
 

Applying Deep Learning for Phase-Array Antenna Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peng  Zhang 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the  

Degree of Master of Engineering in Electrical Engineering 

Prince of Songkla University 

2022 

Copyright of Prince of Songkla University



i 

 

Applying Deep Learning for Phase-Array Antenna Design 

 

 

 

 

 

 

 

 

 

 

 

 

 

Peng  Zhang 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Thesis Submitted in Partial Fulfillment of the Requirements for the  

Degree of Master of Engineering in Electrical Engineering 

Prince of Songkla University 

2022 

Copyright of Prince of Songkla University



ii 

Thesis Title   Applying Deep Learning for Phase-Array Antenna Design 

Author     Mr. Peng Zhang 

Major Program Electrical Engineering 

Major Advisor  Examining Committee: 

……………………………………… ….…………………..……Chairperson 

(Assoc. Prof. Dr. Mitchai Chongcheawchamnan) (Assoc. Prof. Dr. Nutapong Somjit) 

………………………………Committee 

(Assoc. Prof. Dr. Mitchai Chongcheawchamnan) 

………………………………Committee 

(Dr. Kiattisak Wongsophanakul) 

The Graduate School, Prince of Songkla University, has approved this 

thesis as partial fulfillment of the requirements for the Master of Engineering Degree 

in Electrical Engineering. 

………………………………………… 

(Prof. Dr.Damrongsak Faroongsarng) 

Dean of Graduate School 



iii 

This is to certify that the work here submitted is the result of the candidate’s own 

investigations. Due acknowledgement has been made of any assistance received. 

 

 

 

 

     ……………………….……….Signature 

(Assoc. Prof. Dr. MitchaiChongcheawchamnan) 

Major Advisor 

 

 

 

 

      ………………………………. Signature 

(Mr. Peng Zhang) 

Candidate 

 

 

http://dict.longdo.com/search/signature


iv 

I hereby certify that this work has not been accepted in substance for any degree, and 

is not being currently submitted in candidature for any degree. 

 

 

 

 

      ………………………………. Signature 

(Mr. Peng Zhang) 

Candidate 

 

 



v 

Thesis Title         Applying Deep Learning for Phase-Array Antenna Design 

Author             Mr. Peng Zhang 

Major Program     Electrical Engineering 

Academic Year     2021 

 

ABSTRACT 

 

Hybrid beamforming (HBF) can provide rapid data transmission rates 

while reducing the complexity and cost of massive multiple-input multiple-output 

(MIMO) systems. However, channel state information (CSI) is imperfect in realistic 

downlink channels, introducing challenges to hybrid beamforming (HBF) design. For 

HBF designs, we had a hard time finding the proper labels. If we use the optimized 

output based on the traditional algorithm as the label, the neural network can only be 

trained to approximate the traditional algorithm, but not better than the traditional 

algorithm. This thesis proposes a hybrid beamforming neural network based on 

unsupervised deep learning (USDNN) to prevent the labeling overhead of supervised 

learning and improve the achievable sum rate based on imperfect CSI. Compared with 

the traditional HBF method, the unsupervised learning-based method can avoid the 

labeling overhead as well as obtain better performance than the traditional algorithm. 

The network consists of 5 dense layers, 4 batch normalization (BN) layers and 5 

activation functions. After training, the optimized beamformer can be obtained, and the 

optimized beamforming vector can be directly output. The simulation results show that 

our proposed method is 74% better than manifold optimization (MO) and 120% better 

than orthogonal match pursuit (OMP) systems. Furthermore, our proposed USDNN can 

achieve near-optimal performance. 

 

Keywords: Deep learning, Hybrid beamforming, massive MIMO, unsupervised deep 

learning. 
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Chapter 1 Introduction 

Hybrid beamforming (HBF) technology is a promising solution for mm-

Wave multiple-input multiple-output (MIMO) systems to support ultra-high 

transmission capacity and low complexity. HBF provides a better solution than digital 

and analog beamformers (ABF and DBF) which struggles with non-convex 

optimization problem in multi-user scenarios. For the optimization of HBF, the hardest 

part is that the constant modulus constraint of the analog beamformer due to the phase 

shifter makes the problem highly non-convex and difficult to solve. Deep learning (DL) 

has proven to be an excellent tool for dealing with complex non-convex optimization 

problems. Its unique network structure can approximate any function under specific 

conditions. Using DL to solve the optimization problem of beamforming design can 

eliminate the complexity caused by too many iterations and realize real-time calculation. 

However, the method proposed by the researchers to train the neural network with the 

beamforming matrix obtained by the traditional scheme as the label, its performance is 

limited by the traditional scheme. It does not make full use of the powerful 

approximation ability of the neural network. For the existing one-to-one neural network 

beamforming system, in practical applications, when there are multiple users at the 

receiving end if a one-to-one communication system and method are adopted, it is 

necessary to establish multiple systems and separate training coefficients, which will 

result in wasted resources and increased costs. And for realistic downlink channels, the 

channel state information (CSI) is imperfect, which greatly increases the difficulty of 

HBF design. Therefore, we propose a multi-user hybrid beam neural network based on 

unsupervised deep learning (USDNN) to maximize the hardware limitations and 

imperfect CSI to improve the reachable sum rate. 

1.1 Background 

Antennas are an essential part of mobile communication systems. With 

the development of mobile communication technology, antenna structures are 

becoming more and more diverse, and the technology is becoming more and more 

complex [1]. Entering the 5G era and beyond, massive MIMO, beamforming (BF), etc., 

have become vital technologies, prompting the antenna to evolve towards an active and 

complex direction. The antenna design method also needs to keep pace with the times, 



2 

using advanced simulation methods to deal with complex design requirements and meet 

the ever-increasing performance requirements of antennas in the 5G era [2]. In addition, 

5G networks need to adapt to scenarios such as large bandwidth, high reliability, low 

latency, and large connections. This requires 5G antennas to support more channels, 

flexible and real-time beam adjustment, and the ability to support high-frequency 

communication. 

The critical evolution direction is the Active Phased Array Antenna 

(APAA) [3]. "Phased Array" is an abbreviation for "Phase Controlled Array". The 

phased array antenna (PAA) is an antenna that changes the shape of the pattern by 

controlling the feeding phase of the radiating element in the array antenna. Controlling 

the phase can change the direction of the maximum value of the antenna pattern for 

beam scanning purposes. In exceptional cases, it is also possible to control the sidelobe 

level, the minimum position, and the overall pattern's shape [4]. When the antenna is 

rotated mechanically, there will be disadvantages such as large inertia and slow speed. 

The PAA overcomes these disadvantages. The scanning speed of the beam is high, and 

its feed phase is generally controlled by an electronic computer, and the phase changes 

quickly (milliseconds). That is, the antenna pattern changes rapidly in the direction of 

the maximum value or other parameters [5]. This is the most prominent feature of the 

PAA. 

Most PAAs designed over the past few years have used ABF technique, 

where phase adjustment is performed at radio frequency (RF) [6] or intermediate 

frequency (IF) [7] frequencies, and a set of data converters are employed throughout 

the antenna. However, recently there has been a growing interest in DBF technique. 

Each antenna element has a set of data converters, and the phase adjustment is made 

digitally in an Field Programmble Gate Array (FPGA) [8] or some data converter. DBF 

has many benefits, including transmitting multiple beams quickly and even changing 

the number of beams on the fly. This superior flexibility is attractive in many 

applications and is driving its popularity. In addition, continued improvements in data 

converters have reduced power consumption and extended to higher frequencies. RF 

sampling in the L-band and S-bands [9] has made this technology viable for radar 

systems. 
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There are many factors to consider when considering both ABF and 

DBF options, but the analysis usually depends on the number of beams required, power 

consumption, and cost goals. The DBF [10] method typically have high power 

consumption with one data converter per element but are incredibly flexible and 

convenient in forming multiple beams. However, data converters require a higher 

dynamic range since blocking-rejecting beamforming can only be done after 

digitization. On the other hand, ABF [11] can support numerous beams, but each beam 

requires an additional phase adjustment channel. For example, to form a 100-beam 

system, the number of RF phase shifters for a 1-beam system needs to be multiplied by 

100, so cost considerations for data converters and phase adjustment integrated circuits 

(ICs) may change depending on the number of beams. Similarly, power consumption is 

typically lower for ABF methods that utilize passive phase shifters. However, as the 

number of beams increases, power consumption increases if additional gain stages are 

required to drive the distribution network. 

A common trade-off is a hybrid analog and digital beamforming (HBF) 

approach [12] to achieve spectral efficiency maximum (SEM) [13] and increases the 

reachable sum rate. This is an increasingly hot industry area and will continue to grow 

in the years to come. 

1.2 Research motivation 

With the rapid rise of 5G millimeter-wave communications and 

broadband low-orbit satellite communications, millimeter-wave APAAs have begun an 

unprecedented development. The core of signal processing is BF [14]. Recently, HBF 

designs have received much attention for their ability to provide high BF gain to 

compensate for severe path loss at affordable hardware cost and power consumption 

[15]. However, CSI [16] is critical and practical data describing the channel in wireless 

communication. In wireless communication, the CSI represents the propagation 

characteristics of the communication link, which describes the joint influence of various 

effects such as scattering, fading, power attenuation, etc., in the channel. Hence, CSI is 

usually imperfect in practical applications. This makes HBF designs more challenging. 

Machine learning (ML) [17] solves the problem of how to build 

computers that automatically improve through experience. It is one of the fastest-

growing technology fields today, at the intersection of computer science and statistics 
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and the heart of artificial intelligence and data science. Entering the 5G era, 5G ultra-

high throughput and low latency requirements can be met by ML technology. 

Furthermore, intelligent base stations and mobile terminals must mimic complex 

human-like learning and decision-making capabilities. Among them, DL [18] is a new 

research direction in ML, which is introduced into ML to make it closer to the original 

goal - artificial intelligence. Recent research on intelligent communication shows that 

data-based DL methods have great potential in solving traditionally challenging 

problems [19]–[23].  

DL also known as deep neural network technology, consists of simple 

linear and nonlinear operations. Its unique network structure can approximate arbitrary 

functions under certain conditions. Therefore, using DL to solve optimization problems 

such as power allocation and BF design can eliminate the complexity caused by too 

many iterations and realize real-time calculation. Inspired by these works, this research 

aims to apply DL methods to solve complex HBF design problems with hardware 

limitations in imperfect CSI scenario. 

1.3 Research purpose 

It is well known that HBF design is a rather complex non-convex 

problem due to joint optimization of multiple variables and constant modulus 

constraints (CMC) (i.e. phase shifters) [24], and it is unlikely to find a closed-form 

optimal solution. However, since DL has been recognized as an efficient way to deal 

with intractable problems, DL can be used to solve HBF optimization problems. The 

issues to be solved are as follows: 

1. Design a system model of a phased-array-based hybrid digital and 

analog beamforming transceiver. 

1.1 Active phased array design. 

1.2 Hybrid precoder design. 

2. A neural network is designed to optimize the beamformer to 

maximize the achievable sum-rate with limited hardware and 

imperfect CSI. 

2.1 The structure of each layer of the DNN network is analyzed, and 

the function of each layer of the network is explained. 

2.2 Acquire the dataset through the simulated channel. 
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2.3 Set the parameters of the DNN network. 

2.4 Train the DNN model with the dataset. 

2.5 Verify the performance of the DNN model. 

1.4 The importances of research 

As an essential part of mobile communication, the research and design 

of antennas play a vital role in mobile communication. Entering the 5G era and beyond, 

applications will be significantly enriched. 5G networks need to adapt to scenarios such 

as large bandwidth, high reliability, low latency, and large connections, which require 

5G antennas to support more channels, flexible real-time beam adjustment, and support 

for high-frequency communication. Currently, MIMO antenna configurations are 

mainly relied on to multiply the capacity of wireless base station antenna links [12]. 

These antennas can concentrate signal strength into a small spatial area, increasing 

overall efficiency and throughput by directing the signal exactly where it is needed. 

This BF capability can be increased by adding additional antennas. 

In the 4G system, DBF is often used due to the small number of antennas. 

The advantage of this process is that the amplitude and phase of the signal can be 

adjusted arbitrarily, approaching infinite precision, and in the Orthogonal Frequency 

Division Multiplexing (OFDM) [19] system, different beamforming can be done for 

different subcarriers. However, this also means that each antenna needs to be equipped 

with an independent RF chain, including expensive digital-to-analog/analog-to-digital 

converters, etc., which also brings high energy and hardware expenses, which increase 

proportionally with the number of antennas. The advantage of the APAA is that it uses 

the microwave integration method to integrate chips such as phase shifters, filters, 

attenuators, power amplifiers, and low-noise amplifiers in the chip, which realizes the 

miniaturization and lightness of the equipment. High pointing accuracy and certain 

beam sidelobe suppression capability [3]. 

Moreover, the APAA has no moving parts and has excellent reliability. 

Therefore, even if a few antenna elements in the array fail, the overall performance of 

the antenna will not be affected [4]. In this experiment, the original DBF is divided into 

two parts. One part is realized by low-dimensional DBF. The other is realized by high-

dimensional ABF, reducing the number of RF links and significantly reducing the 

Propagation power consumption and hardware cost. Moreover, most BF algorithms 
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invented before 5G era cannot be copied to the HBF structure due to hardware 

constraints. Therefore, this experiment will lay the foundation for the future HBF 

design of PAAs. 

1.5 Research limitations 

In HBF, in addition to the difficulty of joint optimization of the four BF 

variables (transmitting and receiving analog beamformers and digital beamformers), 

the constant modulus constraints of the ABFs due to the phase shifters make this 

problem highly non-convex and difficult to solve compared to traditional full DBF 

designs. Model-based design methods are used in the existing work to deal with this 

difficulty, and an algorithm based on orthogonal matching pursuit (OMP) is proposed 

[25]. However, ABFs are limited to predefined codebooks. To improve the performance 

of OMP, [26], [27] applied Manifold Optimization (MO) method to the optimization of 

simulated BF. Finally, a unitized iterative algorithm is proposed to optimize ABFs. 

However, these algorithms either require some approximation to simplify the original 

objective function or require a lot of time-consuming serial iterations to arrive at a 

solution. And in all these algorithms, it is assumed that there is perfect CSI, and there 

is a certain gap with reality. 

1.6 Thesis structure 

This study mainly introduces the optimization problem of applying DL 

to HBF. The first chapter introduces the study's background, motivation, purpose, 

importance, and limitations. Chapter 2 reviews some previous BF design methods. 

Chapter 3 introduces the HBF technique and the system model based on PAA. Chapter 

4 introduces the channel model and gives a description of the neural network model 

based on unsupervised learning. Chapter 5 presents simulation results to evaluate the 

method's performance and compare it with existing methods. Finally, chapter 6 is 

mainly a summary and outlook. 
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Chapter 2 Literature Review 

2.1 Deep learning for wireless communication 

This paper discusses emerging DL techniques in future wireless 

communication networks. It will show that data-driven approaches should not replace 

but complement traditional design techniques based on mathematical models. A broad 

motivation for why artificial neural network-based DL will be an indispensable tool for 

future wireless communication network design and operation is given. Then, their 

vision for how artificial neural networks can be integrated into future wireless 

communication network architectures is presented. A comprehensive description of DL 

methods is provided, starting with the general ML paradigm, and then a more in-depth 

discussion of DL and artificial neural networks, covering the most widely used artificial 

neural network architectures and their training methods. DL will also be linked to other 

major learning frameworks such as reinforcement learning and transfer learning. Next, 

a comprehensive survey of the DL literatures for wireless communication networks is 

provided, followed by a detailed description of several novel case studies in which the 

use of DL proves to be very useful for network design. Each case study will show how 

the use of (even approximate) mathematical models can significantly reduce the amount 

of real-time data that needs to be acquired/measured to implement a data-driven 

approach. Finally, concluding remarks describe what they see as the main directions for 

future research in this field [28]. 

Wireless communication is expected to bring about huge changes in the 

future, and various emerging applications such as virtual reality and the Internet of 

Things (IoTs) will become a reality. However, these compelling applications bring 

many new challenges, including unknown channel models, low latency requirements 

in large-scale ultra-dense networks, etc. The astonishing success of DL in various fields, 

especially in wireless communications, has recently sparked interest in applying it to 

address these challenges. Therefore, in this review, some practical approaches to 

wireless communication using DL are investigated. The first is a DL-based architecture 

design that breaks the classic model-based block design rules for wireless 

communications over the past few decades. The second, DL-based algorithm design, 

will be illustrated by a few examples in a range of typical technologies envisioned for 
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5G and beyond. Their rationale, key features, and performance improvements will be 

discussed. Open questions and future research opportunities will also be pointed out, 

highlighting the interplay between DL and wireless communications. The author hopes 

that this review will inspire more novel ideas and exciting contributions to intelligent 

wireless communication. 

DL, mainly implemented through Deep Neural Networks (DNN), has 

achieved remarkable success and excellent results in various fields such as image 

recognition, Chinese Go, and other complex games. These successful applications have 

stimulated increasing interest in the application of DL in wireless communications. 

Specifically, DL is a powerful tool capable of learning the intricate interrelationships 

between variables, especially those difficult to describe using mathematical models 

accurately. This enables one to design wireless communication systems without 

knowing precise mathematical models, which is not possible in the context of existing 

wireless design principles. Furthermore, for a family of lightweight DNNs of limited 

size, passing inputs through them requires only a limited number of operations, making 

DL methods computationally efficient. Even for the highly complex DNNs that may be 

necessary to solve large-scale communication problems, distributed parallel 

architectures and accelerated tools for DL promise high computational efficiency. 

Therefore, DNNs are attractive for solving large-scale wireless problems associated 

with numerous antennas/users/devices [29]. 

Inspired by the above literature, DL has been widely used in wireless 

communications. For example, state-of-the-art techniques for physical layer 

communication utilizing DL are summarized in [21]. Furthermore, [30] and [31] 

comprehensively investigate the application of DL in designing IoT and 5G cellular 

networks at various layers of the protocol stack, respectively. Compared with the 

conclusions of the above-related literature, we can apply DL technology to wireless 

communication more profoundly and comprehensively by introducing some design 

methods, namely DL-based architecture design and DL-based algorithm design. 

2.2 Beamforming design based on deep learning 

Although antenna selection has been extensively studied, most works 

provide sub-optimal solutions with different selection strategies. However, obtaining 

the best solution requires a high computational burden. In this paper, the author 
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considers the joint antenna selection and HBF design issues in a DL environment to 

reduce computational complexity while maintaining optimality. They designed a CNN 

in which antenna selection and HBF design can be performed together. To realize the 

antenna selection in DL, this problem is regarded as a classification problem, which 

considers the multilayer classification of CNN. They will also solve the HBF design 

problem in the classification framework. They evaluated the performance of the 

proposed method through numerical simulations and showed that their CNN framework 

provides significantly better performance than traditional techniques such as orthogonal 

matching pursuit [32]. 

BF is considered to be one of the essential technologies for designing 

advanced MIMO systems. In the existing design standards, sum-rate maximization 

(SRM) under a total power constraint is a challenge due to its nonconvexity. The current 

SRM problem technology can only obtain an optimal local solution, but many 

calculations are required due to its complex matrix operations and iterations. Unlike 

conventional methods, they proposed a fast BF design method based on DL, which does 

not require complicated operations and iterations. Specifically, the first derived 

heuristic solution structure of downlink BF based on the best minimum mean square 

error (MMSE) receiver through the virtual equivalent uplink channel, which divided 

the problem into power allocation and virtual uplink beamforming (VUBF) design. 

Next, the BF prediction network (BP-Net) is designed to perform joint optimization of 

power allocation and VUBF design. Besides, BP-Net uses a two-step training strategy 

for offline training. The simulation results show that their proposed method is fast and 

can obtain performance comparable to the latest method [33]. 

After reviewing several research documents, I summarized some current 

HBF design methods based on ML and DL, as shown in Table 1-1. They designed and 

optimized different neural networks, thereby reducing the number of iterations and 

propagation power consumption. However, most of the research is based on perfect CSI 

scenario. Because perfect CSI can reduce training overhead and the complexity of beam 

training, it is however well known that CSI is imperfect in practical applications. So we 

need to consider how to design a HBF system based on DL in the case of imperfect CSI 

scenario.  
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Different ML and DL algorithms are applied for beamforming 

optimization (CNN: Convolutional Neural Network; DNN: Deep Neural Network; 

BFNN: Beamforming Neural Network; BPNet: Beamforming Prediction Network; 

SVM: Support Vector Machine) 

 

Table 2-1  HBF design method based on ML and DL. 

Imperfect CSI T. Lin, [15] BFNN 

L. Sung, [34] DNN 

Perfect CSI A. Alkhateeb, [32] DL 

H. Huang, [33] BPNet 

A. M. Elbir, [35] CNN 

H. Huang, [36] DNN 

J. Chen, [37] ML 

Y. Long, [38] SVM 

 

DL-based algorithms can learn how to optimize the beamformer through 

training, thereby improving the performance of the HBF system. Besides, these 

algorithms have strong robustness and can handle imperfect CSI, and are expected to 

be applied in real situations. However, these algorithms also have shortcomings, 

because processing imperfect CSI requires sufficient beam training, which will cause a 

lot of training overhead. Also, some algorithms under the assumption of perfect CSI 

scenario can get rid of the complexity caused by excessive iteration and can improve 

system performance to a certain extent without incurring too much training overhead. 

However, we cannot ignore the impact of imperfect CSI in practical applications. 

Therefore, we can combine the advantages of these algorithms, continuously optimize 

the algorithm, and design new models to deal with imperfect CSI and reduce the 

complexity of beam training, maximize spectral efficiency, and achieve the optimal 

reachable sum rate. 

2.3 Hybrid beamforming design based on imperfect CSI 

Deploying multiple antennas at both the transmitter and receiver, MIMO, 

is undoubtedly a major advancement in wireless communication systems. However, an 

implementation of a millimeter-wave massive MIMO system faces many technical 
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difficulties, and it is still very challenging so far. In this paper, the design of hybrid 

beamformers for uplink connections in massive MIMO systems with imperfect CSI is 

investigated in both single-user (SU) and multi-user (MU) cases. The norm-limited 

channel error model is used to capture the characteristics of imperfect CSI in the 

existing system. The objective function is based on the worst-case robustness of the 

MMSE. Consider the SU and MU reception modes of the millimeter-wave massive-

MIMO base station. A hierarchical BF optimization and joint precoder/combiner 

optimization for users with limited and extended computing power for the SU scenario 

was studied. These optimization techniques were subsequently extended to the MU case, 

in which a new hybrid robust combiner design was proposed. The proposed simulation 

results confirm the design superiority as compared with the latest robust hybrid design 

published in the literature [16]. 

To support two-way communication, a two-way relay method (two-way 

communication) between two users (transceivers) has received a lot of attention 

recently. As an extension of the one-way relay solution, the two-way relay solution can 

be designed to avoid simultaneous transmission from two users. However, this method 

is not bandwidth efficient because it requires four-time slots to complete the data 

exchange between two users. Most of the current work is limited to the ideal network 

assumption without interference. However, interference is the main limiting factor, 

especially it is complicated to obtain the perfect CSI of the interfering link, and these 

problems will seriously affect the performance of the wireless network. 

A study of the optimal BF and power allocation problems of amplifying 

and forwarding-based two-way relay networks in the presence of interference and 

imperfect CSI. They also obtained the BF vector and the transmit power under the two 

assumptions of the CSI availability of the interfering link, namely the bounded 

uncertainty model and the second-order statistical scheme. To this end, the author has 

developed two design methods. The first method is based on the total transmit power 

minimization technique. They start with the uncertainty model with bounded norms and 

arrive at the optimal solution to the corresponding problem. They also developed a low-

complexity algorithm that provides performance very close to the best algorithm to 

reduce computational complexity. The second method applied a signal-to-interference 

plus noise ratio (SINR) balancing technique. They proposed another low-complexity 
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algorithm based on the SINR balance standard. Next, the author considers the 

availability of second-order statistical information on CSI. Similarly, they start with 

minimizing total power consumption and derive the best and sub-optimal algorithms. 

Finally, they applied SINR balancing technology to this situation and developed another 

low-complexity algorithm suitable for practice [39]. 

CSI is a very important and practical data describing the channel in 

wireless communication. However, the CSI obtained in practical applications is usually 

not perfect, making the HBF design more challenging. Having investigated several 

literatures, I found that the most commonly used solutions for imperfect CSI problems 

in HBF designs are based on formulating MSE, MMSE, and SINR, as shown in Table 

2-2.  

 

Table 2-2  Different ways to solve imperfect CSI. 

A. Morsali, [16] MMSE 

S. Salari, [39] SINR 

J. Wang, [40] MMSE 

M. B. Shenouda, [41] MSE 

N. Vucic, [42] MSE 

 

Note: MSE: mean square error; MMSE: minimum mean square error; 

SINR: signal to interference plus noise ratio. 
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Chapter 3 Research on Beamforming of Phase Array 

Antenna 

This chapter presents three different BF techniques and system models 

based on PAA. 5G and beyong, low-earth orbit satellite commuication and modern 

radar systems highly demand low-cost and small antenna architectures which consume 

less power. In addition to these requirements, rapid retargeting against new threats or 

new users is required, multiple data streams are transmitted, and operating life is 

extended at an ultra-low-cost. Some applications need to counteract the effect of 

incoming blocking signals to reduce the probability of interception. PAA whichs offers 

beam steeering function without a mechanical motor enable many new applications. 

They have been gained much interest from the industry as the promising solutions to 

these challenges. The past shortcomings of PAAs are being addressed with advanced 

semiconductor technology to ultimately reduce the size, weight, and power of these 

solutions. 

3.1 Development of phased array antennas 

Radio subsystems that rely on antennas to send and receive signals have 

operated for over 100 years. These electronic systems will continue to improve and 

refine as accuracy, efficiency, and more advanced metrics become more important. Dish 

antennas have been widely used for transmitting (Tx) and receiving (Rx) signals over 

the past few years, where directivity is critical, and after years of optimization, many 

of these systems can perform well at a relatively low-cost run. These dishes have a 

robotic arm that rotates the radiation direction, and they do have some drawbacks, 

including slow steering, large physical size, poor long-term reliability, and only one 

radiation pattern or data stream that meets the requirements. As a result, people have 

turned to advanced PAA technology to improve these characteristics and add new 

capabilities. PAAs use an electronic steering mechanism, which has many advantages 

over traditional mechanical steering antennas, such as low height/small size, better 

long-term reliability, fast steering, and beam flexibility. With these advantages, PAAs 

are already widely used in military applications, satellite communications, and 5G 

telecommunications including the Internet of Vehicles. 
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Compared with traditional MIMO, massive MIMO can effectively 

improve the performance of the core is based on phased array technology. The so-called 

phased array refers to a type of array antenna that changes the direction of the 

directional beam by controlling the feeding phase of the radiating element in the array 

antenna. The main purpose of the phased array is to realize the spatial scanning of the 

array beam, that is, the so-called electrical scanning. In the early days, phased arrays 

were mainly used in military applications - phased array radars. Due to its fast scanning 

speed and strong multi-task capability, phased array radar has been widely used in the 

field of military radar and has become one of the symbols of military strength. In 

addition, phased array technology is also widely used in civil fields such as 

meteorological forecasting. 

Looking back at the development history of mobile communications, it 

can also be seen from the evolution trend of base station antennas that phased array 

technology is an inevitable choice for improving system capacity and spectrum 

utilization, reducing interference and enhancing coverage in the 5G era. First of all, 

from passive antennas to active antenna systems, this means that antennas may be 

intelligent, miniaturized, and customized. In the future, the network will become more 

and more detailed, and it needs to be customized according to the surrounding scenes. 

For example, the deployment of stations in urban areas will be more refined, rather than 

simple coverage. 5G communication will use high-frequency bands, obstacles will have 

a great impact on communication, and customized antennas can provide better network 

quality. Second, the systematization and complexity of antenna design, such as beam 

arrays (to achieve space division multiplexing), multi-beam, and multi/high-frequency 

bands. All of these put forward high requirements for the antenna, which will involve 

the whole system and the problem of mutual compatibility. In this case, the antenna 

technology has surpassed the concept of components and gradually entered the system 

design. 

A PAA is a collection of antenna elements assembled together, where 

the radiation pattern of each element is structurally combined with the radiation patterns 

of adjacent antennas to form a main lobe which emits radiated energy at the desired 

location, while the antenna, by design, is responsible for destructively interfering with 

signals in unwanted directions, creating unwanted signals and side lobes. The antenna 
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array is designed to maximize the energy radiated from the main lobe while reducing 

the energy radiated from the side lobes to acceptable levels. The radiation direction can 

be manipulated by changing the phase of the signal fed to each antenna element.  

Figure 3-1 shows how the main lobe can be steered in the desired 

direction of the linear array by adjusting the phase of the signal in each antenna. As a 

result, each antenna in the array has independent phase and amplitude settings to form 

the desired radiation pattern. Since there are no mechanical moving parts, it is easy to 

understand the properties of fast beam steering in a phased array. Another advantage of 

PAAs over the mechanical antennas is that they can radiate multiple beams 

simultaneously, allowing them to track multiple targets or manage user data for multiple 

data streams. This is achieved by digital signal processing of multiple data streams at 

baseband frequencies. 

 

 

Figure 3-1  The basic theoretical block diagram of the phased array unit. 

 

3.2 Beamforming technology 

Beamforming is the combination of antenna technology and digital 

signal processing for directional signal transmission or reception. As early as the 1960s, 

the array signal processing technology using antenna diversity reception has been 

highly valued in electronic countermeasures, phased array radar, sonar and other 
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communication equipment. The DBF-based adaptive array jamming zeroing 

technology can improve the anti-jamming capability of the radar system and is a key 

technology that must be used in the new generation of military radars. The positioning 

communication system obtains the sound field information through the microphone 

array, uses the principles of BF and power spectrum estimation, processes the signal, 

and determines the direction of the incoming wave of the signal, so as to accurately 

orient the signal source. 

BF was derived from the adaptive antenna concept. The signal 

processing at the receiving end can form the desired ideal signal by weighting and 

synthesizing the signals received by the multi-antenna array elements. From the 

perspective of the antenna pattern, this is equivalent to forming a beam in a defined 

direction. For example, the previous omnidirectional receiving pattern is converted into 

a lobe pattern with zero and maximum pointing. The same principle applies to the 

transmitter. The amplitude and phase of the antenna element feed can be adjusted to 

form a pattern of the desired shape. If beamforming technology is to be used, the 

premise is that a multi-antenna system must be used. For example, MIMO, not only 

using multiple receive antennas, but also multiple transmit antennas. Since multiple 

groups of antennas are used, the wireless signals from the transmitter to the receiver 

correspond to the same spatial stream , including multiple paths. Using a certain 

algorithm at the receiving end to process the signals received by multiple antennas can 

significantly improve the signal-to-noise ratio of the receiving end. Even when the 

receiving end is far away, better signal quality can be obtained. MIMO can greatly 

improve network transmission rate, coverage and performance. When multiple 

independent spatial streams are simultaneously delivered based on MIMO, the 

throughput of the system can be multiplied. 

In BF, we have many wave sources (ie antenna arrays). By carefully 

controlling the relative phases and amplitudes between the waves emitted/received by 

the wave sources, it is possible to control the electromagnetic wave radiation/reception 

gains to be strong in one direction (i.e. reception The location where the 

receiver/transmitter is located) and null in other (that is, the interference to other 

receivers is reduced/the chance of being interfered by other transmitters is reduced).  
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We take the receiving antenna array as an example, as shown in Figure 

3-2. For electromagnetic waves traveling in the direction we want, the wavefront arrives 

at each antenna in the antenna array at a different time (phase). For each antenna, we 

adjust a specific phase delay to compensate the phase of the wavefront arriving at the 

antenna. Therefore, after the phase delay, we align the signals received by each antenna 

in phase, so that they are different from each other. The useful signal received by the 

antenna will become very large after summing. On the other hand, when the interfering 

signals propagating in other directions reach the antenna array, the delay corresponding 

to each antenna does not match the time difference between the signals arriving at the 

antennas, so the amplitude does not increase after the summation. In this way, the 

antenna array can equivalently implement a directional antenna using multiple common 

antennas with a specific delay. According to the principle of reciprocity of the antenna, 

the same architecture can also be used in the transmit antenna array to be equivalent to 

a highly directional antenna. In addition, the direction of the antenna radiation can be 

realized by changing the relative delay and amplitude between the wave sources, and 

the change of the relative position between the transmitting end and the receiving end 

can be easily tracked. 

 

Figure 3-2  The phase delay of the signal. 

BF is proposed to implement in mm-Wave applications such as 5G and 

beyond. The wavelength of the mm-Wave band is so small such that multiple antennas 

can be integrated into a mobile phone to realize BF in the mm-Wave band. BF and mm-



18 

Wave technology are a match made in heaven. The use of mm-Wave can bring greater 

bandwidth to signal transmission, and BF can solve the problem of spectrum utilization, 

making 5G communication even more powerful. 

3.3 Classification of beamforming techniques 

3.3.1 Digital beamforming 

DBF has multiple digital channels and realizes BF by adjusting the 

phase of each digital channel. Each antenna element is connected to an independent 

digital channel, and the DBF can generate multiple beams. Since the phase adjustment 

is directly achieved through the digital channel, this method is called DBF. DBF 

technology was originally used in the receiving system of phased array radar. It forms 

the main lobe in the desired direction to pass the useful signal and uses the side lobe to 

suppress the signal in the undesired direction, so as to achieve the purpose of spatial 

filtering. But because the array antenna has the reciprocity characteristic in the 

transmitting and receiving state, DBF can also be used in the transmitting system. The 

transmitting system of the digital array radar is also a multi-channel system. For one 

digital T/R channel, each antenna unit controls the array phase by changing the initial 

phase of the waveform generated by the direct digital synthesis (DDS) of each channel, 

so as to control the beam pointing purpose. The signal parameters (such as frequency, 

bandwidth, time width, frequency modulation form, etc.) of each channel are 

independently controllable, so the flexibility of BF is very good. 

For antenna arrays, DBF is the ultimate means to achieve optimal 

performance, which can generate multiple independently steerable beams with 

flexibility and high quality. For a sufficiently large array with RF chains per element, 

any number of beams can be generated by assigning different complex weights 

(amplitude & phase) to each element in the digital domain. More advanced DBF 

strategies employ algorithms such as eigen-beamforming to obtain optimal SINR. In 

the future wireless communication network, channel capacity, delay, data rate, 

communication security, etc. are the most challenging indicators, and full DBF is an 

effective means for large-scale arrays to overcome these challenges. 

Figure 3-3 shows a highly digitized transmitter BF network where each 

element in an antenna array is equipped with an RF transmit chain consisting of filters, 

local oscillator (LO), low noise amplifiers (LNA), power amplifier (PA), frequency 
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converter, analog-to-digital converter (ADC) and digital-to-analog converter (DAC). 

Based on this, each antenna element corresponds to a signal chain. However, this 

method is often very expensive in practical applications, and its cost is mainly reflected 

in computing resources and hardware devices such as RF devices, ADCs, DACs, and 

FPGAs. For most application scenarios, the cost of realizing all the functions required 

for ultra-high data rate communication systems through large all-digital arrays in the 

future is unacceptable. Not only that, under the existing device technology, this 

technology is still difficult to implement in many 5G base station antenna arrays. 

 

Digital

baseband

DAC

ADC

DAC

ADC

DAC

ADC

.

.

.

N

LNA

PA

Tx / Rx

Ant 1

Ant 2

Ant M

.

.

.

LO

LO: Local Oscillator; PA: Power Amplifier; LNA: Low Noise Amplifier.

N: Number of ADC and DAC combinations; M: Number of antennas.

N = M

 

Figure 3-3  DBF system architecture. 

 

3.3.2 Analog beamforming 

There is only one digital channel in ABF, and a power divider is used to 

divide one digital channel into multiple channels, and each channel is connected to an 

independent antenna through an analog phase shifter. BF is achieved by adjusting the 
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phase of each analog phase shifter. Since the phase adjustment is achieved by the analog 

phase shifter at the back end of the digital channel, this method is called ABF. 

In ABF technology, a single signal is amplified by analog phase shifters 

and directed to the desired receiver, and then fed to each antenna element in the antenna 

array. Among them, the amplitude/phase change is applied to the analog signal at the 

transmitting end, and the transmitting end sums the signals of different antennas and 

performs ADC. At present, ABF technology is the most cost-effective BF antenna array 

manufacturing technology, however, its disadvantage is that only one signal beam can 

be managed and generated. 
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Figure 3-4  ABF system architecture. 

 

Figure 3-4 shows that for ABF, one set of ADC\DACs is used for the 

entire array. This means that tuning the array with a simple software rewrite of all 

antenna elements is limited to what a single set of ADC\DACs can perform. This means 

that for the foreseeable future, HBF techniques combined with digital and analog may 

be the preferred strategy for implementing large multi-steerable beam antenna arrays. 

3.3.3 Hybrid beamforming 

A common trade-off these days that offers more flexibility than analog 

options but reduces cost compared to all-digital options is a HBF approach, which uses 

a subarray of ABF followed by a digital combination of the subarray signals. For 
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example, there may be a set of ADC/DACs for every 4 or 16 elements. This hybrid 

approach is popular in applications that require DBF but may not be practical due to 

size, power, or cost constraints. 

HBF combines the advantages of ABF and DBF techniques, which can 

approach the optimal performance achievable by an all-digital system while reducing 

hardware cost and signal processing complexity. The core idea of HBF is to divide the 

entire large array into multiple small sub-arrays, that is, each antenna element is no 

longer completely independent. Among them, each subarray is an ABF array, and the 

number of divided subarrays determines the beamforming degree of freedom of the 

entire large array. In 5G terminology, this is also known as Array of Subarrays (AOSA). 

Since ABF can be implemented with only analog phase shifters and the 

like, the cost of the system is greatly reduced due to the reduction in the number of 

complete RF chains required. However, the number of data streams or beams that can 

be supported by an HBF array is also reduced compared to a full DBF array. In practical 

applications, the design of this type of antenna array needs to comprehensively consider 

BF capability, system complexity, system budget, etc., and these issues are directly 

affected by the required number of controllable beams and the acceptable cost. In 

addition, although the reduction of the number of RF chains will reduce the number of 

data streams, the per-user performance of the HBF system can be approximated by a 

rational design of an all-digital system. HBF is a more practical option for current mm-

Wave communication systems because radios in this band rely on line-of-sight 

propagation and the number of single-base-station users is reduced. 

Figure 3-5 shows the basic structure of the transmitting and receiving 

system based on HBF. The antenna array is divided into N sub-arrays, each sub-array 

contains M antennas and RF units, and the devices in it can be further divided into 

multiple sub-arrays based on the actual design. The antenna unit is shared. For ease of 

understanding, a HBF array including N sub-arrays and M sub-array antenna elements 

is referred to as an N×M hybrid array herein. 
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Figure 3-5  HBF system architecture. 

 

Specifically, for an array of a given size, the size of the subarray (ie, the 

determination of M and N) represents a trade-off between system cost and performance. 

For example, when M is larger, the gain of the antenna is improved and the cost is lower, 

but the number of users that the array can support will be limited. The distance between 

corresponding elements in adjacent subarrays is called the subarray spacing, which is 

determined by the desired multibeam performance and the available physical area of 

the array. All sub-array signal processing will be agreed in the baseband processor. In 

the transmitting array and the receiving array, the sub-array and the unified processor 

are connected through ADCs and DACs respectively. 

3.4 HBF system model based on phased array antenna 
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3.4.1 Active phased array 

The potential to use mm-Wave frequencies in future wireless cellular 

communication systems has inspired research into PAAs for highly directional BF. 

However, due to the high cost and high power consumption of RF chain components in 

high frequencies, conventional all-DBF approaches requiring one RF chain for each 

antenna element are not feasible from a cost and power consumption perspective . 

Therefore, hybrid analog-digital beamforming with a reduced number of digitization 

chains and digital processing units is gradually applied to BS systems. In this HBF 

architecture, DBF is performed in a digital processing unit, such as a FPGA, while ABF 

is implemented by an analog phased array. Unlike DBF, which requires one digitizing 

chain per antenna element, the HBF architecture replaces all digitizing chains with 

phased-array subarrays. Therefore, the number of FPGAs, digital-to-analog converters 

(DACs), analog-to-digital converters (ADCs), mixers and amplifiers can be greatly 

reduced. 

Electromagnetic waves at mm-Wave frequencies suffer from high 

attenuation caused by free-space path loss and shadowing [43], [44]. Fortunately, the 

shorter wavelengths of mm-Wave signals enable greater antenna gain using antenna 

arrays with a large number of antenna elements. It is well known that existing mm-

Wave point-to-point communication systems with large antenna arrays can achieve 

multi-gigabit data rates over line-of-sight distances of several kilometers. However, 

fixed narrow beams have limited geographic coverage and cannot support mobile 

communication environments well. According to this situation, some advanced multi-

beam or beam-steerable antenna array technologies have been recently adopted to 

realize 5G mm-Wave cellular communication, such as passive multi-beam antennas in 

[45]–[47], lens-based beam - Switched antenna systems in [48] and [49], and active 

phased arrays in [50] and [51]. In general, active BF systems can provide higher 

transmit power and better beamforming flexibility than passive multi-beam antenna 

arrays. Combined with MIMO technology, the performance of active BF systems can 

be further improved. With advanced BF precoding, MIMO communication systems can 

generate multiple beams to provide multiple data streams to support SU and MU MIMO 

communications [51]. 
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3.4.2 Hybrid precoder design 

Multi-user precoding involves assigning weight vectors to different 

mobile stations (MS) prior to transmission over multiple antennas of a base station (BS). 

Proper selection of weight vectors enables spatial separation between users, enabling 

multiplexing of multiple data streams. In lower frequency conventional MIMO systems, 

precoding is performed at the baseband by a digital signal processing unit. This design 

requires dedicated RF chains for each antenna element. Unfortunately, the high cost and 

high power consumption of current mm-Wave mixed-signal hardware technologies 

make all-digital transceiver architectures impractical. Therefore, mm-Wave systems 

require suitable MIMO architectures and signal processing algorithms. Recent work on 

precoding/combining design for mm-Wave systems advocates the use of hybrid 

analog/digital precoders/combiners. In this hybrid structure, the analog 

precoder/combiner allows BF gain, while the digital precoder/combiner provides 

multiplexing gain. ABF/combining can be accomplished using phase shifters, switches, 

or even lenses. Using a phase shifter, the relative phase of the RF signal is changed to 

steer the transmit/receive beam in the desired direction. The phase change may be 

digitally controlled, so there is only a quantized value. 

Hybrid precoding for single-user mm-Wave systems is studied in [25]. 

The results show that the hybrid precoding/combining can achieve almost the same 

performance as the all-digital design. By exploiting the low scattering properties of 

mm-Wave channels, the angle of departure (AoD) and angle of arrival (AoA) response 

vectors assigned to the analog precoders and combiners to most major channel paths 

are near-optimal [25]. Using the obtained RF precoder/combiner, the baseband 

precoder/combiner can then be derived such that the resulting hybrid 

precoder/combiner is as close as possible to the digital precoder/combiner. In addition, 

hybrid precoding/combining for multi-user mmWave systems is investigated [52]–[54]. 

In [52], [53], the authors propose a two-stage hybrid precoding design. In the first stage, 

each MS and BS jointly select the "best" combination of RF combiners and RF BFs to 

maximize the channel gain for that particular MS. The baseband digital precoder is then 

derived as a zero-forcing (ZF) precoder by inverting the effective channel. In [55], an 

iterative hybrid precoding/combining algorithm that exploits channel reciprocity is 

proposed for multi-user systems with single-stream transmission per user. The work in 
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[56] established the required number of RF chains and phase shifters to enable hybrid 

precoding to achieve the same performance as digital precoding. 

In this work, we study a multi-user mm-Wave system similar to those in 

[52], [53].The simplified model is shown in Figure 3-6. Specifically, we consider the 

practical limitations of the RF chain and design an RF precoder by extracting the phase 

of the conjugate transpose of the aggregated downlink channels to obtain large array 

gains in massive MIMO systems. The low-dimensional band ZF precoding is then 

performed based on the equivalent channel obtained by the product of the RF precoder 

and the actual channel matrix. This hybrid precoding scheme, called Phased-ZF (PZF), 

was shown to approach the performance of near-optimal but practically infeasible full-

complexity ZF precoding in massive multi-user MIMO scenarios. 
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Figure 3-6  Simple model of hybrid mm-Wave precoding structure. 

 

3.4.3 HBF system model 

We consider a massive MIMO BS system model for narrowband 

scenarios. The BS uses a half-wavelength spacing uniform linear array (ULA) and the 

user terminal is equipped with a single antenna. In addition, it is assumed that all users 

have the same priority. The number of RF chains is twice the total number of data 

streams. The HBF structure can accurately achieve the same performance as any fully 

DBF regardless of the number of antennas. Therefore, we set the system to include 𝑁t 

antennas and 𝑁RF RF chains to transmit 𝑁s data streams to 𝑀 single-antenna users 

where each user receives 𝑑 data streams. Let 𝑁s ≤ 𝑁RF ≤ 𝑁t, where 𝑁s = 𝑀𝑑. As 

shown in Figure 3-7, the BS uses an HBF precoder. We consider a fully connected 

structure in which each RF chain is coupled to all antennas on the BS through 2 phase 

shifters. In the HBF structure, the BS first uses the 𝑁RF × 𝑁s digital precoder VD to 
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digitally modify the baseband data stream. It then upconverts the processed signal to 

the carrier frequency through NRF RF chains. After that, the BS uses the 𝑁t × 𝑁RF RF 

precoder VRF, which is implemented using an analog phase shifter. Therefore, the 

transmitted signal is: 

𝐱 = 𝐕RF𝐕D𝐬 =  ∑ 𝐕RF𝐕D𝑚
𝐬𝑚

𝑀
𝑚                        (1) 

where 𝐬 ∈ ℂNs×1  is a vector that represents the data symbol. It is a 

cascade of data flow vectors for each user. In addition, assume that 𝔼[𝐬𝐬H] =  𝐈Ns
. For 

the mth user, the received signal can be written as: 

𝐲𝑚 =  𝐡𝑚
𝐻 𝐕RF𝐕D𝑚

𝐬𝑚 +  𝐡𝑚
𝐻 ∑ 𝐕RF𝐕𝐷ℓ

𝐬ℓℓ≠𝑚 + 𝐳𝑚             (2) 

where 𝐡𝑚 ∈ ℂNt×1  represents the complex channel gain vector from 

the transmit antennas of the BS to the mth user, and 𝐳𝑚 ~ 𝒞𝒩(0, σ2)  represents 

additive white Gaussian noise. 
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Chapter 4 HBF Design Based on Deep Learning 

 

This chapter mainly introduces the neural network model based on 

unsupervised learning and uses the classic Saleh-Valenzuela(SV) mm-Wave channel 

model to obtain the dataset through simulation and estimation. The simulation results 

are given and discussed, and finally, the complexity analysis and summary are 

described. 

4.1 Concept 

For the optimization of HBF, the hardest part is that the constant 

modulus constraint of the analog beamformer due to the phase shifter makes the 

problem very highly non-convex and difficult to solve. The latest research on intelligent 

communication shows that the DL technique has great potential in solving traditionally 

challenging problems [19]–[22]. The DL technique has proven to be an excellent tool 

for solving complex nonconvex optimization problems. Its unique network structure 

can approximate any function under specific conditions and use DL to solve the 

optimization problem of BF design, which subsequently leads to eliminate the 

complexity caused by too many iterations and realize real-time calculations. Although 

the training process is very time-consuming, the training is carried out in an offline 

mode. Therefore, the DL technology is an effective method to reduce cellular network 

delay. At the same time, to avoid the labeling overhead of labels, we intend to design 

HBF based on unsupervised learning. We develop an unsupervised deep neural network 

(USDNN) for the BF design problem that can be trained on how to optimize 

beamformers to maximize the reachable sum rate. 

4.2 Channel model 

Channel State Information (CSI) is very important and for describing 

characteristics of wireless communication channel. This information is used to define 

the known channel properties of the communication link, describing how a signal 

propagates through the channel from the transmitter to the receiver. It characterizes the 

synthesis of a series of effects, such as scattering, fading, and attenuation with distance. 

CSI, which can be obtained by channel estimation algorithms, enables us to adjust the 

transmission according to the current channel conditions, estimate the quality of the 
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wireless channel through the CSI matrix, and adjust the communication rate based on 

the CSI, thereby ensuring reliable and effective data transmission. 

There are mainly two kinds of CSI, transient CSI and statistical CSI. 

Transient CSI require the priori knowledge of channel state which is decribed with 

impulse response of the channel. This makes it possible to adjust the transmitted signal 

according to the impulse response, thereby optimizing the received signal for spatial 

multiplexing or low error rates. On the other hand, statistical CSI means that the 

statistical characteristics of the current channel are known. These statistical features 

include the type of fading, average channel gain, line-of-sight components, and spatial 

correlation. As in the transient case, this information can also be used to optimize the 

transmission. 

The acquisition of CSI is mainly limited by how fast the channel state 

changes. In a fast fading system, the transmission of each information symbol is 

accompanied by a rapid change of the channel state, so only statistical CSI can be 

obtained. In slow fading systems, on the other hand, it is also feasible to use transient 

CSI to adjust the transmission over a period of time. In practical applications, a 

compromise is generally chosen: transient CSI including quantization errors and 

statistical CSI. We can efficiently collect the spatial transfer function between each 

antenna and each user terminal, collecting the CSI information in the matrix H, as 

shown in Figure 4-1. 

 

Figure 4-1  CSI used to characterize massive MIMO system. 
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In the mathematical model of the MIMO wireless channel, ℎ𝑖,𝑗 is the 

complex channel gain of the ith antenna at the transmitter and the jth antenna at the 

receiver. The gain comes from the superposition of multiple rays, and each ray reaches 

the receiver through multiple different paths. 

ℎ𝑖,𝑗 = ∑ 𝑎𝑖𝑒𝑗𝜃𝑡
𝑖                            (3) 

The modulus of the channel gain |ℎ𝑖,𝑗| obeys the Rayleigh distribution, 

and if there is a strong direct line-of-sight (LoS) path in addition to a large number of 

scatterers, then the modulus of the channel gain |ℎ𝑖,𝑗| obeys the Rice distribution. For 

the low-frequency case, it can be directly assumed that each sub-channel hi,j obeys 

Rayleigh or Rice distribution. 

Different from the low-frequency channel, the mm-Wave channel 

basically propagates in a straight line and has poor diffraction ability. The channel has 

fewer scattering paths, which are often far less than the number of transmitting and 

receiving antennas. Therefore, its channel model has rich geometric characteristics. 

However, low-frequency channels are often modeled as random channels such as 

Rayleigh distribution due to the abundance of scattering paths, and therefore do not 

contain information about the communication environment. So we consider the SV 

channel model [6], where the channel contains a LoS path and an Lm non-LoS (NLoS) 

path. For the SV channel model, the channel vector 𝐡𝑚
𝐻   of the mth user can be 

expressed as 

𝐡𝑚
𝐻  =  √

𝑁t

𝐿𝑚+1
∑ 𝛽𝑚

(𝑙)
𝒂𝐻(𝜙𝑚

(𝑙)
)

𝐿𝑚
𝑙=0                      (4) 

where 𝛽𝑚
(0)

𝒂𝐻(𝜙𝑚
(0)

) is the LoS path of hm with 𝛽𝑚
(0)

 presenting the 

complex gain and 𝜙𝑚
(0)

 denoting the spatial direction, 𝛽𝑚
(𝑙)

𝒂𝐻(𝜙𝑚
(𝑙)

) for 1≤l≤Lm is the 

lth NLoS path of hm, and a(ф) is the 𝑁t × 1 array steering vector at the BS. 

Since millimeter wave signal propagates in a straight line and has poor 

diffraction ability, the number of paths cannot be too small. After the multipath signals 

with different amplitudes and phases are superimposed, the amplitude and phase of the 

synthesized signal ym will fluctuate violently, that is, multipath fading occurs. Inter-

symbol interference (ISI) caused by multipath effects affects the quality of signal 
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transmission. So for the mth user, the parameters of the spatial channel are set as follows: 

1) the number of paths: the number of LoS paths is 1, the number of NLoS (Lm) is 2, 

and the total number of paths is L = 3; 2) Path gain: 𝛽𝑚
(0)

~𝒞𝒩(0, 1)  and 

𝛽𝑚
(𝑙)

~𝒞𝒩(0, 10−0.5) for l = 1, 2; 3) Spatial direction: 𝜙𝑚
(0)

 and 𝜙𝑚
(𝑙)

 are uniformly 

distributed within [-0.5, 0.5]. 

The signal-to-interference-noise ratio (SINR) of the signal received by 

the mth user is expressed as: 

SINR(𝐕RF, 𝐯D𝑚
) =  

|𝐡𝑚
𝐻 𝐕RF𝐯D𝑚|

2

𝜎2+ ∑ |𝐡𝑚
𝐻 𝐕RF𝐯D𝑚|

2
ℓ≠𝑚

                 (5) 

There are three methods for channel estimation: the first is channel 

estimation based on pilot symbols; the second category is channel estimation based on 

decision feedback; the third category is blind channel estimation based on the limited 

character characteristics and statistical characteristics of the transmitted information 

symbols. In this thesis, the first method to estimate the SV channel is chosen. 

4.3 The proposed DL model 

As shown in Figure 4-2, the network consists of 5 dense layers, 4 batch 

normalization (BN) layers, and 5 activation functions. The dense layer has 1024, 512, 

256, 128, and NtNRF neurons respectively. The number of neurons is determined by 

empirical experiments to ensure sufficient learning ability. The BN layer is to enhance 

convergence and is used to stabilize the training process. For the activation function, 

the first four dense layers use a rectified linear unit (ReLu), and the last dense layer uses 

a linear linear activation function to output phase-shift predictions. 
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Figure 4-2  The proposed DNN architecture. 

 

Training stage: As shown in Figure 4-3, we simulate the SV channel 

model to obtain the perfect CSI to calculate the loss function and update the calculated 

weight information to the USDNN model. Next, we apply the proposed classic mm-

Wave channel estimator [57]. The BS sends pilot symbols with beamformers and 

receives user feedback signals yp to estimate the channel estimate hest (imperfect CSI) 

and noise power σ2 which will be the input to the USDNN model. Using the loss 

function calculated to update the model's weights, the model then learns how to 

optimize VRF. 

Testing stage: All model parameters have been trained and fixed. The 

imperfect CSI and σ2 are used as input for testing, and the optimized beamformer can 

be obtained, which directly outputs the optimized beamforming vector VRF. 
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Figure 4-3  Two-stage design approach: training and testing. 
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In the previous work [33], the received user feedback signal yp is used 

as input, and yp itself is a function of VRF, which needs to be optimized. So we estimate 

the channel based on the yp and obtain the hest and σ2 through the classical channel 

estimation algorithm [57] to form the input of the USDNN. The channel vector and the 

beamforming vector VRF are both complex-valued vectors. Therefore, we consider the 

input layer and output layer as follows: 

Input layer: For the real and imaginary parts and noise power σ2 of each 

antenna's downlink channel CSI, the input data shape is a matrix of 2 × 𝑀 × 𝑁t + 1 

that is input through the flattened layer. 

Output layer: Inspired by [15], the following lambda layer is used for 

the complex-valued output of USDNN. This layer converts the predicted real-valued 

phase into a complex-valued form VRF, where Ppred is the predicted real-valued phase. 

𝐕RF  =  ej∙𝐏pred = cos(𝐏pred) + j ∙ sin (𝐏pred)               (6) 

We use the same USDNN architecture for the digital precoder VD to set 

the number of neurons in the last dense layer to 2NsNRF and output the 𝑁𝑠 × 𝑁RF 

complex vector VD. 

In this thesis, to compare performance, we calculated the achievable sum 

rate, expressed as: 

𝑅 = ∑ 𝑙𝑜𝑔2 (1 +  SINR(𝐕RF, 𝐯D𝑚
))𝑀

𝑚=1                 (7) 

The optimization problem of VRF and VD is expressed as follows: 

max
𝐕RF, 𝐕D

     𝑅 

s. t.       |[𝐕RF]𝑖,𝑗| = 1,        ∀ 𝑖, 𝑗                     (8) 

‖𝐕RF𝐕D‖𝐹  ≤ 1, 

The first expression is the constant modulus constraint of the phase 

shifter for ABF, and the second expression is the total transmission power constraint 

with normalized power. 

To train the network, we use the Adam optimizer with an initial learning 

rate of 1×10-3. The maximum number of epochs is set to 20,000 and tolerated early stop 
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20 is adopted to improve training efficiency. In addition, to accelerate the convergence 

speed, the learning rate is attenuated by a factor of 0.2 whenever the verification loss 

does not decrease for 20 consecutive periods. Table Ⅰ shows the hyperparameters 

selected for USDNN training. 

 

Table 4-1  Hyperparameters for USDNN training. 

Parameter Set Value 

Epochs 20,000 

Batch Size 256 

Initial Learning Rate 1×10-3 

Minimum Learning Rate 5×10-5 

Reduce LR On Plateau (factor) 0.2 

Reduce LP On Plateau (patience) 20 

 

A computationally heavy optimization problem in supervised learning 

must solve each sample in the dataset and obtain data labels, which adds excessive 

difficulty to training. In unsupervised learning, our design does not require labels. It 

can be trained from the data obtained from the estimated channel, which can 

significantly reduce the computational complexity during training the network. In the 

training stage, the model learns under the perfect CSI as much as possible. In the testing 

stage, all model parameters have been trained and fixed, and imperfect CSI can be 

accepted as input for testing and directly output the optimized analog beamforming 

vector VRF. We train the network with the following new loss function directly related 

to the following performance goal: 

𝐿𝑜𝑠𝑠 =  −
1

𝑁
∑ ∑ log2 (1 +  

|𝐡𝑚,𝑛
𝐻 𝐕RF,𝑛𝐕D𝑚,𝑛|

2

𝜎𝑛
2+ ∑ |𝒉𝑚,𝑛

𝐻 𝑽RF,𝑛𝐕D𝑚,𝑛|
2

ℓ≠𝑚

)𝑀
𝑚=1

𝑁
𝑛=1         (9) 

where N represents the total number of the training samples, and 

𝜎𝑛
2, 𝐡𝑚,𝑛

𝐻 , 𝐕RF,𝑛 and 𝐕D𝑚,𝑛
  represent the noise power, CSI, output BF, and DBF 

associated with the nth sample, respectively. The minus sign indicates that the sum rate 

is maximized when the USDNN is trained to minimize the loss function. We generate 

105, 2 × 104 and 2 × 104 samples for training, verification, and testing, respectively, 
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while considering training efficiency, test performance, and stability. It is also worth 

emphasizing that labels are not required since unsupervised learning is used. Hence the 

cost of obtaining training samples is considerably reduced. 

4.4 Results and discussion 

We consider a system equipped with 64 antennas on the BS throughout 

the simulation process, and 8 RF chains transmit 4 data streams to 4 single-antenna 

users for communication. The signal-to-noise ratio (SNR) is defined as an indicator of 

the channel estimation level. Figure 4-4 shows that our proposed USDNN has excellent 

performance when the CSI is imperfect. When L-train = L-test = 3, Nt = 64, NRF = 8, M 

= 4, and Ns = 4, we can easily observe that the achievable sum rate of our proposed 

method speeds up with the increase of SNR. Our proposed USDNN network can 

achieve near-optimal performance. 

 

 

Figure 4-4  Achievable sum rate under different SNRs (M = 4, Nt = 64, NRF = 8, Ns = 

4, L-train = L-test = 3). 

 

Next, we evaluate how the system performance changes when the 

number of users 𝑀 ∈ {2, 4, 6, 8} and the number of antennas 𝑁t ∈ {16, 32, 64, 128} 

are changed. The SNR is set to 0 dB, and the number of channel paths is L-train = L-
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test = 3. When increasing the number of antennas or users of the BS, a more complex 

DNN should be required. However, Figures 4-5 and 4-6 show that the proposed 

architecture is sufficiently complicated to have excellent performance with different 

antennas and users. As shown in Figure 4-5, when the number of users increases, the 

rate of change of the proposed method decreases, because when increasing the number 

of users and the number of fixed antennas will generate more inter-user interference. 

But the rate of our method still grows rapidly, always close to the optimal sum rate. 

 

 

Figure 4-5  Achievable sum rate with different numbers of users (Nt = 64, NRF = 8, d 

= 1, L-train = L-test = 3). 

 

In Figure 4-6, we evaluate our proposed method with different numbers 

of antennas. When the number of antennas increases, the rate of change decreases with 

the increase in overhead signaling. Our proposed method is always close to optimal 

performance. 
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Figure 4-6  Achievable sum rate with different numbers of antennas (M = 4, NRF = 8, 

Ns = 4, L-train = L-test = 3). 

There usually are inconsistencies between the values of the parameters 

during testing and training in practical applications, resulting in unacceptable 

deviations between the results. Therefore, the robustness of the model should be 

investigated. Figure 4-7 shows the impact of the mismatch between the number of 

channel paths in the training stage and testing stage. It is assumed that the number of 

channel paths during training is L-train = 3, and L-test = 2, 3, 4, 5, and 6 are used for 

the testing stage. The best performance is obtained when the number of paths is 

consistent during training and testing. When the number of paths is inconsistent, there 

is a model mismatch, but the performance loss is limited, indicating that our model has 

a certain degree of robustness. 
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(a) 

 

Figure 4-7  (a) Achievable sum rate when the channel path numbers of the model do 

not match (M = 4, Nt = 64, NRF = 8, Ns = 4). (b) The contrast after magnification. 
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Finally, comparing the complexity of neural networks and traditional 

algorithms is a difficult task. For traditional model-based HBF designs [25], [26], the 

asymptotic computational complexity in complex multipliers is O(N3
t) because they 

involve operations such as singular value decomposition and matrix inversion. We 

analyze the computational complexity from the number of floating-point operations 

(FLOPs) proposed USDNN. Because the training is done offline, only the complexity 

of the online testing phase is calculated. The FLOP number of the Dense layer is given 

by (2NI - 1) NO, where NI and NO denote the input and output dimensions, respectively. 

But considering the number of FLOPs alone may not be sufficient to draw a fair 

conclusion, as how these operations are performed and the architecture used can also 

have profound effects. 

Therefore, in this subsection, we also make an approximate comparison 

of the running time of all methods, as shown in Table II. These methods are run on the 

same Intel(R) Core (TM) i7-10700F CPU @ 2.90GHz and GeForce RTX 2080Super 

hardware configuration for a fair comparison. Unlike traditional algorithms, the large-

scale matrix multiplication of USDNN can be effectively accelerated through the 

parallel computing of graphics processing units (GPU). It can be seen that the proposed 

USDNN runs dozens of times faster than the traditional HBF algorithm. Note that the 

computational time for training is not considered here since the training process is done 

offline. 

 

Table 4-2  Comparison of running time (seconds) of different methods. 

Algorithm 

Parameters 

USDNN MO OMP 

Nt = 16 0.046 1.657 1.845 

Nt = 32 0.052 1.693 1.962 

Nt = 64 0.071 1.732 2.133 

Nt = 128 0.102 1.834 2.368 

(M = 4, NRF = 8, Ns = 4, L-train = L-test = 3). 

 

4.5 Summary 

BF design is a rather complex non-convex problem due to the joint 

optimization of multiple variables and constant modulus constraints. Our use of DL to 
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solve the optimization problem of BF is a very efficient method. Through training 

iterations with a large number of samples, it is demonstrated that the DL-based scheme 

has the ability to understand the complex characteristics of wireless channels. And the 

simulation results show that the DL-based method can be robust to imperfect CSI 

generation. In previous studies based on supervised learning, supervised learning needs 

to obtain a large number of training labels, thus requiring a lot of additional computing 

resources to find these labels using traditional optimization methods. For BF designs, 

we had a hard time finding a proper label. Therefore, we developed the USDNN model, 

and the proposed method based on unsupervised learning can not only avoid the 

labeling overhead of labels but also achieve very good performance. 
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Chapter 5 Performance Comparison with the Perfect CSI 

Scenario 

This chapter starts from the principle of the algorithm, introduces two 

different HBF algorithms, and compares the results. Aiming at the non-convex problem 

of BF design, in previous studies, a model-based design approach was adopted to deal 

with this difficulty, and [25] proposed an OMP-based algorithm. However, analog 

beamformers are limited to predefined codebooks. In order to improve the performance 

of OMP and apply the manifold method to the optimization of analog BF, [26] proposed 

a MO-based hybrid beamforming algorithm that directly handles the constant modulus 

constraint of the analog components. All of the above algorithms assume a perfect CSI 

environment. 

5.1 Orthogonal matching pursuit (OMP) algorithm 

Compressed sensing (CS) is a new theory for signal sampling. 

Traditional information sampling is based on the Nyquist sampling theorem, which 

considers that the sampling rate of the signal is only not less than twice the highest 

frequency, the sampled digital signal retains all the information of the analog signal, 

and the signal can be restructured accurately. However, CS theory points out that if a 

signal is a sparse signal or can be represented as a sparse signal in a certain transform 

domain, then the signal can be projected onto a low-dimensional space through a matrix 

that is not related to the transform basis. This projection on the low-dimensional space 

contains all the information of the original signal and can accurately reconstruct the 

original signal. Under CS theory, signal sampling does not directly measure the signal 

itself, but the key is to sort out the structure and content of information in the signal. 

CS theory was first proposed by Donoho and Candes et al. in 2004. CS 

focuses on how to use the sparsity of the signal itself to recover the original signal from 

some observed samples. At present, the main research directions of CS theory are 

divided into three parts: signal sparsity, measurement matrix, and reconstruction 

algorithm. The sampling process in CS is relatively simple, but the reconstruction is 

very complicated, so the research on the reconstruction algorithm is a very important 

aspect of CS. At present, the greedy iterative algorithm in the reconstruction algorithm 

is a very widely used class. This kind of algorithm selects the best support for the signal 
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by an iterative method, then selects the local optimal solution based on the greedy 

criterion, and gradually approaches the original signal. The most typical greedy 

algorithm is the matching pursuit algorithm (MP), and the improved OMP is based on 

it. 

An overcomplete dictionary matrix 𝐃 ∈ 𝑹𝑛∗𝑘  is given, where each 

column of it represents an atom of a prototype signal. Given a signal y, it can be 

represented as a sparse linear combination of these atoms. The signal y can be expressed 

as y = Dx, where x is the original signal, y is the compressed signal, and D is the 

compressed matrix. The so-called overcompleteness in the dictionary matrix means that 

the number of atoms is much larger than the length of the signal y (its length is 

obviously n), that is, n<<k. 

The basic idea of the MP algorithm: from the dictionary matrix D (also 

known as the overcomplete atom library), select an atom (that is, a column) that best 

matches the signal y, construct a sparse approximation, and find the signal residual, 

then Continue to select the atoms that best match the residual of the signal, and 

iteratively, the signal y can be linearly summed by these atoms, plus the final residual 

value to represent. Clearly, if the residual values are in a negligible range, the signal y 

is a linear combination of these atoms. The MP algorithm has a big disadvantage. If the 

vertical projection of the signal (residual value) on the selected atoms is non-orthogonal, 

this will make the result of each iteration not many optimal but sub-optimal, it takes 

many iterations to converge. So the OMP algorithm is introduced. 

OMP algorithm: OMP algorithm is improved on the basis of the MP 

algorithm, as shown in Table 5-1. The same is that the standard for selecting atoms is 

the same as that of the MP algorithm, that is, the dictionary atoms that best match the 

test sample x are selected in the dictionary matrix D. The difference is that the OMP 

algorithm first performs the Schmidt orthogonalization operation on all the selected 

atoms in each iteration to ensure that the result of each loop is the optimal solution. 

Under the condition of the same precision, the performance of the OMP algorithm is 

better, and its convergence speed is also faster. At this point, there are two questions: 

Q1: How to ensure that the same atom will not be selected multiple times? A1: In OMP, 

the residuals are always orthogonal to the selected atoms. This means that an atom will 

not be selected twice and the result will converge in a finite number of steps. Q2: How 
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to ensure that the atoms in the space are orthogonal? A2: Atoms in space can be 

manipulated by Schmidt orthogonalization. 

 

Table 5-1  OMP algorithm. 

Initialization: 

f0 = 0,  R0f = f,  D0 = { } 

x0 = 0,  𝑎0
0 = 0,  k = 0 

(Ⅰ) Compute {〈𝐑𝑘𝑓, 𝑥𝑛〉; 𝑥𝑛 ∈ 𝐷\𝐷𝑘}. 

(Ⅱ) Find 𝑥𝑛𝑘+1
∈ 𝐷\𝐷𝑘 such that 

   |〈𝐑𝑘𝑓, 𝑥𝑛𝑘+1
〉| ≥ 𝛼

sup
𝑗 |〈𝐑𝑘𝑓, 𝑥𝑗〉|, 0 < 𝛼 ≤ 1. 

(Ⅲ) If |〈𝐑𝑘𝑓, 𝑥𝑛𝑘+1
〉| < 𝛿, (𝛿 > 0) then stop. 

(Ⅳ) Recorder the directionary D, by applying the permutation 𝑘 + 1 ⟷ 𝑛𝑘+1. 

(Ⅴ) Compute {𝑏𝑛
𝑘}𝑛=1

𝑘 , such that, 𝑥𝑘+1 =  ∑ 𝑏𝑛
𝑘𝑥𝑛 + 𝛾𝑘

𝑘
𝑛=1   

and 〈𝛾𝑘, 𝑥𝑛〉 = 0, 𝑛 = 1, … , 𝑘. 

(Ⅵ) Set, 𝑎𝑘+1
𝑘+1 = 𝛼𝑘 = ‖𝛾𝑘‖−2〈𝐑𝑘𝑓, 𝑥𝑘+1〉. 

 

According to previous research, we use the sparse characteristics of the 

mm-Wave channel to express the precoding/combining problem as a sparse 

reconstruction problem. Using the principle of the OMP algorithm, we obtain an 

algorithm that can approximate the optimal unconstrained precoder and combiner, 

which can be implemented in low-cost RF hardware. FBB is a digital precoding matrix 

of size 𝑁RF × 𝑁s, and FRF is an analog precoding matrix of size 𝑁t × 𝑁RF. The optimal 

precoding problem of FRFFBB can be described as: 

(𝐅RF
opt

, 𝐅BB
opt

) =
argmax
𝐅RF, 𝐅BB

 𝐼(𝐅RF, 𝐅BB), 

𝑠. 𝑡.     𝐅RF ∈ 𝐅RF,                        (10) 

‖𝐅RF𝐅BB‖𝐹
2 =  𝑁s 

Then, the above problem of jointly designing FRF and FDB is transformed 

into a univariate sparse constraint matrix reconstruction problem, and a spatial sparse 

precoding algorithm based on OMP is designed, as shown in Figure 5-2. 
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Table 5-2  Spatial Sparse Precoding Algorithm via OMP. 

Require: Fopt 

1: FRF = Empty Matrix 

2: Fres = Fopt 

3: for 𝑖 ≤ 𝑁𝑡
𝑅𝐹 do 

4: 𝚿 =  𝐀𝑡
∗ 𝐅𝑟𝑒𝑠 

5: 𝑘 = arg 𝑚𝑎𝑥ℓ=1,… ,𝑁cl𝑁ray
(ΨΨ∗)ℓ,ℓ 

6: 𝐅RF = [𝐅RF|𝐀t
(k)

] 

7: 𝐅BB = (𝐅RF
∗ 𝐅RF)−1𝐅RF

∗ 𝐅opt 

8: 𝐅res =
𝐅opt−𝐅RF𝐅BB

‖𝐅opt−𝐅RF𝐅BB‖
𝐹

 

9: end for 

10: 𝐅BB = √𝑁s
𝐅BB

‖𝐅RF𝐅BB‖𝐹
 

11: return FRF, FBB 

 

It is worth noting that the compression matrix D is composed of a series 

of base signals or atoms, when two atoms in D are correlated, the OMP algorithm may 

get a wrong reconstructed signal. 

5.2 HBF algorithm based on MO 

Optimization on Riemannian manifolds, also known as Riemannian 

optimization, whose goal is to optimize a real-valued function defined on a manifold, 

has received increasing attention in recent years. Many practical problems can 

eventually be transformed into optimization problems defined on a manifold, such as 

signal separation, machine learning, recommender systems, network component 

analysis and classification, computer vision and graphics, etc. Many problems 

themselves are large in scale, but the data itself may fall on a low-dimensional manifold 

in a high-dimensional space, so it can be transformed into an optimization problem on 

the manifold. 

Manifold constrained optimization problem refers to a special kind of 

constrained optimization problem whose constraints have manifold structure. Consider 

the general question: 
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𝑚𝑖𝑛
𝑥

𝑓(𝑥), 𝑠. 𝑡.  𝑥 ∈ ℳ.                     (11) 

where ℳ  represents the manifold constraint. This problem can be 

simply regarded as a constrained problem, and then solved by some traditional 

optimization methods for constrained optimization problems, such as the augmented 

Lagrangian method. There are three drawbacks of using the tradition methods. Firstly, 

the prevailing constraints are usually non-convex, the convergence is hard to guarantee. 

Secondly, these methods cannot guarantee that the iterative points always satisfy the 

constraints, and thridly, the manifold constraints are structured, and these methods do 

not explore this structural information. The three points mentioned above are exactly 

the three advantages of MO: 

• All iteration points maintain constraint feasibility, ie always on the manifold. 

• MO understands the previous point as an unconstrained optimization problem on a 

manifold, which facilitates analysis of convergence. 

• Take advantage of the structural information of the manifold constraints themselves. 

MO algorithm can be applied to beamforming, because MO is 

essentially a gradient descent method. However, the basic gradient descent method 

descends in the whole Euclidean space, so it cannot guarantee that the solution after 

descent still meets the constant mode constraint, so it cannot be directly used to solve 

VRF. For MO, all feasible solutions satisfying the constant modulus constraint are first 

expressed as a manifold, and then the solution is mapped back to this manifold after 

each iteration, thus ensuring that the result will always satisfy the constant modulus 

constraint. The MO-HBF algorithm is shown in Figure 5-3. 

 

Table 5-3  MO-HBF Algorithm. 

Input: 𝐇1, σ2, ω     Output: 𝐕RF, 𝐕U, 𝛽 

1: Initialize VRF,0 randomly and set i = 0; 

2: repeat 

3: Compute ∇𝐽(𝐕RF,𝑖) according to (11); 

   ∇𝐽(𝐕RF) =
1

σ2ω
(𝐕RF(𝐕RF

𝐻 𝐕RF)−1𝐕RF
𝐻 − 𝐈𝑁t

) × 𝐇1𝐏−2𝐇1
𝐻𝐕RF(𝐕RF

𝐻 𝐕RF)−1.  (11) 

4: Use the MO method to compute VRF,(i+1); 
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5: 𝑖 ← 𝑖 + 1; 

6: Until a stopping condition is satisfied; 

7: Compute β and VU according to (7) and (8). 

5.3 Results and discussion 

Throughout the simulation, we still consider a system with 64 antennas 

on the BS and 8 RF chains delivering 4 data streams to 4 single-antenna user 

communications. We considered the SV channel model with the same parameters. 

Considering the comparison between MO and OMP algorithms, SNR is defined as an 

index of channel estimation level. Figure 5-1 shows that our proposed USDNN has 

excellent performance under imperfect CSI. When L-train = L-test = 3, Nt = 64, NRF = 

8, M = 4, Ns = 4, we easily observe that the reachability rates of all methods speed up 

with increasing SNR. Our proposed method is 74% better than Mo and 120% better 

than OMP, and our proposed USDNN can achieve near-optimal performance. Notably, 

both MO and OMP require perfect CSI knowledge and do not apply to real channels. 

 

 

Figure 5-1  The achievable sum rate under different SNRs (M = 4, Nt = 64, NRF = 8, 

Ns = 4, L-train = L-test = 3). 
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Next, we evaluate how the system performance changes when the 

number of users M∈{2,4,6,8} and the number of antennas Nt∈{16,32,64,128} are 

changed. The SNR is set to 0 dB, and the number of channel paths is L-train = L-test = 

3. As shown in Figure 5-2, when the number of users increases, the rate of change of 

all methods decreases because increasing the number of users and the number of fixed 

antennas generates more inter-user interference. As a result, the MO and OMP grow 

slowly, and the rate of our method still grows rapidly, always close to the optimal sum 

rate. 

 

 

Figure 5-2  The achievable sum rate with different numbers of users (Nt = 64, NRF = 

8, d = 1, L-train = L-test = 3). 

 

In Figure 5-3, we evaluate our proposed method with different numbers 

of antennas. When the number of antennas is low, the performance of the MO and OMP 

methods is poor. When the number of antennas increases, the performance gap becomes 

more significant, and the rate of change decreases with the overhead signaling increases. 

Our proposed method is consistently close to the optimal sum rate. 
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Figure 5-3  The achievable sum rate with different numbers of antennas (M = 4, NRF 

= 8, Ns = 4, L-train = L-test = 3). 

 

5.4 Summary 

OMP is the most widely used algorithm and usually provides reasonably 

good performance. The algorithm requires selecting the columns of the analog 

precoding matrix from some candidate vectors, such as the channel's array response 

vector and the discrete Fourier transform beamformer. Therefore, the OMP-based 

hybrid precoder design can be viewed as a sparse constrained matrix reconstruction 

problem. While the design problem is greatly simplified in this way, limiting the space 

of feasible analog precoding solutions inevitably results in some performance penalty. 

In addition, getting the information of the array response vector ahead of time 

introduces additional overhead. 

The MO is used to solve the constrained optimization problem, 

transforming the constrained optimization problem in the Euclidean space into an 

unconstrained optimization problem on the Riemannian manifold. Many things about 

optimization theory in Euclidean space can be extended, such as convexity of functions, 

smoothness, and so on. However, the MO method cannot solve all constrained 

optimizations, only those constraints that can be regarded as Riemannian manifolds, 
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such as orthogonal constraints, symmetric positive definite constraints, low-rank 

constraints, and so on. And the proximity class algorithm of Euclidean space is not easy 

to extend to the Riemannian manifold, at least in terms of calculation, because the 

property of "proximity friendly" in Euclidean space is not extended to the Riemannian 

manifold. 

The two algorithms above either require some approximation to simplify 

the original objective function, or require a lot of time-consuming serial iterations to 

arrive at a solution. Moreover, in these algorithms, it is assumed that there is perfect 

channel state information, and there is a certain gap with the actual situation. However, 

the USDNN model proposed by us is not only suitable for the environment of imperfect 

CSI, but also can run the calculation quickly due to the acceleration of parallel 

computing, so it is more suitable for high-speed communication in the actual 

environment. 
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Chapter 6 Summary and Discussion 

This chapter summarizes the use of DL techniques to solve non-convex 

optimization problems for BF. The competitive performance of USDNN is discussed, 

providing valuable insights for future BF designs. 

6.1 Summary 

This thesis studies the HBF optimization problem of narrowband mm-

Wave MIMO communication systems. Instead of maximizing spectral efficiency as in 

most existing works, we use the reachable sum rate as a performance metric to 

characterize the performance of the transmission. The specific contents are summarized 

as follows: 

1. We use DL technology to solve the non-convex optimization problem of analog 

beamformers, which can get rid of the complexity caused by too many iterations 

and realize real-time calculation. It can also reduce the computational complexity 

of the DNN model. 

2. For BF designs, we had a hard time finding a proper label. If we use the optimized 

VRF based on the traditional algorithm as the label, then the neural network can only 

be trained to be close to the traditional algorithm, but not better than the traditional 

algorithm. So we developed USDNN, a network that can be trained on how to 

optimize the beamformer to maximize the reachable sum rate. The simulation 

results show that, compared with the traditional BF algorithm, the method based on 

unsupervised learning can not only avoid the labeling overhead of labels, but also 

obtain better performance than the traditional algorithm. 

3. Moreover, our research is based on imperfect CSI environment and is applicable to 

realistic downlink communication channels. 

6.2 Discussion 

HBF is a fundamental technology for massive MIMO systems that can 

reduce the number of RF chains and improve the achievable sum rate of the system. In 

this thesis, we propose a DL method based on unsupervised learning to design HBF for 

narrowband scenarios. In unsupervised learning, BS can directly use the estimated 

channel data for training without the need to obtain an optimal solution, thus 

significantly reducing training time and cost. The experimental results verify that this 
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method can perform better than traditional methods in massive MIMO systems with 

multiple RF chains. It can also manage hardware limitations and imperfect CSI 

challenges in mm-Wave systems. In the future, the proposed method can be extended 

to broadband scenarios and more complex beamforming problems. 
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