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Abstract: This contribution builds on an existing methodology of image clustering analysis, conceived
for modelling the wave overtopping at dikes from video records of laboratory experiments. It presents
new procedures and algorithms developed to extend this methodology to the representation of the
wave runup at crown walls on top of smooth berms. The upgraded methodology overcomes the
perspective distortion of the native images and deals with the unsteady, turbulent and bi-phase flow
dynamics characterizing the wave impacts at the walls. It accurately reconstructs the free surface
along the whole structure profile and allows for a statistical analysis of the wave runup in the time
and spatial domain. The effects of different structural configurations are investigated to provide
key information for the design of coastal defences. In particular, the effects of increased sea levels
in climate change scenarios are analysed. Innovative results, such as profiling of the envelopes of
the runup along the wall cross and front sections, and the evidencing of 3D effects on the runup
are presented. The extreme runup is estimated for the definition of the design conditions, while the
envelopes of the average and minimum runup heights are calculated to assess the normal exercise
conditions of existing structures.

Keywords: wave runup; crown walls; videography; cluster analysis; design conditions; exercise
conditions

1. Introduction

Coastal areas, dealing with sea-level rise and facing storms of increasing severity
and frequency, are already experiencing the effects of global climate change. Indeed,
despite the lack of understanding of the systematic and long-term trends of climate change
in waves [1,2], evidence is available that extreme wave heights have increased in the
South and North Atlantic Oceans by around 0.8 cm/year over the period 1985–2018 [3].
Furthermore, high-confidence projections of increased significant wave heights across the
Southern Ocean, the tropical eastern Pacific and the Baltic Sea have been estimated [3]. The
enhancement of wave heights contributes to generating or emphasising extreme sea-level
events, coastal erosion and flooding.

Furthermore, it is nowadays well established that the global mean sea level is rising [4],
with acceleration in recent decades due to increasing rates of ice loss from the Greenland and
Antarctic ice sheets, as well as continued glacier mass loss and ocean thermal expansion [3].
Between 1902 and 2015, global sea level rose by 16 cm [3] and many coastal regions are
projected to face a global sea-level rise of 0.5–2 m by the year 2100. Sea-level rise is already
causing increased coastal flooding [5], and it is expected that upper-end sea-level rise
scenarios could displace hundreds of millions of people by the end of the 21st century [6].

Coastal flooding is caused by astronomic tides, storm surge and waves. Apart from the
contribution of tides, climate-change induced phenomena such as sea-level rise, increasing
violent storm conditions and extreme waves all contribute to exacerbating the maximum
elevation reached by the wave motion on beaches and on coastal structures, i.e., the wave
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runup [7–9]. Many coastal structures built in the past may therefore be inadequate for
the predicted increased runup heights and may require upgrading. A standard practice
for upgrading the hydraulic performance of coastal defences is to include crown walls
on top of existing breakwaters, dikes or berms with or without overhanging parts, such
as parapets or bullnoses (inter alia, [10–12]). Despite a number of studies detailing the
structural performance of crown walls and parapets [12–16], to the best of the authors’
knowledge, no method exists to predict wave runup at these structure types. Nevertheless,
quantifying the wave runup and its evolution with respect to past decades and predicting
its progress in the near future is a key aspect to consider when designing new coastal
protections or planning the management of existing defences.

Historically, studies on wave runup were carried out through physical modelling
exercises using step gauges, resistant gauges and resistant probes (e.g., [17,18]). On the
one hand, all these techniques suffer from large disturbances induced by turbulence and
the aeration of the flow, making measurements very difficult to interpret [19]; on the other
hand, they may cause significant disturbances to the measurements themselves, as in the
case of the large-scale tests performed by Van der Meer et al. [18] with streamlined floaters
on the water, which gave accurate measurements of the wave runup but interacted with
the overtopping flow due to their considerable dimensions.

Since the 2010s, the use of video imagery has been increasingly recognised as an
efficient technique to estimate wave runup, overcoming some of the limitations imposed by
physical measurements. Blenkinsopp et al. [20], Vousdoukas et al. [21] and Almeida et al. [22]
made use of laser-scanner techniques to measure the free-surface elevations in the swash
zone and reconstruct the position of the shoreline over time. Hofland et al. [19] measured
the wave runup height on a dike slope with a laser scanner, while Almar et al. [23] intro-
duced and validated the use of the Radon transform to detect the instantaneous position
of the shoreline from uprush and backwash on a beach based on the coastal image data
collected by monitoring systems such as ARGUS [24,25]. Den Bieman et al. [26] used
segmentation algorithms to obtain quantitative measurements of the free surface elevation
and of the wave runup from the video analysis of physical model tests. In recent years,
the diffusion of high-resolution cameras and of sophisticated algorithms for image pro-
cessing has allowed the obtainment of coastal indicators such as shoreline position and
wave runup with adequate spatial accuracy and high temporal resolution [27]. All these
studies illustrate and demonstrate the effectiveness and advantages of video imagery as a
technique to model wave runup with respect to more traditional techniques.

Starting from the abovementioned lack of information on the wave runup at crown
walls and parapets and following the stream of machine-learning techniques for recon-
structing quantitative data from video imagery, this contribution presents the extension
of an existing methodology of image clustering analysis to represent and quantify, for the
first time, the wave runup at crown walls installed on top of coastal defences. Exploiting
the potential of the image clustering analysis, the novel part of the methodology offers the
possibility to derive a fully space-time statistical analysis of the wave runup at crown walls.
The main goal is to provide practical information for (i) the assessment of the hydraulic
performance of the walls in exercise conditions and for (ii) the design of new defences
and for the upgrade of existing ones to account for climate change scenarios. For this
purpose, different structural configurations under climate change scenarios were analysed
and processed with the new methodology, resulting in a parametrization of the effects of
the most relevant geometric parameters on the wave runup.

The proposed study is based on the extension of an existing methodology of image
clustering analysis developed by the authors for the representation of the wave overtopping
at dikes [28]. The methodology is applied here to the analysis of video records of eight tests
of wave overtopping and wave impacts at smooth berms, taken from a set of lab experi-
ments conducted and filmed by Formentin et al. [16] (Section 2). The existing methodology
was upgraded with the introduction of new procedures (Section 3) to extend the detection
of the free-surface elevation to the crown wall area and optimize the reconstruction of the
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profiles of the water up-rushing the walls (Section 4). The free-surface data were further
analysed to extract the wave runup values and the results of the statistical and parametric
analysis carried out are illustrated and discussed (Section 5). Finally, a few concluding
remarks, illustrating potentialities and limits of the methodology, are made (Section 6).

2. Tests and Laboratory Setup

The new part of the methodology of video cluster analysis proposed in this contribu-
tion was applied to a subset of 8 experiments selected among 128 tests of wave overtopping
and wave loads carried out against smooth dikes with crown wall structures in the wave
flume of the Hydraulic Laboratory of the University of Bologna (Unibo). These tests, con-
sisting of irregular wave attacks carried out against various configurations of the same
basic structures characterized by a plain, trapezoidal cross section, are described in detail
in [16,29]. The scheme of the tested cross sections is shown in Figure 1, where the following
symbols are used: h is the water depth at the wave-maker and before the dike toe; cot(αd) is
the structure slope; B is the width of the dike crest that, following the EurOtop [30] manual
classification of the structure types, is schematized as a berm and will be referenced as such
hereinafter; hc is the structure height, which was 0.35 m for all the tests; hw is the height of
the crown wall; hn and ε = 30◦ are, respectively, the height and the angle of inclination of
the parapet which was included on top of the crown wall in some of the tests; hb is the berm
submergence, with hb < 0 and hb > 0 for emerged and submerged berm, respectively; Rc is
the structure total freeboard, calculated from the top of the crown wall to the still water
level, Rc = hw − hb; Hs is the significant wave height and Lm−1,0 is the spectral wave length
characterizing the incident waves and γf is the factor representing the roughness of the
structures according to EurOtop [30]. Since all the parts of the structures were formed in
plexiglass, γf = 1.
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Figure 1. Schematic layout of the tested cross sections (not in scale) with reference to the symbols
and parameters.

The variety of the tested configurations in the lab was obtained by varying: the dike
slope, cot(αd) = 2 and 4; the berm width, B = 0.15 and 0.30 m; the berm relative emergence
to the wave height, hb/Hs = 0, and −0.5; the crown wall height, hw = 0.04 and 0.05 m and the
presence or not of the parapet. Each configuration was subjected to the following 4 target
wave conditions: Hs = 0.05 m and sm−1,0 = Hs/Lm−1,0 = 0.03; Hs = 0.05 m and sm−1,0 = 0.04;
Hs = 0.06 m and sm−1,0 = 0.03 and Hs = 0.06 m and sm−1,0 = 0.04, where sm−1,0 is the
wave steepness. The wave attacks were all characterized by Jonswap spectra, with a peak
enhancement factor of γ = 3.3 and consisted of approximately 500–600 waves (according to
the target peak wave period, Tp).

The characteristics of the 8 selected tests are reported in Table 1, where the notation
introduced in Figure 1 are adopted. The selected tests represent 8 different structural config-
urations which were set up starting from a benchmark case—characterized by hw = 0.05 m,
hb/Hs = 0 and no parapet—and by modifying one parameter at once to separately investigate
the effects of:
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• Different wave-breaking conditions, obtained by selecting both cot(αd) = 4 and 2; the
two slopes, which will be referred as “c4” and “c2” hereinafter, were set up in the
lab to determine, respectively, spilling breaker types, with values of the Iribarren–
Battjes’ breaker parameter ξm−1,0 in the range 1.41–1.72 and plunging breakers, with
ξm−1,0 = 3.03–3.72. For each test, ξm−1,0 was calculated at the toe of the structure based
on the values of Hs and Lm−1,0 measured in the wave channel;

• The wall heights, by reducing hw from 0.05 to 0.04 m;
• The berm relative submergence, by introducing the condition of emerged berm with

hb/Hs = −0.5;
• The parapet.

Table 1. Summary of the 8 experiments elaborated with the video cluster analysis. The parameters
modified with respect to the benchmark case are highlighted with blue colour. All the 8 different
structure configurations were subjected to the same wave attack (target values of Hs = 0.05 m and
sm−1,0 = 0.03) and are characterized by the same berm width B = 0.30 m.

Test ID cot(αd) [−] h [m] hw [m] hb/Hs [−] Parapet

TW1 4 0.350 0.05 0 -
TW2 4 0.350 0.04 0 -
TW3 4 0.325 0.05 0.5 -
TW4 4 0.350 0.05 0 Yes
TW5 2 0.350 0.05 0 -
TW6 2 0.350 0.04 0 -
TW7 2 0.325 0.05 0.5 -
TW8 2 0.350 0.05 0 yes

One single-wave attack (Hs = 0.05 m and sm−1,0 = 0.03) was selected for all the 8 tests,
because it was already observed [16,29] that changing the wave height and the wave period
involves scale effects purely; contextually, the adoption of the same wave attack makes
the sensitivity analysis to the effects of the different geometrical parameters meaningful.
Finally, all the 8 selected configurations involve the same condition of B = 0.30 m.

The details about the instrumentation adopted in the laboratory are given in [28].
The video records of the experiments were performed through a 30 Hz full-HD camera
(resolution 1080 × 1920 pixels) placed to the side of the wave flume and perpendicular
to it, with the camera lens focusing exactly on the mid-width section of the berm and at
the elevation of its crest. Figure 4 shows the camera framing window, with reference to
the focus of the camera. The framing window within the glass-sided flume facilitated the
filming of the wave–structure interaction processes. Specifically, it was set up to film the
wave runup over the dike slope and capture the wave breaking, the flow over the berm, the
wave impacts at the walls, the wave runup at the walls and the wave overtopping beyond
them. The camera was installed inside a “darkroom” specifically established to enclose the
wave flume in the filming area in order to optimize the light condition and to avoid the
disturbance of external objects.

3. The Video Cluster Methodology
3.1. Description of the Methodology

The image-processing methodology referenced in the present contribution was devel-
oped by Formentin et al. [28] on the basis of the video records of the experiments conducted
at Unibo and recalled in Section 2. The core of such a methodology is represented by
the application of an image clustering technique [31] to automatically detect significant
“features” from the images of the experiments. The open-source toolbox “PRTools” (Pattern
recognition Tools, http://prtools.tudelft.nl/?from=www.website80.com, [32]) developed
by TU Delft was adopted for the cluster analysis and the features extraction from the videos.
The raw outputs of the image clustering are the clustered maps of each single frame of
the video record of each experiment. In the clustered maps, the different features “water”,

http://prtools.tudelft.nl/?from=www.website80.com
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“air” and “structure” are detected and labelled. An example of clustered map reproducing
a wave overtopping event is given in Figure 2a, where the different colours identify the
different classes of objects (magenta for air, violet for structure, etc.). The image clustering
phase is respectively preceded and followed by a number of pre- and post-processing
techniques specifically designed to improve the automatic detection phase.
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Figure 2. (a) Cluster map of a frame reproducing a wave overtopping event from the test TW5;
(b) profile of the free surface (blue) associated to the overtopping event as obtained from the
automatic procedure.

The existing methodology has so far been applied to the application of the image
clustering technique in the area of the structure included between the dike slope and
the berm, excluding therefore the part with the crown walls. It involves two sets of
procedures which elaborate the raw outputs to (i) perform the free-surface tracking and
(ii) estimate the number of air bubbles entrapped in the liquid phase. Figure 2b shows
the profile of the free surface obtained with the application of the existing procedure to
the cluster map of Figure 2a. With the first set of procedures, the instantaneous values of
the free-surface elevation are further manipulated to obtain the wave overtopping depths,
velocities, volumes and discharges characterizing the flow above the crest of the structures.
The second set of procedures is dedicated to the estimation of the number of air bubbles
entrapped in the liquid phase during the several phases of the runup and overtopping
propagation flow.

The novel part of the methodology presented in this contribution consists in:
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• the extension of the existing procedure to the area including the crown walls placed at
the inshore edge of the berm and beyond; such extension involves: (i) the adaptation of
the pre-clustering techniques to deal with the presence of the wall, (ii) the adaptation
of the procedure for the detection of the free surface to the area including the walls
and (iii) the elimination of the 3D effects affecting the pictures in the area around
the walls;

• a package of new procedures is developed to further manipulate the free-surface
elevation in order to extract the following new quantitative data: (i) the wave runup
height at the walls, (ii) the number of overtopping waves behind the crown wall and
(iii) the number of the wave impacts at the walls.

The conceptual scheme of the whole methodology is illustrated in Figure 3, where the
existing and the new parts are distinguished. This figure synthetizes and briefly describes
the several steps of the methodology. The details about the existing pre- and post-clustering
and the clustering itself are given in Formentin et al. [28].
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3.2. Setup of the Virtual Gauges

The new methodology includes several novel aspects related to the elaborations of
the free-surface elevation (h, hereinafter) in specific points of the framing window, which
will be referenced hereinafter as “virtual wave gauges” (WGs). The positions of these WGs
are given in Figure 4 representing the framing window of the camera used to record the
experiments. Figure 4 gives reference to the direction and orientation of the horizontal
x-axis, to the vertical z-axis and to the position of the origin of the coordinate system (x = 0,
z = 0) The y-axis—not shown in the figure—will be used in the present contribution to refer
to the third dimension perpendicular to the plane of the frame.
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different applications are also indicated. All the measurements are in mm.

WG1 and WG2 are the two virtual gauges installed above the structure berm and
adopted to reconstruct the single overtopping waves over the berm and the number of the
impact events at the walls and to estimate the celerity of propagation of the overtopping
waves above the berm. WG3 is placed behind the crown wall, and it is used to calculate
the number of the waves overtopping the wall. P1, P2 and P3 are the “virtual pressure
transducers” and are placed exactly in correspondence of the homonymous real pressure
transducers installed in the lab. In Figure 4, the local coordinates of the WGs and of other
peculiar points delimiting the areas of the camera framing window dedicated to the free-
surface detection, the air entrainment estimation (not shown here), the wave runup and the
wave impacts detection are indicated in red and denoted by the symbol “xi”. These x-values
represent the abscissas of these points calculated with respect to the left-most section of the
frame. These x-values may vary by ±20 mm depending on the structure slope (c2 or c4), on
the crown wall height and random uncertainty. Indeed, it should be noted that—though
the camera was always kept in the same position from the beginning to the end of the lab
tests—small movements may have occurred due to the routine operation of the system
(camera turning on and off, battery recharge, etc.). For this reason, the calibration of the
camera was repeated daily, see [28].

The new procedures of the methodology developed to reconstruct the wave runup are
described in detail in Section 4. The procedures dedicated to the evaluation of the number
of the wave impacts at the walls and of the overtopping waves behind the walls will be
part of a separate contribution presently under preparation.
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3.3. Accuracy of the Methodology

The accuracy of the whole methodology is primarily determined by the accuracy in
the camera calibration process and the related correction of the image distortion. The
accuracy in the camera calibration is a direct indicator of the error associated to the h-values
and, by extension, to all the quantities representing lengths or heights which are directly
computed from h, i.e., the flow depths at WG1 and WG2, the runup heights, the height
of the water columns in front of P1, P2 and P3 and the depth of the overtopping flow
behind the wall. Similarly to Gaeta et al. [31] and Formentin et al. [28], the calibration was
performed following the approach indicated by Bouguet et al. [33] and the accuracy of the
camera calibration error was calculated by selecting a sample frame for validation for each
experiment, and by comparing the main geometrical distances (e.g., width of the berm or
slope angle of the dike) of the picture to the corresponding real-world dimensions obtained
after the application of the rotation matrix and translation vector. Following this approach,
the relative errors characterizing the length of the berm (B) and the inclination of the dike
slope (cotαd) were calculated for each of the eight selected tests and are shown in Table 2.
The following computations were performed:

Rel. Error B =
(B real−Bvideo)

Breal
(1)

Rel. Error cot αd =
(cotαdreal−cotαdvideo

)
cotαdreal

, (2)

where Breal and cotαd,real are the real world values of B and cotαd and Bvideo and cotαd,video
are the ones derived from the images. Overall, the relative error of B varies between 4%
and 9%, whereas the relative error of cotα varies between 1% and 6%.

Table 2. Relative errors in the estimation of the length of the berm (B) and the inclination of the dike
slope (cotαd) and mean reprojection error (MRPE) per image resulting from the camera calibration.

Test ID MRPE
[Pixels]

Rel. Error B
[−]

Rel. Error cotαd
[−]

TW1 2.21 0.08 0.025
TW2 3.05 0.09 0.01
TW3 2.21 0.04 0.06
TW4 1.92 0.08 0.03
TW5 1.11 0.06 0.04
TW6 5.09 0.06 0.02
TW7 1.11 0.04 0.04
TW8 2.73 0.05 0.04

The procedure of conversion into real-world coordinates also provides the reprojection
error (RPE), i.e., the distance between a pattern key point detected in the calibration image
(x̂), and a corresponding world point (X̂) projected into the same image. Specifically, if P is
the projection matrix of the camera and x̂ is the image projection of X̂ such that x̂ = P·X̂,
the RPE of X̂ is the Euclidean distance between x̂ and X̂.

For each image, its mean reprojection error (MRPE) can be calculated, which can be
used as a further indicator of the accuracy of the calibration process:
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where N is the number of points in the image and
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pixels/mm of 3.3, it can be estimated that the MRPE per image varies on average between
0.67 and 1.55 mm.

The accuracy of the whole methodology, and therefore the accuracy of the results
on the wave runup presented in this contribution (Section 5), is basically determined
by the precision of the camera calibration process and by the correction of the image
distortion. To these uncertainties, the error propagation related to the application of the
several procedures of pattern recognition and automatic detection of the free surface needs
to be added. It is not possible to know which is the principal source of error in the model
chain, but it is possible to identify all the elements that contribute to the propagation of
the error. As reference, Formentin et al. [28] verified the accuracy of the methodology by
comparing the results obtained from the imagery of the free-surface elevation with the
corresponding laboratory quantities, finding the following relative errors: +36% for the
extreme flow depths values; +19% for the average overtopping discharge above the berm;
+5% for the estimation of the number of overtopping waves above the berm; +2% for the
average and total overtopping volumes over the berm.

As for the wave runup objective of the present contribution, a comparison with
methods from the literature is proposed in Section 5.2.

4. Calculation of the Wave Runup

This section details the specific procedures set up for the reconstruction of the wave
runup at the crown walls. Such procedure involves the pre-clustering techniques
(Section 4.1), the algorithm of automatic detection of the free surface from the clustered
model maps of the frames (Section 4.2) and the post-clustering techniques (Section 4.3).

4.1. Adaptation of the Pre-Filtering Techniques

Extending the automatic detection of the free surface to the wall and beyond it means
adjusting the procedures to account for the presence of the wall itself and the disturbance
it caused to the image clustering. Firstly, as can be appreciated in Figure 2a, the existing
methodology is not able to distinguish the wall from the turbulent water jet up rushing
over it, since they are both detected as object “air” (magenta colour). To overcome this
aspect, it was necessary to tune and modify the pre-clustering filtering techniques by
applying a different contrast enhancement technique performing histogram equalization.
Such a technique transforms the values of the input image in an intensity image so that the
histogram of the output image approximately matches a uniformly distributed histogram.
For example, Figure 5 shows the clustered model map (panel c) associated to the frame
selected for training the cluster model of test TW5 (panel a), after the application of the
new pre-clustering techniques described above (panel b). In Figure 5b, the profile of the
wall is enhanced, differently from the real colour image of Figure 5a, where it is completely
mixed with the water. As a result, Figure 5c, showing a clustered model map where the
profile of the wall is distinguished from the water, differs from Figure 2a.

4.2. Extension of the Free-Surface Tracking to the Wall Area

The existing procedure for the free-surface tracking developed by Formentin et al. [28]
provides the values of the water depth h above the structure berm, i.e., from x1 to xw,1 (see
Figure 4). It consists in a customized procedure that, for each frame, takes as input the
“edge” of the object “water” detected in the clustered map and returns the effective profile
of the free surface, abscissa after abscissa. It is based on the definition of an initial time
condition and follows a sort of “forward scheme” to identify the nearby points of the free
surface, based on the assumption of the continuity of the free-surface profile itself in time
and space. The calculation of the wave runup proposed in this contribution has involved
the modification of such existing procedures (see the scheme of Figure 3) to extend the
automatic detection of the free-surface tracking from xw,i to xw,f (see Figure 4). The new part
of the free-surface tracking procedure was kept separated from the existing one to “isolate”
the h-values in the runup zone for the specific analyses. It is conceptually subsequent to the
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existing procedure, because, for each time step, it applies the value of h resulting from the
existing procedure as left-boundary condition in x = xw,i. In case no value is available—for
example, because the overtopping flow has not reached the abscissa xw,i yet—the value
h in correspondence of xw,I is set equal to 0. For x > xw,i, the new procedure adopts the
same forward scheme of the existing one and the same assumption of the continuity of
the free-surface profile itself. The procedure includes a control of the h-values that cannot
be lower than the wall height (hw), though the update of the image clustering phase to
optimize the pattern recognition and distinguish the water from the wall (Section 4.1)
should prevent this shortcoming.
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Figure 5. (a) Example of a frame used for training the cluster model in the new methodology (test
TW8); (b) Image as resulting after the application of the new pre-processing techniques; (c) clustered
model map of the frame.

Following this method, the profiles of the up-rushing jets were detected for each
frame of each test and the instantaneous values of the wave runup heights, Ru, were
calculated as the vertical distances between the highest point reached by the water jet and
the still water level [30]. Figure 6 provides an example of the profile of the free surface
(blue) circumscribed between xw,i and xw,f and the corresponding runup height (red circle)
obtained with the new part of the methodology.

Finally, the calculation of the wave runup has involved also the development of a new
procedure dedicated to the computation of maximum runup heights of each frame and the
extraction of the upper envelopes of the runup profiles over time.

4.3. Perspective Distortion Correction

Figures 4 and 6 show that the wall is strongly affected by a 3D perspectival distortion
that, of course, increases radially from the centre (i.e., the focus of the camera) to the
sides of the framing window, and therefore it becomes nearly maximum in the horizontal
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direction in correspondence of the crown wall. The horizontal distortion of the wall due
to the perspective effect can be estimated by comparing the difference between xw,f and
xw,i ≈ 200 mm to the real thickness of the wall, which was 20 mm. Such distortion cannot
be corrected with the application of the rotation translation matrix and the translation
vectors deriving from the camera calibration process. These transformations are indeed
used to convert all the data from the videos of the experiments from intrinsic to world
coordinates and can correct the skewness, the tangential distortion and optical errors due
to lens distortion. To reduce the perspective effect, a specific procedure of perspective
control and correction developed by Chan [34] was included in the step of the calculation
of the wave runup at the walls, after the automatic reconstruction of the free-surface
elevation (Section 4.2) and before converting the data into real-world coordinates. Figure 7
compares the example free-surface profile obtained in the runup area before (panel a)
and after (panel b) the application of the perspective correction. As is evident in panel
b, the perspective correction significantly reduces the 3D effect of the wall allowing the
reconstruction of the up-rushing jet, but it contextually generates a radial distortion in
the image that affects the horizontal distances and would make meaningless all the other
elaborations and results. This is the reason why the perspective correction procedure was
applied to the reconstruction of the runup only.

Water 2023, 15, x FOR PEER REVIEW 11 of 25 
 

 

Figure 5. a) Example of a frame used for training the cluster model in the new methodology (test 342 
TW8); b) Image as resulting after the application of the new pre-processing techniques; c) clustered 343 
model map of the frame. 344 

4.2. Extension of the free-surface tracking to the wall area 345 

The existing procedure for the free-surface tracking developed by Formentin et al. 346 

[28] provides the values of the water depth h above the structure berm, i.e. from x1 to xw,1 347 

(see Figure 4). It consists in an if-else, customized procedure that, for each frame, takes as 348 

input the “edge” of the object “water” detected in the clustered map and returns the ef- 349 

fective profile of the free-surface, abscissa after abscissa. It is based on the definition of an 350 

initial time condition and follows a sort of “forward scheme” to identify the nearby points 351 

of the free-surface, based on the assumption of the continuity of the free-surface profile 352 

itself in time and space. The calculation of the wave runup proposed in this contribution 353 

has involved the modification of such existing procedure (see the scheme of Figure 3) to 354 

extend the automatic detection of the free-surface tracking from xw,i to xw,f (see Figure 4). 355 

The new part of the free-surface tracking procedure was kept separated from the existing 356 

one to “isolate” the h-values in the runup zone for the specific analyses. It is conceptually 357 

subsequent to the existing procedure, because, for each time step, it applies the value of h 358 

resulting from the existing procedure as left-boundary condition in x=xw,i. In case no value 359 

is available – for example, because the overtopping flow has not reached the abscissa xw,i 360 

yet – the value h in correspondence of xw,I is set equal to 0. For x>xw,i, the new procedure 361 

adopts the same forward-scheme of the existing one and the same assumption of the con- 362 

tinuity of the free-surface profile itself. The procedure includes a control of the h-values 363 

that cannot be lower than the wall height (hw), though the update of the image-clustering 364 

phase to optimize the pattern recognition and distinguish the water from the wall (Sub- 365 

section 4.1) should prevent this shortcoming.  366 

Following this method, the profiles of the up-rushing jets were detected for each 367 

frame of each test and the instantaneous values of the wave runup heights, Ru, were cal- 368 

culated as the vertical distances between the highest point reached by the water jet and 369 

the still water level [30]. Figure 6 provides an example of the profile of the free surface 370 

(blue) circumscribed between xw,i and xw,f and the corresponding runup height (red circle) 371 

obtained with the new part of the methodology.  372 

Finally, the calculation of the wave runup has involved also the development of a 373 

new procedure dedicated to the computation of maximum runup heights of each frame 374 

and the extraction of the upper envelopes of the runup profiles over time.  375 

 376 

 377 

Figure 6. Example of an instantaneous runup profile (blue) and corresponding maximum runup 378 
height (red circle) obtained with the new part of the methodology.  379 

 380 

Figure 6. Example of an instantaneous runup profile (blue) and corresponding maximum runup
height (red circle) obtained with the new part of the methodology.

Water 2023, 15, x FOR PEER REVIEW 12 of 25 
 

 

4.3. Perspective distortion correction 381 

Figure 4 and Figure 6 show that the wall is strongly affected by a 3D perspectival 382 

distortion that, of course, increases radially from the centre (i.e. the focus of the camera) 383 

to the sides of the framing window, and therefore it becomes nearly maximum in the hor- 384 

izontal direction in correspondence of the crown wall. The horizontal distortion of the 385 

wall due to the perspective effect can be estimated by comparing the difference between 386 

xw,f and xw,i ≈200 mm to the real thickness of the wall, which was 20 mm. Such distortion 387 

cannot be corrected with the application of the rotation translation matrix and the trans- 388 

lation vectors deriving from the camera calibration process. These transformations are in- 389 

deed used to convert all the data from the videos of the experiments from intrinsic to 390 

world coordinates and can correct the skewness, the tangential distortion and optical er- 391 

rors due to the lens distortion. To reduce the perspective effect, a specific procedure of 392 

perspective control and correction developed by Chan [34] was included in the step of the 393 

calculation of the wave runup at the walls, after the automatic reconstruction of the free- 394 

surface elevation (Sub-section 4.2) and before converting the data into real-world coordi- 395 

nates.  396 

Figure 7 compares the example free-surface profile obtained in the runup area before 397 

(panel a) and after (panel b) the application of the perspective correction. As evident from 398 

panel b, the perspective correction significantly reduces the 3D effect of the wall allowing 399 

the reconstruction of the up-rushing jet, but it contextually generates a radial distortion in 400 

the image that affects the horizontal distances and would make meaningless all the other 401 

elaborations and results. This is the reason why the perspective correction procedure was 402 

applied to the reconstruction of the runup only.  403 

 404 

 405 
 406 

Figure 7. Example of the free-surface profile in the runup area before (a) and after (b) 407 

the application of the perspective correction. 408 

 409 

5. Statistical and parametric analysis of the wave runup  410 

Depending on the incident, irregular waves, the Ru-values are stochastic variables 411 

varying in time for each overtopping event [30]. Therefore, specific statistics (mean, me- 412 

dian, maximum, etc.) are necessary to characterize the distribution of the Ru-values of 413 

each test. To this purpose, the probability of exceedance of Ru were derived (Sub-section 414 

5.1) and specific quantiles were calculated for each test. Generally, the literature (e.g., [19, 415 

30]) indicates the “2% exceedance wave runup height”, Ru2%, as a characteristic statistic 416 

and design basis for the definition of the crest levels in case of irregular waves. Ru2% is 417 

defined as the wave runup height exceeded by 2% of the incident waves. Other studies 418 

(inter alia, [8, 35]) refer instead to the maximum wave runup height, Rumax as a design pa- 419 

rameter. In the present study, both the parameters Ru2%,video and Rumax,video were calculated 420 

(a) (b)

Figure 7. Example of the free-surface profile in the runup area before (a) and after (b) the application
of the perspective correction.
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5. Statistical and Parametric Analysis of the Wave Runup

Depending on the incident, irregular waves, the Ru-values are stochastic variables
varying in time for each overtopping event [30]. Therefore, specific statistics (mean, median,
maximum, etc.) are necessary to characterize the distribution of the Ru-values of each test.
To this purpose, the probability of exceedance of Ru were derived (Section 5.1) and specific
quantiles were calculated for each test. Generally, the literature (e.g., [19,30]) indicates the
“2% exceedance wave runup height”, Ru2%, as a characteristic statistic and design basis for
the definition of the crest levels in case of irregular waves. Ru2% is defined as the wave
runup height exceeded by 2% of the incident waves. Other studies (inter alia, [8,35]) refer
instead to the maximum wave runup height, Rumax as a design parameter. In the present
study, both the parameters Ru2%,video and Rumax,video were calculated from the probability
exceedance curves for each test in order to compare the results of the video analysis with
those from the literature (Section 5.2).

Finally, it was observed that the instantaneous Ru-values vary also with the cross-shore
distance (x) and across the front section of the crown walls due to 3D effects, as it can be
appreciated in the example of Figure 8, showing two consecutive overtopping events of
the same test reaching two different Ru-values (0.081 m and 0.073 m, in panels a and b,
respectively) at two different distances xRu = 0.609 m and 0.073 m, respectively, where the
x-values are calculated from the beginning of the frame. To also characterize the spatial
distribution of Ru across the crown wall section, envelopes of the runup profiles over time
were calculated for each of the tests. Such envelopes are shown in Figures 13 and 14 for the
tests with cotαd = 4 (TW1, TW2, TW3 and TW4) and cotαd = 2 (TW5, TW6, TW7 and TW8),
respectively. A parametric analysis of these envelopes is detailed in Sections 5.3 and 5.4.
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Figure 8. Example of the free-surface profiles in the runup area (blue) and the corresponding
instantaneous maximum Ru-values (red circle) obtained for the same test TW8 from two consecutive
overtopping events (time instants t = 19.6 s and t = 20.8 s from the beginning of the test for panel
(a) and panel (b), respectively). All the measures are in m.

Figure 9 illustrates and summarises the analyses carried out and proposed in this
contribution for the characterization of the wave runup.

5.1. Probability of Exceedance of the Wave Runup

To statistically characterize the wave runup Ru in time and investigate the effects and
the influence of the different tested geometries (slope, berm level, presence of the parapet,
wall height) on it, the values of the probability of exceedance of the wave runup (P) were
calculated for each test. The curves of probability of non-exceedance (1 − P) of Ru obtained
for each test were therefore derived and are reported in Figure 10a,b, for the slopes c4 and
c2, respectively. To avoid scale effects, the dimensionless Ru/Hs were used in these Figures.
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Figure 9. Conceptual scheme of the analyses proposed for the wave runup. Now is the number of
overtopping events occurring for each test, where “overtopping” refers to the berm.
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Figure 10. Non-exceedance probability curves (1 − P) of the wave runup for the tests with cot(αd) = 4
(panel (a)) and cot(αd) = 2 (panel (b)).

Overall, the tests with slope c4, characterized by spilling breaker types, tend to give
higher Ru-values with respect to the tests with the slope c2 characterized by plunging
waves, with maximum values of Ru/Hs in the ranges 3.30–4.75 and 3.00–4.25, respectively.

In both the graphs of Figure 10, the higher curves relate to the tests with parapet TW4
and TW8 (yellow continuous lines), meaning that higher Ru-values are more frequently
reached for these tests. Therefore, the parapet may increase the Ru heights of ≈11–12% for
the same wave attack with respect to the same structural configuration without parapet.
This phenomenon is clearly visible in the example of Figure 11, which compares the same
wave event up rushing the crown wall and reaching its instantaneous Rumax for the four
tests TW1, TW2, TW3 and TW4 associated to the slope c4. In particular, Figure 11d (test
TW4) shows that the deflection of the up-rushing jet induced by the parapet generates
not only higher runup levels, but also higher turbulence and higher air entrainment rates,
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resulting in a more violent impact with respect to the benchmark case TW1 without parapet
Figure 11a).
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Figure 11. Example of the free-surface profile in the runup area (blue) and the corresponding
instantaneous maximum Ru-value (red circle) obtained with the same wave for the tests TW1 (a),
TW2 (b), TW3 (c) and TW4 (d).

In Figure 10a,b, the lowest curves are associated to the tests TW3 and TW7 (blue
dot-dashed lines), representing the configurations with hb/Hs = −0.5. The differences
among these curves and the corresponding benchmark cases of TW1 and TW5 representing
the configurations with hb/Hs = 0 may be used to quantify the effect of the sea level on
Ru: the maximum values of Ru/Hs associated to TW1 and TW5 are approximately +20%
higher than TW3 and TW7. Varying hb/Hs from −0.5 to 0 means increasing h from 0.325 m
to 0.35 m, i.e., increasing the sea level of +0.025 m, viz ≈ 0.5 m in real scale conditions.
Such a scenario represents an intermediate condition with respect to the predictions of the
Intergovernmental Panel on Climate Change (IPCC) that estimates a global average sea-
level rise ranging from 0.29–1.10 m by 2100 depending on the emissions scenario [3]. Based
on the present results, Rumax may therefore increase up to +20%, for the same wave attack
under a scenario of intermediate sea-level rise. This predicted increase is limited to the
configurations considered in this work and does not consider the potentially contributing
effects of the wave heights which are also expected to increase due to climate change.

Finally, the curves associated to the tests TW2 and TW6 (green, dashed lines) are very
close to the curves of the tests with parapet, in both Figure 10a,b, suggesting therefore that
the runup is lower for a lower crown wall height (hw = 0.04 m). Considering that higher
wall heights give lower overtopping discharges, this result suggests that, for the same wave
attack, a higher wall allows for higher up-rushing jets that are more likely to spray up
vertically and turn back, instead of bending over the top of the wall and overtopping it.
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This different behaviour can be observed in Figure 11a,b, comparing Rumax associated to
the same wave for the tests TW1 and TW2, respectively. In Figure 11a, the wave sprays
up vertically, reaching Ru = 0.111 m and then it turns back without overtopping the wall;
in Figure 11b, the wave overturns and overtops the wall before reaching its maximum
Ru-value of 0.089 m. Therefore, lower Ru-values are not necessarily associated to lower
overtopping discharge q as in the case of emerged berms; indeed, as it can be appreciated
in Figure 10 (emerged berm configuration, TW3), the presence of an emerged berm causes
an earlier wave breaking along the structure slope that dissipates most of the incident
wave energy, determining consequently a bore overtopping flow over the berm and modest
runup at the wall and overtopping. Such a correlation lower Ru-lower q does not apply for
the configuration with hw = 0.04.

In summary, the parametric analysis conducted on the results of the video analysis
presented in Figure 10 leads to the following main outcomes:

• for the same wave attack, increased rates of Ru of c. 11–12% should be expected when
a parapet is included on top of wall;

• in an intermediate condition of sea-level rise projection of c. 0.5 m by the end of the
21st century, Rumax might increase by up to +20% with respect to present conditions;

• runup heights and overtopping rates (beyond the walls), being differently affected
by the structural geometrical parameters, are not necessarily correlated, i.e., the two
quantities do not necessarily increase contemporarily.

The limits of these results are discussed in the Conclusions chapter.

5.2. Comparison of the Wave Runup Heights with the Literature

In this sub-section, the results of the video analysis are compared with the commonly
applied methods available to quantify the wave runup.

The EurOtop manual [30] proposes the following formulae (Equations (4) and (5) in
the manual), for the prediction of Ru2% in the case of “relatively gentle slopes”, i.e., for
values of ξm−1,0 ≤ 4 (Ru2%,Eur):

Ru2%

Hs
= 1.65·γb·γ f ·γβ·ξm−1,0, with a maximum of : (4)

Ru2%

Hs
= 1.0·γβ·γ f ·

(
4− 1√

γb·ξm−1,0

)
, (5)

where γb is the influence factor accounting for the presence of a berm, γβ is the influence
factor for oblique wave attacks and γf is the influence factor for rough slopes. Since the
values of ξm−1,0 characterizing the tests TW1-TW8 range between 1.41 and 3.72, these
formulae were adopted to estimate the Ru2%,Eur–values associated to each test. For this
purpose, γf and γβ were set equal to 1, whereas γb was calculated based on EurOtop Eqs.
5.40, 5.41 and 5.42 and resulted in a value of 0.6 for all the tests. The values of Hs and ξm−1,0
were set as equal to the measured values in the wave flume. The use of EurOtop Eq. 5.6,
conceived for steep to vertical slopes was evaluated as alternative to Equations (1) and
(2) to represent the crown wall on top of the berms. However, Equations (1) and (2) were
considered to be more appropriate to describe the geometry of the tested configurations.

The comparison between the 8 values of Ru2%,video and the corresponding Ru2%,Eur
predictions is portrayed in Figure 12a. Based on the values of Ru2%,Eur calculated from
Equations (4) and (5), the relative differences among video and predicted values of Ru2%
were calculated (Ru2%,video−Ru2%,Eur)/Ru2%,video and plotted as functions of ξm−1,0 in
Figure 12b. In Figure 12a,b, the data are separated into tests with cotαd = 4 (“c4”, dots) and
cotαd = 2 (“c2”, squares), and the tests characterized by the presence of the parapet (TW4
and TW8) are circled in red.
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Figure 12. (a) Comparison among the upper 2% Ru-values obtained with the image analysis
(Ru2%,video) and estimated with the EurOtop formulae (Ru2%,Eur). (b) Relative difference bewteen the
Ru-values ((Ru2%,video − Ru2%,Eur)/Ru2%,video) as functions of the Iribarren–Battjes’ breaker parameter
ξm−1,0. The red circles indicate the tests with parapets.

In both Figure 12a,b, the points are aligned along the bisector line representing
Ru2%,video = Ru2%,Eur, suggesting that the results of the video analysis align with the pre-
dictions from EurOtop. However, a strong effect of the slope, and consequently of the
wave breaking, is observed. All the Ru2%,video-values associated with the tests “c2” are
indeed overestimated by Equations (4) and (5), whereas all the tests “c4” are systemati-
cally underestimated. For both the group of tests, the higher differences among EurOtop
formulae and video are observed for the tests with parapet, TW4 and TW8, as it could
have been expected since Equations (4) and (5) do not account for the presence of the
parapet. The important role played by ξm−1,0 is even more evident from Figure 12b,
where the differences (Ru2%,video − Ru2%,Eur)/Ru2%,video increase almost linearly with in-
creasing ξm−1,0-values, being ≤0 for spilling waves and ≥0 for plunging waves. This
seems to suggest that for the tested configurations—which do not perfectly fit in any of
the cases modelled by EurOtop [30]—a stronger effect of the breaker parameter should be
accounted for.

The indications of Ning et al. [8] and Carbone et al. [35] for the maximum runup,
Rumax, were also considered. These two contributions indicate that Rumax can be 2.6
and 2.75 times the maximum wave height Hmax at vertical seawalls [8] and on cliffs [35],
respectively. The values of Rumax/Hmax obtained with the videos range in the interval
1.51–2.39, with the minimum and the maximum values being associated with the tests
TW7 (Rumax/Hmax = 1.51) and TW4 (Rumax/Hmax = 2.39), respectively. These slightly lower
values of Rumax/Hmax recorded with respect to the predicted values from EurOtop can be
explained by the wave dissipation process determined by the overtopping flow over the
berm. Therefore, based on the results of the video analysis, it could be argued that the
inclusion of a smooth berm may reduce the Rumax by an average the 20% and at least 10%
with respect to vertical walls or cliffs. These estimations can be compared with the average
reduction of 36% found for armoured berms and berm breakwaters [36].

5.3. Wave Runup Envelopes: Design Conditions

Along a 2D, plain slope, the cross-shore position (x) of each instantaneous Ru-value
is univocally determined by the Ru-value itself (the higher Ru (z-direction) the farther
the horizontal distance covered by the overtopping tongue from the base of the slope, x-
direction). Differently, the up rushing along a vertical crown wall generates wave deflection
and wave reflection phenomena affecting the linear increasing relationship x-Ru and
inducing great variability in the cross-shore spatial distribution of the Ru-values. The
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presence of 3D, unpredictable effects, which are more pronounced when the parapet is
included, induces a spatial variability also along the front-section direction (y).

This sub-section investigates and illustrates the spatial variability of the Ru-values
along the x- and y-directions focusing on maxima and minima values, which are useful
to get information for design purpose. Section 5.4 will focus on average values to assess
ordinary, exercise conditions. To achieve this, for each x-position from xw,i to xw,f the
corresponding maximum, minimum and mean values of Ru that occurred in that position
(if any) were recorded. It was then possible to draw the x-shore envelopes of Ru for
each test.

The maximum envelopes of Ru along x are reported in Figures 13 and 14 for the
slopes c4 and c2, respectively. In each Figure, both the real images—affected by the
perspective distortion (panels a)—and the corrected ones (panels b) are shown. Both
images are shown because the distorted pictures show also the variability in the y-direction,
whereas the corrected pictures provide the “pure” variability in the x-direction. To assist
the interpretation of the results, a ruler marking the vertical heights with respect to the
berm crest are included in both the Figures.
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Figure 13. Upper envelopes of the runup profiles for each of the four tests with cot(αd) = 4. Profiles
before (a) and after (b) the application of the perspective correction. The measures in the ruler of
panel (b) are in cm.

The analysis of Figures 13 and 14 leads to the following findings:

• The different configurations associated to the slope c2 (Figure 14) show a higher
variability of the Ru-envelopes, ranging between 0.110 and 0.175 m, than the tests c4,
which range from between 0.125 and 0.175 m. The effect of the different geometries
is indeed more evident in this group of tests with respect to the group c4 (Figure 13);
the profile obtained for the test TW6 (lower wall height, hw = 0.04 m) is well below
the profile for the test TW5 (benchmark case for c2) and the profile of TW7 (emerged
berm, hb/Hs = −0.5) is in turn systematically below TW6. Overall, the envelope of
TW8 (parapet) is above all the other envelopes, showing Ru-values ranging between
0.140 and 0.175 m;

• Contrary to this and in the case of c4 (Figure 13), the sensitivity to the geometrical
parameters is modest and the profiles intersect each other across the whole wall
cross section. The envelope of the test with the parapet (TW4) is locally—but not
systematically—above all the other envelopes. It is interesting to note that the en-
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velopes associated with TW1 (benchmark case for c4) and to TW4 (emerged berm)
show similar variability ranges of Ru (0.133–0.175) and similar spikes;

• A strong variability of Ru across the x- and y-direction is observed. This variability is
randomly distributed and the spikes, varying from test to test, are not concentrated
either at the front sides of the wall, nor around its middle section. Therefore, it can be
concluded that the side walls—which are made of glass—do not generate side effects
due to potential friction or capillarity phenomena, and the presence of the pressure
transducers located in the middle of the front-section of the walls, do not disturb the
runup flow. In conclusion, the variability of the wave runup in the y-direction cannot
be explained by side effects from the wave flume side walls.
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Figure 14. Upper envelopes of the runup profiles for each of the four tests with cot(αd) = 2. Profiles
before (a) and after (b) the application of the perspective correction. The measures in the ruler of
panel (b) are in cm.

Based on these results, the recommendation for design purposes is to consider that
Rumax may vary across the wall by approximately ±30% in the case of plunging waves
(tests c2) and ±20% in case of spilling waves (tests c4), due to 3D effects. It is notable that
only perpendicular waves were tested and therefore the methodology needs also to be
applied to wave tank tests to confirm these findings.

5.4. Wave Runup Envelopes: Exercise Conditions

Whilst the upper envelopes represent key data for the design of coastal structures, the
mean and the lower envelopes of Ru relate to the typical exercise conditions and provide
practical information for the maintenance or upgrade of existing structures to enhance their
resilience. Figure 15 compares the upper, mean and lower envelopes of Ru for the tests
TW4 and TW8, representing the configurations with parapets characterized by the most
severe Ru-values. In the case of TW8 (panel b of Figure 15), it is interesting to see that the
lower envelope is frequently and significantly above the wall, revealing that the structure
is nearly always overtopped. The mean envelopes of Figure 15 indicate that:

• in average conditions, both the configurations (slopes c4 and c2) are always
overtopped;
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• in the case of TW4 (spilling breaker type), the average overtopping rate is expected
to be modest, since the envelope is very close to the wall top, while in case of TW8
(plunging breaker) the “standard” overtopping represents a severe condition;

• for this latter test, overtopping randomly occurs across the wall front section even in
the case of minimum runup: this outcome suggests that the structural configuration
corresponding to TW8 is clearly inadequate to face the wave attack conditions in the
case of sea-level rise determining hb = 0.
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Figure 15. Upper, mean and lower envelopes of the runup profiles for the tests with parapet TW4
(panel (a)) and TW8 (panel (b)). The measures in the rulers are in cm.

The average envelopes of the wave runup could also be used to estimate the average
overtopping discharge q beyond the wall, by multiplying the average flow depth above the
top of the crown wall for the corresponding wave celerity which, under the hypothesis of
shallow-water conditions, corresponds approximately to the flow velocity. To complete
the estimation of q, the knowledge of the total number of overtopping waves is required
to evaluate the time of overtopping, i.e., the portion of the total duration of the tests
where overtopping does actually occur. As shown in Figure 3 and specified at the end
of Section 3.2, the evaluation of the number of overtopping waves is a matter of ongoing
research. The possibility of estimating q from the video analysis of the wave runup would
represent an important contribution to the assessment of the hydraulic performance of
coastal structures in prototype and field conditions, where the measurement of q is complex
and often unfeasible for practical and economic reasons.

6. Conclusions

A statistical and parametric analysis of the wave runup at walls based on the results of
video analysis of laboratory experiments of smooth berms with crown walls was presented
in this contribution. Such analysis was possible through the implementation of new and
innovative procedures of image processing in the framework of an existing methodology
of image clustering recently released by the authors. The new procedures were developed
to extend the automatic recognition of the free-surface levels from the dike crest (or berm)
to the walls area, in order to reconstruct the profiles of the water jets up-rushing along the
crown wall and eventually overtopping it. Such procedures were conceived to deal with
the complications in the pattern-recognition step represented by the high turbulence and
air entrainment rates due to the dynamics of the wave impacts and wave reflection at the
walls, by the presence of the wall itself, and by the 3D-perspective distortion effects due to
the lens of the camera. Specifically, pre-filtering techniques were applied to exaggerate the
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contrast of the frames to ease the correct individuation and distinction of the wall from the
turbulent flow during the image clustering, while a tool to correct the perspective distortion
affecting the walls was included.

The new methodology was applied to the image processing of a subset of eight tests
that were specifically selected to analyse the following configurations: two different berm
slopes determining spilling and plunging wave-breaking conditions; the case of emerged
berms with respect to the still water level, to represent existing defence structures in present
exercise conditions, and the case of berms with the crest aligning with the still water level
to represent future scenarios of sea-level rise; two wall heights and configurations both
including and without a sloping parapet on top of the crown walls installed to reduce the
wave overtopping.

The direct outputs of the new methodology of image analysis are the profiles of the
free surface along the whole profile of the crown walls of each of the eight selected tests.
Based on these profiles, for each time step of each test, the runup height Ru was calculated
as the instantaneous maximum elevation reached by the water while up rushing the wall.
The records of the Ru-values were further elaborated to perform a statistical analysis of the
time and spatial distribution of the wave runup and to investigate how the different tested
configurations affect the wave runup itself.

The upper 2% exceedance wave runup values Ru2%, and the maxima Rumax, were
derived for each test and respectively compared with the methods available from the
literature. While following the trend of the EurOtop [30] formulae for the prediction of
Ru2%, the values resulting from the videos show a strong effect of the wave breaking that,
if confirmed by further research, might suggest a re-calibration of the literature formula
to better represent both spilling and plunging waves. The values of Rumax/Hmax obtained
with the videos, ranging in the interval 1.51–2.39, are slightly lower than the predictions
of Ning et al. [8] and Carbone et al. [35] for vertical seawalls (2.6) and cliffs (2.75). The
dissipation process determined by the presence of the smooth berm before the walls
determine therefore a reduction of Rumax of 20% on average and at least 10%.

Based on the results of the parametric analysis conducted on the probability ex-
ceedance curves of the Ru-values reconstructed for each test, it was found that:

• Under an intermediate scenario of sea-level rise of ≈0.5 m up to the end of the 21st
century, by assuming the same wave attack conditions, an average increase of ≈20%
of Rumax at the walls could be expected;

• Furthermore, the inclusion of a recurving parapet on top of crown walls as a measure
to reduce the wave overtopping discharge might generate an average increase of Rumax
of ≈11–12%, implying higher spray jets, more severe wave loads at the walls and
higher wave reflection from the berms.

The analysis of the upper, the mean and the lower envelopes of the Ru-values across
the front and the cross section of the walls suggests a significant spatial variability of the
runup due to 3D effects. Such variability can be quantified by approximately ±30% in case
of plunging waves and of ±20% in case of spilling waves and was observed for all the
envelopes, holding therefore for both design conditions (upper envelopes) and exercise
conditions (mean envelopes).

The use of the image technique and of the new methodology presented in this con-
tribution can be extremely promising for prototype measurements and assessments and
may represent a key information for design purpose. However, it should be noted that
all the quantitative outcomes presented in this contribution are the result of small-scale,
laboratory experiments and are limited to a specific set of structural configurations. There-
fore, the extension to larger scales and a wider range of structures should be supported
by further applications of the methodology to prototype and field conditions. Anyway,
the whole methodology (new and existing) is completely scale independent and can be
directly applied to processing any video record obtained with any camera in any condition
(laboratory and field). Therefore, the application of the methodology to new experiments
is straightforward.
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The main recommendations to apply the proposed methodology to new experiments
are related to the use of the camera exclusively, i.e.:

• Well fix the camera and ensure that the framing window is the same for the whole
campaign of tests (or at least, for each set of tests);

• Re-calibrate the camera daily and for each set of tests;
• For laboratory tests, if possible, install the camera inside a black box to reduce light

reflection and any possible disturbance.
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List of Notations

B Berm width
h Free-surface elevation calculated along the profile of the structure and calculated as vertical distance between the

free-surface itself and the solid contour of the structure
hb Berm submergence (hb < 0 and hb > 0 respectively for emerged and submerged berm)
hc Elevation of the structure berm with respect to the bottom of the channel, excluding the crown wall
hn Height of the parapet (when present) on top of the crown wall
hw Height of the crown wall
Hs Significant wave height
Hmax Maximum wave height
Lm−1,0 Wavelength from spectral analysis
MRPE Mean Reprojection Error per image
N Number of points in an image
P Probability of exceedance of the runup height
Pi Reference to the i-th (virtual and real) pressure transducer installed in the crown wall i = 1, 2 or 3
q Average specific wave overtopping discharge
Rc Structure freeboard with the respect to the still water level (Rc = hw − hb)
RPE Reprojection Error
Ru Runup height at the wall, calculated as vertical distance between the highest position reached by the up-rushing jet and

the basis of the crown wall
Ru2% Upper 2% exceedance wave runup height
Rumax Maximum wave runup height
sm−1,0 Wave steepness calculated based on the spectral wave period
Tm−1,0 Spectral wave period
Tp Peak wave period
WG Acronym of “wave gauge”
WG1 Virtual gauge located at the in-shore edge of the berm
WG2 Virtual gauge located towards the berm off-shore edge, right before the crown wall
WG3 Virtual gauge located behind the crown wall to detect the overtopping waves
x Cross-shore, horizontal position (abscissa) of a point in the camera window frame
xi Real-word value of the abscissa of the i-th virtual gauge WG calculated from the left-most section of the camera

window frame (x = 0); i = 1, 2 or 3
xP,i Real-word value of the abscissa of i-th virtual pressure transducer Pi calculated from the left-most section of the

camera window frame (x = 0); i = 1, 2 or 3
xw,i Real-word value of the abscissa of the off-shore edge of the crown wall calculated from the left-most section of the

camera window frame (x = 0)
xw,f Real-word value of the abscissa of the in-shore edge of the crown wall calculated from the left-most section of the

camera window frame (x = 0)
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X̂ Real-world position of a point in a picture
x̂ Image projection of X̂
y Front-shore position of a point in the camera window frame (direction perpendicular to the plane of the frame itself)
z Vertical position (ordinate) of a point in the camera window frame
αd Dike slope below the berm
γb Influence factor accounting for the presence of berm according to the EurOtop (2018) manual
γf Influence factor for rough slopes according to the EurOtop (2018) manual
γβ Influence factor for oblique wave attacks according to the EurOtop (2018) manual
ξm−1,0 Iribarren–Battjes’s breaker parameter
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