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Curve counting in genus one:

Elliptic singularities and relative geometry

Luca Battistella, Navid Nabijou and Dhruv Ranganathan

Abstract

We construct and study the reduced, relative, genus one Gromov–Witten theory of
very ample pairs. These invariants form the principal component contribution to rela-
tive Gromov–Witten theory in genus one and are relative versions of Zinger’s reduced
Gromov–Witten invariants. We relate the relative and absolute theories by degener-
ation of the tangency conditions, and the resulting formulas generalise a well-known
recursive calculation scheme put forward by Gathmann in genus zero. The geometric
input is a desingularisation of the principal component of the moduli space of genus
one logarithmic stable maps to a very ample pair, using the geometry of elliptic sin-
gularities. Our study passes through general techniques for calculating integrals on
logarithmic blowups of moduli spaces of stable maps, which may be of independent
interest.

1. Introduction

The Kontsevich space of stable maps from genus zero curves to projective space exhibits re-
markable geometry – it is a smooth orbifold with a “self-similar” normal crossings boundary.
A combination of these facts yields a very satisfactory understanding of Gromov–Witten theory
in genus zero.

The higher-genus situation is more delicate, and substantial theory has been developed in
recent years to treat the genus one case, both for its intrinsic geometry and for higher-genus
insights. This began over a decade ago with pioneering work of Li, Vakil, and Zinger [Zin09a,
VZ08, LZ07, LZ09, Zin08, Zin09b] and was recently reinvigorated using ideas from singularity
theory [BCM20, HL10, Smy11a, Vis12] and logarithmic geometry [RSW19a, RSW19b, BC20].
The result is a reduced Gromov–Witten theory, which removes degenerate contributions from the
ordinary theory. Fundamental ingredients in Gromov–Witten theory are torus localisation, rela-
tive stable maps, and degeneration formulas. While the Atiyah–Bott localisation for the reduced
invariants was used to great effect by Zinger in his proof of the Bershadsky–Cecotti–Ooguri–Vafa
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(BCOV) conjectures, the remaining components – relative invariants and the degeneration for-
mula – have not been developed in this setting. Our work provides these as new structural tools
in reduced genus one Gromov–Witten theory.1

The essential starting point for our relative theory is the early work on relative Gromov–
Witten theory by Gathmann. However, modern tools are required in our setting. The conceptual
framework and the degeneration formalism itself are obtained by combining tropical geometry
and logarithmic Gromov–Witten theory, as developed by Abramovich–Chen–Gross–Siebert, with
the recent understanding of elliptic singularities and their interactions with logarithmic struc-
tures. The latter sections of this paper are devoted to demonstrating that the new ingredients
can be combined in a concrete fashion, using tautological vector bundles and their Chern classes.

1.1. Results. Our main construction yields a reduced relative Gromov–Witten theory for elliptic
curves in Pm with prescribed tangency along a hyperplane, and analogous invariants for smooth
hyperplane section pairs (X,Y ). The reduced relative theory differs from the relative theory in
a parallel fashion to how Li–Zinger’s reduced Gromov–Witten theory differs from the standard
one.

The geometric content is the following theorem, which provides a smooth and proper moduli
space compactifying the space of elliptic curves in Pm with prescribed contact order data. Let
M ◦

1,α(Pm|H, d) be the moduli space of positive-degree maps from smooth curves of genus one
to Pm with dimensionally transverse contact order α ∈ Zn>0 along H. A precise version of the
following theorem requires tropical and logarithmic language and is therefore stated in Section 2.

Theorem A. There exists a proper Deligne–Mumford stack VZ1,α(Pm|H, d) that is logarith-
mically smooth of the expected dimension and contains M ◦

1,α(Pm|H, d) as a dense open subset.
A point in this moduli space determines commutative diagrams of maps out of genus one curves:

C C1 C2

Pm[s] Pm ,

where C is nodal, C1 and C2 are Gorenstein, C → Pm[s] is a logarithmic map to an s-fold
expansion of Pm along H, and the vertical maps do not contract any subcurves of genus one.

The information involving singularities adds substantial complexity to the theory, and this
motivates our next result, which shows that calculations are nonetheless possible.

Theorem B. Given a smooth pair (X,Y ) with Y very ample, there is an explicit recursive
algorithm to calculate:

(1) the (restricted) reduced genus one Gromov–Witten invariants of Y

(2) the reduced genus one relative Gromov–Witten invariants of (X,Y )

(3) the (restricted) reduced genus one rubber invariants of P = PY (NY |X ⊕OY )

from the absolute genus zero and absolute reduced genus one invariants of X.

1Further motivation to consider the genus one case specifically comes simply from the fact that for Calabi–Yau
geometries in dimension larger than three, Gromov–Witten theory vanishes in genera greater than one.
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A conceptual consequence is that the absolute and relative reduced genus one theories, to-
gether with the genus zero theory, form a self-contained system of invariants; that is, the non-
reduced relative theory is not required to perform a degeneration computation in the reduced
theory.

The reconstruction algorithm generalises that of Gathmann [Gat02]. A higher-genus recon-
struction for the ordinary theory is given by Maulik and Pandharipande [MP06] but follows
a different strategy; localisation is never used in the analysis here, nor in that of Gathmann.

We pursue a strategy laid out by Vakil and Caporaso–Harris [Vak00, CH98]. We express the
locus of maps with degenerate tangency orders in terms of Chern classes of tautological bundles
and then describe that locus in terms of moduli spaces with smaller invariants. Novelties are
introduced in both steps. In the first, we describe the locus of degenerate maps as the zero locus
of a logarithmic line bundle, arising from a piecewise-linear function with a tropical moduli-
theoretic description. The use of tropical techniques simplifies Gathmann’s calculations.

For the second step, we contend with the interaction of the relative splitting formula with
the structure of elliptic singularities, which is new (Section 5.3). The factorisation condition –
central to the constructions in [RSW19a, RSW19b] – is expressed as a tautological class, leading
to Theorem B.

1.2. Context and techniques. The present work is part of a larger ongoing programme relat-
ing to the role of curve singularities and alternate compactifications in Gromov–Witten theory
that goes beyond the well-studied geometry of stable maps from nodal curves [BC20, BCM20,
Boz19, HLN12, RSW19a, RSW19b]. The motivation for this direction is that such alternative
curve counting theories can often be more enumerative in nature and satisfy Lefschetz section
theorems. Degeneration methods are a crucial tool in Gromov–Witten theory, and our results
point to a fruitful use of these methods in this direction.

The computations performed in this paper may be of use more broadly in logarithmic
Gromov–Witten theory. Degenerate moduli spaces are constructed from simpler spaces of maps,
but the geometry is substantially more delicate than the standard situation, where the strata are
simply fibre products. First, one must describe the moduli space of maps out of elliptic singular
curves in terms of maps out of the branches of these curves. We describe this in terms of natural
tautological classes. Second, the degenerate strata of moduli spaces are not simply fibre products
of spaces with smaller numerical invariants but compactified torus bundles over these strata. The
latter phenomenon is a constant presence in logarithmic Gromov–Witten theory [AW18, Ran19].
The text provides a model procedure that uses tropical geometry to calculate with these torus
bundles.

A key step in our recursion is a description of the locus of maps with higher than prescribed
tangency, which was identified by Gathmann. We realise the locus as the vanishing locus of
a section of a line bundle that comes from tropical geometry – from a piecewise-linear function
on the fan/tropicalization. The systematic understanding of logarithmic line bundles arising in
this fashion is expected to play an important role in logarithmic enumerative geometry.

The geometric ideas in Gathmann’s recursion are clear but are implemented in the space of
stable maps, and do not formally fit within the logarithmic context. On the way to our main
results, we reinterpret Gathmann’s idea of increasing tangency in logarithmic Gromov–Witten
theory.
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1.3. Future directions. There are two natural directions moving forward – generalisations on
the curve side and on the target side. The results of [RSW19a] suggest the existence of a reduced
higher-genus Gromov–Witten theory formed by replacing contracted elliptic components with
singularities, and this is reaffirmed by recent work of Bozlee [Boz19]. More general singularities are
introduced and studied in work of Battistella–Carocci [BC20]. We expect the relative geometry
and splitting techniques studied here to be useful in controlling these more exotic invariants.

On the target side, it would be natural to generalise the method of degenerating tangency
conditions to higher-rank logarithmic structures. The techniques developed in [NR19] are ex-
pected to play a role. When the target is a toric pair, the problem is tied in with the enumerative
geometry of well-spaced tropical curves [LR18, RSW19b, Spe14].

2. Constructions and logarithmic smoothness

We review the basic tropical structures in the theory of logarithmic curves and maps. A detailed
treatment is given by [CCUW20, § 3]; the following subsections are meant as a reminder.

2.1. Curves and tropical curves. A nodal curve C over SpecC has an associated dual graph
Γ(C). Given a toric monoid P , there is a logarithmic point Spec(P → C) which may be thought
of as remembering the information of the embedding of the torus-fixed closed point into the
toric variety SpecC[P ]. For a logarithmically smooth curve C over Spec(P → C), the dual graph
Γ(C) is enhanced: given an edge e of Γ(C), the logarithmic structure keeps track of a generalised
“edge length” `e, which is an element of P . These data can be repackaged into a cone complex
@ together with a map to the dual cone σP

π : @→ σP .

A fibre of π is a metric space enhancing the topological space Γ(C), with edges given lengths
in R>0. Over the interior of the cone σP , these edge lengths are non-zero, and the fibres are
homeomorphic to Γ(C). Over the faces of σP , the fibres are viewed as edge contractions of Γ(C).

The discussion is globalized in [CCUW20], and the construction can be carried out for the
universal curve over the moduli space of logarithmic curves. There is a stack Mtrop

g,n over the
category of cone complexes equipped with a universal curve

@→Mtrop
g,n .

It is common to view Mtrop
g,n as playing the same role for Mg,n as a fan plays for a toric variety.

Two specific such roles are relevant:

(1) A subdivision of Mtrop
g,n gives rise to a birational modification of Mg,n.

(2) A piecewise-linear function on Mtrop
g,n furnishes a Cartier divisor on Mg,n with a section.

2.2. Maps and tropical maps. The discussion carries over to the setting of logarithmic maps.
Consider a logarithmic curve C and a logarithmic map to a smooth pair (X,Y ) over a logarithmic
scheme S, with Y connected. For simplicity, assume that S is a P -logarithmic point, as above.
There is an associated tropicalization, that is, a family of tropical curves @→ σP , together with
a map of cone complexes

@→ R>0 .
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Here R>0 is the tropicalization (or “fan”) of the smooth pair (X,Y ). A fibre over σP encodes
a metric enhancement of the dual graph, together with a piecewise-linear map to R>0. There is
again a cone stack representing the moduli problem of tropical maps. The construction differs
cosmetically from the one presented in [CCUW20], and we leave the details to the reader; see
also [GS13].

2.3. Stable maps and elliptic singularities. We provide a summary of the approach of
[RSW19a]. If C is a Gorenstein curve of genus one and f : C → Pm is a morphism, the ampleness
of the tangent bundle of Pm ensures that if f is non-constant on the minimal subcurve of C
of arithmetic genus one, then the deformations of f are unobstructed; in fact, the deformations
over the stack of curves are also unobstructed.

It is natural to attempt to resolve the moduli space of stable maps by contracting the genus one
subcurve on which the map is constant. Whilst the moduli space of Gorenstein genus one curves
is not smooth, a more sophisticated moduli problem, consisting of nodal curves C together with
a chosen contraction to a Gorenstein curve C̄, might be expected to resolve these singularities.
The formation of this moduli problem requires logarithmic geometry and furnishes a moduli
space with a universal nodal curve, universal elliptically singular curves, and contractions from
the former to the latter [RSW19a, § 3]. Once constructed, the corresponding moduli of stable
maps out of a Gorenstein curve is also resolved. Maps from nodal genus one curves may have
stable limits that contract genus one subcurves, but the introduction of Gorenstein singularities
– with an appropriate stability condition – ensures properness without allowing contracted genus
one components.

The main target space in the present work is (Pm, H), and ideas parallel to those above can
be expected to apply. However, the deformation theory of logarithmic maps is more delicate:
the Euler sequence for this pair shows that the logarithmic tangent bundle is a quotient of
O ⊕ O(1)⊕m, and additional obstructions appear due to the trivial factor.

2.4. Singularities and moduli of attachments. Isolated Gorenstein singularities of genus
one were classified by Smyth [Smy11a]: for every fixed number of branches m, there is a unique
isomorphism type of curve germ. For m = 1 and 2, these are the cusp (A2) and tacnode (A3),
respectively; for m > 3, they are the union of m general lines through the origin of Am−1 – the
elliptic m-fold points.

The problem of constructing an elliptic singularity from its pointed normalisation is delicate;
it was studied in F. D W. van der Wyck’s Ph.D. thesis (Harvard, 2010). Recall that the semi-
normalisation Csn of a curve C has the same underlying topological space, but its singularities
consist of rational m-fold points only; that is, they are locally isomorphic to the union of the
axes in Am.

Lemma 2.1. The seminormalisation ν : Csn → C of an elliptic m-fold point is the collapse of
a general tangent vector v at the rational m-fold point.

This is equivalent to [Smy11a, Lemma 2.2], where Smyth describes the seminormalisation of
an elliptic singularity as the data of a hyperplane in the Zariski cotangent space not containing
the coordinate lines. We use the term moduli of attaching data [Smy11b, § 2.2] for the extra data
needed to produce a singularity from its pointed normalisation.

Corollary 2.2. The moduli of attaching data of an elliptic m-fold point is isomorphic to Gm
m .
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This torus may be compactified by allowing sprouting on the boundary: a branch Ri of the
singularity is replaced by a strictly semistable P1 with the singularity at 0 and Ri glued nodally
at ∞.

There are other ways to look at these data; we recall a construction from linear algebra. Let
V =

∑m
i=1 Li be a presentation of a vector space as the direct sum of m lines. The datum of

a general line ` in V (or a general hyperplane in V ∨) is equivalent to the data of compatible
isomorphisms θij : Li ∼= Lj . Given a general line `, a vector v ∈ ` can be written as

v = a1e1 + · · ·+ amem with ai 6= 0 for all i ,

for a fixed basis {ei ∈ Li} of V . We can then define θij by

θij(ei) = (aj/ai) · ej ,

and it is easy to see that it does not depend on any of the choices. On the other hand, given
the θij , the line ` can be taken to be the graph of the morphism

(θ12, . . . , θ1m) : L1 → L2 ⊕ · · · ⊕ Lm .

Thus the attaching data can be viewed as specifying an identification of tangent spaces of the
pointed normalisation at the singularity.

Lemma 2.1 yields the following characterisation of maps from an elliptic singularity C, which
is used in Section 5.

Corollary 2.3. A map C → X is the same as a map Csn → X such that its differential sends
v to 0.

Line bundles on an elliptic m-fold point admit a similar description; see, for example, [Liu02,
Lemma 7.5.12].

Lemma 2.4. If C is a curve of arithmetic genus one with an elliptic m-fold point, then we have
Pic0(C) ∼= Ga.

2.5. Absolute geometry: background. Let M1,n be the logarithmic algebraic stack of n-
pointed prestable curves of genus one. We recall the logarithmic moduli spaces of genus one
curves constructed in [RSW19a, §§ 2 and 4].

Consider a logarithmically smooth curve C over a logarithmic geometric point S with mo-
noid P , and let π : @→ σP denote its tropicalization. Given a point t in σP , we obtain a metric
graph as explained above. Since the curve in question has genus one, there is a minimal genus
one subgraph – either a vertex of genus one or a cycle in the graph. We refer to this as the core
and denote it by ∃.

Given a point s with π(s) equal to t, there is a well-defined distance in the metric graph π−1(t)
from s to the core. For each vertex v of the dual graph Γ(C), there is a well-defined function
λ(v) : σP → R>0, defined on the base of the tropical family. We view λ as a piecewise-linear
function λ : @ → R>0 × σP ; see Figure 1. Given any linear function δ on σP , say that δ is
comparable to λ(v) if there is a global order relation, either λ(v) 6 δ or λ(v) > δ, that holds at
all points of σP .

Piecewise-linear functions on @ are naturally identified with global sections of the character-
istic sheaf MC ; linear functions on σP are naturally identified with global sections of the char-
acteristic sheaf MS and can be pulled back to C. Given a logarithmically smooth curve C/S,
conditions involving the comparability of piecewise-linear functions can be imposed at the level
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∃

δ

λ

Figure 1. The function λ (distance from the core) and its cut-off value δ.

of geometric points; they determine subdivisions of σP and, in turn, logarithmic modifications
of S.

Definition 2.5. A centrally aligned curve is a pair (C/S, δ), where δ ∈MS , such that:

(1) The section δ is comparable to λ(v) for all vertices v of @.

(2) For any pair of vertices v and w of distance less than δ from the core, the sections λ(v) and
λ(w) are comparable.

The order relations among the vertex position functions is referred to as an alignment.

For a tropical curve family @, each vertex is either inside, outside, or on the circle of radius δ
regardless of the point on the base; the vertices inside the circle are ordered by distance to the
core.

The moduli stack Mcen
1,n of centrally aligned curves is a logarithmic algebraic stack in the

smooth topology, and Mcen
1,n → M1,n is a logarithmic modification. The main construction

of [RSW19a] canonically associates with any centrally aligned family of curves CS a partial
destabilisation C̃S , introducing two-pointed components, and a contraction

C̃S → C S ,

where C S may contain a Gorenstein elliptic singularity [Smy11a]. Intuitively, this is achieved by
interpreting the exceptional directions of Mcen

1,n →M1,n as moduli of attaching data.

Given a family of tropical curves, the function δ provides a non-negative real number for each
point on the base. We consider the circle of points on each fibre whose distance from the core is
equal to δ. A partial destabilization, or “bubbling”, introduces two-pointed rational curves into
the curve by adding vertices to the dual graph at the points that lie on this circle (the crosses

at height δ in Figure 1); we denote this new tropical curve by @̃. The open disc of radius δ, that
is, the locus where λ < δ, is then contracted to a Gorenstein singularity in C S . The number of
branches is equal to the number of vertices of @̃ which lie on the circle.

The space of stable maps ṼZ1,n(Pm, d) from the universal nodal curve C over the stack Mcen
1,n

is Deligne–Mumford and proper, with projective coarse moduli space. A compatibility condition
between the alignment and the map is required, namely that the circle of radius δ passes through
at least one component of positive degree. A stable map in this space is said to satisfy the
factorisation condition if the map C̃ → C → Pm factors through the contraction C̃ → C .
Maps that are not constant on any genus one subcurve of C automatically satisfy this condition;
indeed, the contraction is an isomorphism in this case.
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Theorem 2.6 ([RSW19a, Theorem B]). The substack VZ1,n(Pm, d) of ṼZ1,n(Pm, d) of maps to
Pm that satisfy the factorisation condition is smooth and proper and has the expected dimension.

Remark 2.7 (Constant maps). If the degree of the map is at most 1, maps from smooth genus
one curves to Pm are constant and the interior of the space of stable maps is empty; the compact-
ification by stable maps is non-empty. The space of maps satisfying the factorisation condition
is also empty.

The remainder of this section lifts this construction to the category of relative maps to
(Pm, H). The core result shows that two factorisation conditions remove the obstructions.

2.6. Relative geometry: compactification. Fix a hyperplane H ⊆ Pm. Let α be a partition
of the degree d > 0. Consider the moduli space M ◦

1,α(Pm|H, d) of maps from smooth genus one
curves C → Pm that meet H at finitely many marked points with vanishing orders given by the
partition α. This is a smooth, but non-proper, Deligne–Mumford stack.

We compactify the space described and then desingularise it. For compactification, we begin
with Abramovich–Chen–Gross–Siebert’s logarithmic stable maps and then work with expanded
variants [AC14, Che14b, GS13, Kim10].

Let Pm be endowed with the divisorial logarithmic structure induced by H. The moduli
space M log

1,α(Pm|H, d) is a fibred category over logarithmic schemes, whose fibre over (S,MS) is the
groupoid of logarithmically smooth curves of genus one over (S,MS) equipped with a logarithmic
map to Pm of degree d and contact order α. This category is representable by a proper algebraic
stack with logarithmic structure, parametrising minimal objects [Che14b].

2.7. Relative geometry: expansions. In order to make the obstruction theory more geo-
metric, we expand the target. To elucidate the connection with the static target, consider a
logarithmic stable map [C → (Pm, H)] over Spec(N→ C). There is a map of tropicalizations

@→ R>0 .

Choose a subdivision of R>0 whose vertices are the images of vertices of @. Pull this subdivision
back to @ by subdividing it along the preimage of the new vertices of R>0. Denote the resulting

map by @̃→ R̃>0. These subdivisions induce logarithmic modifications

C̃ → Pm[s] ;

see [AW18]. The latter is the s-times iterated deformation to the normal cone of H in Pm.
Components of the target are in bijection with the vertices in R̃>0. The curve is modified by
adding rational components for the newly introduced vertices.

The result is a logarithmic stable map to an expansion Pm[s], with a collapse to the main
component Pm[s] → Pm. Maps are considered equivalent if they differ by Gm-scaling the target
at higher level. This is a logarithmic enhancement of the theory of relative maps, due to Li [Li01].

Kim constructs a moduli space of logarithmic maps to expanded degenerations, which on
logarithmic points gives the above construction [Kim10]. Kim’s space is identified with a subcat-
egory of the Abramovich–Chen–Gross–Siebert space (as stacks over logarithmic schemes), and
its dual minimal monoids are cones in a subdivision of the dual minimal cones of the unexpanded
space; see [Ran19, § 2]. The map from this space to the logarithmic space is akin to a blowup:
it is a logarithmic modification induced by a subdivision of tropical moduli spaces. We typically
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work with expansions and use the notation M1,α(Pm|H, d) for Kim’s space of logarithmic stable
maps.

2.8. Relative geometry: alignment. Consider the space of logarithmic morphisms from the
universal curve C → Mcen

1,n to the logarithmic scheme (Pm, H). As in the absolute case, an
alignment can be introduced on the source curve as in Definition 2.5. The circle associated with
the alignment must pass through a vertex of positive degree in Pm and contain only vertices
of degree zero in its strict interior. We obtain a logarithmic modification of the Abramovich–
Chen–Gross–Siebert space. By means of additional subdivisions of the tropical target and source,
as outlined in the previous section, we obtain a logarithmic modification of Kim’s space with
expansions,

ṼZ1,α(Pm|H, d)→M 1,α(Pm|H, d) ,

which we refer to as the moduli space of centrally aligned maps to (Pm, H). This space para-
metrises logarithmic maps to the expanded target with an alignment which is compatible with
the map. There is a morphism

ṼZ1,α(Pm|H, d)→ ṼZ1,n(Pm, d)

obtained by forgetting the logarithmic structure on the target and collapsing the map.

2.9. Relative geometry: factorisation. Let [C → Pm[s] → Pm] be a centrally aligned loga-
rithmic map. Recall that Pm[s] consists of a union of Pm with s copies of the projective bundle
P = P(OH ⊕ OH(1)). The latter components are the higher levels. We will say that a subcurve
D ⊆ C maps to higher level if the composite C → Pm maps D into H ⊂ Pm.

Let DF ⊆ C be the maximal genus one subcurve which is mapped to a higher level and
contracted by the map C → Pm[s]. Let δF denote the distance from the core to the nearest
component of C\DF . Similarly, let DB ⊆ C be the maximal genus one subcurve that is contracted
by the collapsed map to Pm, and let δB be the associated radius. This coincides with the radius
of the underlying map to Pm. Of course, δF 6 δB, so (C, δF ) is centrally aligned as well.

The datum (δF , δB) determines a destabilisation C̃ of C together with successive contractions
C̃ → CF → CB. The contractions are constructed by [RSW19a, § 3].

The core of a Gorenstein curve of genus one is the minimal genus one subcurve. Any such
curve decomposes as the nodal union of the core and a (possibly empty) rational forest. If the
curve contains an elliptic m-fold point, we say that a map is non-constant on the core if at least
one branch of the singularity is not contracted. The following condition identifies smoothable
maps.

Definition 2.8. The map f : C → Pm[s] factors completely if:

(1) The map f factors through CF , and it is non-constant on its core.

(2) Letting fB : C → Pm denote the composite of f with the collapsing map Pm[s] → Pm, the
map fB factors through CB, and it is non-constant on its core.

Remark. The factorisation conditions are understood to be satisfied if C → Pm[s] (respectively,
C → Pm) does not contract a genus one subcurve.

Let

VZ1,α(Pm|H, d) ⊆ ṼZ1,α(Pm|H, d)
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be the stack of maps from centrally aligned curves to expansions that factor completely. If
[C → Pm[s]→ Pm] is a family of centrally aligned maps over S that factors completely, there is
a moduli map S → VZ1,n(Pm, d) to the principal component of the space of absolute maps.

Theorem 2.9. The stack VZ1,α(Pm|H, d) is logarithmically smooth and proper and has the
expected dimension.

Maps out of elliptic curves will be assumed to have degree at least two, ensuring that the
main component is non-empty; cf. Remark 2.7.

Proof. There is a forgetful morphism

ν : VZ1,α(Pm|H, d)→ VZ1,n(Pm, d) ,

remembering the stabilisation of the composite fB : C → Pm[s] → Pm. A priori, this is in
M1(Pm, d), but by assumption (C, δB) is centrally aligned, and fB factors through CB.

Before embarking, we record that the proof will utilise ν in the following way: the deformation
spaces of objects in the domain of ν will be cut out from the deformation spaces of their images in
the target of ν, by the vanishing of an obstruction class. It will then be shown that this subspace
of deformations has everywhere the expected dimension.

The expanded target Pm[s] is logarithmically étale over Pm with the divisorial structure
associated with H, so it is equivalent to study the deformation theory of the unexpanded map
to (Pm, H). The logarithmic morphism (Pm, H)→ Pm induces an exact sequence

0→ TPm(− logH)→ TPm → OH(H)→ 0 ,

relating the absolute logarithmic deformation/obstruction theory of the map with those relative
to the target of ν. By examining the associated long exact sequence, we find that a stable map
can be obstructed only when a genus one subcurve is mapped to higher level in such a way that
it is contracted by the collapsed map fB. In this case, let C0 denote the core and E the connected
component of f−1

B (fB(C0)) of arithmetic genus one.

Let f : C → Pm[s] over the base S be a possibly obstructed map to the expansion that factors
completely, and let S′ be a strict square zero extension of the base. The deformation problem is
local, so we may as well suppose that M

gp
S is a constant sheaf of monoids with stalk M

gp
S,s =: Q,

for a geometric point s ∈ S. Note that sections of MS such as δB and δF extend automatically
due to strictness. Moreover, it is equivalent to deform f or fF : CF → PmS , where CF is given the
trivial logarithmic structure around the elliptic singularity.

The map fF : CF → Pm[s] induces a tropical map α : @F → R>0×σQ; we view this piecewise-
linear function as a section α ∈ H0

(
CF ,M

gp
C

)
. With notation as above, we obtain a trivialisation

of the line bundle OCF
(−α) associated with α, after restriction to E. By [RSW19a, Proposi-

tion 2.4.1], the latter is isomorphic to OE(
∑
µixi), where µi is the slope of α along the edge ei

of @F and xi the node corresponding to ei thought of as a smooth marking on E.

For a strict deformation of the curve, the piecewise-linear function α extends canonically. The
deformation problem for fF relative to (C ′, δB, f

′
B) reduces to the problem of extending α as a

trivialisation of OE

(∑
µixi

)
. This identifies Obs(f/(C, δB, fB)) as H1

(
CF ,O

)
. The latter is a

vector space of dimension one. Associated with the forgetful morphism ν at the level of perfect
obstruction theories, we find a map

Def(C, δB, fB)→ Obs(f/(C, δB, fB)) . (2.1)
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The left-hand side contains Def(E,x) = Ext1(ΩE(x),OE) since E is contracted by fB. Since at
least one of the µi is non-zero, Ext1(ΩE(x),OE) surjects onto H1(CF ,O); cf. [RSW19b, Corollary
3.5.3]. Looking back at (2.1), given an infinitesimal deformation of (C ′, δB, f

′
B), it is possible to

adjust the curve by a deformation of the points x to ensure that the obstruction vanishes.

We put the pieces together. The space Obs(f/(C, δB, fB)) always has rank one. Next, note
that once the collapsed stable map is fixed, there are no logarithmic deformations of the map
to Pm[s]: the morphism from logarithmic maps to ordinary maps is finite [Che14b, § 3.7]. View
the logarithmic deformation spaces of f as subspaces of the logarithmic deformation spaces of
(C ′, δB, f

′
B), consisting of those deformations with vanishing class in Obs(f/(C, δB, fB)). The

map to this obstruction group is everywhere surjective, and since the data (C ′, δB, f
′
B) have

unobstructed deformations, this subspace is everywhere of the expected dimension. Obstructions
to logarithmic deformations of f vanish, and we conclude.

The theorem guarantees that the space of completely factoring maps to expansions has toric
singularities, but one can say more.

Corollary 2.10. The logarithmically smooth stack VZ1,α(Pm|H, d) has at worst orbifold sin-
gularities, that is, admits a non-representable cover by a smooth Deligne–Mumford stack.

Proof. Since VZ1,α(Pm|H, d) is logarithmically smooth, we must show that the cones of its tropi-
calization are simplicial. Consider a logarithmic stable map to an expansion C → Pm[s] without a
central alignment. The tropical moduli cone obtained as the dual of the minimal base monoid can
be identified with Rs>0; see for instance [Che14a, § 2.2]. The alignment is an iterated stellar sub-
division on tropical moduli spaces, see [RSW19a, Section 4.6], and such subdivisions preserve the

property of being simplicial. We conclude that the blowup ṼZ
exp

1,α (Pm|H, d) obtained by centrally

aligning Kim’s spaces has simplicial cones. The morphism VZ1,α(Pm|H, d)→ ṼZ
exp

1,α (Pm|H, d) is
strict, so the cones of VZ1,α(Pm|H, d) are simplicial.

2.10. Rubber variants. There exists a rubber variant of VZ1,α(Pm|H, d), where the curve
is contained in the higher levels, whose construction is analogous. Let P denote the projective
bundle P(O(1) ⊕ O) on H ∼= PN−1. Equip this space with the logarithmic structure coming
from the 0- and ∞-sections of the bundle. Consider the moduli space VZ↔1,α(P|H0 + H∞, d) of
logarithmic maps

C → P[s]→ PN−1 ,

which factor completely, and where automorphisms are taken to cover the identity on the map
to PN−1; two maps that differ by a Gm-translate in the fibre direction are considered equivalent.
As previously, the map to the bundle and the map to the base PN−1 factor through possibly
different singularities.

Theorem 2.11. The stack VZ↔1,α(P|H0 +H∞, d) is logarithmically smooth and proper and has
the expected dimension.

On the locus of maps from smooth domains, the map VZ◦1,α(P|H0 +H∞, d)→ VZ↔,◦1,α (P|H0 +
H∞, d) is a Gm-torsor. One expects that the map on compact moduli spaces is a nodal curve
fibration. To prove this, it is convenient to work with the logarithmic multiplicative group and
its torsors. The logarithmic multiplicative group Glog is the functor on logarithmic schemes whose
value on a logarithmic scheme S is the group of global sections H0(S,Mgp

S ); it is a proper group
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functor and contains Gm as a subfunctor (from O×S ⊆ Mgp
S ). This functor is representable after

a logarithmically étale cover [RW20, Proposition 1].

The morphism P → PN−1 determines a Gm-torsor; the inclusion Gm ↪→ Glog determines
a Glog-torsor denoted by Plog which is a functor on logarithmic schemes with a logarithmically
étale cover by a scheme equipped with a logarithmic structure.

Proof of Theorem 2.11. Consider the stack over logarithmic schemes VZ1,α(Plog, d) of stable log-
arithmic maps that factor completely, noting that the factorisation for the map to Plog may be
imposed after passing to an expansion; cf. [RSW19b, § 3.3]. Stability here coincides with stability
for the projection to PN−1. The proof of Theorem 2.9 applies here to show that maps to P fac-
torising completely are unobstructed. This space is a logarithmically étale cover of VZ1,α(Plog, d),
and logarithmic smoothness of the latter also follows.

The logarithmic multiplicative group Glog acts on VZ1,α(Plog, d) by translation without fixed
points. Tautologically, VZ1,α(Plog, d) is a Glog-torsor over the moduli problem of maps up to
this Glog-translation. As Glog is logarithmically smooth, the space VZ↔1,α(Plog, d) of maps up to
Glog-translation that factor completely is also logarithmically smooth.

We compare VZ↔1,α(Plog, d) and VZ↔1,α(P|H0 + H∞, d). A map to (P, H0 + H∞) gives rise to
a map to Plog. The morphism

VZ↔1,α(P|H0 +H∞, d)→ VZ↔1,α(Plog, d)

is log étale by the lifting criterion, as in [MW20, Theorem 5.3.4]. The result is a consequence.

2.11. Hypersurface pairs. Let (X,Y ) be a smooth pair with Y very ample. Definition 2.8
applies and yields a moduli space VZ1,α(X|Y, β) with a morphism

VZ1,α(X|Y, β)→M1,α(X|Y, β)

obtained from a logarithmic modification and the application of the factorisation property. This
moduli space will typically be non-equidimensional, but we equip it with a virtual class as follows.
The divisor Y defines an embedding X ↪→ Pm, with Y = X ∩H for some hyperplane H.

Lemma 2.12. The following square is cartesian in the category of ordinary stacks:

VZ1,α(X|Y, β) VZ1,α(Pm|H, d)

VZ1,n(X,β) VZ1,n(Pm, d) .

�
i

Proof. It is clear from the modular description that this square is cartesian in the category of fine
and saturated logarithmic stacks, and since i is strict, it is also cartesian in ordinary stacks.

As VZ1,n(Pm, d) is smooth and VZ1,n(X,β) carries a virtual class [RSW19a, Theorem 4.4.1],
the diagonal of VZ1,n(Pm, d) defines a pullback [BN21, Appendix A] and therefore the virtual
class on the space of maps to (X,Y ),

[VZ1,α(X|Y, β)]virt := i!∆[VZ1,α(Pm|H, d)] .

The virtual formalism is parallel to the one in [Gat02]. As VZ1,α(X|Y, β) is equipped with
evaluation maps and cotangent lines on the universal curve, we arrive at a definition of reduced
Gromov–Witten invariants for the pair (X,Y ) by the standard mechanics.
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∃

`1

t1 t2

`2t3 t4

F

F ( ∃)

Figure 2. An example of well-spacedness: condition (2) becomes `1 = `2.

3. Stratification and tropicalization

It is know by Theorem 2.9 that VZ1,α(Pm|H, d) is a toroidal orbifold. The irreducible components
of its boundary stratify the space. The tropicalizations of logarithmic maps that factor completely
are constrained by a condition called well-spacedness; cf. [RSW19b, § 4].

Definition 3.1. Let @ be a tropical curve of genus one, and let ∃be its minimal subcurve of
genus one. A tropical map F : @ → R>0 is said to be well spaced if one of the following two
conditions are satisfied:

(1) No open neighbourhood of ∃is contracted to a point in R>0.

(2) If an open neighbourhood of ∃is contracted and t1, . . . , tk are the flags whose vertex is
mapped to F ( ∃) but along which F has non-zero slope, then the minimum of the distances
from ∃to a vertex supporting ti occurs for at least two indices i.

Remark. Condition (2) is not relevant to the rays of the tropical moduli space (that is, divisors)
since there are always at least two parameters involved, namely F ( ∃) – or the distance from F ( ∃)
to the origin of R>0 – and the distance from ∃to the first flag of non-zero slope within @. As
starting from Section 4, we mostly concentrate on divisors, it will not play much of a role in the
rest of the paper.

Proposition 3.2. Let [C → Pm] be a logarithmic stable map from a centrally aligned curve to
an expansion, that factors completely. Then the tropicalization @→ R>0 is well spaced.

Proof. The required result is a consequence of [RSW19b, § 4], and we explain how to deduce
it. We may focus on a single component of the expansion Pm[s] that contains the image of a
contracted genus one subcurve, as this is the only relevant case. We replace the target with
the projective bundle P(O(1)⊕O) over PN−1 equipped with the divisorial logarithmic structure
from the 0- and ∞-sections. Let p be the point to which the genus one subcurve is contracted.
When we pass to an open neighbourhood of p, the map to the bundle is given by a rational
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function f on an open curve C◦, determined by the subgraph formed by ∃and the flags ti de-
scribed above. To describe the tropical map to R>0, we observe that ∃is contracted to a fixed
point q ∈ R>0. The flags at ti correspond to nodes or markings of C. The pole orders of f at
these distinguished points determine the slopes of the tropical map. We are now in the situation
considered in [RSW19b, Second paragraph of § 4.6], and Lemma 4.6.1 of ibid. guarantees the
well-spacedness.

3.1. The cone complex. To understand the stratification via combinatorial data, we will build
the stratification from known objects.

Step 1. Let Σlog be the tropical moduli space of genus one tropical stable maps to R>0. This
is naturally identified with the tropicalization (in the logarithmic sense) of the Abramovich–
Chen–Gross–Siebert space of logarithmic stable maps to the pair (Pm, H).

Step 2. Given such a tropical stable map, we may subdivide R>0 such that the image of
every vertex of @ is a vertex of R>0. Call this subdivision R̃>0. The preimages of vertices of
the subdivision form a subdivision of @. After this procedure, the images of vertices of @ which
lie in R>0 are totally ordered, in a manner extending the partial order obtained from the map
to R>0. The combinatorial types of such image-ordered maps produce the cones of a subdivision
of Σlog which we denote by ΣKim. As the notation suggests, ΣKim is the tropicalization of Kim’s
space of logarithmic maps to (Pm, H).

Step 3. Given a tropical map F : @→ R>0 parametrised by ΣKim, there is a largest radius δ
(possibly equal to 0) such that every vertex strictly contained in the circle of radius δ around the
core has degree-marking d = 0. Let Σcen be the subdivision obtained by requiring that the vertices
contained within the circle of radius δ around the core of @ are totally ordered. This involves
introducing cones along which certain Z-linear combinations of edge lengths are identified.

Step 4. Let Σ1,α(Pm|H, d) be the subcomplex of Σcen consisting of well-spaced tropical maps.

Proposition 3.3. The cone complex Σ1,α(Pm|H, d) is the fan of VZ1,α(Pm|H, d) viewed as
a toroidal embedding. In particular, the codimension k strata of VZ1,α(Pm|H, d) are in inclusion-
reversing bijection with the dimension k cones in Σ1,α(Pm|H, d).

Proof. The construction above has been given to mimic the construction of the space
VZ1,α(Pm|H, d). Specifically, the fact that Σcen is the cone complex attached to the logarith-

mic stack ṼZ1,α(Pm|H, d) of centrally aligned maps to expansions follows from its description as

a subcategory of the fibred category (over logarithmic schemes) of M log
1,α(Pm|H, d). To complete

the result, note that VZ1,α(Pm|H, d) has a strict map to VZ1,α(Pm|H, d), so its cone complex
is a subcomplex of Σcen. It is contained in the subcomplex of well-spaced curves by Proposi-
tion 3.2.

3.2 Indexing the strata. The dimension k cones in Σ1,α(Pm|H, d) can be enumerated as
follows. First, the cones in Σ = ΣKim are indexed by combinatorial types of tropical maps to R>0.
Here a combinatorial type encodes all of the data of a tropical map, except for the edge lengths.
To be more precise, a combinatorial type ∆ consists of:

(1) a finite graph @ and topological (not metric) subdivision R̃>0 of R>0
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(2) genus, degree, and marking assignments on the vertices

(3) the data of which vertex of R̃>0 each vertex of @ is mapped to

(4) integral slopes along the edges (both finite and infinite).

The corresponding cone σ ∈ ΣKim is then given by the resulting moduli space of tropical maps,
given by choices of edge lengths on source and target which produce a continuous tropical map.
Given σ ∈ ΣKim, we then produce all the cones in Σ1,α(Pm|H, d) mapping to σ by performing
Steps 3–4 outlined above. This amounts to a subdivision of σ. In this process, new cones are
created which map into larger-dimensional cones of ΣKim. The process for enumerating the
codimension k strata of VZ1,α(Pm|H, d) is therefore:

(1) Fix a combinatorial type ∆.

(2) Perform the subdivision of the resulting cone σ ∈ ΣKim.

(3) Identify the dimension k cones of that subdivision.

In Section 5, we perform this analysis in the case k = 1.

4. Degeneration of contact order

Consider the moduli space VZ1,α(Pm|H, d) of relative maps that factor completely.

Definition 4.1. For a marking xk, consider the locus D1,α,k(Pm|H, d)⊆VZ1,α(Pm|H, d) where xk
belongs to an internal component of the collapsed map, that is, a component of the curve that
is mapped into H.

In this section, we use the logarithmic structure on VZ1,α(Pm|H, d) to construct a line bun-
dle Lk and section sk which vanishes precisely along D1,α,k(Pm|H, d). We use the correspondence
with tropical geometry to identify c1(Lk) in terms of tautological classes on VZ1,α(Pm|H, d) and
to compute the vanishing order of sk along the components of D1,α,k(Pm|H, d). Combined with
the relative splitting formulas from the next section, this produces a recursion relation inside
VZ1,α(Pm|H, d)

The pair (Lk, sk) is natural on the moduli space M log
1,α(Pm|H, d) of non-expanded logarith-

mic maps; the corresponding pair on VZ1,α(Pm|H, d) will be obtained via pullback. Consider,

therefore, the tropicalization Σlog of M log
1,α(Pm|H, d), identified as usual with the moduli space of

tropical maps to R>0. We have a universal family

@ R>0 ,

Σlog

π

f

xk

where xk is the section which for every point λ ∈ Σlog picks out the vertex of @λ supporting the
leg xk. The composition f ◦ xk : Σlog → R>0 defines a piecewise-linear function on Σlog whose
preimage over the open cone R>0 consists of those tropical maps where xk belongs to an internal
component. This produces a section of the ghost sheaf on M log

1,α(Pm|H, d), which in the usual
way induces a line bundle and section (Lk, sk) on the moduli space, and the tropical description
above shows that the zero locus of sk is (set-theoretically) the locus where xk belongs to an
internal component.

We now calculate c1(Lk).
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Theorem 4.2. We have c1(Lk) = αkψk + ev?kH.

Proof. Choose a family of logarithmic stable maps over S, and let µ ∈ Γ
(
S,MS

)
be the global

section of the ghost sheaf constructed in the previous paragraph. This pulls back along π to give
a global section π[(µ) ∈ Γ

(
C,MC

)
. Interpreted as a piecewise-linear function on the tropicaliza-

tion @ with values in MS , see [CCUW20, Remark 7.3], this assigns µ to every vertex and has slope
zero along every edge. By construction, the line bundle associated with this section is π?Lk. Con-
sider, on the other hand, the generator 1 ∈ N = Γ

(
Pm,MPm

)
with associated line bundle O(H).

The section f [(1) ∈ Γ
(
C,MC

)
has associated line bundle f?O(H). If we let v denote the vertex

containing xk, then by construction f [(1) assigns µ to v and has slope αk along the leg xk. Thus
if we consider the difference f [(1)−π[(µ), then this assigns 0 to v and still has slope αk along xk.
Thus by [RSW19a, Proposition 2.4.1], the corresponding line bundle restricted to Cv is given by

OCv

(
αkxk +

∑
e

µexe

)
,

where the sum is over the edges e adjacent to v and distinct from xk. Thus we have(
f?O(H)⊗ π?L −1

k

) ∣∣
Cv

= OCv

(
αkxk +

∑
e

µexe

)
.

Since xk factors through Cv, we may pull back along xk to obtain

Lk = x?kπ
?Lk = x?kOCk(−αkxk)⊗ x?kf?O(H) = x?kOCk(−αkxk)⊗ ev?k O(H) ,

and taking Chern classes gives c1(Lk) = αkψk + ev?kH, as required.

This produces (Lk, sk) and calculates c1(Lk) on M log
1,α(Pm|H, d); this bundle is pulled back

to VZ1,α(Pm|H, d). The relevant piecewise-linear function is the composition

Σ1,α(Pm|H, d)→ Σlog → R>0 .

Note, in particular, that ψk should be interpreted as a collapsed class on VZ1,α(Pm|H, d), i.e.
the cotangent class from the source curve of the collapsed and stabilised map. We arrive at the
recursion.

Theorem 4.3. We have the following relation in the Chow ring of VZ1,α(Pm|H, d):

(αkψk + ev?kH) ∩ [VZ1,α(Pm|H, d)] =
∑
D

λD [D ] . (4.1)

The sum is over the irreducible components of the divisor D1,α,k(Pm|H, d) ⊆ VZ1,α(Pm|H, d),
and λD is the vanishing order of sk along the component D .

Remark 4.4. This construction gives the logarithmic analogue of Gathmann’s line bundle and
section [Gat02, Construction 2.1]. The logarithmic approach makes the computation of vanishing
orders combinatorial (see Paragraph 5.2.4 below), circumventing a difficult calculation given by
Gathmann.

5. Splitting the boundary

A basic phenomenon is responsible for the nature of the forthcoming analysis. In contrast with
functions on nodal singularities, the functions on an elliptic singularity are not simply collec-
tions of functions on the normalisation that agree at the gluing point. Rather, the contraction
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map C → C corresponds to a particular linear combination of tangent vectors at the pointed
normalisation, whose kernel consists of those functions descending to the elliptic singularity (see
Subsection 2.4). In order to compute integrals, it is necessary to give a tautological description
of this additional condition.

We provide an explicit description of the terms appearing on the right-hand side of (4.1).
For each term, we provide a combinatorial formula for the vanishing order λD and a recursive
description of the stratum D in terms of fibre products of moduli spaces with smaller numerical
data. The tautological description of the factorisation condition then leads to a recursive structure
for calculating integrals. This step is the heart of the analysis.

Remark 5.1. For the reduced relative Gromov–Witten theory of (Pm, H) with only primary
insertions, that is, where all cohomological insertions are pulled back along evaluation maps,
computations can be carried out without an analysis of the factorisation condition; this follows
from dimension considerations and leads to the main results in [Vak00]. However, to include de-
scendant insertions, work with more general pairs, or produce cycle-level statements, an analysis
of the tautological classes arising from the factorisation condition is crucial.

5.1. Irreducible components of the degenerate locus. We explain the tropical procedure
to identify irreducible components of D1,α,k(Pm|H, d).

Lemma 5.2. Every irreducible component of D1,α,k(Pm|H, d) is a codimension one stratum.

Proof. The locus where the logarithmic structure is trivial is the locus where the source curve is
smooth and not mapped inside H. Since VZ1,α(Pm|H, d) is toroidal, this locus is open and dense.
By definition, D1,α,k(Pm|H, d) is contained in the complement of this locus and can be expressed
as a union of strata of positive codimension. Since D1,α,k(Pm|H, d) is of pure codimension one,
it is a union of logarithmic divisors.

In Subsection 3.2, we described the logarithmic strata of VZ1,α(Pm|H, d), using the cones of
the tropicalization Σ1,α(Pm|H, d). Every divisorial logarithmic stratum is obtained as follows:

(1) Choose a combinatorial type ∆ of a tropical map.

(2) Subdivide the corresponding tropical moduli space σ to align the type.

(3) Choose a ray in this subdivision.

This process contains redundancies: upon choosing a ray in the tropical moduli space, some of
the edge lengths or vertex positions may get set to 0. This induces a generisation of the initial
combinatorial type ∆, given by contracting the corresponding edges of the dual graph and moving
the corresponding vertices from R>0 to 0. When we speak of the combinatorial type of a stratum
in VZ1,α(Pm|H, d), we will always mean this generisation. This is independent of the choice of ∆,
and in fact we can and will always choose ∆ to coincide with the generisation.

The logarithmic divisors contained in D1,α,k(Pm|H, d) are those whose combinatorial types
map the vertex of the dual graph containing xk into the interior R>0 ⊆ R>0. Thus via the above
procedure, we enumerate the components of D1,α,k(Pm|H, d) in a combinatorial manner; the com-
binatorial type ∆ allows us to describe the general element of such a component. The remainder
of this section describes the components and a recursive computation of integrals over them.

5.2. Recursive description of the divisors: types I, II, and III. Choose an irreducible
component D ⊆ D1,α,k(Pm|H, d). By Lemma 5.2 this is a logarithmic divisor and hence may be

653



L. Battistella, N. Nabijou and D. Ranganathan

written as

D = D̃ ∩ VZ1,α(Pm|H, d)

for a unique logarithmic stratum D̃ ⊆ ṼZ1,α(Pm|H, d). Since

ṼZ1,α(Pm|H, d)→M 1,α(Pm|H, d)

is a logarithmic modification, the divisor D̃ is either exceptional or the strict transform of a log-
arithmic divisor. By the nature of the subdivision procedure, these two cases correspond, re-
spectively, to when the core is assigned zero degree or non-zero degree by the combinatorial
type.

We begin with the latter. Suppose, therefore, that D̃ is the strict transform of a logarithmic
divisor

E ⊆M 1,α(Pm|H, d) .

The birational map D̃ → E induces a morphism D → E . We now show how to interpret
this morphism as a desingularisation of the principal component. Since E admits a recursive
description in terms of relative and rubber moduli spaces, this will allow us to compute integrals
over D .

Lemma 5.3. Let D ⊆ D1,α,k(Pm|H, d) be an irreducible component which contributes non-
trivially to the Gromov–Witten invariant, and let ∆ be the corresponding combinatorial type.
If ∆ assigns positive degree to the core, then ∆ takes one of the following forms:

xk...

�0

@0

@1

@2

@r

Figure 3. I.

xk...

�0

@0

@1

@3

@r

Figure 4. II.

xk...

�0

@0

@1

@2

@r

Figure 5. III.

Here black vertices represent rational components, white vertices components of genus one.
The degrees of vertices, expansions factors, and remaining markings are distributed arbitrarily,
subject to the following constraints:

(1) The vertices @1, . . . ,@r have positive degree.

(2) The core has positive degree.

(3) Every vertex is stable.

(4) The balancing condition is satisfied.

In [Vak00], these cases are referred to, respectively, as types A, B, and C+.

Proof. Let σ ∈ Σ1,α(Pm|H, d) be the cone corresponding to E ⊆ M1,α(Pm|H, d). By the dis-
cussion above, D corresponds to a ray in the subdivision of σ obtained by imposing the central
alignment condition. Since the elliptic core is assigned positive degree, both radii are equal to 0
and the subdivision is trivial. We conclude that σ = R>0. Since there must be at least one vertex
mapped to higher level, the tropical target R̃>0 is obtained from R>0 by subdividing at a single
point � ∈ R>0.
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In order for the cone σ to be one-dimensional, the dual graph Γ must be bipartite, with
vertices over 0 and �. The cases I, II, and III enumerated above cover situations where there is
a single vertex mapped to �. If there is more than one such vertex, then the contribution to the
Gromov–Witten invariant vanishes. To see this, we consider the stratum

E log ⊆M
log
1,α(Pm|H, d)

to which E maps under the collapsing morphism and examine the composition D → E → E log. If
we let F log denote the intersection of E log with the main component of the moduli space, then we
obtain a factorisation D → F log ↪→ E log. Since the moduli space is generically unobstructed along
F log, the codimension of F log is given by the dimension of the associated cone in the tropicaliza-
tion Σlog. If there is more than one vertex mapped to higher level, then this cone has dimension at
least two. Therefore, the map D → F log has positive-dimensional fibres, and since all insertions
are pulled back from the latter space, the contribution vanishes by the projection formula.

Remark 5.4. The difference in dimensions between D and F log (or, equivalently, between the
virtual dimensions of E and E log) may be interpreted as the difference in dimensions between
moduli spaces of disconnected rubber and their images under the collapsing morphisms.

We investigate the three types I, II, and III separately, giving a recursive description of the
boundary divisor in each case. For the remainder of this subsection, therefore, we fix a one-
dimensional cone τ ∈ Σ1,α(Pm|H, d), let D ⊆ VZ1,α(Pm|H, d) be the associated logarithmic
divisor, and assume that D is contained in D1,α,k(Pm|H, d) and is of type I, II, or III. We let
E ⊆ M1,α(Pm|H, d) be the logarithmic stratum into which D is mapped; this is indexed by
a cone ε ∈ ΣKim corresponding to a combinatorial type ∆, and ε is one-dimensional since we are
restricting to the type I, II, III cases.

5.2.1 Type I. Suppose that ∆ is of type I. Then E admits a finite and surjective splitting
morphism onto the fibre product:

E →

(
M 1,α(1)∪(m1)(P

m|H, d1)×
r∏
i=2

M 0,α(i)∪(mi)
(Pm|H, di)

)
×Hr M

↔
0,α(0)∪(−m1,...,−mr)(P|H0 +H∞, d0) .

Lemma 5.5. The divisor D admits a natural splitting morphism

D
ρ−→

(
VZ1,α(1)∪(m1)(P

m|H, d1)×
r∏
i=2

M 0,α(i)∪(mi)
(Pm|H, di)

)
×Hr M

↔
0,α(0)∪(−m1,...,−mr)(P|H0 +H∞, d0)

such that the map D → E lifts the map on fibre products obtained by desingularising the main
component of the first factor.

Proof. We consider the statement of the lemma in logarithmic schemes, so that a relative stable
map to an expansion admits a unique logarithmic lifting, and later saturate the structures. The
fibre product description preceding the lemma is an isomorphism in this category [AMW14,
Lemma 4.2.2].

The map D → E is an isomorphism away from the exceptional centres, and the latter is
contained in the locus where the core is contracted. Given an element of D , we can split it along
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the nodes q1, . . . , qr. It is then clear that @1 is aligned. We claim that @ satisfies the factorisation
property if and only if @1 does. This implies the lemma.

On @ there are two contraction radii, δF and δB. Let δ ∈ {δF , δB}. An examination of the
stratification by combinatorial type of D shows that λ(@′) > δ for any component @′ of @0.
This means that @0,@2,@3, . . . ,@r lie outside both contraction radii, and so the aligned curve @
satisfies the factorisation condition if and only if @1 does.

Lemma 5.5 provides a means to calculate integrals over the class λD [D ] appearing on the
right-hand side of Theorem 4.3, provided that we can calculate λD and the degree of the splitting
morphism. Simple closed formulas for these are given in Paragraph 5.2.4 below.

5.2.2 Type II. Now suppose that ∆ is of type II. In this case, it is impossible for the core
to be contracted. Hence E is disjoint from the blown-up locus, and the map D → E is an
isomorphism. We obtain the following description, entirely in terms of genus zero data.

Lemma 5.6. The divisor D admits a finite and surjective splitting morphism

D
ρ−→

(
M 0,α(1)∪(m1,m2)(P

m|H, d1)×
r∏
i=3

M 0,α(i)∪(mi)
(Pm|H, di)

)
×Hr M

↔
0,α(0)∪(−m1,...,−mr)(P|H0 +H∞, d0) .

5.2.3 Type III. Finally, suppose that ∆ is of type III. As before we have a finite and surjective
morphism

E →

(
r∏
i=1

M 0,α(i)∪(mi)
(Pm|H, di)

)
×Hr M

↔
1,α(0)∪(−m1,...,−mr)(P|H0 +H∞, d0) .

The same arguments as in Paragraph 5.2.1 then apply to give the following.

Lemma 5.7. The divisor D admits a finite splitting morphism

D
ρ−→

(
r∏
i=1

M 0,α(i)∪(mi)
(Pm|H, di)

)
×Hr VZ↔1,α(0)∪(−m1,...,−mr)(P|H0 +H∞, d0)

such that D → E corresponds to the obvious map on fibre products.

The final factor in the fibre product is the logarithmic blowup of the moduli space of rubber
maps constructed in Subsection 2.10. We will compute integrals over such spaces as part of the
recursion (see Section 6).

5.2.4 Splitting degree and vanishing order. In each of Paragraphs 5.2.1–5.2.3 above, we ob-
tained a finite splitting morphism ρ from D to a fibre product of moduli spaces with smaller
numerical data. Here we describe the degree of ρ and calculate the vanishing order λD of the sec-
tion sk constructed in Section 4. This completely describes the terms appearing on the right-hand
side of Theorem 4.3 which are of type I, II, or III.

Lemma 5.8. The degree of ρ is given by ∏r
i=1mi

lcm(m1, . . . ,mr)
.

Proof. This calculation is well known; see for instance [Che14a, § 7.9], [ACGS20, § 5.3].
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Lemma 5.9. The section sk vanishes along the divisor D with order given by

λD = lcm(m1, . . . ,mr) .

Proof. Let τ ∈ Σ1,α(Pm|H, d) be the cone corresponding to D , and let

ϕ : Σ1,α(Pm|H, d)→ Σlog → R>0

be the piecewise-linear function constructed in Section 4. It follows from the tropical description
that λD is equal to the index of the map of integral cones τ → R>0 obtained by restricting ϕ.
Observe that τ is contained in Rr>0 with integral generator

w =

(
lcm(m1, . . . ,mr)

m1
, . . . ,

lcm(m1, . . . ,mr)

mr

)
.

The map τ → R>0 is given by projecting onto the ith factor and then multiplying by mi. Note
that by the piecewise-linear continuity of the tropical map, this is independent of i. We conclude
that the index is equal to lcm(m1, . . . ,mr), as claimed.

In summary, the contribution of each term λD [D ] is given by integrating over the appropriate
fibre product and multiplying the result by λD · deg ρ =

∏r
i=1mi.

5.3 Recursive description of the divisors: type †. The treatment of the type I, II, and
III strata are direct extensions of ideas of Gathmann–Vakil. The type † case is entirely new. We
provide a recursive description of such boundary divisors; this forms the technical heart of the
paper.

5.3.1 Possible combinatorial types. A boundary divisor D ⊆ D1,α,k(Pm|H, d) is said to have
type † if the core is assigned degree zero. Divisors of this type occur as principal components in
compactified torus bundles over strata in the space of relative maps. As a result, their combina-
torial types exhibit degenerate behaviour. Precisely, over the generic point of such a divisor, the
target may expand multiple times, and the source tropical curve need not be bipartite with a
single interior vertex. An instance of this can be seen on the left-hand side of Figure 8: at first
sight, the multiple expansions seen in the target appear to depict a high-codimension stratum,
but due to the alignment condition, which is required to pick out the main component, these
lengths cannot be varied independently. The degenerate contributions are at the heart of the
reduced theory and cannot be removed.

The next two lemmas describe the combinatorial types associated with rays whose divisors D
have type † and contribute non-trivially to the Gromov–Witten invariants.

Lemma 5.10. For every non-zero vertex � of the tropical target, the fibre of the tropical map
over � contains exactly one stable vertex, which either is the core or lies on the circle.

Lemma 5.11. All the vertices on the circle are stable; that is, they are not Galois covers of fibres
of a component of an expansion.

Proof of Lemma 5.10. The stability of maps to an expansion requires that at least one stable
vertex lies over each vertex of the target. If there is more than one stable vertex, then we show
as in the proof of Lemma 5.3 that the corresponding locus F in the moduli space of unexpanded
maps has high codimension; that is, the collapsing map has fibres of positive dimension. As
both insertions and the factorisation property for the collapsed map to Pm are pulled back
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from the moduli space of maps without expansions, the contribution vanishes by the projection
formula.

Proof of Lemma 5.11. Since the corresponding family of tropical maps is one-dimensional, for
every vertex of the target, there must be at least one vertex above it which lies on the circle.
If the vertex on the circle is strictly semistable – so that, in particular, the collapsed map fB is
constant along the corresponding component – the factorisation condition for fB is unaffected
by Gm-scaling the coordinate corresponding to that vertex in the moduli space of attaching data
[Smy11b, § 2.2], so the map D → E has generic fibre of positive dimension and the contribution
vanishes.

5.3.2 Lines. We begin with a description of the boundary divisor corresponding to a comb
whose teeth all have degree one. This is a concrete but atypical case since the teeth are generically
(not just dimensionally) transverse to the hyperplane H. For simplicity, we assume that the
contact order is (d), concentrated at a marking x1 supported on the elliptic curve E contracted
to H. The combinatorial type is as in Figure 6.

1

1

1

...
d

×

Figure 6. The combinatorial type of a comb with degree one teeth.

Start with the moduli space of logarithmic stable maps. There is a finite splitting morphism

E →
(
M0,(1)(Pm|H, 1)×m ×Hm H

)
×M↔

1,(−1,...,−1,d)

(
P1|0 +∞, d

)
,

where the second space on the right-hand side is the moduli space of genus one rubber maps.
To obtain D̃ from E , we replace the final factor with VZ↔1,(−1,...,−1,d)

(
P1|0 +∞, d

)
(see Subsec-

tion 2.10).

The first factor can be described very concretely as the choice of a point p of H and d lines
through it. An important observation is that, generically, the vertices which lie on the circle of
radius δ and map to 0 ∈ R>0 are automatically aligned. Indeed, if Ri denotes the ith tail of the
curve, glued to E at the node qi, then the stable map provides us with identifications

dfi,qi : TRi,qi
∼= NH/Pm,p ,

which we may compose to obtain attaching data θij (see Subsection 2.4). This produces a con-

traction C → C to an elliptic d-fold point. The dimension of D̃ coincides with the dimension
of E , which is dm+m− 1.

First, assume d 6 m. For the absolute factorisation to hold, it is necessary (but not sufficient)
for the d lines fi(Ri) to span a subspace of TPm,p of dimension at most d− 1. The locus of maps
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satisfying this condition has dimension

(dm+m− 1)− (m− d+ 1) = dm+ d− 2 .

Without loss of generality, we may assume H = {z0 = 0}, p = [0, . . . , 0, 1], and that the d
lines span the subspace {zd−1 = · · · = zm−1 = 0}. The sections zi for i = d − 1, . . . ,m vanish
identically near E, so descend automatically to the singularity. On the other hand, the section z0

descends to the singularity by the construction of C. Finally, the sections zi for i = 1, . . . , d− 2
impose independent conditions to descend to C. Imposing these conditions, we find that D has
dimension

(dm+ d− 2)− (d− 2) = dm ,

making it into a divisor in VZ1,(d)(Pm|H, d). The case d > m is similar, except that the lines fi(Ri)
are automatically linearly dependent, and so this condition does not need to be imposed.

We express the factorisation condition tautologically by combining the isomorphisms θij above
with the differential of f . Factorisation amounts to the vanishing of the following vector bundle
map:

TR1,q1

(1,θ12,...,θ1d)−−−−−−−−→
d⊕
i=1

TRi,qi

∑
◦df=dz1+···+dzd−2−−−−−−−−−−−−−−→ NH∩Pd−1|Pd−1 |p .

For strata with higher tangency, we will see that the automatic alignment only occurs for ver-
tices on the circle which map to 0 ∈ R>0. For internal components which lie on the circle,
the alignment must be imposed separately. This means that D̃ is a compactified torus bundle
over E (see Section 2.4). On the other hand, for higher contact orders, the vector bundle map
Σ ◦ df to TPm,p factors naturally through TH,p. This is discussed in detail in Paragraphs 5.3.5
and 5.3.6.

5.3.3 Recursive description of E . Recall that we have maps

VZ1,α(Pm|H, d) ↪→ ṼZ1,α(Pm|H, d)→M1,α(Pm|H, d) .

The first morphism is a closed embedding cut out by the two factorisation properties. The
second morphism is a logarithmic modification. Let τ ∈ Σ1,α(Pm|H, d) be the ray corresponding

to D ⊆ VZ1,α(Pm|H, d) and to the virtual divisor D̃ ⊆ ṼZ1,α(Pm|H, d).

Let σ ∈ ΣKim be the minimal cone containing the image of τ . The dimension of this cone could
be large (see again the left-hand side of Figure 8) – its dimension is equal to the number of levels
of the target expansion in the type ∆. The cone σ determines a stratum E ⊆ M 1,α(Pm|H, d),
and the morphism above restricts to a morphism

D → E .

Splitting in the ordinary geometry. The locus E has the following description. Let Λ0 denote
the collection of stable vertices of the combinatorial type which are mapped to 0 ∈ R>0, and use
Λ>0 for the stable vertices which are mapped to R>0. Each vertex v has associated discrete data
Γv (genus, degree, contact order). The vertices over 0 determine moduli spaces of relative stable
maps, while the higher-level vertices determine maps to rubber. The stratum E admits a finite
splitting morphism

E
ρ−→

∏
v∈Λ0

M Γv(Pm|H)×
∏

v∈Λ>0

M
↔
Γv(P|H0 +H∞)

×H2ε Hε , (5.1)
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where ε is the number of edges of the stabilised dual graph and the fibre product is taken
over the appropriate evaluation maps. Splitting the diagonal of H2ε, we see that tautological
integrals over E are completely determined in terms of integrals over moduli spaces with “smaller”
combinatorial data.

Exporting to the reduced geometry. There is a virtual divisor D̃ ⊆ ṼZ1,α(Pm|H, d) such that

D = D̃ ∩ VZ1,α(Pm|H, d) .

We wish to use the splitting of E to recursively compute integrals on D . Noting that D is cut
out of the excess-dimensional space D̃ by the factorisation properties, we make the reduction in
two steps:

(1) In Paragraph 5.3.4, we explain how to construct D̃ from E .

(2) In Paragraph 5.3.5, we explain how to express the class of D ⊆ D̃ in terms of tautological
classes.

To compute integrals over D , we simply push down the appropriate classes from D̃ to E and
then integrate over E using the ordinary splitting axiom.

Remark 5.12 Splitting degree and vanishing order, revisited. As in Paragraph 5.2.4 above, we
can calculate the degree of ρ and the vanishing order λD of the section sk along D . The degree
of ρ is given exactly as in Lemma 5.8, where we obtain one such factor for each bounded edge of
the tropical target. The vanishing order λD is more delicate but may be computed as the index
of an explicit morphism of one-dimensional lattices, explained in the proof of Lemma 5.9.

5.3.4 Compactified bundles over strata: D̃ from E . Recall that the map D̃ → E is obtained
by restricting the logarithmic blowup

ṼZ1,α(Pm|H, d)→M 1,α(Pm|H, d)

to the locus D̃ . Toroidal geometry constructs D̃ as a compactification of a torus bundle over
a locally closed stratum in M1,α(Pm|H, d).

Logarithmic structures on strata. Let W ⊆ X be an irreducible stratum in a toroidal embed-
ding X. The stratum W is itself toroidal or, equivalently when equipped with the divisorial
logarithmic structure coming from intersecting with the toroidal boundary of X, the resulting
structure makes W logarithmically smooth. Note that this differs from the logarithmic structure
pulled back from X along the inclusion of W into X.

If X and W are logarithmic but not toroidal, there is an analogue. There exists a strict map

X → AX ,

where AX is the Artin fan of X, which is logarithmically étale over a point. The logarithmic
structure of AX is divisorial in the smooth topology. The Artin fan AX possesses closed strata.
Fix an irreducible stratum AW . In identical fashion to the paragraph above, this stack AW

possesses a logarithmic structure by restricting the divisors on AX to AW and taking the induced
logarithmic structure. This equips a logarithmic stratum W ↪→ X with a logarithmic structure
by pullback from the Artin fan, mirroring the construction for toroidal embeddings above.

Remark 5.13. The inclusion of a stratum W ↪→ X is not logarithmic. The pullback logarithmic
structure on a closed stratum includes residual information about the normal bundle of the
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stratum; the construction above removes these directions. By the equivalence of Artin fans with
cone stacks [CCUW20], the above construction can be combinatorialised. Given a cone σ in
a cone stack Σ, its star consists of all cones of Σ that contain σ; these naturally form a new cone
complex whose Artin fan gives the logarithmic structure on W above.

Equipped with the strata logarithmic structures, there is a logarithmic morphism

D̃ → E

whose generic fibre is a toric variety.

Flattening the map. The morphism D̃ → E is not flat. In order to push integrals forward, it will
be convenient to flatten the map by blowing up E . This can be done universally [AK00, Mol21].

m1

m2

m1 +m2

∆τ

× ×

σ

e1

e2

(m2,m1) = Im(τ)

Figure 7. From E to Ẽ . Typical subdivision of a two-dimensional cone σ along the image of
a ray τ .

The combinatorics of the flattening can made explicit. Consider the map on tropicalizations

τ = D̃ trop → E trop = σ .

The tropical curves parametrised on the left inherit a central alignment from ṼZ1,α(Pm|H, d),
which orders a certain subset of the edge lengths. The polyhedral criterion for equidimensionality
is that every cone of the source maps surjectively onto a cone of the target. There is a universal
logarithmic modification Ẽ → E such that D̃ → Ẽ is flat, constructed by taking the minimal
subdivision of E trop such that cones map surjectively to cones (see Figure 7).

This subdivision may be described explicitly by employing the formalism of extended tropi-
calizations; see for instance [ACP15, § 2]. The subdividing cones are obtained from cones in the
star of τ under the limit e1 = · · · = er = ∞. Cones in the star of τ are given by equalities or
inequalities relating distances of pairs of vertices, and there are three cases to consider:

(1) Both vertices are components of the subgraph @ \ @0.

(2) Both vertices are components of the subgraph @0.

(3) One vertex is a component of @0, and one is a component of @ \ @0.

As we pass to the limit, the first relations impose a central alignment condition on the genus
zero moduli, the second relations impose a radial alignment condition on the genus one moduli,
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and the third relations disappear entirely. We are therefore led to the following moduli-theoretic
description of the logarithmic modification Ẽ .

Keeping in mind the fibre product description of E , construct a modification Ẽ from E as
follows:

(1) Given a logarithmic map of type ∆ with splitting nodes q1, . . . , qr, remove the genus one
piece @0, formally glue together the r vertices of the tropicalization which carry the splitting
nodes, and declare the resulting vertex to be the root of the resulting tree. Impose the central
alignment condition, where the special root takes on the role previously occupied by the
core.

(2) Replace the fibre product factor in E associated with the vertex @0

M
↔
Γ@0

(P|H0 +H∞)

with the radially aligned rubber space

VZ↔Γ@0
(P|H0 +H∞) .

(Here we are imposing fibre-direction factorisation in order to isolate the main component.)

This procedure induces a logarithmic modification Ẽ → E which admits a modular description
as a fibre product of genus zero centrally aligned maps coming from the vertices @1, . . . ,@r and
genus one aligned rubber maps satisfying fibre-direction factorisation from the vertex @0.

We have produced a factorisation

D̃ → Ẽ → E ,

where the first map is flat and the second map is a logarithmic modification. The locus D̃ is a
compactification of a torus bundle over Ẽ whose strata can be read off from the tropicalization;
in particular, we have the information of how (polynomials in) the classes of boundary strata
push forward to Ẽ . In fact, we can say more and describe the generic fibre of D̃ → Ẽ .

Lemma 5.14. Generically over Ẽ , the map D̃ → Ẽ is a projectivised tautological vector bundle.

Proof. Let us assume that the curve does not degenerate, so that the dual graph is as prescribed
by ∆. In particular, there are vertices @1, . . . ,@r generically lying on the circle of radius δ.
The moduli of attaching data for the elliptic singularity is the complement of the coordinate
hyperplanes in

P

(
r⊕
i=1

TqiCi

)
. (5.2)

This can also be thought of as parametrising compatible identifications θij : TCi,qi
∼= TCj ,qj (see

Subsection 2.4). A point in this space determines a map from the rational r-fold singularity to
the elliptic r-fold singularity (this coincides with the fibre of the space of aligned curves over the
space of nodal curves; see [RSW19a, § 3.4]). Along the boundary, some of the @i (though not
all of them) may move off from the circle, so that the latter subdivides the edge between them
and the core. Correspondingly, there is a destabilisation of the curve (semistable components are
represented by crosses in our figures), and we obtain an elliptic singularity containing strictly
semistable branches (sprouting). This was already identified by Smyth as a compactification of
the moduli space of attaching data carrying a Gorenstein universal curve [Smy11b, § 2.2].

Tropically, pushing some of the @i off the circle creates new finite-length edges with coordi-
nates `i ∈ R>0 (see the right-hand side of Figure 8). Since not all of them can be strictly positive,
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the resulting fan is that of a projective space. This describes D̃ → Ẽ fibrewise over the interior.

A slight modification of the argument above is required to account for the fact that all vertices
that lie on the circle and are mapped to 0 ∈ R>0 by the tropical map are already generically
aligned on Ẽ . Indeed, by the combinatorial description of rays in Paragraph 5.3.1, there are no
stable vertices inside the circle, so all the edges going from a vertex of Λ0 to the core have the
same expansion factor m (maximal among the contact orders at the core). Therefore, for all i such
that @i ∈ Λ0, the TqiC

⊗m
i can be identified to the target tangent line on the fibre product (5.1),

and, after saturation, the TqiCi themselves are canonically isomorphic on Ẽ . Thus, only one
summand should be taken to represent all of them in the projective bundle (5.2).

m

m

m

m

`1 `2

Figure 8. Moving vertices off the circle creates new tropical parameters.

5.3.5 D from D̃ : first way. On D̃ there is a tautological line bundle arising from the mod-
ular description of ṼZ1,α(Pm|H, d), namely O(δ). Recall that the piecewise-linear function δ
may be viewed as a global section of the characteristic sheaf of the logarithmic structure on
ṼZ1,α(Pm|H, d). The toric geometry dictionary gives rise to an associated Cartier divisor. Alter-
natively, for any logarithmic stack X, the natural coboundary map induced by

0→ O?
X →Mgp

X →M
gp
X → 0

associates a O?
X -torsor with a global section of the characteristic sheaf.

Lemma 5.15. The fibre of O(δ) over a moduli point is naturally isomorphic to

TpC
′ ⊗ T ,

where C ′ is any component of C which lies on the circle of radius δ, p is the node separating it
from the core, and T is the universal tangent line bundle on the moduli space for @0.

We explain the meaning of T. Isolating the subcurve C0 ⊆ C gives rise to a morphism from D̃
to the moduli space of radially aligned curves of genus one:

D̃ → VZ rad
1,n .
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The space VZ rad
1,n coincides with the Vakil–Zinger blowup of M 1,n; see [VZ08, § 2.3]. In particular,

after twisting by exceptional divisors, the tangent line bundles at two marking T̃i and T̃j are
identified (via the dual Hodge bundle E∨), extending the identification on the smooth locus
provided by regarding the elliptic curve as an algebraic group. This gives rise to a single line
bundle – the “universal tangent line bundle” – on VZ rad

1,n ; we let T denote its pullback to D̃ .

Proof of Lemma 5.15. Choose a component C ′ of the curve which lies on the circle. Then O(δ) is
equal to the tensor product of tangent line bundles along the path of edges connecting C ′ to the
core. However, this tensor product of line bundles is telescoping: any vertex which appears in the
middle of the path will have an incoming and outgoing node (and possibly other nodes that are
irrelevant for this product), and since the vertex corresponds to a smooth rational curve, these
tangent spaces are naturally dual to each other [VZ08, § 2.2]. Thus these factors cancel, and the
result follows.

The content of Lemma 5.14 is that the choice of a point in the fibre of D̃ → E provides an
identification between the inward-pointing tangent lines on the circle. By Lemma 5.15, they can
further be identified with the line bundle O(δ)⊗ T∨ on D̃ . Corollary 2.3 therefore expresses the
factorisation condition as the degeneracy of the following morphism of vector bundles on D̃ :

Σ df : O(δ)⊗ T∨ → ev?q TH .

Here Σ df is defined by summing the images of the tangent vectors at the inward-pointing nodes
on the circle, using the natural identification of each of these tangent spaces with O(δ) ⊗ T∨
established above. This morphism takes values in ev?q TH rather than ev?q TPm because the
contact order of the exterior components with H is strictly larger than one (except for the case
of lines, dealt with separately in Section 5.3.2). This gives a section of the vector bundle

V = (ev?q TH)⊗ T⊗ O(−δ) ,

which is transverse and whose vanishing locus coincides with D . Transversality follows by con-
struction because any stratum of the boundary on which Σ df vanishes has been (blown up and)
included into T⊗ O(−δ) as a twist; in other words, the circle of radius δ always passes through
at least one component which is not contracted by the map to the expansion. If the vanishing
locus of Σ df does not contain any stratum of the boundary, it is the closure of its intersection
with the open stratum. Thus we obtain the following.

Proposition 5.16. We have [D ] = e(V ) ∩
[
D̃
]
.

We claim that the class e(V ) is tautological and computable. The only part which needs
justification is O(δ). We claim that this can be obtained by pulling back a line bundle from E
and twisting by exceptional divisors.

Lemma 5.17. For i ∈ {1, . . . , r}, consider the line bundle

Ti = TqiCi ⊗ TqiC0

on E , where qi is the splitting node. Then O(δ) is isomorphic to the pullback of Ti to D̃ twisted
by all exceptional divisors.

We illustrate this lemma in the following example, which brings out the interplay between
logarithmic moduli and blowups.
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Figure 9. σ.
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Figure 10. ρ.

Example 5.18. Consider the locus E given by σ below and the codimension one locus D̃ρ ⊆ D̃σ

given by the two-dimensional (due to the alignment) cone ρ:

On the cone ρ, we have the tropical continuity equations

e := e1 = e2 , f := f1 = f2 = 2f3 , g := g1 = g2 = 2g3

together with the equation imposed by the choice of alignment:

e1 + f1 = e2 + f3 + g3 (⇐⇒ f = g) .

In this example, we have

λ
(
@0

1

)
= λ

(
@0

2

)
= e , λ

(
@1

1

)
= λ

(
@2

1

)
= λ

(
@2

2

)
= e+ f = δ , λ

(
@3

1

)
= λ

(
@4

1

)
= e+ 2f .

From now on, we use the same symbol to denote an edge length and the corresponding node
on D̃ρ. On this locus, we have line bundles pulled back from E

T1 = Te1C
0
1 ⊗ Te1C0 , T2 = Te2C

0
2 ⊗ Te2C0

as well as the logarithmic line bundle

O(δ) = Tf1C
1
1 ⊗ Te1C0 = Tf2C

2
1 ⊗ Te1C0 = Tg3C

2
2 ⊗ Te2C0 ,

where the identifications follow from Lemma 5.15. We claim that

O(δ) = T1 ⊗ O
(
D̃ρ

)
= T2 ⊗ O

(
D̃ρ

)
. (5.3)

Notice that O(D̃ρ) = O(f) = O(g). Thus we have

T1 ⊗ O(D̃ρ) = O(f1)⊗ Te1C0
1 ⊗ Te1C0

= Tf1C
1
1 ⊗ Tf1C0

1 ⊗ Te1C0
1 ⊗ Te1C0

= Tf1C
1
1 ⊗ Te1C0 (= O(δ)) ,

where in the last line we have used the same telescoping trick used in the proof of Lemma 5.15,
namely that Tf1C

0
1⊗Te1C0

1 = O. On the other hand, for T2 we may write f = f/2+g/2 = f3 +g3

in order to obtain

T2 ⊗ O
(
D̃ρ

)
= O(g3)⊗ O(f3)⊗ Te2C0

2 ⊗ Te2C0 = Tg3C
2
2 ⊗ Te2C0 = O(δ) ,
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where we have used the same telescoping trick. Thus we have proven (5.3). This observation
generalises, giving a precise relation between the intrinsically-defined line bundle O(δ) on D̃
(which we use to impose the factorisation condition) and the line bundles Ti pulled back from E .
This allows us to express the Chern classes of O(δ) (and hence V ) in terms of pullbacks of
tautological classes from E and boundary strata on D̃ , which is sufficient in order to compute
integrals.

5.3.6 D from D̃ : second way. We analyse the degeneracy locus of Σ df , in order to have
a more direct construction of D from the fibre product (5.1). On E , consider the piecewise-
linear function δi (i = 1, . . . , r) defined as the minimal distance from a component of (that is,
generising to) the core @0 to a non-contracted component of the ith tail @i, and the associated
line bundle O(δi). Construct

P = PE

(
r⊕
i=1

O(δi)

)
p−→ E .

When all fibre coordinates are non-zero, a point of P induces compatible isomorphisms O(δi) ∼=
O(δj) for all i, j. We think of this as saying that all the @i are at the same distance from the
core. When some of the coordinates are 0, the corresponding tail is further from the core. This
corresponds to an alignment of @1, . . . ,@r with respect to the radius δ, that is, the distance of the
closest of them from the core. Therefore, by the universal property, there is a morphism D̃ →P
lifting D̃ → E .

In order to express factorisation, consider the map of vector bundles on P

OP(−1)→ p∗

(
r⊕
i=1

O(δi)

) ∑
df−−−→ ev∗q TH .

The composite, regarded as a section s of W = OP(1) ⊗ ev∗q(TH), vanishes precisely where f
factors through the elliptic singularity determined by the point in the fibre of p. Generically
on Ẽ , this is exactly what we are after (compare with Lemma 5.14). On the boundary, though, it
may happen that a simultaneous degeneration in the base and the fibre makes this factorisation
trivial, in the sense that the map f̄ is constant on all the branches of the elliptic singularity.
These loci may be identified explicitly: let Λ = (ΛB,ΛF ) with ΛB ⊆ {@1, . . . ,@r} and ΛF =
{@1, . . . ,@r} \ ΛB, and let ΞΛ be the locus in P, where:

(B) For all i ∈ ΛB, the ith component of the fibre product (5.1), namely the map fi : Ci →
(Pm|H), degenerates so that it is constant near the attaching point to the core.

(F) For all j ∈ ΛF , the jth coordinate in the fibre of p : P → E vanishes.

It should be noted that the degeneracy loci of (B) are among Gathmann’s comb loci [Gat02],
which are similar to the loci D that we are considering, but in genus 0, and therefore recursively
computable.

Lemma 5.19. The ΞΛ are precisely the boundary loci on which s vanishes.

See [VZ08, § 3.2] for an analogous phenomenon in the non-relative case. Clearly, these loci
may be in excess with respect to the expected codimension of V (s), that is, N − 1. These loci
are logarithmic strata, so there exists a logarithmic blowup that principalises them. We claim
that D̃ is one.

Lemma 5.20. The pullback of ΞΛ is principal in D̃ .
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Proof. We analyse the ideal of ΞΛ. It is generated by:

(1) equations on E cutting the locus where Ci degenerates, so that fi is constant on a neigh-
bourhood of qi for i ∈ ΛB: these correspond to the tropical functions δi − λ(qi), where λ is
the distance function to the core

(2) equations on the fibre of p for the linear subspace corresponding to i ∈ ΛF : tropically, these
correspond to the `i discussed in Lemma 5.14.

By construction, on D̃ it is always possible to tell which of these tropical lengths is the shortest.
Figure 11 represents the situation: the circle we have drawn on ΞΛ is degenerate – it passes
through no non-contracted vertex – therefore we need to decide for a strictly larger circle in
order to lift to D̃. This shows that the ideal is principalised on D̃ .

@2

@0

@1

δ
@2

@0

@0
1

@2
1

@1
1

Figure 11. On the left, a generic point of P. On the right, a point of Ξ. The dotted circle is the
one we draw on P. The solid circle represents a radius δ enlarging the dotted one (a stratum
of D̃).

Finally, on D̃ there are exceptional divisors Ξ̃Λ corresponding to ΞΛ in P. The ΞΛ exhaust
the excess-dimensional components of the vanishing of s ∈ H0(P,W ), so the latter induces
a section s̃ ∈ H0

(
D̃ ,W

(
−ΣΛΞ̃Λ

))
by pullback and twisting. The vanishing locus is dimensionally

transverse to the boundary and on a dense open coincides with the generic point of D ; therefore,
V (s̃) = D .

Proposition 5.21. We have

[D ] = e
(
W
(
−ΣΛΞ̃Λ

))
∩
[
P̃
]
,

where P̃ denotes the blowup of P in the ΞΛ.

Applying [Ful98, Corollary 4.2.2], we get the following.

Corollary 5.22. In A∗(P), the following formula holds:

[D ] =
∑

Λ

∑
i

si(ΞΛ,P)cN−1−i(ev∗q TH ⊗ OP(1)) .

It is possible to push the formula to E and apply [Ful98, § 3.1] to calculate [D ] in terms of:

• evaluation classes, such as ev∗q TH

• Chern classes of the logarithmic line bundles O(δi)

• Segre classes of Gathmann’s comb loci indexed by ΛB.

Corollary 5.23. After pushforward to E , the contribution of D to the invariants can be com-
puted in terms of tautological integrals on moduli spaces of maps with lower numerics.
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5.4 Recursion for general (X,Y ). Now let (X,Y ) be a general smooth very ample pair. In
Subsection 2.11, we studied the moduli space VZ1,α(X|Y, β) of centrally aligned maps to (X,Y )
and equipped it with a virtual fundamental class by diagonal pullback from VZ1,α(Pm|H, d).

This construction of the virtual fundamental class means that once we have established
a recursion formula for (Pm, H), it pulls back to give a recursion formula for (X,Y ). To be more
precise, Theorem 4.3 holds mutatis mutandis, with the same values of λD . The computation of
the splitting orders is exactly the same, and the recursive description of the boundary strata
pulls back to give an entirely analogous description on VZ1,α(X|Y, β).

6. Quantum Lefschetz algorithm

Consider a smooth pair (X,Y ) with Y very ample, and let P be the projective bundle P =
PY (NY |X ⊕OY ). We assume that all genus zero and reduced genus one Gromov–Witten invariants
of X are known. From these starting data, we will apply our recursion formula to compute:

(1) the genus one reduced restricted absolute Gromov–Witten theory of Y

(2) the genus one reduced relative Gromov–Witten theory of the pair (X,Y )

(3) the genus one reduced rubber theory of P.

6.1. Reduced absolute, relative, and rubber invariants. To be precise: by a reduced
invariant of Y , we mean an integral over VZ1,n(Y, β) of a product of evaluation classes and
pullbacks of psi classes along morphisms forgetting subsets of the marked points:∫

[VZ1,n(Y, β)]virt

n∏
i=1

fgt?Si ψ
ki
i · ev?i γi .

Here Si ⊆ {1, . . . , n} with i 6∈ Si for all i; taking S = ∅ gives the ordinary psi classes. The
evaluation maps are viewed as mapping into X (hence the adjective “restricted”). Reduced
relative invariants of (X,Y ) are defined in the same way,∫

[VZ1,α(X|Y, β)]virt

n∏
i=1

fgt?Si ψ
ki
i · ev?i γi ,

except now the forgetful morphism maps into a space of absolute stable maps:

fgtS : VZ1,α(X|Y, β)→ VZ1,n−#S(X,β) .

Note that even the case S = ∅ entails a non-trivial forgetful morphism. In particular, all the
psi classes which we consider are collapsed psi classes, meaning that they are relative cotangent
line classes for the corresponding collapsed stable map. Note that, unlike in the absolute case,
in the relative case it may well be that the entire insertion is pulled back along a single for-
getful map fgtS . The reduced rubber invariants of P are defined similarly, using collapsed psi
classes.

Remark 6.1. The systems of invariants defined above are equivalent to the classical systems of
invariants (which do not use forgetful morphisms) by well-known topological recursion relations.

Remark 6.2. In the following discussion, we may omit the adjective “reduced” when discussing
genus one invariants, but it is always implicit; all genus one invariants we consider will be reduced.
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6.2. Fictitious and true markings. Roughly speaking, we induct on the degree (meaning
Y ·β), number of marked points, and total tangency. We adopt Gathmann’s point of view on the
relative theory [Gat02], where only a subset of the contact points with the divisor are required
to be marked; this allows for “total tangency” strictly smaller than Y · β.

In order to make sense of this in the logarithmic setting (where all contact points must be
marked), we introduce the concept of fictitious markings. Consider a moduli space VZ1,α(X|Y, β)
of reduced relative stable maps and a corresponding integrand γ. We let F ⊆ {1, . . . , n} be the
maximal subset of marked points such that the following two conditions are satisfied:

(1) We have αi = 1 for all i ∈ F .

(2) The entire integrand γ is pulled back along fgtF .

This subset is uniquely determined, and its elements are referred to as fictitious markings. We
note that αi = 1 is not sufficient for xi to be fictitious; it must also be the case that all the
insertions are pulled back along forgetting xi. Markings which are not fictitious are referred
to as true markings. When inducting on relative invariants, we will always be interested in
the number of true markings (as opposed to the total number of markings) and the true tan-
gency

t :=
∑
i 6∈F

αi 6 Y · β = d

as opposed to the total tangency, which is always d. This formalises the idea that relative invari-
ants with non-maximal tangency t < d can be obtained by adding d − t fictitious markings of
tangency one; see [Gat02, Lemma 1.15(i)].

6.3. Structure of the recursion. Given the genus zero Gromov–Witten theory of X, the
results of [Gat02] give an effective algorithm to reconstruct the genus zero theories of Y and
(X,Y ); the genus zero rubber theory of P is equal to the genus zero theory of Y ; see [Gat03].
Thus we may assume that all genus zero invariants are known. We assume in addition that we
know the genus one reduced theory of X. The structure of the recursion is described in the
following table:

for d > 0 do
for n > 0 do

for t > 0 do

Step 1: Compute forgetful relative invariants of (X,Y ) (degree d, n+ 1
true markings, true tangency t); see below.

Step 2: Compute absolute invariants of Y (degree d, n markings).
for t > 0 do

Step 3: Compute relative invariants of (X,Y ) (degree d, n true markings,
true tangency t).

for n > 0 do

for m > 0 do

Step 4: Compute rubber invariants of P (degree d, n relative markings, m
non-relative markings).
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Here each loop begins at 0 and proceeds through successively larger values, with the invariants
at each step expressed recursively in terms of invariants computed in the preceding steps and
genus zero invariants. Although the loops involving d, n, and m have infinite length, in order
to compute any single invariant, it is only necessary to iterate the preceding loops for a finite
amount of time.

Remark 6.3 (Forgetful relative invariants). In Step 1 above, a forgetful relative invariant of
(X,Y ) is by definition a reduced relative invariant for which there exists a marking x0 such that
all of the insertions are pulled back along fgtx0 . In our recursion, we first deal with the special
class of forgetful relative invariants (with n + 1 true markings) before computing the absolute
invariants (with n markings) and then returning to compute all of the relative invariants (with
n true markings). The need to separately treat a particular subclass of the relative invariants is
an inescapable feature of the genus one recursion.

Remark 6.4 (The base case). The base terms of the recursion all have d = 0 and are easily
computed: the relative invariants of (X,Y ) are absolute invariants of X (that is, without specified
tangency conditions), and the absolute invariants of Y are given by obstruction bundle integrals
over Deligne–Mumford spaces. The rubber invariants of P in degree zero are given by integrals
over the main component of the double ramification cycle (in the rubber case, there may be
markings with tangency even for d = 0 since d only records the degree covering the base); this
can likewise be computed as an integral over Deligne–Mumford space, by correcting the formula
for the ordinary double ramification cycle [Hai13, JPPZ17] by the obvious contribution from the
boundary irreducible component (the observation that enables this in genus one is that the rubber
moduli space is pure-dimensional, and the virtual class is simply the sum of the fundamental
classes of the components). We will now explain how to perform each of the four inductive steps
outlined above.

Notation 6.5. Given tuples a = (a1, . . . , ak) and b = (b1, . . . , bk), we say that a < b if there
exists an i ∈ {1, . . . , k} such that aj = bj for j < i and ai < bi.

Step 1. Suppose that we are given a forgetful relative invariant to compute. That is, we have
a relative space VZ1,α(X|Y, β) of degree d, with n + 1 true markings and true tangency t, and
a marking x0 such that the insertion γ equals fgt?x0 δ for some class δ. We assume inductively
that every absolute, relative, and rubber invariant with (d′, n′) < (d, n) has been computed, as
well as every forgetful relative invariant with (d′, n′, t′) < (d, n + 1, t). As noted above, we may
assume d > 1, which means that there exists a true marking x1 with α1 > 1. We decrease the
tangency at x1. Consider the vector of tangency orders

α− e1

obtained from α by replacing the entry α1 with α1 − 1. Then, consider the moduli space

VZ1,(α−e1)∪(1)(X|Y, β) .

Denote the newly introduced marking by y, and take the integrand γ̃ = fgt?y γ. Applying our
recursion formula to x1, we obtain

((α1 − 1)ψ1 + ev?1 Y ) γ̃ ∩ [VZ1,(α−e1)∪(1)(X|Y, β)] = γ̃ ∩ [D(1)] . (6.1)

We examine the left-hand side. The class ψ1 differs from fgt?y ψ1 by the locus where x1 and y are
contained on a contracted rational bubble. This locus consists of stable maps of the form
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α1

d

@1
0

@0 x1α1 − 1

y1

×

with all other marked points contained on @1. This is isomorphic to VZ1,α(X|Y, β), and when
we restrict γ̃ to this locus, we obtain precisely the class γ which we started with. Thus (6.1) may
be written as

(α1 − 1)I + fgt?y ((α1 − 1)ψ1 + ev?1 Y ) γ̃ ∩ [VZ1,(α−e1)∪(1)(X|Y, β)] = γ̃ ∩ [D(1)] , (6.2)

where I is the invariant we are trying to compute. We now show that the other terms may be
expressed in terms of invariants computed earlier in the recursion.

The second term on the left-hand side is a forgetful relative invariant with the same degree
and number of true markings (since y is fictitious) and strictly smaller true tangency; hence
it has been computed at an earlier step in the recursion. We now examine the right-hand side
of (6.2). Recall that all of the genus zero data has already been computed, so we only need to
focus on the genus one pieces. First consider the type I loci. The genus one piece has strictly
smaller degree (and so has already been computed) except in the following situation (with some
stable distribution of the remaining markings):

d

@1
0

@0 x1

×

In this situation, C1 contains at most n+ 1 true markings. We consider three possible cases:

(1) If C1 has n − 1 or fewer true markings, then its contribution has already been computed
earlier in the recursion.

(2) If C1 has exactly n true markings, then C0 contains exactly one true marking besides x1

(which itself may be true or fictitious). In this situation, we must have y ∈ C1 since otherwise
we would have a moduli space for C0 given by M 0,k with k > 4 and, applying the projection
formula with fgty, we would conclude that the contribution is zero. Thus we have y ∈ C1,
and so the genus one contribution is a forgetful relative invariant with n true markings and
so has already been computed.

(3) Finally, if C1 contains exactly n+1 true markings, then the only additional markings on C0

are fictitious, and by the same argument as in the previous paragraph, there can only be one.
Thus for each fictitious marked point, we obtain a locus isomorphic to VZ1,α(X|Y, β) and γ̃
restricts to γ here (from the point of view of computing invariants, the fictitious marked
points are indistinguishable, meaning that the contributions are all the same). Thus for
each fictitious marked point (of which there is at least one, namely y), we get a contribution
of α1I to the right-hand side of (6.2), where I is the invariant we are trying to compute.

The contributions of the type II loci only involve genus zero data and can be computed algo-
rithmically following [Gat02]. The contributions of the type † loci are determined by genus zero
data and tautological integrals on genus one Deligne–Mumford spaces, which can be computed
algorithmically using the string and dilaton equations.

It remains to consider type III loci. If the degree of the genus one piece is less than d, then
we have a rubber invariant of strictly smaller degree. The other possibility is that the entire
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curve is mapped into the divisor. In this case, we apply the projection formula with fgty to
identify this with an integral over VZ1,m(Y, β) for some (possibly large) number m of marked
points. But by assumption, there is another marked point x0 with all of the insertions pulled
back along fgtx0 , so a further application of the projection formula shows that this contribution
vanishes. To conclude, we rearrange (6.2) to obtain an expression of the form

λI = polynomial in previously computed invariants

with λ an explicit non-zero scalar; we have determined the forgetful relative invariant I, com-
pleting Step 1.

Step 2. Now consider the absolute space VZ1,n(Y, β) with an insertion γ, and suppose in-
ductively that we have computed all forgetful relative invariants with (d′, n′) 6 (d, n + 1), all
relative invariants and absolute invariants with (d′, n′) < (d, n), and all rubber invariants with
d′ < d.

Step 2a. Consider the following moduli space with n+ 1 markings:

VZ1,(d,0,...,0)(X|Y, β) .

Let x0 denote the relative marking, and consider the integrand γ̃ = fgt?x0 γ. Now recurse at x1

to obtain

ev?1 Y · γ̃ ∩ [VZ1,(d,0,...,0)(X|Y, β)] = γ̃ ∩ [D(1)] . (6.3)

The left-hand side is a forgetful relative invariant of degree d and at most n + 1 true markings
and so has already been computed.

On the right-hand side, arguments similar to those in Step 1 show that the contributions of
type II and type † loci can be expressed in terms of invariants computed earlier in the recursion.
Similarly, the contributions of type III loci have already been computed, except for the locus
where the entire curve is mapped into the divisor. On this locus, we apply the projection formula
to fgtx0 to identify the contribution with

d2 · γ ∩ [VZ1,n(Y, β)] = d2 · I ,
where I is the invariant we are trying to compute. Finally, consider loci of type I. The genus
one contributions from each locus have (d′, n′) < (d, n) (and hence have already been computed)
except in the case

d

d

@1
0

@0 x10

x0d

×

which contributes

d · γ ∩ [VZ1,(d,0, . . . , 0︸ ︷︷ ︸
n−1

)(X|Y, β)]

to the right-hand side of (6.3). Here γ is the insertion we started with; the difference is that we
are now considering relative maps to (X,Y ) with maximal tangency at x1, rather than absolute
maps to Y . Putting this all together, we obtain from (6.3)

I = (−γ/d) ∩ [VZ1,(d,0, . . . , 0︸ ︷︷ ︸
n−1

)(X|Y, β)] + polynomial in previously computed invariants , (6.4)
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where on the right-hand side, there are n − 1 non-relative markings x2, . . . , xn and a relative
marking x1.

Step 2b. We now apply the recursion to the right-hand side of (6.4). Consider the space

VZ1,(d−1,1,0,...,0)(X|Y, β) ,

where x1 now has tangency d− 1 and we have introduced a new marking y with tangency 1. As
usual, we take the insertion γ̃ = fgt?y γ. Recursing at x1, we obtain

((d− 1)ψ1 + ev?1 Y ) · (−γ̃/d) ∩ [VZ1,(d−1,1,0,...,0)(X|Y, β)] = (−γ̃/d) ∩ [D(1)] . (6.5)

The difference between ψ1 and fgt?y ψ1 is given by the locus where x1 and y belong to a collapsed
rational bubble

d

d

@1
0

@0 y1

x1d− 1

×

The contribution of this locus to the left-hand side of (6.5) is

(d− 1) · (−γ/d) ∩ [VZ1,(d,0, . . . , 0︸ ︷︷ ︸
n−1

)(X|Y, β)] .

What remains on the left-hand side of (6.5) is a forgetful relative invariant with degree d and at
most n+ 1 true markings (here y is the “forgetful marking”); this has been computed earlier in
the recursion. On the right-hand side, the type I loci are recursively known except possibly in the
following special cases (with some stable distribution of the remaining non-relative markings)

d− 1d

@1
0

@0y1

x1d− 1

×
Case 1

d

d

@1
0

@0 y1

x1d− 1

×
Case 2

We deal with these cases individually:

• In Case 1, the contribution from C1 is a forgetful relative invariant with at most n true
markings and hence has previously been computed.

• In Case 2, we first note that there cannot be any more markings on C0 (since otherwise
applying the projection formula with fgty shows that the contribution vanishes). We thus
obtain a single locus, which contributes precisely

d · (−γ/d) ∩ [VZ1,(d,0, . . . , 0︸ ︷︷ ︸
n−1

)(X|Y, β)] = −γ ∩ [VZ1,(d,0, . . . , 0︸ ︷︷ ︸
n−1

)(X|Y, β)] .

As in Step 1, we see that the type II and type † contributions have already been computed earlier
in the algorithm. The only type III locus whose contribution has not previously been computed
is when the entire curve is mapped into the divisor. In this case, we apply the projection formula
with fgty to calculate its contribution as

(−γ/d) ∩ [VZ1,n(Y, β)] = −I/d .
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Thus (6.5) gives

−(γ/d) ∩ [VZ1,(d,0, . . . , 0︸ ︷︷ ︸
n−1

)(X|Y, β)] = I/d+ polynomial in previously computed invariants .

Substituting into (6.4), we obtain

I ·
(
1− d−1

)
= polynomial in previously computed invariants ,

which completes the recursion step as long as d 6= 1. But since VZ1,n(H, 1) = ∅ as noted in
Remark 2.7, it follows that VZ1,n(Y, β) = ∅ if d = Y ·β = 1, so we may assume d > 2 in this step.
Step 2, computing the reduced absolute invariant of Y of degree d and n markings, is complete.

Step 3. Now suppose that we are given a relative space VZ1,α(X|Y, β) with an insertion γ,
and suppose inductively that we have computed all forgetful relative invariants with (d′, n′) 6
(d, n + 1), all absolute invariants with (d′, n′) 6 (d, n), all relative invariants with (d′, n′, t′) <
(d, n, t), and all rubber invariants with d′ < d.

Choose a true marking x1 with α1 > 1, and consider the moduli space

VZ1,(α−e1)∪(1)(X|Y, β) ,

where y is the newly introduced marking. As usual, consider the insertion γ̃ = fgt?y γ. Recursing
at x1, we obtain

((α1 − 1)ψ1 + ev?1H) γ̃ ∩ [VZ1,(α−e1)∪(1)(X|Y, β)] = γ̃ ∩ [D(1)] . (6.6)

The left-hand side is a relative invariant with the same degree and number of true markings but
smaller true tangency; hence it has already been computed in the recursion. On the right-hand
side, the type I contributions have already been computed except for those of the form

α1

d

@1
0

@0 x1
α1 − 1

×

where C0 contains a single fictitious marking (if it had multiple fictitious markings, then the
contribution would vanish by projection formula) and all the other markings are on C1. There
is one such locus for each fictitious marking, and each contributes α1I, where I is the invariant
we are trying to compute. Note that α1 6= 0 and that this term appears at least once since y is
a fictitious marking; so we obtain a non-zero multiple of I.

Using the same arguments as in Step 1, we see that the type II and † contributions have
already been computed. The type III contributions are determined by lower-degree rubber in-
variants, except for when the whole curve is mapped into Y ; however, in this case, we may apply
the projection formula with fgty to identify the contribution with an absolute invariant of Y with
degree d and n markings, which has also been computed earlier (in Step 2). We therefore see
that (6.6) may be rearranged to give

I = polynomial in previously computed invariants .

We have thus computed the reduced relative invariant of (X,Y ) with degree d, n true markings,
and true tangency t, which completes Step 3.

674



Curve counting in genus one

Step 4. For the final step, consider a rubber space VZ↔1,α(P|Y0 + Y∞, β) with insertion γ.
Suppose inductively that we have computed all absolute and relative invariants with d′ 6 d and
all rubber invariants with (d′, n′,m′) < (d, n,m).

We note the following important reduction: if there exists a relative marking xk such that all
insertions are pulled back along fgtk, then we may apply the projection formula, together with
the following identity (arising from the torsion in the Jacobian of an elliptic curve):

(fgtk)?[VZ↔1,α(P|Y0 + Y∞, β)] = α2
k · [VZ1,n+m−1(Y, β)]

to identify the rubber invariant with a multiple of a reduced invariant of Y , which has the same
degree and hence has been computed earlier.

We will deal with the general case by reducing to the one above. Consider the moduli space

VZ↔1,α∪(0)(P|Y0 + Y∞, β)

obtained by introducing a marked point y with no tangency. Let x1 be a positive-tangency
marking (such a marking always exists since d > 2), and let γ̃ be the insertion obtained from γ
by replacing ev1 and ψ1 with evy and ψy, and then pulling back along fgt1.

We make use of a recursion formula for rubber spaces analogous to the recursion formula for
relative spaces used in Steps 1–3. Following [Kat07], there is a line bundle

L6∈bot
y on VZ↔1,α∪(0)(P|Y0 + Y∞, β)

together with a section s6∈bot
y whose vanishing locus consists of the locus D(y) of rubber maps

where y is not mapped into the bottom level of the expanded target. As in Section 4, we can give
a logarithmic interpretation of this: it corresponds to the piecewise-linear function on the tropical
moduli space which associates with every rubber tropical map the distance between ϕ(@y) and
the leftmost vertex of the tropical target, where @y is the vertex of the source curve containing
the flag corresponding to y. Using this tropical description, we calculate the vanishing orders
of s 6∈bot

y along the various components of D(y) and show that

c1(L 6∈bot
y ) = Ψ0 − ev?y Y ,

where Ψ0 is a target psi class (see [Kat05] for an analogue in the standard theory). From this,
we obtain a rubber recursion formula

(Ψ0 − ev?y Y ) · γ̃ ∩ [VZ↔1,α∪(0)(P|Y0 + Y∞, β)] = γ̃ ∩ [D(y)] , (6.7)

where the fundamental class [D(y)] is weighted by vanishing orders on the components.

Step 4a. We will first show that the left-hand side can be expressed in terms of previously
computed invariants. By construction, the classes γ̃ and ev?y Y are both pulled back along fgt1.
It remains to examine Ψ0. If there exists a negative-tangency marking x2, then we have [Gat03,
Construction 5.1.17]

Ψ0 = −α2ψ̂2 − ev?2 Y ,

where ψ̂2 is a non-collapsed psi class. (If there are no negative-tangency markings, then the
construction given in [MP06, § 1.5.2] shows that Ψ0 = 0.)

Now ψ̂2−ψ2 is given by the locus where x2 belongs to a trivial bubble. This entails a splitting
of the curve into pieces, each of which contributes a rubber integral. Typically each such piece
will have (g′, d′, n′,m′) < (1, d, n,m) and hence has previously been computed. The one exception
is when all of the genus and degree is concentrated on the top level of the expansion, with the
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bottom level containing only a single non-relative marking in addition to all the negative-tangency
markings. But in this case, the contribution is a rubber invariant where all of the insertions are
pulled back along fgt1, and hence we may apply our fundamental reduction, using the projection
formula to identify the rubber invariant with (a multiple of) an absolute invariant of Y , which
has previously been computed. We conclude that, up to previously computed terms, we may
replace ψ̂2 with ψ2 in the left-hand side of (6.7).

The difference between ψ2 and fgt?1 ψ2 is given by the locus where x1 and x2 belong to
a collapsed rational piece. The contribution of this locus consists of rubber invariants with strictly
fewer relative markings and hence is known recursively. Up to previously computed invariants,
(6.7) becomes

fgt?1(−α2ψ2 − ev?y Y )γ̃ ∩ [VZ↔1,α∪(0)(P|Y0 + Y∞, β)] = γ̃ ∩ [D(y)] , (6.8)

and the left side can be expressed via previously computed invariants, by the projection formula.

Step 4b. Let us now examine the right-hand side of (6.8). The components of D(y) are
indexed by splittings of the curve, and the contributions can be expressed in terms of previously
computed invariants unless there is a piece of the curve carrying all of the genus and degree. We
therefore restrict to considering these cases. Denote the subcurve carrying all of the genus and
degree by C ′ ⊆ C.

(1) If C ′ is mapped to top level, then either it contains x1, in which case we apply fgt1 to
compute the contribution, or it does not contains x1, in which case it has fewer than n
relative markings and is known recursively.

(2) If, on the other hand, C ′ is not mapped to top level, then generically it is mapped to the bot-
tom level (since generically the core is not contracted on this locus, so the desingularisation
process does nothing). One possible contribution is given by the locus

α1
d

y
0

x1
α1

0

with all other markings located on the genus one vertex. This contributes a non-zero multiple
of the invariant I we are trying to compute.

For the other possibilities, first note that, unless every component at the top level con-
tains a single positive-tangency marking and a single node (together with possibly some
tangency-zero markings), C ′ has fewer than n relative markings, and hence the contribu-
tion is known recursively. On the other hand, if any non-relative marking other than y is
mapped to the top level, C ′ has at most n relative markings and fewer than m non-relative
markings, and hence again the contribution is known recursively. The only remaining pos-
sibilities are when x1 is replaced by another positive-tangency marking xk in the above
picture; but then the contribution can be calculated by applying the projection formula
with fgt1.

We conclude that the only contribution to the right-hand side of (6.8) which cannot be expressed
in terms of previously computed invariants is a non-zero multiple of the invariant we were trying
to compute. We thus compute the reduced rubber invariant of P with degree d, n relative markings
and m non-relative markings, which completes Step 4 and the recursion.
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Ann. Sci. Éc. Norm. Supér. (4) 48 (2015), no. 4, 765–809; doi:10.24033/asens.2258.

AK00 D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math. 139
(2000), no. 2, 241–273; doi:10.1007/s002229900024.

AMW14 D. Abramovich, S. Marcus, and J. Wise, Comparison theorems for Gromov–Witten invariants
of smooth pairs and of degenerations, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 4, 1611–
1667; doi:10.5802/aif.2892.

AW18 D. Abramovich and J. Wise, Birational invariance in logarithmic Gromov–Witten theory, Com-
pos. Math. 154 (2018), no. 3, 595–620; doi:10.1112/S0010437X17007667.

BC20 L. Battistella and F. Carocci, A smooth compactification of the space of genus two curves in
projective space via logarithmic geometry and Gorenstein curves, 2020, arXiv:2008.13506.

BCM20 L. Battistella, F. Carocci, and C. Manolache, Reduced invariants from cuspidal maps, Trans.
Amer. Math. Soc. 373 (2020), no. 9, 6713–6756; doi:10.1090/tran/8141.

BN21 L. Battistella and N. Nabijou, Relative quasimaps and mirror formulae, Int. Math. Res. Not.
2021 (2021), no. 10, 7885-–7931; doi:10.1093/imrn/rnz339.

Boz19 S. Bozlee, Contractions of subcurves of log smooth curves, 2019, arXiv:1908.09733.

CCUW20 R. Cavalieri, M. Chan, M. Ulirsch, and J. Wise, A moduli stack of tropical curves, Forum
Math. Sigma 8 (2020), e23; doi:10.1017/fms.2020.16.

CH98 L. Caporaso and J. Harris, Counting plane curves of any genus, Invent. Math. 131 (1998),
no. 2, 345–392; doi:10.1007/s002220050208.

Che14a Q. Chen, The degeneration formula for logarithmic expanded degenerations, J. Algebraic Geom.
23 (2014), no. 2, 341–392; doi:10.1090/S1056-3911-2013-00614-1.

Che14b , Stable logarithmic maps to Deligne–Faltings pairs I, Ann. of Math. 180 (2014), no. 2,
455–521; doi:10.4007/annals.2014.180.2.2.

Ful98 W. Fulton, Intersection theory, 2nd ed., Ergeb. Math. Grenzgeb. (3), vol. 2 (Springer-Verlag,
Berlin, 1998); doi:10.1007/978-1-4612-1700-8.

Gat02 A. Gathmann, Absolute and relative Gromov–Witten invariants of very ample hypersurfaces,
Duke Math. J. 115 (2002), no. 2, 171–203; doi:10.1215/S0012-7094-02-11521-X.

Gat03 , Gromov–Witten invariants of hypersurfaces, Habilitation Thesis, Technischen Univ.
Kaiserslautern, 2003, available at https://www.mathematik.uni-kl.de/~gathmann/pub/

habil.pdf.

GS13 M. Gross and B. Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26
(2013), no. 2, 451–510; doi:10.1090/S0894-0347-2012-00757-7.

677

https://doi.org/10.4310/AJM.2014.v18.n3.a5
https://doi.org/10.1112/s0010437x20007393
https://doi.org/10.1112/s0010437x20007393
https://doi.org/10.24033/asens.2258
https://doi.org/10.1007/s002229900024
https://doi.org/10.5802/aif.2892
https://doi.org/10.1112/S0010437X17007667
https://arxiv.org/abs/2008.13506
https://doi.org/10.1090/tran/8141
https://doi.org/10.1093/imrn/rnz339
https://arxiv.org/abs/1908.09733
https://doi.org/10.1017/fms.2020.16
https://doi.org/10.1007/s002220050208
https://doi.org/10.1090/S1056-3911-2013-00614-1
https://doi.org/10.4007/annals.2014.180.2.2
https://doi.org/10.1007/978-1-4612-1700-8
https://doi.org/10.1215/S0012-7094-02-11521-X
https://www.mathematik.uni-kl.de/~gathmann/pub/habil.pdf
https://www.mathematik.uni-kl.de/~gathmann/pub/habil.pdf
https://doi.org/10.1090/S0894-0347-2012-00757-7


L. Battistella, N. Nabijou and D. Ranganathan

Hai13 R. Hain, Normal functions and the geometry of moduli spaces of curves, in Handbook of Moduli,
Vol. I, Adv. Lect. Math. (ALM), vol. 24 (Int. Press, Somerville, MA, 2013), 527–578.

HL10 Y. Hu and J. Li, Genus-one stable maps, local equations, and Vakil–Zinger’s desingularization,
Math. Ann. 348 (2010), no. 4, 929–963; doi:10.1007/s00208-010-0504-8.

HLN12 Y. Hu, J. Li, and J. Niu, Genus two stable maps, local equations and modular resolutions, 2012,
arXiv:1201.2427.

JPPZ17 F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine, Double ramification cycles on the
moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017), 221–266; doi:

10.1007/s10240-017-0088-x.

Kat05 E. Katz, Line-bundles on stacks of relative maps, 2005, arXiv:math.AG/0507322.

Kat07 , An algebraic formulation of symplectic field theory, J. Symplectic Geom. 5 (2007),
no. 4, 385–437; doi:10.4310/JSG.2007.v5.n4.a2.

Kim10 B. Kim, Logarithmic stable maps, New Developments in Algebraic Geometry, Integrable Sys-
tems and Mirror Symmetry (RIMS, Kyoto, 2008), Adv. Stud. Pure Math., vol. 59, (Math. Soc.
Japan, Tokyo, 2010), 167–200; doi:10.2969/aspm/05910167.

Li01 J. Li, Stable morphisms to singular schemes and relative stable morphisms, J. Differential
Geom. 57 (2001), no. 3, 509–578; doi:10.4310/jdg/1090348132.

Liu02 Q. Liu, Algebraic geometry and arithmetic curves, Oxf. Grad. Texts Math., vol. 6 (Oxford
Univ. Press, Oxford, 2002).

LR18 Y. Len and D. Ranganathan, Enumerative geometry of elliptic curves on toric surfaces, Israel J.
Math. 226 (2018), no. 1, 351–385; doi:10.1007/s11856-018-1698-9.

LZ07 J. Li and A. Zinger, Gromov–Witten invariants of a quintic threefold and a rigidity conjecture,
Pacific J. Math. 233 (2007), no. 2, 417–480; doi:10.2140/pjm.2007.233.417.

LZ09 , On the genus-one Gromov–Witten invariants of complete intersections, J. Differential
Geom. 82 (2009), no. 3, 641–690; doi:10.4310/jdg/1251122549.

Mol21 S. Molcho, Universal stacky semistable reduction, Israel J. Math. 242 (2021), 55-82; doi:

10.1007/s11856-021-2118-0.

MP06 D. Maulik and R. Pandharipande, A topological view of Gromov–Witten theory, Topology 45
(2006), no. 5, 887–918; doi:10.1016/j.top.2006.06.002.

MW20 S. Marcus and J. Wise, Logarithmic compactification of the Abel–Jacobi section, Proc. Lond.
Math. Soc. 121 (2020), no. 5, 1207–1250; doi:10.1112/plms.12365.

NR19 N. Nabijou and D. Ranganathan, Gromov–Witten theory with maximal contacts, 2019, arXiv:
1908.04706.

Ran19 D. Ranganathan, Logarithmic Gromov–Witten theory with expansions, 2019, arXiv:1903.

09006.

RSW19a D. Ranganathan, K. Santos-Parker, and J. Wise, Moduli of stable maps in genus one and
logarithmic geometry, I, Geom. Topol. 23 (2019), no. 7, 3315–3366; doi:10.2140/gt.2019.
23.3315.

RSW19b , Moduli of stable maps in genus one and logarithmic geometry, II, Algebra Number
Theory 13 (2019), no. 8, 1765–1805; doi:10.2140/ant.2019.13.1765.

RW20 D. Ranganathan and J. Wise, Rational curves in the logarithmic multiplicative group, Proc.
Amer. Math. Soc. 148 (2020), no. 1, 103–110; doi:10.1090/proc/14749.

Smy11a D. I. Smyth, Modular compactifications of the space of pointed elliptic curves I, Compos. Math.
147 (2011), no. 3, 877–913; doi:10.1112/S0010437X10005014.

Smy11b , Modular compactifications of the space of pointed elliptic curves II, Compos. Math.
147 (2011), no. 6, 1843–1884; doi:10.1112/S0010437X11005549.

Spe14 D. E. Speyer, Parameterizing tropical curves I: Curves of genus zero and one, Algebra Number
Theory 8 (2014), no. 4, 963–998; doi:10.2140/ant.2014.8.963.

678

https://doi.org/10.1007/s00208-010-0504-8
https://arxiv.org/abs/1201.2427
https://doi.org/10.1007/s10240-017-0088-x
https://doi.org/10.1007/s10240-017-0088-x
https://arxiv.org/abs/math.AG/0507322
https://doi.org/10.4310/JSG.2007.v5.n4.a2
https://doi.org/10.2969/aspm/05910167
https://doi.org/10.4310/jdg/1090348132
https://doi.org/10.1007/s11856-018-1698-9
https://doi.org/10.2140/pjm.2007.233.417
https://doi.org/10.4310/jdg/1251122549
https://doi.org/10.1007/s11856-021-2118-0
https://doi.org/10.1007/s11856-021-2118-0
https://doi.org/10.1016/j.top.2006.06.002
https://doi.org/10.1112/plms.12365
https://arxiv.org/abs/1908.04706
https://arxiv.org/abs/1908.04706
https://arxiv.org/abs/1903.09006
https://arxiv.org/abs/1903.09006
https://doi.org/10.2140/gt.2019.23.3315
https://doi.org/10.2140/gt.2019.23.3315
https://doi.org/10.2140/ant.2019.13.1765
https://doi.org/10.1090/proc/14749
https://doi.org/10.1112/S0010437X10005014
https://doi.org/10.1112/S0010437X11005549
https://doi.org/10.2140/ant.2014.8.963


Curve counting in genus one

Vak00 R. Vakil, The enumerative geometry of rational and elliptic curves in projective space, J. reine
angew. Math. 529 (2000), 101–153; doi:10.1515/crll.2000.094.

Vis12 M. Viscardi, Alternate compactifications of the moduli space of genus one maps, Manuscripta
Math. 139 (2012), no. 1-2, 201–236; doi:10.1007/s00229-011-0513-2.

VZ08 R. Vakil and A. Zinger, A desingularization of the main component of the moduli space of genus-
one stable maps into Pn, Geom. Topol. 12 (2008), no. 1, 1–95; doi:10.2140/gt.2008.12.1.

Zin08 A. Zinger, Standard versus reduced genus-one Gromov–Witten invariants, Geom. Topol. 12
(2008), no. 2, 1203–1241; doi:10.2140/gt.2008.12.1203.

Zin09a , Reduced genus-one Gromov–Witten invariants, J. Differential Geom. 83 (2009), no. 2,
407–460; doi:10.4310/jdg/1261495337.

Zin09b , The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces, J. Amer.
Math. Soc. 22 (2009), no. 3, 691–737; doi:10.1090/S0894-0347-08-00625-5.

Luca Battistella lbattistella@mathi.uni-heidelberg.de
Mathematisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205,
69120 Heidelberg, Germany

Navid Nabijou nn333@cam.ac.uk
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge,
Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, United Kingdom

Dhruv Ranganathan dr508@cam.ac.uk
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge,
Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, United Kingdom

679

https://doi.org/10.1515/crll.2000.094
https://doi.org/10.1007/s00229-011-0513-2
https://doi.org/10.2140/gt.2008.12.1
https://doi.org/10.2140/gt.2008.12.1203
https://doi.org/10.4310/jdg/1261495337
https://doi.org/10.1090/S0894-0347-08-00625-5
mailto:lbattistella@mathi.uni-heidelberg.de
mailto:nn333@cam.ac.uk
mailto:dr508@cam.ac.uk

	Introduction
	Results
	Context and techniques
	Future directions

	Constructions and logarithmic smoothness
	Curves and tropical curves
	Maps and tropical maps
	Stable maps and elliptic singularities
	Singularities and moduli of attachments
	Absolute geometry: background
	Relative geometry: compactification
	Relative geometry: expansions
	Relative geometry: alignment
	Relative geometry: factorisation
	Rubber variants
	Hypersurface pairs

	Stratification and tropicalization
	The cone complex
	Indexing the strata

	Degeneration of contact order
	Splitting the boundary
	Irreducible components of the degenerate locus
	Recursive description of the divisors: types I, II, and III
	Recursive description of the divisors: type dag
	Recursion for general (X,Y)

	Quantum Lefschetz algorithm
	Reduced absolute, relative, and rubber invariants
	Fictitious and true markings
	Structure of the recursion

	References

