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Abstract

We show that p-harmonic functions in the plane satisfy a nonlinear
asymptotic mean value property for p > 1. This extends previous
results of Manfredi and Lindqvist for certain range of p’s.

1 Introduction

It is well known that harmonic functions in euclidean domains are those
continous functions satisfying the usual mean value property. Actually, har-
monic functions can be characterized by the so called asymptotic mean value
property:
uw) = ulwdy +o(s?)
B(z,r)
asr — 0.

It is a challenging problem to try to find similar characterizations for
solutions of other nonlinear differential operators such as the p-laplacian.
We recall that a function u € Wﬁf(@) is p-harmonic in a domain Q C R? if
it is a weak solution of the p-laplace equation

div(|VulP~2Vu) =0
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If u € C? and Vu(zr) # 0 then direct computation shows that

Apu = div(|VulP2Vu) = [VulP~2 [(p — 2)@% + Au (1.1)

where A\ is the so called infinity laplacian which, for C? functions, is given

by
d

Aoou: E uxi,xjuxiuxj
i,7=1

On the other hand it follows essentially from Taylor’s formula that

o171 .  Agu(x)

limy 5[5 gup wt nf o) —u@)] = 32505E (1.2)
1 _ Au(x)
lim (]{3(%:; —u@) =50y (13)

where B(z,r) denotes the open ball centered at x of radius r. From (1.1),(1.2)
and (1.3) it can be shown that if u € C?, Ayu = 0 and Vu(z) # 0 then

p—2 1 ) 2+d 9
u(x) =——- = sup u+ inf u)+ —— u(y)dy + o(r 14
@) = pg g gup wt ol )+ gyt o) (14

as T — 0. Since p-harmonic functions are C1® for some 0 < o < 1 but not C?
in general ([U], []), it is not clear whether (1.4) should be true in the general
case. However, in [ | the authors proved that if u € C(Q2) N VVlif(Q)
then u is p-harmonic in € if and only if (1.4) holds in a weak(viscosity)
sense. From [ | and | |, it follows that if u is continous and satisfies
(1.4) in classical sense then u is p-harmonic.

More information is available when d = 2. If u is p-harmonic in a
planar domain then the complex gradient Ju = %(uw —iuy) is a quasiregular
mapping( so the critical points are isolated, unless w is constant) and u
is C* in {Vu # 0} (see [BI], [IM]). Lindqvist and Manfredi have recently
proven that in the plane p-harmonicity is equivalent to the asymptotic mean
value property( in classical sense) for a certain range of p’s. Hereafter we
denote by D(x,r) the open disc of center z and radius 7.

Theorem. ([L.M]) Let Q C R? be a domain and let 1 < p < pg = 9.52....
Then u € C(2) N I/Vllg’f(Q) is p-harmonic in € if and only if the asymptotic
expansion

4

p—2 1 . 9
ulx) =—— = sup v+ inf w)+ —— u(y)dy + o(r 1.5
( ) P+ 2 2 (D(mg) D(z,r) > p+ 2 D(z,r) (y) Y ( ) ( )

holds at each x € €2, as r — 0.



Our main result is an extension of Lindqvist and Manfredi’s theorem to
the whole range of p’s.

Theorem 1. Let Q C R? be a domain and let 1 < p < co. Then u €
cQ)n VV;}’?(Q) is p-harmonic in  if and only if the asymptotic expansion

(1.5) holds at each x € Q, as r — 0.

It is enough to prove that a p-harmonic function satisfies (1.5) at a critical
point. Indeed, by the previous comments, continous functions satisfying
(1.5) are p-harmonic and, on the other hand, p-harmonic functions satisfy
(1.5) at noncritical points. Therefore we will focus on the local behavior of
a p-harmonic function around a critical point of multiplicity n. As in [LLM],
the method exploits the power series expansion of the complex gradient in
the hodographic plane that was obtained in [IM].

2 The hodographic representation of u

Let u be a p-harmonic function with a critical point of multiplicity n at the
origin and let

ou(z) = %(uw — tuy)

be the complex gradient of u. We can represent du(z) = (x(z))" where x is
quasiconformal in a neighborhood of the origin and x(0) = 0 (see [BI]). In
the hodographic plane, £ = x(z), and, according to [[M], the inverse of x is

given by
o HE= Ak<5>k+em(§>k] <5>_n|£w (2.1)
2 1\ i) | \e

where Ay € C, Ajp41 # 0 and

> kAP < o0 (2.2)
k=n+1
Furthermore,
A +n—k 1
L v R S (VARG =1 +n2(p =2 —np) . (23)

From (2.3) it is easy to check that

k2 — n? k—n
0< A
<A < n ) |6k|<k3—|—’l’L

(2.4)

Equation (2.1) can be interpreted as the ”"hodographic representation”
of the point z = x + iy near the origin.



Therefore, if £ = re?, we can rewrite (2.1) as

where A o
oi(0) = Ape™® + e Ape k0

for each k =n+1,n+2,... We can split H(£) into its real and imaginary
parts, i.e., H(§) = 2(£) = £(£) + iy(E).

Lets denote by @ the hodographic representation of u, i.e.,
u(§) = (uo H)(E). (2.6)
Moreover, we can easily write du(z) in terms of &:
du(z) = Ou(H(£)) = &"

0

)

Uy = 21" cos(nd)
uy = —2r" sin(no)

or, equivalently, if & = re

(2.7)

Proposition 2.1. Let u be a p-harmonic function with a critical point of
order n at z = 0. Then the hodographic representation @ has the following
power series expansion in a neighborhood of £ = 0:

00 k
W(E) = u(0) +4 Y €T Re {Ak (%) }

k=n+1
#
Ak%—n—kk‘
Proof. Using (2.7), we compute ,:

where pu = Moreover, 0 < pp <1 — 7.

Uy = (uo H), = uzZy + uyfy = 2r" [T, cos(nh) — g, sin(nb)]

the expression in brackets being equal to JRe {emGHr}. Replacing (2.5) in
the previous equation we get

o
U, = 2r"Re {emeHr} =4 Z M (1 + e)rm A IoRe {Akeike} ‘
k=n+1
Integrate with respect to r to complete the proof. The bound on iy, follows
from (2.4). 0

Remark. From now on, we can assume without loss of generality that

u(0) = 0.



3 Quantitative injectivity estimates for the first
term of H

We define the mapping A(&) as the first term in the power series expansion

of H:
¢ n+1 <E>n+1 <§>_n .
Aﬂ Tl n Aﬂ Tel Tl e .
(i) et (i g) KB

We define i~1(§) to be the first term in the power series expansion of ,

~ 5 n+1
(€)= g €M Re {AnJrl <m> } . (3.2)

For simplicity, we will use hereafter the notations a < b ( resp. a ~ b)
to indicate that a < Cb (resp. Cla<b< Ca) for some positive constant
C independent of a and b.

A(§) =

Lemma 3.1. The following estimates hold in a neighborhood of & = 0:

i) - fe)| s len (3.3)
H(E = A©) S [¢ (3.4)
AOI = HE ~ [¢*+ (3.5)

Proof. From (2.2), ( 2.4) and the fact that 0 < i < 1 we get in particular
that the sequence (Ay) is bounded and that |e;| < 1 for all k. Since (\g) is
increasing, (3.3), (3.4) and (3.5) follow from the estimate

[e o]

D> lgM = o(lgP) (3.6)

k=n+2

Now an elementary computation shows that there is C = C(p) > 0 such
that Ay — A2 > C(k — (n 4+ 2)) for all £ > n + 2.This implies (3.6) and
proves the lemma. O

Now, we study the behavior of A and we give an injectivity estimate.
For this purpose, we will need the help of the following elementary lemma
whose proof is omitted.

Lemma 3.2. Let p >0, A\ >0 and t € R. Then for all k € N,
‘peikt—l‘ §k|peit—1|. (3.7)

Furthermore, if A > 1 and if A= < p < A then there is a constant C =
C(A\,A) > 0 such that

‘p)‘eit - 1‘ > Cpr! ‘peit - 1‘ . (3.8)



Lemma 3.3. The mapping A : C — C is bijective and satisfies
[A©) = A = C gl Th e~ ¢ ¢ (3.9)

where C = (1 — (2n + 1) [ent1]) | An+1]-

Proof. First, we observe that from (2.4) for k = n + 1 we obtain that 0 <

1
Ant1 < 24 — and that
n
1
2n+1

We show first that A is surjective. We write A = A\,11, € = €,41 and
A= Ap+1. Then

lens1] < (3.10)

A(Tew) — it (A + 6Ze—i2(n+1)9)
Assume, for simplicity, that A = 1. Then we can write
A(mw) _ T‘)\|1 + 667i2(n+1)9|eif(9)

where f(6) = 0 + arg(1 + ee*i2(”+1)9) and

m(0) = |1+ ee 200 — /T 4 22 4 2c cos(2(n + 1)6). (3.11)

To prove that A is surjective, let w = se € C such that w # 0 (if
w = 0 it is obvious that A(0) = 0). Since f(0) = 0 and f(27) = 27, by
continuity we can pick k € Z and 0 € [0, 27] such that t + 2kn € [0,27] and
f(0) =t + 2km. Then /) = ¢, For that 6, choose r > 0 so that

m(f) = s

Then we have shown that A(re?) = w so the surjectiveness of A follows.
To finish the proof of the lemma, it is enough to prove (3.9), which is a
quantitative form of injectiveness. By (3.1),

[AE) = AQ] > [Ani] W%_W% _
E 2n+1 z 2n+1
- ’ <—> — ¢ <—> 3.12
Al el |l (& P (s) e
Now appl i _§)\ i _ 8/¢ . )
pply (3.7) with p = | e’ = i€ /C] and k = 2n + 1, and multiply

both sides of the inequality by | ]A. Then
|£|)\ <£>2n+1 B |<|)\ <£>2n+1 i
i <]

J— >\_

<

< (@n+1) \m*



Replacing this expression in (3.12) we obtain

£ <
€] <

so the proof is finished. O

JAE) = A = A ] (1= @2n + 1) [e]) |6 = — [¢*

Lemma 3.4. Let A > 1. Then there is a constant C = C(n,p, A, |Apt1]) >
0 such that for any €, ¢ € C with A= |¢| < |€] < A[¢] we have

[A©) = A = Cle™ I~ ¢l (3.13)
Proof. Apply (: i - § it _ £/¢ . A
. Apply (3.8) with p = c and e = €/ and multilply by |¢|” to
obtain ¢ ¢
A P = > ol e - 3.14
P & - 1P 5| = clertle - (3.14)
Then the lemma follows from (3.9) together with (3.14). O

4 The perturbation method

Given ¢ in the hodographic plane, set z = H(¢), ( = A™1(2) and w = H(().
Then
E=x(2), (=x(w)=A"(H()

Since |z] = |A(()] = |H(¢)| = |w| by (3.5) it follows from quasiconfor-
2

mality ([A]) that [£] = [x(2)| = [x(w)| = [¢|. We recall that u(z) = (iox)(z)
and that 4l is given by (3.2). Following [L.M], define the functions
U(z) = (Ho A7) (2) (4.1)

Lemma 4.1. Let A > 1. There is a constant C = C(n,p, A, |An41]) > 0
such that for any &, ¢ € C with A=1|¢| < €] < A[¢| then

66 - Q)| < ClerA©) - AQ). (4:2)

Proof. From (3.2), the fact that 0 < pg < 1if £ > n and direct computation
it follows that

6©) - G| < Clanpl e g - ¢ (4.3)

where C'= C(n,A) > 0. Then the conclusion follows from Lemma 3.4.
O



Corollary 4.1. Let & and ¢ be as in the beginning of the section. Then the
following estimate holds in a neighborhood of & = 0:

e - §(Q)| 5 Jgm e (4.4)
Proof. Use the fact that || ~ |(|, Lemma 4.1 and estimate (3.4). O

Now we are ready to prove the following singular expansion of a p-
harmonic function.

Proposition 4.1. Let u be a p-harmonic function with a singularity of order
n at z =0 and u(0) = 0. Then u can be written as

”+>‘n+2

u(z) = U(z) + O(|z] 1)

in a neighborhood of z = 0.

Proof. By (2.6) and (4.1) we can write

u(2) = U(z) = a(§) = U(Q) = (&) = U(Q) + a(¢) — ().
By (3.3), (3.5) and Corollary 4.1 we get

"+/\n+2 ”+>‘n+2

[u(z) = $4(2)| S [€["2 = |H(E)| Tt = [2] P (4.5)

so the proof is finished.
O

5 Proof of Theorem 1

As before, we will write A and ¢ instead of \,11 and €,41, respectively. We
can assume without loss of generality that 4,11 = 1. Then

A(rei®) = phe=ind (in 10 | oo=iln+1)0)
and |A(re)| = r*m(0), where m(6) is given by (3.11). Furthermore
U(re) = 4pr™ A cos((n + 1)6).
where (= fpy1.

Denote by Dr = D(0, R) the open disc centered at 0 with radius R > 0
and define the "hodographic disc” Dg as A~'(Dg). Then, a point re of
the hodographic plane belongs to Dy if and only if ‘.A(Tew){ < R. Then,

Dpg can be described , in polar coordinates, as

/ﬁ};:{mw : 7n<<%>l/)\}

8



Now we define the function J(() as the absolute value of the jacobian of
A(¢). Computing J({) in polar coordinates we get
J(re?) = Ar*AD (1 — (2n + 1)e% — 2necos(2(n +1)0)),  (5.1)

(Observe that, since |e| < (2n + 1), the expression in the right hand side
of (5.1) is positive).

Lemma 5.1. The p-harmonic function U(z) given by (4.1) satisfies the
following properties, for small enough R > 0:

sup i + inf 4 = 0, (5.2)
Dgr Dpg
U=0. (5.3)
Dpg

Proof. By (4.1), we need to study the behavior of ${(¢) in Dp. Then, (5.2) is
a direct consequence of the symmetries of Dg. To show (5.3), observe that,
by change of variables

U(z)dz = [ ()T (C)d¢ (5.4)

Dgr Dpg

and using polar coordinates in (5.4) we get

2r  rr(0)
U(z)dz = 4;M/ / 3L cos((n + 1)6)5(6)drdd (5.5)
Dr 0 0

where

R \U/X 9
r(f) = (W) , j(0)=1—(2n+1)e* — 2necos(2(n + 1)6)
and m(@) is given by (3.11). Now (5.3) follows directly from (5.5) and the
symmetry properties of m(#) and j(6).
U

Lemma 5.2. The inequality

L)‘""‘Q > 92 (5.6)
An+1

holds for each 1 < p < oo and each n > 1.

Proof. From (2.3) and some computation it follows that inequality (5.6) is
equivalent to

n(p+2)v/n2p? + 16(n + 1)(p — 1) > n*p*+(—2n>+8n)p—(2n*+8n). (5.7)



Now we distinguish two cases. If n =1 then (5.7) becomes

(p+2)v/p?+32(p — 1) > p* + 6p — 10. (5.8)

If the right hand is negative then the inequality follows. Otherwise, squaring
the previous inequality we get

2p° + Tp> + 10p — 19 > 0.

which holds for each p > 1 since the left-hand side is increasing in p and
vanishes for p = 1. This proves (5.7) when n = 1.

Now assume n > 2 and observe that \/n2p2 + 16(n + 1)(p — 1) > np for
each p > 1. Then (5.7) would follow if:

n?p(p +2) > n?p? + (—=2n2 + 8n)p — (2n% + 8n),

which is equivalent to
2n—4)p+n+4>0,

and holds trivially if n > 2. This finishes the proof of the lemma.
O

Proof of Theorem 1. As stated at the introduction, we only need to prove
that planar p -harmonic functions satisfy (1.5) since the converse is well
known. We also discussed there that (1.5) need only to be checked at a
critical point. Therefore, we can assume that x = 0, ©(0) = 0 and that 0 is
a critical point of wu.

Let r > 0 be small enough. By Proposition 4.1 and Lemma 5.1,

n+An42
/ u=0(r *+1 ). (5.9)
D(0,r)

and

1 ” ntAnd2
— — n+1
5 <Ds(1(1]3) u+ Dl(%,r) u) O(r *nt1 ). (5.10)

Finally, combine (5.9), (5.10) and divide by 72 to obtain that for any o € R
ntAn42

17 1 1 PRt
alot g e gt W ra-af ] =0T

By 5.2 the exponent of r in the right-hand side is strictly positive. There-
fore, taking limits as r — 0, we show that (1.5) holds at the origin and we
conclude the proof. O

Remark. The proof actually shows that if x is a critical point of the p-
harmonic function u then (1.5) still holds at x if the coefficients (p—2)/(p+2)
and 4/(p + 2) are replaced by «a and 1 — « for arbitrary a.

10
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