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1 Introduction

Naturalness has been a powerful guiding principle in the construction of the standard model
of particle physics, that has multiple times indicated the emergence of new physics at some
higher energy scale before such scale could be probed experimentally. In the context of
the electroweak (EW) hierarchy, naturalness is the pillar that supports the expectations
of finding new physics (be it supersymmetry, compositeness, large extra dimensions or
any other viable alternative) at the TeV scale. As of now, no compelling sign of new
physics has been found which prompts us to explore alternative solutions to the electroweak
hierarchy problem that do not rely on naturalness. While it may be premature to abandon
naturalness altogether, it is certainly worthwhile to explore alternatives to it even more so
given the cosmological constant problem. Cosmological observations indicate that nowadays
the dominant component of the universe is vacuum energy. In itself this observation poses
no problem, given that quantum fields through their zero point energy will source the
cosmological constant (CC). It is the fact that observations indicate that Λ ≈ 10−120M4

P

that requires a justification that cannot rely on naturalness. A radically different approach
to the CC problem is based on the anthropic principle that can be phrased as: observers
will measure a value of Λ that is compatible with their very existence. Such approach has
been used in [1] to put an upper bound on Λ, beyond which the CC’s negative pressure
would prevent galaxy formation and would hence preclude the existence of intelligent life
as we know it. In this context the CC would therefore be an environmental variable that
can take different values in different universes, of which only a subset would be hospitable
to life. One could envisage a situation whereby the same reasoning can be applied to the
Higgs’ mass, leading to an environmental solution to the electroweak hierarchy problem [2].
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In four dimensional field theory such environmental selection mechanism can be imple-
mented using three-form gauge fields, their four-forum field strengths and branes charged
under such gauge symmetries.

The use of free four-forms for a dynamical neutralisation of the cosmological constant
has a long history, see e.g. [3–6], culminating in the Bousso-Polchinski (BP) model [7]
that provides an example of a landscape encompassing a multitude of vacua and of a
mechanism for transitioning between different vacua. This idea is fundamental in the
context of the string landscape and anthropic arguments regarding the smallness of the
observed cosmological constant.

Linearly coupled four-forms have instead been employed in an inflationary context
as a way to simultaneously have a quadratic scalar potential and an unbroken shift sym-
metry granting it radiative stability [8, 9]. These seemingly contradictory features arise
through multi-branched potentials, with each branch corresponding to a different four-form
background and transition between different branches taking place via the nucleation of
membranes charged under the three-form gauge field.

More recently the authors of [10, 11] have analysed the case of a quadratically coupled
scalar-four-form system, with the aim of providing a mechanism to dynamically scan the
Higgs mass, an approach that builds on earlier work [12] and that is in spirit akin to that
of [13, 14]. In this paper we will review and extend this mechanism in an attempt to
overcome two of its less attractive aspects, namely the fact that the electroweak scale has
to be inserted by hand and that the difficulty in simultaneously having the correct CC and
Higgs’ mass.

This paper is structured as follows: in section 2 we review how four-forms have been
used to separately address the cosmological constant [7] and electro-weak hierarchy [10, 11]
problems; in section 3 we review the model of [10, 11] and investigate whether extending it
to a large number of coupled four-forms leads to vacua with both the observed cosmological
constant and Higgs mass without fine tuning, analysing the constraints on flux-space and
the resulting bounds on the brane charges and in section 4 we present our conclusions.

2 Four-forms and environmental selection of the electroweak scale

Let us consider a three-form gauge field A3 and a scalar h and introduce a quadratic
coupling bewteen the two. Furthermore let us assume that there are branes charged under
A3, the action for the system can then be written as:

S = SA + Sh + SDJ . (2.1)

The term SA encompasses both the three-form kinetic term and the action for a
membrane of tension T and charge q:

SA =
∫
M
d4x
√
−g

[
− 1

2 · 4!FµνρσF
µνρσ

]
+

− T
∫
∂M

d3ξ
√
−(3)g + q

6

∫
∂M

d3ξ

[
Aµνρ

∂xµ

∂ξa
∂xν

∂ξb
∂xρ

∂ξc
εabc

]
. (2.2)
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where Fµνρσ = 4∂[µAνρσ], ξ are the coordinates adapted to the membrane ∂M, (3)g is the
determinant of the induced metric and εabc is the Levi-Civita symbol in three dimensions.

The term Sh gathers the scalar dependent terms

Sh =
∫
M
d4x
√
−g

[
−1

2∂µh∂
µh− V

]
, (2.3)

where V includes self interactions and a quadratic coupling to the four-form field strength:1

V = −v
2

2 h
2 + λ

4h
4 − g

24h
2εµνρσF

µνρσ. (2.4)

Here v2 and λ are the bare scalar mass and quartic coupling respectively. As we’ll see in this
model they are not fixed to their measured values due to their couplings to the four-form.

For consistency, it is necessary to also consider the Duncan-Jensen term, denoted SDJ
that takes the form

SDJ = 1
6

∫
d4x∇µ

[√
−g

(
FµνρσAνρσ − gεµνρσAνρσh2

)]
. (2.5)

This is a boundary term and as such it does not contribute to the equations of motion, but
it is fundamental if one wants to be able to substitute a field configuration directly into
the action (and not into the field equations) as explained in [4]. We note that equivalently
we could have included the Aurilia-Nicolai-Townsend term to accomplish the same end
result [15].

Away from sources, the dynamics of Aµνρ, is determined by

∇µ
(
Fµνρσ − gh2εµνρσ

)
= 0 , (2.6)

where ε0123 = 1. Equation (2.6) admits the solution

Fµνρσ =
(
gh2 + c

)
εµνρσ/

√
−g , (2.7)

for arbitrary constant c of mass dimension two.
Substituting this result into the Duncan-Jensen action (2.5) we find:

SDJ = 1
24

∫
M
d4x
√
−g

[
FµνρσF

µνρσ − gh2εµνρσF
µνρσ

]
. (2.8)

Allowing for a bare cosmological constant Λ and putting the four-form on shell, one finds
the effective action for the Higgs

Seff =
∫
M
d4x
√
−g

[
−Λ̄ + v̄2

2 h
2 − λ̄

4h
4
]
, (2.9)

where
v̄2 = v2 − 2cg , (2.10)

λ̄ = λ+ 1
2g

2 , (2.11)

1In our notation g denotes the four-form to scalar coupling strength while
√
−g = (− det(gµν))1/2.
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and
Λ̄ = Λ + 1

2c
2 (2.12)

are the physical mass, quartic coupling and cosmological constant respectively.2

From eq. (2.12) we recover the Brown-Teitelboim (BT) scenario [5, 6], with the physical
cosmological constant Λ̄ being given by the net sum of the bare Λ and of the four-form
contribution c2. The presence of the quadratic coupling also implies that the physical mass v̄2

of the Higgs scalar is lowered by an amount proportional to the four-form magnitude c (> 0).
The scanning of the physical parameters is made possible by the presence of membranes

coupled to the three-form gauge field as per (2.2) with the four-form quantisation implying
that the four-form background value is a multiple of the elementary brane charge, c = nq,
which leads to

v̄2 = v2 − 2gnq , (2.13)

Λ̄ = Λ + 1
2n

2q2, (2.14)

where q is the membrane charge and n indicates the flux-number of a given background.
In the same way that eq. (2.14) leads to a dynamical neutralisation of a large and

negative Λ by means of membrane nucleation and consequent lowering of |n|, the same
physical process can lower the Higgs mass, eq. (2.13), from its bare value v2, presumably at
some high energy cut off, down to the EW scale v̄ ≈ 246GeV.

In order to avoid fine tuning problems it is imperative that the step size between
adjacent vacua, controlled by the brane charge q, is at most of the order of the physical
scale of interest. If this mechanism is to provide an explanation for the smallness of the
EW scale one must require

gq . m2
h ∼ 10−34M2

P , (2.15)

which sets the brane charge to be at or below the EW scale squared unless the coupling g is
extremely small. If on the other hand one is interested in solving the cosmological constant
problem, the charges must be even smaller:

q2 . Λ̄ ∼ 10−120M4
P . (2.16)

It is obvious that in later regime the model can simultaneously address both problems. This
is a common feature of selection mechanisms based on a single four-form and has previously
been discussed in the context of the cosmological constant in [7]: the membrane charge must
be of order of the physical scale one is trying to explain and therefore hierarchically below
the UV cut off of the theory. In the context of the BT mechanism this translates into having
brane charges of order of the observed cosmological constant and in the selfish/Goldilocks
Higgs model the charges are constrained to be around the EW scale. Why should these
extended objects have such small charges is puzzling as one would expect fundamental
branes to have charges of order one in units of the fundamental scale of the theory.

2We adopt the notation whereby a barred parameter is the physical one.
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Focusing on the regime of eq. (2.15) we note that inside each bubble with v̄2 < 0 the
electroweak symmetry can be spontaneously broken. The flux number of the last nucleation
n∗ is given by

n∗ =
[
v2

2gq

]
, (2.17)

where [x] denotes the integer part of x. The number of nucleations is forced to be exactly
equal to n∗ since:

• If n > n∗: in this case the value of v̄2 is too high (and negative) making the EW
symmetry broken at a higher scale energy, as a consequence all particles would be
heavier than measured;

• If n < n∗: in this case the EW symmetry would not be broken and the effective theory
would contain only massless particles.

Given that in the true vacuum of the Higgs potential 〈h〉 = v̄/
√
λ̄

〈V 〉 = −1
4
v̄2

λ̄
(2.18)

it follows that in the broken phase, the physical cosmological constant becomes

Λ̄ = Λ + 1
2n

2q2 − 1
4

(
v2 − 2gnq

)2
λ̄

. (2.19)

With the brane charge fixed by the requirement of having the correct EW scale, the
typical jump in the physical cosmological constant between adjacent vacua (in flux space)
is of order

∆Λ
∣∣
n∗
∼ v2q

g
, (2.20)

a value many orders of magnitude above the observed value. This forces us to assume a
high degree of tuning in order to reach the actual value of the cosmological constant, or
to accept that in this landscape, universes with the right Higgs mass and cosmological
constant are very rare indeed.

What we try to do in the next section is to modify this latter mechanism by including
a larger number J of different four-forms in order to avoid the gap problem, in the same
spirit of the BP extension of the BT mechanism [7].

3 Environmental selection of the electroweak scale: multiple four-forms

Let us now extend the mechanism of [10, 11] by considering an arbitrary number J of
four-forms coupled to the scalar. The action takes the form

S=
∫
M
d4x
√
−g
[
−Λ+ 1

2(∂h)2+ v2

2 h
2−λ4h

4+
J∑
i=1

(
gi
24h

2εµνρσF
µνρσ
(i) − 1

48F(i)µνρσF
µνρσ
(i)

)]
+

+ 1
6

∫
M
d4x∇µ

[
√
−g

J∑
i=1

(
Fµνρσ(i) A(i)νρσ−giεµνρσA(i)νρσh

2
)]
. (3.1)
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Then we look for the Euler-Lagrange equations for the four-form fields, which, given the
structure of the (3.1), are a mere generalization of the J = 1 case and admit the solution

Fµνρσ(i) =
(
gih

2 + ci
)
εµνρσ/

√
−g , (3.2)

where ci are integration constants. Substituting these back into the action (3.1) and taking
into account the Duncan-Jensen term, we find the effective action for the scalar:

S =
∫
M
d4x
√
−g

[
−Λ̄ + v̄2

2 h
2 − λ̄

4h
4
]
, (3.3)

where v̄2 = v2 − 2∑J
i=1 cigi, λ̄ = λ+ 2∑J

i=1 g
2
i and Λ̄ = Λ + 1

2
∑J
i=1 c

2
i .

Using the Dirac quantization condition ci = niqi one finds:

v̄2 = v2 − 2
J∑
i=1

giniqi , (3.4)

λ̄ = λ+ 2
J∑
i=1

g2
i , (3.5)

Λ̄ = Λ + 1
2

J∑
i=1

n2
i q

2
i , (3.6)

a direct generalisation of eqs. (2.10), (2.11) and (2.12). It is worth noting at this point
that unlike Λ̄ and v̄2 that depend on the flux integers ni, the Higgs quartic coupling is
independent of ni and therefore does not scan in the flux landscape.

Electroweak symmetry breaking will not be possible everywhere on flux-space, in fact
depending on the factor ∑J

i=1 giniqi one can have, in complete analogy with the single
four-form case

v̄2 =


> 0 ⇒ No EWSB⇒ Λ̄ = Λ + 1

2
∑J
i=1 n

2
i q

2
i

≤ 0 ⇒ EWSB⇒ Λ̄ = Λ + 1
2
∑J
i=1 n

2
i q

2
i − 1

4

(
v2−2

∑J

i=1 giniqi
)2

λ̄

. (3.7)

In the second and most interesting case the electroweak symmetry is broken and thus the
scalar sector gives a contribution to the cosmological constant. In such a configuration, for
the last nucleation the value of the cosmological constant is:

0 < Λ + 1
2

J∑
i=1

n2
i q

2
i −

(
v2 − 2∑J

i=1 giniqi
)2

4λ̄
< ∆Λ, (3.8)

where ∆Λ is the observed value of the cosmological constant. Assuming for concreteness
Λ < 0 this can be rewritten as:3

2|Λ| <
J∑
i=1

n2
i q

2
i −

(
v2 − 2∑J

i=1 giniqi
)2

2λ̄
< 2 (|Λ|+ ∆Λ) . (3.9)

3Note that the scalar-four-form coupling allows for the extension of the BP mechanism to Λ > 0. In
such case the above results are easily modified by substituting |Λ| → −Λ and so we see that R ∈ R when
Λ < v4

4λ̄

(
1 + 2Jg2

λ̄

)
, which allows for positive bare CC for a Λ

v4 <
1

4λ̄

(
1 + 2Jg2

λ̄

)
. We’ll show below that a

simultaneous solution to the CC and EW problems also provides a lower bound on the quantity Λ
v4 .
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In order to simplify the analysis we henceforth assume gi = g ∀ i, this allows us to
rewrite (3.9) as

2|Λ| <
(

1− 2g2

λ̄

)
J∑
i=1

(niqi)2− v
4

2λ̄
+ 2v2g

λ̄

J∑
i=1

niqi−
2g2

λ̄

J∑
i=1

niqi

J∑
j=1(j 6=i)

njqj < 2(|Λ|+∆Λ) .

(3.10)
For 2g2

λ̄
∈ ]0, 1[, a natural range for this parameter combination, these relations define the

volume contained within a pair of J dimensional ellipsoids. For sufficiently weak coupling
2g2

λ̄
� 1 we may approximate the bound by

R2 .
J∑
i=1

(
niqi + gv2

λ̄

)2

. (R+ ∆R)2 , (3.11)

where we have defined

R =
√

2
[
|Λ|+ v4

4λ̄

(
1 + 2Jg2

λ̄

)]
, (3.12)

R+ ∆R =
√

2
[
|Λ|+ v4

4λ̄

(
1 + 2Jg2

λ̄

)
+ ∆Λ

]
. (3.13)

Written in this manner we promptly identify this constraint as a spherical shell of inner
radius R and thickness ∆R = ∆Λ

R +O(∆Λ2) embedded in a J-dimensional space.
The presence of scalar field and its coupling to the four-forms brings about a couple of

differences with respect to the standard BP mechanism, in particular:

• the radius R and thickness of the shell ∆R now depend also on g, v and J ;

• the center of the sphere is displaced from the origin.

If we focus exclusively on the cosmological constant problem [7], demanding that this
mechanism leads to solutions compatible with the observed value leads to a bound on the
brane charges. In particular, solutions exist provided the volume of the shell

Vshell ≈
2πJ/2

Γ(J/2)R
J−1∆R (3.14)

is greater than that of the unit cell in flux space Vcell = qJ , implying

q ≤ 21/Jπ1/2

Γ(J/2)1/JR
1−1/J∆R1/J . (3.15)

Assuming that the bare values for the CC and Higgs mass lie at the same UV scale
|Λ| = v4 = M4

UV one may approximate R ≈ O(1)M2
UV and ∆R ≈ ∆Λ

R which yields

q ≤ O(1)∆Λ
1
J (MUV )2−4/J ≡ qBP , (3.16)

up to O(1) factors, in agreement with the estimates of [7].
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Let us now turn our attention to the EW sector. Unlike for the cosmological constant,
where the constraints on flux space are quadratic and therefore have spherical symmetry,
the constraints on the Higgs vev are linear and take the form

0 . v2 − 2
J∑
i=1

giniqi . ∆v2 . (3.17)

These inequalities define a region of flux-space contained between two hyperplanes, whose
coordinates are xi := niqi. If for simplicity one assumes that gi = g ∀ i, eq. (3.17) reduces to

v2 −∆v2

2g .
J∑
i=1

niqi .
v2

2g . (3.18)

It is worth noting that the volume of this region is infinite and therefore the simple two
dimensional extension of the mechanism of [10, 11] generates vacua with the correct EW
scale, regardless of the value of the charges. Clearly, unless q is suitably small (cf. eq. (3.16))
such vacua will have an unacceptably large Λ̄. If vacua with both the right Λ̄ and v̄2 are
to exist one must demand that the volume of the region defined by the constraints (3.11)
and (3.18), V∩ obeys

V∩ ≥ Vcell, (3.19)

which translates into a new, stricter upper bound on the brane charges. Note that the
geometry of the constraints also depends on the value of the coupling g and that a
simultaneous solution of both constraints only takes place for certain values of the coupling,
as we will now demonstrate.

3.1 Constraints on the Higgs sector

The Higgs potential, at experimentally probed scales is fixed by the measurement of the W
and Z gauge boson masses which fix its vev and its own mass mH = 125GeV which fixes v̄.
These bounds can be translated into [16]

λ̄ ≈ 0.13 and v̄ ≈ 246 GeV . (3.20)

Noting that under the democratic assumption for the couplings eq. (3.5) reduces to

λ̄ = λ+ 2Jg2 = λ+ ξ , (3.21)

where for convenience we defined the quantity

ξ ≡ 2Jg2 (3.22)

as this combination of parameters plays a fundamental role in the geometry of the inter-
sections in flux-space. Given the experimental bounds on λ̄, the bare coupling λ and the
four-form contribution are constrained by λ ≈ −ξ + 0.13. In principle one can contemplate
two limiting scenarios under which this equality is satisfied:

• ξ � O(1): in this case the bare and physical quartic couplings are of the same order
and sign: λ̄ ≈ λ

– 8 –
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• ξ � O(1): in this case the bare coupling can be negative with the physical coupling
being pushed to the measured value by the large four-form contribution. Note that
λ < 0 does not prevent symmetry breaking as it is the physical coupling λ̄ that
determines whether or not it takes place. A precise cancellation between the bare and
four-form contributions must take place in this regime, making it challenging from a
naturalness point of view. Furthermore, depending on the CP nature of ξ, this regime
can lead to CP-violation in the Higgs sector, as discussed in [10].

3.2 A bound on the Higgs-four-form coupling

A minimum bound for the coupling g can be obtained by demanding that the spherical
shell and the planes intersect. The smallest distance between the planes and the origin in J
dimensions can be shown to be

PJ(g) = v2

2
√
Jg

. (3.23)

Note in particular that it diverges as g → 0. The center of the spherical shell is located at

CJ(g) =
√
J
gv2

λ̄
(3.24)

and the inner radius is given by (3.12) which we rewrite as

RJ(g) =
√

2
[
|Λ|+ v4

4λ̄

(
1 + 2Jg2

λ̄

)]
. (3.25)

As g → 0 (while keeping λ̄ fixed) we see that CJ(g) → 0 and that RJ(g) remains finite.
Note that the center of the spherical shell lies along the direction (−1, . . . ,−1) while the
point on the planes that is closest to the origin lies along the (1, 1, . . . , 1) direction in the J
dimensional flux space. It therefore emerges that a simultaneous solution to the EW and
CC problems can be translated into the condition

PJ + CJ ∈ [0, RJ ] . (3.26)

The upper limit corresponds to intersection at the north pole of the sphere while the lower
corresponds to intersection along the sphere’s equator.

From the condition PJ + CJ = RJ one finds that the minimum value of the coupling g
(for a given J) that allows for intersection at the north pole corresponds to

ξmin = λ̄

−1 + 4α4λ̄
, (3.27)

where
α ≡ |Λ|

1/4

v
(3.28)

parametrises the hierarchy between the bare CC and EW scales. From its definition ξ > 0
and therefore a simultaneous solution is only possible for

α >

( 1
4λ̄

)1/4
≈ 1.18 , (3.29)

– 9 –
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⇠ ⇠⇠
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PJ + CJ

RJ
RJ

⇠min

⇠c⇠c ⇠c⇠min

Figure 1. Relative position between the planes and the spheres for different values of α ≡ |Λ|
1/4

v .
Simultaneous solutions to the cosmological and hierarchy problems are possible for ξ ≥ ξmin.

or equivalently this mechanism cannot simultaneously address the EW and CC problems if
the bare EW scale lies above the bare CC scale. This prompts us to identify the highest
energy scale in the problem with that of the cosmological constant, Λ 1

4 = MUV , while
v = MUV

α < MUV .
Given the different scaling of PJ and CJ with ξ, the function PJ + CJ features a

minimum at the critical value
ξc = λ̄ , (3.30)

where PJ + CJ
∣∣
ξc

= v2
√

2/λ̄. This corresponds to the situation where the planes are at the
maximal distance from the north pole of the sphere. This implies that

PJ + CJ
RJ

∣∣
ξc

= 1√
α4λ̄+ 1/2

. (3.31)

An interesting limit of this result corresponds to intersection along the equator of the
J dimensional sphere in flux space. This corresponds to PJ + CJ � RJ or equivalently
α4λ̄� 1/2.

For ξ > ξc the planes approach once again the north pole of the sphere, whose radius
also grows with ξ. This behaviour is illustrated in figure 1 for three representative values of
the hierarchy |Λ|

1/4

v .
We note also that the distance between the planes decreases as they move towards the

center of the sphere, since

P (v2)− P (v2 −∆v2) = ∆v2
√

2ξ
(3.32)

taking the maximum value at ξ = ξmin.

3.3 A bound on the brane charges

In this section we analytically estimate the intersection volume V∩ for arbitrary J and
use it to derive an upper bound of the brane charges, below which this mechanism can
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x1

x2

x3

✓min

✓max

P (v2) + C

P (v2 ��v2) + C

Figure 2. Geometry of flux-space constraints for J = 3. This very same configuration can be
applied for larger J if one replaces x3 with xJ .

accomodate the observed/measured values of both the CC and EW scales. We then validate
the analytical estimates by performing a numerical calculation using a Montecarlo method,
whose details are presented in the appendix.

Case J = 3. We start by computing the intersection volume for the J = 3 case before
generalising the results for arbitrary J . Aligning the axis such that the planes are surfaces
of constant x3 and adopting spherical coordinates (r, θ, φ) whereby x3 = r cos θ we are
to compute

V∩ =
∫ R+∆R

R
r2dr

∫ 2π

0
dφ

∫ θmax

θmin
sin θdθ , (3.33)

where the integration limits are

cos θmin = P
(
v2)+ C

R
(3.34)

and
cos θmax = P

(
v2 −∆v2)+ C

R
= cos θmin −

∆v2
√

2ξR
(3.35)

with P,C and R are given by (3.23)–(3.25) with J = 3. The geometry is illustrated in
figure 2. Integrating eq. (3.33) one finds

V∩ = (R+ ∆R)3 −R3

3 2π ∆v2
√

2ξR
. (3.36)

Exploiting the hierarchy ∆R� R and using ∆R ≈ ∆Λ/R one may approximate

V∩ ≈ ∆Λ∆v2π
√

2/ξ , (3.37)
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to leading order in ∆R/R. We observe that for J = 3 the volume of the intersection region
is independent of the radius of the shell and that it is maximal for intersection close to the
north pole, ξ ∼ ξmin, two features that are particular to the current case and that do not
survive in higher dimensions.

Arbitrary J. For an arbitrary number of dimensions J , the procedure is identical, the
only difference being the increased number of angular variables. Adopting J dimensional
spherical coordinates (r, θ1, θ2, . . . , θJ−2, φ) and aligning the axis such that the planes are
surfaces of constant xn = r cos θ1 we may write

V∩ =
∫ R+∆R

R
rJ−1dr

∫ 2π

0
dφ

∫ θmax

θmin
(sin θ1)J−2dθ1

J−2∏
i=2

∫ π

0
(sin θi)J−1−idθi , (3.38)

leading to

V∩ = (R+ ∆R)J −RJ
J

2 π J−1
2

Γ
(
J−1

2

) ∫ θmax

θmin
(sin θ1)J−2dθ1 . (3.39)

Let us define the remaining angular integration

I ≡
∫ θmax

θmin
(sin θ1)J−2 dθ1 =

∫ u(θmax)

u(θmin)

(
1− u2

)J−3
2 du , (3.40)

where the new integration variable u is given by u ≡ cos θ and the integration limits are
given by eqs. (3.34), (3.35) which we may write explicitly in terms of ξ as

u(θmin) =
1√
ξ

+
√
ξ

λ̄

2
√
|Λ|
v4 + 1+ξ/λ̄

4λ̄

(3.41)

and
u(θmax) = u(θmin)− ∆v2/v2

2
√
ξ

√
|Λ|
v4 + 1+ξ/λ̄

4λ̄

≡ u(θmin)−∆u . (3.42)

The integral (3.40) can be written in closed form in terms of hypergeometric functions
though it is more useful to give approximate results for a few interesting cases corresponding
to intersection close to the poles and along the equator.

For intersection close to the north pole, defined by ξ = ξmin ⇒ P + C = R one finds
u(θmin) = 1. In this regime we may approximate

I(ξmin) ≈ 2J−1
2

J − 1∆u
J−1

2 = 1
J − 1

(
∆v2

v2
4α4λ̄− 1

2α4λ̄

)J−1
2

(3.43)

yielding

V∩(ξmin) ≈ ∆Λ (∆v2)
J−1

2 R
J−3

2 ξ
1−J

4
min

2J+3
4

J − 1
π
J−1

2

Γ
(
J−1

2

) , (3.44)

where R = R(ξmin, α) ∈ ]
√

2,∞[ M2
UV , with the lower limit corresponding to large α.

– 12 –



J
H
E
P
0
8
(
2
0
2
2
)
2
8
7

Away from the north pole we may exploit the fact that ∆v2/v2 � 1 to approximate

I(ξ) ≈ (1− u(ξ)2)
J−3

2 ∆u(ξ) , (3.45)

which using eqs. (3.27), (3.41) and (3.42) can be written as

I(ξ) ≈ ∆v2

v2
λ̄J−2(ξ − ξmin)J−3

2
√
ξmin(

ξ
(
λ̄2 + 2λ̄ξmin + ξξmin

))J
2−1

. (3.46)

As ξ → ξmin the angular integral tends to zero as (ξ − ξmin)J−3
2 , on the other hand for

ξ � λ̄, ξmin we find that I ∝ ξ−J+1
2 and therefore, by continuity, I(ξ) must have a maximum

at finite ξ. One can show that the maximum is located at

ξM = (2J − 3)λ̄− 16α8λ̄3 + λ̄Σ
2(J − 1)

(
4α4λ̄− 1

) , (3.47)

and takes the value

I (ξM) ≈
√

2∆v2

v2
(J − 1)

J−1
2

(J − 2)
J
2−1

(
4
(
α4λ̄

)
− 1

)J−2
(

Σ− 16
(
α4λ̄

)2
− 1

)J−3
2
×

[
16
(
α4λ̄

)2
(

4J + Σ− 16
(
α4λ̄

)2
− 6

)
+ Σ− 1

]1−J2
(3.48)

where we defined Σ ≡
√

32 (2J2 − 8J + 7) (α4λ̄)2 + 256(α4λ̄)4 + 1. If we denote by Itot the
full angular integral for θ = [0, π], c.f eq. (3.40), at large α4λ̄ one may approximate

I
(
ξM, α

4λ̄� 1
)
≈ ∆v2

v2
(J − 3)J−3

2

(J − 2)J−2
2
→J�1→ ∆v2

v2

√
2
πe
Itot . (3.49)

This implies that for J � 1

V∩
(
ξM, α

4λ̄� 1
)
≈ ∆v2

2v2 Vshell (3.50)

where Vshell is the volume of the spherical shell in the BP mechanism given by eq. (3.14)
and we have approximated

√
2
πe ≈

1
2 . This corresponds to the most favourable setup, where

the volume of the viable region where a simultaneous solution to the EW and CC problems
is possible is suppressed by a factor of ∆v2

2v2 � 1 with respect to the volume of the region
where only the CC problem is addressed.

In the configuration where the planes are the furthest from the north pole, ξ = ξc = λ̄,
the angular integral is

I(ξc) ≈
∆v2

v2

(
−2 + 4α4λ̄

)J−3
2
(
2 + 4α4λ̄

) 2−J
2 . (3.51)

If α4λ̄� 1 the intersection can take place close to the equator P+C
R � 1 which corresponds

to u(θmax) = 0, one may further approximate

I
(
ξc, α

4λ̄� 1
)
≈ ∆u = ∆v2/v2

2
√
λ̄α2

(3.52)
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⇠
⇠min ⇠c

⇠M

I(⇠)/I(⇠M )
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���
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���
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J
=
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J
=
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=
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↵

I(⇠c)
I(⇠M )

Figure 3. Left: I(ξ) in units of I(ξM) for J = 100, |Λ| = M4
UV , v = MUV /5 and ∆v

v = 0.1 implying
ξmin = 4× 10−4 and ξM = 0.036. Continuous pink line corresponds to the exact result of eq. (3.40)
while the dashed grey line represents the approximation of eq. (3.45). Right: I(ξc)

I(ξM ) as a function of
the hierarchy parameter α.

which yields the intersection volume

V∩(ξc, α
4λ̄� 1) ≈ ∆Λ ∆v2 RJ−3

√
ξc

√
2π J−1

2

Γ
(
J−1

2

) , (3.53)

where R = R(ξc, α) ∈ ]
√

2,
√

6[ M2
UV and ξc = λ̄ = 0.13.

Comparing I(ξ, α) for ξmin, ξM and ξc one concludes that

I(ξmin)� I(ξc) < I(ξM) (3.54)

for all α, as illustrated in figure 3.
With these estimates of the intersection volume in hand, we can now turn them into a

bound on the brane charges by demanding that Vcell = qJ ≤ V∩(ξ, α). The most favourable
case corresponds to ξ = ξM with α4λ̄� 1, as this is the one where V∩ is maximised, where
one finds

q ≤
[
V∩
(
ξM, α

4λ̄� 1
)] 1

J ≡ qGL
(
ξM, α

4λ̄� 1
)
. (3.55)

It is instructive to compare this bound with the charges from the BP mechanism,
eq. (3.16):

qGL
(
ξM, α

4λ̄� 1
)
≈ qBP

(∆v
v

) 2
J

. (3.56)

Assuming that v = MP , which would be the worst case scenario (and one in which Λ > M4
P )

∆v
v ≈ 10−16 implying that for J > 32 the two are of the same order of magnitude. Note
that for the benchmark point of J = 100 of [7] we find that qGL ≈ qBP /2 and indication
that a simultaneous solution to the CC and EW hierarchy problems can be found in the
presence of a mild hierarchy between v and Λ1/4 at the expense of introducing a weak
coupling between the four-forms and the Higgs scalar.

We note that the steep fall-off of I(ξ) as ξ → ξmin, will affect the bounds on the charges.
In this limit, the intersection of the constraints takes place close to the north pole, V∩ will

– 14 –



J
H
E
P
0
8
(
2
0
2
2
)
2
8
7

be significantly smaller and one can show that

qGL(ξmin) ≈ qBP
(∆v
v

)1− 1
J

� qGL(ξM) , qBP . (3.57)

This highlights the crucial role of ξ (or equivalently of the coupling g) in this model:
decreasing ξ with respect to the optimal value ξM and the upper bound of the charge
becomes stricter by a factor of ∆v

v � 1, decrease it any further and there will be no vacua
with both the correct CC and EW scales. If instead one considers ξ > ξM the effects are
milder, as can be seen from the slow fall off to the right of the maximum in figure 3, and
the bounds on the charges will be less stringent when compared to the ξ = ξmin case.

4 Discussion

In this paper we investigated whether selfish/Goldilocks Higgs models could be extended
to accomodate vacua with both the right Higgs mass and cosmological constant without
imposing either scale as input parameters. We found that by increasing the number of
four-forms that couple to the scalar, the phenomenology of these models was significantly
enriched. In particular, a simple extension of the mechanism to two coupled four-forms
automatically allows, through the linear structure of the constraints on flux space, to find
vacua with the correct electroweak scale, regardless of the coupling strength and of the
brane charges. Furthermore in the presence of a large number of four-forms vacua with the
correct Higgs mass and cosmological constant exist, provided the scalar-four-form coupling
is larger than the lower bound of eq. (3.27). We derived the corresponding bounds on the
brane charges, the only dimensionful free parameter of the model, and have shown how
these depend on g and on the ratio between the bare mass scales associated with the CC and
EW scales. For the most favourable setup, when ξ = ξM , these charges are within an O(1)
factor of the values necessary to solve the CC problem alone through the BP mechanism.
We therefore conclude that by a simple extension of the well known BP landscape one can
turn the fine tuning problems associated with the Higgs mass and with the CC into the
issue of finding the environment that is “just right” in a rich flux landscape. This can be
achieved without inserting either physical scale as input to the model.
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A Numerical method and results

In this appendix we lay out the details of the numerical method employed to validate the
analytical estimates for the intersection volumes presented in section 3.

The procedure relies on a Montecarlo method for the random generation of points in a
J-dimensional space: generating points in a uniform way in a region of space, by counting
the number of those points that satisfy the desired constraints (that is, to be both inside
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the shell and between the planes) one can estimate the volume of the intersection region.
In particular, let us call:

• V∩ and Vcube the volume of the intersection region and volume of the cube containing
the spheres respectively;

• N∩ and Ncube the number of points satisfying the conditions and the total number of
points.

If the points are generated at random one can estimate V∩
Vcube

= N∩
Ncube

, with precision
increasing with the total number of points generated. The simplest approach would be to
uniformly generate points inside a J-dimensional cube with sides tangent to the outer sphere,
however this method becomes computationally inefficient for high values of J . Indeed as J
grows, the Vshell/Vcube, decreases practically exponentially4

Vcube = (2(R+ ∆R))J , (A.1)

Vshell = πJ/2

Γ
(
J
2 + 1

) ((R+ ∆R)J −RJ
)
, (A.2)

so that Vshell
Vcube

� 1 and the statistics quickly deteriorates.
In order to overcome this numerical obstacle we employ the Marsaglia algorithm to

draw points uniformly directly inside the shell. By counting the points that lie between the
planes one can estimate V∩, in an efficient manner.

It turns out that, if r is a number generated uniformly at random in the interval [0, 1]
and n is a point selected uniformly at random from the unit (J − 1)-sphere, then r1/Jn

is uniformly distributed within the unit J-ball. In order to generate the points we follow
these steps:

1. Generate the radius in [R,R+ ∆R]: draw uniformly a number in
[(

R
R+∆R

)J
, 1
]
,

exponentiate it to the power of 1/J and multiply it by R+ ∆R. Call this value R.

2. Generate the point P on a (J − 1)-sphere: draw J coordinates xi, with i = 1, . . . , J
using a Gaussian distribution with mean equal to zero and arbitrary variance.5 Using
these coordinates find the distance from P to the origin, and call it d; this means that
P has been uniformly generated on a sphere with radius d.

3. Move the point to the radius sphere of radius R, found in the first step: multiply all
the coordinates xi’s by the quantity R/d. Now the point P is on the desired sphere.

Once the point has been generated within the shell region, using this procedure, it is
sufficient to evaluate if it also between the planes.

4Furthermore, we are interested in those points inside the shell that are also between the planes, increasing
again the number of rejected points.

5While the mean of the Gaussian distribution must be zero, the variance can be arbitrarily chosen, and
in particular, we choose it to be 1.
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(a) Comparison in ξ = ξmin configuration.

(b) Comparison in ξ = ξM configuration.

Figure 4. Comparison between numerical and analytical results for ξ = ξmin (top) ξ = ξM
(bottom). Red points denote the numerical results while the blue ones denote the theoretical
results. The graphs are essentially overlapped showing a good agreement between the theoretical
and numerical approaches.

For the numerical method we cannot use the parameters found in the theoretical
computations, ∆R ≈ 10−121M2

P and ∆v2 ≈ 10−34M2
P , as these are too small and would

require a generation of ∼ 1033 points just to find one intersection point. In order to overcome
this numerical issue we rescaled parameters that allow us to gather significant statistics
while maintaining the total number of points below 2 · 109, but preserving the hierarchy

∆R� ∆v2
√

2ξ
� R (A.3)

in order to be able to apply the analytic approximations described in section 3.3.

– 17 –



J
H
E
P
0
8
(
2
0
2
2
)
2
8
7

The chosen values for the parameter, in units of M2
UV (apart from α which is dimen-

sionless), are:

• R ≈ 1.5;

• ∆v2 = 0.02;

• ∆R = 0.001;

• α = 2.

These choices are compatible with eq. (A.3) and are driven mostly by computational
convenience.

Once the parameters have been chosen we can compare the numerical result N∩
Ncube

with
the analytical ones V∩

Vcube
found with the following formula:6

V∩
Vcube

= ∆Rπ J−1
2

2J−1RΓ
(
J−1

2

) ∫ du(1− u2)
J−3

2 . (A.4)

The integration limits are different for the two configurations and are given by eqs. (3.41)
and (3.42). For ξ = ξmin the statistics quickly deteriorates with the number of dimensions,
forcing us to stop at J = 15 (figure 4a), while for ξ = ξM the fact that the planes are
closer to the equator makes the statistic to be slightly better so that we can push J up
to 50 (figure 4b). In both the cases the numerical results agree with analytical estimates
presented in the main text.
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