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Abstract

We show that p-harmonic functions in the plane satisfy a nonlinear
asymptotic mean value property for p > 1. This extends previous
results of Manfredi and Lindqvist for certain range of p’s.

1 Introduction

It is well known that harmonic functions in euclidean domains are those
continous functions satisfying the usual mean value property. Actually, har-
monic functions can be characterized by the so called asymptotic mean value
property:

u(x) = −

ˆ

B(x,r)
u(y)dy + o(r2)

as r → 0.
It is a challenging problem to try to find similar characterizations for

solutions of other nonlinear differential operators such as the p-laplacian.
We recall that a function u ∈ W 1,p

loc (Ω) is p-harmonic in a domain Ω ⊂ R
d if

it is a weak solution of the p-laplace equation

div(|∇u|p−2∇u) = 0
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If u ∈ C2 and ∇u(x) 6= 0 then direct computation shows that

△pu ≡ div(|∇u|p−2∇u) = |∇u|p−2
[
(p− 2)

△∞u

|∇u|2
+△u

]
(1.1)

where △∞ is the so called infinity laplacian which, for C2 functions, is given
by

△∞u =

d∑

i,j=1

uxi,xj
uxi

uxj

On the other hand it follows essentially from Taylor’s formula that

lim
r→0

1

r2

[1
2

(
sup

B(x,r)
u+ inf

B(x,r)
u
)
− u(x)

]
=

△∞u(x)

2|∇u(x)|2
(1.2)

lim
r→0

1

r2

(
−

ˆ

B(x,r)
u− u(x)

)
=

△u(x)

2(d+ 2)
(1.3)

whereB(x, r) denotes the open ball centered at x of radius r. From (1.1),(1.2)
and (1.3) it can be shown that if u ∈ C2, △pu = 0 and ∇u(x) 6= 0 then

u(x) =
p− 2

p+ d
·
1

2

(
sup

B(x,r)
u+ inf

B(x,r)
u
)
+

2 + d

p+ d
−

ˆ

B(x,r)
u(y)dy + o(r2) (1.4)

as r → 0. Since p-harmonic functions are C1,α for some 0 < α < 1 but not C2

in general ([U] , [L]), it is not clear whether (1.4) should be true in the general
case. However, in [PMR] the authors proved that if u ∈ C(Ω) ∩ W 1,p

loc (Ω)
then u is p-harmonic in Ω if and only if (1.4) holds in a weak(viscosity)
sense. From [JLM] and [PMR], it follows that if u is continous and satisfies
(1.4) in classical sense then u is p-harmonic.

More information is available when d = 2. If u is p-harmonic in a
planar domain then the complex gradient ∂u = 1

2(ux− iuy) is a quasiregular
mapping( so the critical points are isolated, unless u is constant) and u
is C∞ in {∇u 6= 0} (see [BI], [IM]). Lindqvist and Manfredi have recently
proven that in the plane p-harmonicity is equivalent to the asymptotic mean
value property( in classical sense) for a certain range of p’s. Hereafter we
denote by D(x, r) the open disc of center x and radius r.

Theorem. ([LM]) Let Ω ⊂ R
2 be a domain and let 1 < p < p0 = 9.52....

Then u ∈ C(Ω) ∩W 1,p
loc (Ω) is p-harmonic in Ω if and only if the asymptotic

expansion

u(x) =
p− 2

p+ 2
·
1

2

(
sup

D(x,r)
u+ inf

D(x,r)
u
)
+

4

p+ 2
−

ˆ

D(x,r)
u(y)dy + o(r2) (1.5)

holds at each x ∈ Ω, as r → 0.
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Our main result is an extension of Lindqvist and Manfredi’s theorem to
the whole range of p’s.

Theorem 1. Let Ω ⊂ R
2 be a domain and let 1 < p < ∞. Then u ∈

C(Ω)∩W 1,p
loc (Ω) is p-harmonic in Ω if and only if the asymptotic expansion

(1.5) holds at each x ∈ Ω, as r → 0.

It is enough to prove that a p-harmonic function satisfies (1.5) at a critical
point. Indeed, by the previous comments, continous functions satisfying
(1.5) are p-harmonic and, on the other hand, p-harmonic functions satisfy
(1.5) at noncritical points. Therefore we will focus on the local behavior of
a p-harmonic function around a critical point of multiplicity n. As in [LM],
the method exploits the power series expansion of the complex gradient in
the hodographic plane that was obtained in [IM].

2 The hodographic representation of u

Let u be a p-harmonic function with a critical point of multiplicity n at the
origin and let

∂u(z) =
1

2
(ux − iuy)

be the complex gradient of u. We can represent ∂u(z) = (χ(z))n where χ is
quasiconformal in a neighborhood of the origin and χ(0) = 0 (see [BI]). In
the hodographic plane, ξ = χ(z), and, according to [IM], the inverse of χ is
given by

z = H(ξ) =
∞∑

k=n+1

[
Ak

(
ξ

|ξ|

)k

+ εkAk

(
ξ

|ξ|

)k
](

ξ

|ξ|

)
−n

|ξ|λk (2.1)

where Ak ∈ C, An+1 6= 0 and

∞∑

k=n+1

k |Ak|
2 < ∞ (2.2)

Furthermore,

εk =
λk + n− k

λk + n+ k
, λk =

1

2

(√
4k2(p− 1) + n2(p− 2)2 − np

)
. (2.3)

From (2.3) it is easy to check that

0 < λk <
k2 − n2

n
, |εk| <

k − n

k + n
(2.4)

.
Equation (2.1) can be interpreted as the ”hodographic representation”

of the point z = x+ iy near the origin.
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Therefore, if ξ = reiθ, we can rewrite (2.1) as

H(reiθ) = e−inθ
∞∑

k=n+1

rλkϕk(θ) (2.5)

where
ϕk(θ) = Ake

ikθ + εkAke
−ikθ

for each k = n+ 1, n + 2, . . . We can split H(ξ) into its real and imaginary
parts, i.e., H(ξ) = z̃(ξ) = x̃(ξ) + iỹ(ξ).

Lets denote by ũ the hodographic representation of u, i.e.,

ũ(ξ) = (u ◦H)(ξ). (2.6)

Moreover, we can easily write ∂u(z) in terms of ξ:

∂u(z) = ∂u(H(ξ)) = ξn

or, equivalently, if ξ = reiθ,
{

ux = 2rn cos(nθ)
uy = −2rn sin(nθ)

(2.7)

Proposition 2.1. Let u be a p-harmonic function with a critical point of
order n at z = 0. Then the hodographic representation ũ has the following
power series expansion in a neighborhood of ξ = 0:

ũ(ξ) = u(0) + 4
∞∑

k=n+1

µk |ξ|
n+λk Re

{
Ak

(
ξ

|ξ|

)k
}
,

where µk =
λk

λk + n+ k
. Moreover, 0 ≤ µk < 1− n

k .

Proof. Using (2.7), we compute ũr:

ũr = (u ◦H)r = uxx̃r + uy ỹr = 2rn [x̃r cos(nθ)− ỹr sin(nθ)]

the expression in brackets being equal to Re
{
einθHr

}
. Replacing (2.5) in

the previous equation we get

ũr = 2rnRe

{
einθHr

}
= 4

∞∑

k=n+1

λk(1 + εk)r
n+λk−1

Re

{
Ake

ikθ
}
.

Integrate with respect to r to complete the proof. The bound on µk follows
from (2.4).

Remark. From now on, we can assume without loss of generality that
u(0) = 0.
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3 Quantitative injectivity estimates for the first

term of H

We define the mapping A(ξ) as the first term in the power series expansion
of H:

A(ξ) =

[
An+1

(
ξ

|ξ|

)n+1

+ εn+1An+1

(
ξ

|ξ|

)n+1
](

ξ

|ξ|

)
−n

|ξ|λn+1 (3.1)

We define Ũ(ξ) to be the first term in the power series expansion of ũ,

Ũ(ξ) = 4µn+1 |ξ|
n+λn+1 Re

{
An+1

(
ξ

|ξ|

)n+1
}
. (3.2)

For simplicity, we will use hereafter the notations a . b ( resp. a ≈ b)
to indicate that a ≤ Cb (resp. C−1a ≤ b ≤ Ca) for some positive constant
C independent of a and b.

Lemma 3.1. The following estimates hold in a neighborhood of ξ = 0:

∣∣∣ũ(ξ)− Ũ(ξ)
∣∣∣ . |ξ|n+λn+2 (3.3)

|H(ξ)−A(ξ)| . |ξ|λn+2 (3.4)

|A(ξ)| ≈ |H(ξ)| ≈ |ξ|λn+1 (3.5)

Proof. From (2.2), ( 2.4) and the fact that 0 ≤ µk < 1 we get in particular
that the sequence (Ak) is bounded and that |ǫk| < 1 for all k. Since (λk) is
increasing, (3.3), (3.4) and (3.5) follow from the estimate

∞∑

k=n+2

|ξ|λk = O(|ξ|λn+2) (3.6)

Now an elementary computation shows that there is C = C(p) > 0 such
that λk − λn+2 ≥ C(k − (n + 2)) for all k ≥ n + 2.This implies (3.6) and
proves the lemma.

Now, we study the behavior of A and we give an injectivity estimate.
For this purpose, we will need the help of the following elementary lemma
whose proof is omitted.

Lemma 3.2. Let ρ > 0, λ > 0 and t ∈ R. Then for all k ∈ N,
∣∣∣ρeikt − 1

∣∣∣ ≤ k
∣∣ρeit − 1

∣∣ . (3.7)

Furthermore, if Λ > 1 and if Λ−1 ≤ ρ ≤ Λ then there is a constant C =
C(λ,Λ) > 0 such that

∣∣∣ρλeit − 1
∣∣∣ ≥ Cρλ−1

∣∣ρeit − 1
∣∣ . (3.8)
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Lemma 3.3. The mapping A : C → C is bijective and satisfies

|A(ξ)−A(ζ)| ≥ C
∣∣∣|ξ|λn+1−1 ξ − |ζ|λn+1−1 ζ

∣∣∣ (3.9)

where C = (1− (2n + 1) |εn+1|) |An+1|.

Proof. First, we observe that from (2.4) for k = n + 1 we obtain that 0 <

λn+1 < 2 +
1

n
and that

|εn+1| <
1

2n+ 1
(3.10)

We show first that A is surjective. We write λ ≡ λn+1, ǫ ≡ ǫn+1 and
A ≡ An+1. Then

A(reiθ) = rλeiθ
(
A+ ǫAe−i2(n+1)θ

)

Assume, for simplicity, that A = 1. Then we can write

A(reiθ) = rλ|1 + ǫ e−i2(n+1)θ |eif(θ)

where f(θ) = θ + arg(1 + ǫ e−i2(n+1)θ) and

m(θ) = |1 + ǫ e−i2(n+1)θ| =
√

1 + ε2 + 2ε cos(2(n + 1)θ). (3.11)

To prove that A is surjective, let w = seit ∈ C such that w 6= 0 (if
w = 0 it is obvious that A(0) = 0). Since f(0) = 0 and f(2π) = 2π, by
continuity we can pick k ∈ Z and θ ∈ [0, 2π] such that t+ 2kπ ∈ [0, 2π] and
f(θ) = t+ 2kπ. Then eif(θ) = eit. For that θ, choose r > 0 so that

rλm(θ) = s

Then we have shown that A(reiθ) = w so the surjectiveness of A follows.
To finish the proof of the lemma, it is enough to prove (3.9), which is a

quantitative form of injectiveness. By (3.1),

|A(ξ)−A(ζ)| ≥ |An+1|

∣∣∣∣|ξ|
λ ξ

|ξ|
− |ζ|λ

ζ

|ζ|

∣∣∣∣−

− |An+1| |ε|

∣∣∣∣∣|ξ|
λ

(
ξ

|ξ|

)2n+1

− |ζ|λ
(

ζ

|ζ|

)2n+1
∣∣∣∣∣ (3.12)

Now apply (3.7) with ρ =

∣∣∣∣
ξ

ζ

∣∣∣∣
λ

, eit =
ξ/ζ

|ξ/ζ|
and k = 2n + 1, and multiply

both sides of the inequality by |ζ|λ. Then
∣∣∣∣∣|ξ|

λ

(
ξ

|ξ|

)2n+1

− |ζ|λ
(

ζ

|ζ|

)2n+1
∣∣∣∣∣ ≤ (2n+ 1)

∣∣∣∣|ξ|
λ ξ

|ξ|
− |ζ|λ

ζ

|ζ|

∣∣∣∣ .
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Replacing this expression in (3.12) we obtain

|A(ξ)−A(ζ)| ≥ |An+1| (1− (2n+ 1) |ε|)

∣∣∣∣|ξ|
λ ξ

|ξ|
− |ζ|λ

ζ

|ζ|

∣∣∣∣ .

so the proof is finished.

Lemma 3.4. Let Λ > 1. Then there is a constant C = C(n, p,Λ, |An+1|) >
0 such that for any ξ, ζ ∈ C with Λ−1 |ζ| ≤ |ξ| ≤ Λ |ζ| we have

|A(ξ)−A(ζ)| ≥ C |ξ|λn+1−1 |ξ − ζ| . (3.13)

Proof. Apply (3.8) with ρ =

∣∣∣∣
ξ

ζ

∣∣∣∣ and eit =
ξ/ζ

|ξ/ζ|
and multilply by |ζ|λ to

obtain ∣∣∣∣|ξ|
λ ξ

|ξ|
− |ζ|λ

ζ

|ζ|

∣∣∣∣ ≥ C |ξ|λ−1 |ξ − ζ| (3.14)

Then the lemma follows from (3.9) together with (3.14).

4 The perturbation method

Given ξ in the hodographic plane, set z = H(ξ), ζ = A−1(z) and w = H(ζ).
Then

ξ = χ(z) , ζ = χ(w) = A−1(H(ξ))

Since |z| = |A(ζ)| ≈ |H(ζ)| = |w| by (3.5) it follows from quasiconfor-
mality ([A]) that |ξ| = |χ(z)| ≈ |χ(w)| = |ζ|. We recall that u(z) = (ũ◦χ)(z)
and that Ũ is given by (3.2). Following [LM], define the functions

U(z) = (Ũ ◦ A−1)(z) (4.1)

Lemma 4.1. Let Λ > 1. There is a constant C = C(n, p,Λ, |An+1|) > 0
such that for any ξ, ζ ∈ C with Λ−1|ζ| ≤ |ξ| ≤ Λ|ζ| then

∣∣∣Ũ(ξ)− Ũ(ζ)
∣∣∣ ≤ C|ξ|n|A(ξ)−A(ζ)|. (4.2)

Proof. From (3.2), the fact that 0 ≤ µk < 1 if k ≥ n and direct computation
it follows that

∣∣∣Ũ(ξ)− Ũ(ζ)
∣∣∣ ≤ C|An+1| |ξ|

n+λn+1−1 |ξ − ζ| (4.3)

where C = C(n,Λ) > 0. Then the conclusion follows from Lemma 3.4.
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Corollary 4.1. Let ξ and ζ be as in the beginning of the section. Then the
following estimate holds in a neighborhood of ξ = 0:

∣∣∣Ũ(ξ)− Ũ(ζ)
∣∣∣ . |ξ|n+λn+2 (4.4)

Proof. Use the fact that |ξ| ≈ |ζ|, Lemma 4.1 and estimate (3.4).

Now we are ready to prove the following singular expansion of a p-
harmonic function.

Proposition 4.1. Let u be a p-harmonic function with a singularity of order
n at z = 0 and u(0) = 0. Then u can be written as

u(z) = U(z) +O(|z|
n+λn+2

λn+1 )

in a neighborhood of z = 0.

Proof. By (2.6) and (4.1) we can write

u(z) − U(z) = ũ(ξ)− Ũ(ζ) = Ũ(ξ)− Ũ(ζ) + ũ(ξ)− Ũ(ξ).

By (3.3), (3.5) and Corollary 4.1 we get

|u(z)− U(z)| . |ξ|n+λn+2 ≈ |H(ξ)|
n+λn+2

λn+1 = |z|
n+λn+2

λn+1 (4.5)

so the proof is finished.

5 Proof of Theorem 1

As before, we will write λ and ε instead of λn+1 and εn+1, respectively. We
can assume without loss of generality that An+1 = 1. Then

A(reiθ) = rλe−inθ(ei(n+1)θ + εe−i(n+1)θ)

and
∣∣A(reiθ)

∣∣ = rλm(θ), where m(θ) is given by (3.11). Furthermore

Ũ(reiθ) = 4µrn+λ cos((n + 1)θ).

where µ = µn+1.

Denote by DR = D(0, R) the open disc centered at 0 with radius R > 0

and define the ”hodographic disc” D̃R as A−1(DR). Then, a point reiθ of

the hodographic plane belongs to D̃R if and only if
∣∣A(reiθ)

∣∣ < R. Then,

D̃R can be described , in polar coordinates, as

D̃R =

{
reiθ : r <

( R

m(θ)

)1/λ
}

8



Now we define the function J(ζ) as the absolute value of the jacobian of
A(ζ). Computing J(ζ) in polar coordinates we get

J(reiθ) = λr2(λ−1)
(
1− (2n+ 1)ε2 − 2nε cos(2(n + 1)θ)

)
, (5.1)

(Observe that, since |ǫ| < (2n + 1)−1, the expression in the right hand side
of (5.1) is positive).

Lemma 5.1. The p-harmonic function U(z) given by (4.1) satisfies the
following properties, for small enough R > 0:

sup
DR

U+ inf
DR

U = 0, (5.2)

ˆ

DR

U = 0. (5.3)

Proof. By (4.1), we need to study the behavior of Ũ(ξ) in D̃R. Then, (5.2) is

a direct consequence of the symmetries of D̃R. To show (5.3), observe that,
by change of variables

ˆ

DR

U(z)dz =

ˆ

D̃R

Ũ(ζ)J(ζ)dζ (5.4)

and using polar coordinates in (5.4) we get

ˆ

DR

U(z)dz = 4µλ

ˆ 2π

0

ˆ r(θ)

0
rn+3λ−1 cos((n+ 1)θ)j(θ)drdθ (5.5)

where

r(θ) =
( R

m(θ)

)1/λ
, j(θ) = 1− (2n+ 1)ǫ2 − 2nǫ cos(2(n + 1)θ)

and m(θ) is given by (3.11). Now (5.3) follows directly from (5.5) and the
symmetry properties of m(θ) and j(θ).

Lemma 5.2. The inequality

n+ λn+2

λn+1
> 2 (5.6)

holds for each 1 < p < ∞ and each n ≥ 1.

Proof. From (2.3) and some computation it follows that inequality (5.6) is
equivalent to

n(p+2)
√

n2p2 + 16(n + 1)(p − 1) > n2p2+(−2n2+8n)p−(2n2+8n). (5.7)
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Now we distinguish two cases. If n = 1 then (5.7) becomes

(p + 2)
√

p2 + 32(p − 1) > p2 + 6p− 10. (5.8)

If the right hand is negative then the inequality follows. Otherwise, squaring
the previous inequality we get

2p3 + 7p2 + 10p − 19 > 0.

which holds for each p > 1 since the left-hand side is increasing in p and
vanishes for p = 1. This proves (5.7) when n = 1.

Now assume n ≥ 2 and observe that
√
n2p2 + 16(n + 1)(p − 1) ≥ np for

each p > 1. Then (5.7) would follow if:

n2p(p + 2) > n2p2 + (−2n2 + 8n)p − (2n2 + 8n),

which is equivalent to
(2n− 4)p + n+ 4 > 0,

and holds trivially if n ≥ 2. This finishes the proof of the lemma.

Proof of Theorem 1. As stated at the introduction, we only need to prove
that planar p -harmonic functions satisfy (1.5) since the converse is well
known. We also discussed there that (1.5) need only to be checked at a
critical point. Therefore, we can assume that x = 0, u(0) = 0 and that 0 is
a critical point of u.

Let r > 0 be small enough. By Proposition 4.1 and Lemma 5.1,

ˆ

D(0,r)
u = O

(
r

n+λn+2

λn+1

)
. (5.9)

and
1

2

(
sup
D(0,r)

u+ inf
D(0,r)

u
)
= O

(
r

n+λn+2

λn+1

)
. (5.10)

Finally, combine (5.9), (5.10) and divide by r2 to obtain that for any α ∈ R

1

r2

[
α
(1
2

sup
D(0,r)

u+
1

2
inf

D(0,r)
u
)
+ (1− α)−

ˆ

D(0,r)
u
]
= O

(
r

n+λn+2

λn+1
−2)

. (5.11)

By 5.2 the exponent of r in the right-hand side is strictly positive. There-
fore, taking limits as r → 0, we show that (1.5) holds at the origin and we
conclude the proof.

Remark. The proof actually shows that if x is a critical point of the p-
harmonic function u then (1.5) still holds at x if the coefficients (p−2)/(p+2)
and 4/(p + 2) are replaced by α and 1− α for arbitrary α.
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