the gateway that received the message. 

time The date and time of the message 

timestamp A timestamp indicating when the message was received, usually in Unix timestamp 
format. 

rssi Received Signal Strength Indicator - Received Signal Strength Indicator, which 

measures the strength of the signal received from the device. 

channel_rssi The signal strength on the specific channel on which the message was received. 

snr Signal-to-Noise Ratio - The signal-to-noise ratio, which indicates the quality of the 
received signal. 

location.latitude The geographic latitude of the location of the gateway that received the message. 

location.longitude The geographic longitude of the location of the gateway that received the message. 

location.altitude The geographic altitude of the location of the gateway that received the message. 

uplink_token A token associated with the uplink message. 

channel_index The index of the channel used to transmit the message. 

uplink_message.settings.data_ 
rate.lora.spreading_factor 

The spreading factor used in the LoRa modulation of the message. 

uplink_message.received_at The date and time the uplink message was received. 

uplink_message.consumed_airtime The airtime consumed by the uplink message in the network. 

 

Finally, another important operation is the transformation of categorical values to nominal 

values. In the dataset there are many columns of data indicating identifiers of network elements, 

services, or application. One Hot Encoding labelling is used for this purpose, converting the text 

data into feature vectors that can be further processed. 

3.3. Theoretical considerations. 

After the analysis of viable AI techniques in our context, it was determined that the Isolation Forest 

algorithm can generate the most correct results. This algorithm belongs to the most widely used 

unsupervised algorithms for anomaly detection and provides great flexibility in training as it does not 

need to label the data as valid or invalid from the beginning.  

This type of algorithm works on the detection of erroneous and unlabelled values within the datasets, also 

called outliers or anomalies. When training and implementing this type of algorithms, it has been 

demonstrated in different studies its efficient performance when dealing with large volumes of data, in 

addition to presenting a linear time complexity with a very low memory cost [32]. In our work, we will 

define outliers as: "an observation that, being atypical and/or erroneous, deviates decidedly from the 

general behaviour of the experimental data with respect to the criteria that should be analysed about it" 

[33]. 

The methodology employed by the Isolation Forest algorithm is based on the detection of outliers by 

using decision trees to isolate outliers from the rest of the data. To do this, a feature is selected and a 

                  



random split between the minimum and maximum value is performed, repeating this process until all 

possible data splits are performed, or a specified limit on the number of splits is reached. The number of 

divisions needed to isolate a data item will be smaller for an outlier, while for normal values the number 

of divisions will be larger, since the algorithm attributes to each division an "anomaly score", calculated 

as the average of the number of subdivisions needed to isolate the outlier. The "anomaly score" is a value 

calculated using the following formula (1): 

𝑠(𝑥, 𝑛) = 2
−𝐸(ℎ(𝑥))

𝑐(𝑛)
 (1) 

The parameters of which are:  

 h(x): is the average depth of constructed trees.  

 c(n): is the average height to find a node in one of the trees.  

 n: size of the dataset.  

 s: if the value obtained is close to 1, it is generally an anomaly, while if the value of s is less than 

0.5, it is a correct value. 

The term E(h(x)) in formula (1) is calculated as: 

𝐸(ℎ(𝑥))  =
∑ ℎ𝑡(𝑥)𝑡∈ℱ + ∑ 𝑐(|𝑙𝑡(𝑥)|)𝑡∈ℱ

|ℱ|
 (2) 

where t is a tree, c(|lt(x)|) is a normalization factor needed when t is not fully grown (which estimates the 

average tree depth that can be constructed from lt(x)) and ht(x) = |Pt(x)| with Pt(x) being the path of x, the 

set of nodes visited by x from the root to the leaf containing x. From formula (1) it can be inferred that the 

score of an object x is proportional to the inverse of the average length of its path in the forest: if x ends in 

very deep leaves of the trees, its score will be quite low (close to 0), if on the contrary its path ends very 

soon the score will be high (close to 1) [34].  

The reason for using this algorithm over other existing algorithms is mainly because it is an easily 

scalable algorithm for use on large datasets. In addition, it works well when features that may initially be 

irrelevant are included, as multi-modal datasets. This is the case for IoT infrastructures, where the 

cohesion or internal correlation between the data being sent is unknown, and we simply acquire a dataset 

with its corresponding parameters and want to detect outliers. 

In terms of implementation for model building, we must consider the basic elements with which we can 

train and subsequently improve the accuracy of the result:  

 "contamination", the amount of overall data that we expect to be considered outliers, indicates 

the estimated proportion of outliers that the dataset possesses. Based on this value, the limit by 

which the values are classified as anomalous or normal is set.  

 “n_estimators", this value represents the number of isolation trees to be used to construct the 

Isolation Forest itself. Using higher estimator values can improve the accuracy for detection, but 

should always be appropriate to the dataset used, as it also results in increased training time. 

Varying the value of this parameter will serve to adjust the final performance of the model. 

                  



 “max_samples", number of observations used to train each tree; serves to control the maximum 

number of samples to be used to train each tree generated. You can use the value of auto which 

implies that all the samples in the dataset will be used, however, if you have a dataset that is too 

large, this value will have to be readjusted.   

 “max_features", which indicates the maximum number of features to be used when splitting each 

node of the tree. By setting the value to 1, we specify that all available features will be used for 

each split. This parameter can be used as such in this case since many columns have been 

filtered during the data fitting process, however, if the dataset has many different columns, it can 

be adjusted in a way that improves performance and avoids overfitting.  

4. Implementation and analysis of results 

4.1. Experimental setup. 

The experimentation was carried out on an HP Pro SFF 400 G9, with Windows 11 Pro 64-bit operating 

system, Intel® Core I7-12700 CPU up to 4.9GHz and 12 cores, 32GB RAM, and NVIDIA Quadro T400 

graphics card. For the development of the algorithm, use was made of different libraries. NumPy [35] was 

used to carry out the relevant numerical arrays to process data, and Pandas [36] was used for the analysis 

and manipulation of structured data, providing the DataFrame format required for the algorithm. As for 

the implementation of the algorithm, the scikit-learn library [37] was used for its development, 

specifically the modules: sklearn.ensemble.IsolationForest, as the final algorithm for anomaly detection; 

sklearn.model_selection.train_test_split, to split the dataset for the training, testing and validation phases; 

sklearn.impute.SimpleImputer, mainly used for handling null values in the dataset, so that missing values 

are filled in a certain way; and finally, sklearn.preprocessing.RobustScaler, whose function is to scale 

features in a dataset, being very useful in datasets that may contain outliers. 

For the implementation of our model in particular, the following parameters were used in the 

configuration of the Isolation Forest algorithm. 

 contamination=float(0.1667). In the case of the training dataset, it is estimated that 16.67% of 

the data contains an erroneous value that must be detected, so the training is adjusted to this 

contamination rate. 

 n_estimators=100  

 max_samples='auto  

 max_features=1.0  

The choice of parameters depends on several issues and may condition the effectiveness of the model. 

The parameter "contamination" depends on the known number of erroneous packets, this value is known 

since the erroneous packets are introduced in a random but controlled way. The value of "max_samples" 

is set to "auto" to take all the data in the set, and the value of "max_features" is set to "1" to use all the 

properties of the dataset, since we have previously selected the significant properties. To set the value of 

"n_estimators", an empirical study was carried out for which: a reduced dataset was generated from the 

                  



original one; and the Isolation Forest algorithm was tested by varying only the value of n_estimators until 

reaching the minimum value above which detection was no longer improved. 

Once the training is finished, we can visualise the results obtained for each field of the dataset. In order to 

have a graph for each field, we consider as a common element the "time" field (the timestamp of the 

packet), so the following graphs correspond to the time field, and another parameter of the dataset, such 

as snr, 

uplink_message.senssion_key_id,channel_index,uplink_message.setittings.data_rate.lora.spreading_facto

r,uplink_message.consumed_airtime or uplink_message.decode_payload.bytes. The following Fig. 4-9 is 

the result of the training with some variables where the outliers can be seen. 

 

 

Figure 4. Result of the detection on the snr column in relation to time. 

 

Figure 5. Detection result on the uplink_message_session_key_id column in relation to 

time. 

                  



 

Figure 6. Detection result on the channel_index column in relation to time 

 

Figure 7. Result of the detection on the 

uplink_message_settings_data_rate.lora.spreading_factor column in relation to time. 

 

Figure 8. Result of the detection on the uplink_message.consumed_airtime column in 

relation to time 

                  



 

Figure 9. Result of the detection on the uplink_message.decoded_payload.bytes column in 

relation to time 

4.2. Analysis of results and evaluation 

The marking of outliers requires a subsequent analysis and evaluation, to validate whether or 

not errors are really being detected. To this end, a sampling has been carried out on the set of 

outliers, selecting several dozens to analyse them in detail and find out the causes of their 

cataloguing as outliers, and therefore anomalous value within the packet flow. The detailed 

analysis has identified that most of the anomalous packets are due to three types of 

malfunctions. 

4.2.1. Drop in signal strength 

One of the first anomalies detected by the system was a sudden change in the signal strength of the 

sensors. This issue in a device that is stable in its power was unusual, so the system flagged an anomaly at 

that instant, and after analysis of this detection, it was possible to locate that there had been a change in 

the position of the antenna that caused a shielding of the signal. Fig. 10 shows an instant in which this 

sudden change in signal power detected by the algorithm can be seen. 

 

Figure 10. Sudden change of signal power 

                  



4.2.2. Detection of unusual gateways 

Another anomaly detected by the algorithm is the appearance of gateways that do not belong to the 

organisation's infrastructure. This can occur because the Lora technology used has a large range and by 

using The Things Networks as the base application, there are more open-source antennas in the project 

nearby. Being something out of the ordinary, two possibilities are established, the probe has changed 

location and with it the gateways around it, or a new gateway has been activated within its range, without 

being one of the ones they have configured from the Smart University group. After analysing the packet 

following the detection of the anomaly, using the TTN Mapper tool [38] it was concluded that one of the 

devices had not only been moved from a room, but also taken out of the university area, without anyone 

notifying of this fact. 

 

Figure 11. Location of the gateway detected from TTN Mapper 

4.2.3. Receiving messages without a data packet 

Finally, one of the most important anomalies detected is when a device stops sending data within the 

packet. This is the case when a sensor is not working properly, but the board to which it is connected to 

the sensor, together with its LoRa antenna, are in good condition, so that the packets arrive at the 

gateway, but there is no coded message inside. Fig. 12 shows an example of one of the devices that 

exhibited this behaviour. 

                  



 

Figure 12. Sample of the data sending flow until its sudden cut-off. 

As can be seen in the image, from approximately 13:38, the sensor stopped emitting quantitative values, 

whether they were C02, GPS, or other sensors. In the IoT platform of the University of Alicante, the data 

could not be visualised, while the package had been processed. This implies that data is being received by 

the platform, but does not actually exist, which can lead to errors and contradictory actions in the IoT 

platform. 

5. Conclusions 

Several interesting results have been generated through this project. Firstly, a model for 

anomaly detection based on Machine Learning on IoT infrastructure has been proposed. One of 

the most outstanding characteristics of IoT infrastructures is precisely not having control over 

them, using services and even open intermediate infrastructures (as in our case TTN). This 

means that we are faced with the ignorance of information, which in traditional network 

infrastructure is very useful for detecting anomalies, such as IPs, MACs or protocols. Our model 

aims to perform broad-spectrum detections, i.e., to detect packets that are not correct, remove 

them from the data ingestion flow in the applications that use the IoT, and then analyse them 

and extract the anomaly.  

An analysis of the characteristics of the IoT data packets has also been carried out, choosing the 

parameters to be considered for anomaly analysis after the correlation study, together with our 

own experience gained from working with the incoming packets on the TTN platform. This has 

allowed us to focus and narrow down the dimension in which these unexpected values can be 

detected, a factor that has helped to improve the quality of the anomalies detected and to 

optimise the training time. 

Based on the model developed, an implementation has been carried out on the campus of the 

University of Alicante, based on IoT infrastructure, The Things Network, which uses the open-

source software The Thing Stack as a base, which is widely used by the IoT community. This 

                  



instance of the algorithm has allowed to implement an anomaly detector on the real IoT 

platform of the University of Alicante, so that it has been possible to detect possible failures in 

the infrastructure and unexpected situations in terms of the behaviour of the sensors, has 

allowed to take measures in this regard, being an important support point for the overall 

monitoring of the project. In other words, the proposal is valid, it is useful, and it is up and 

running. And it can be used by the TTN community. 

The proposed work has some limitations. The most important one is the resources needed to 

train the algorithm, since it is necessary to perform the learning process with large volumes of 

data, including a large variety of packets, originating from the correct operation of the 

infrastructure to quickly detect anomalies. This affects us especially when there are permanent 

changes in the infrastructures since it is necessary to retrain the algorithm with this new, but 

unknown, configuration. If retraining is not performed, the new infrastructure elements would 

generate packets that would be flagged as anomalies by the ADS. Another limitation of the 

proposal is that the anomaly is not classified, which requires further analysis by the 

administrator after detection.  

As for possible improvements and future work, we want to implement different Machine 

Learning modules for anomaly detection and identification. First, we will look for the 

comparison of different algorithms that allow us to detect more situations of anomalies, to avoid 

that incorrect packets can "sneak in". We are even considering the possibility of having several 

algorithms processing in parallel and generating an aggregation of their results. This first step 

should serve to solve the problem of the resources needed for training. And, secondly, once we 

can discriminate packets and put them in a state of observation, other specialised algorithms can 

be used to generate a cataloguing that identifies the specific anomaly, such as: transmission 

failures, device subtraction, device malfunction or the implantation of unexpected devices (a 

very common problem in IoT, which appear to be sensors of unknown origin). Then, chaining 

anomaly detection systems with anomaly identification can help to have scalable, heterogeneous 

systems where there is uncertainty due to the lack of knowledge of uncontrolled intermediate 

IoT infrastructures. Being able to obtain a library of trained modules for different infrastructures 

would facilitate the construction of more efficient systems as it would only incorporate the 

necessary modules, and could even automate the system to search, among a possible collection 

of analysis and identification modules, those that best fit the infrastructure or circumstances. 
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