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ABSTRACT

Aims. We present a cosmological analysis of abundances and stacked weak lensing profiles of galaxy clusters, exploiting the AMICO
KiDS-DR3 catalogue. The sample consists of 3652 galaxy clusters with intrinsic richness λ∗ ≥ 20, over an effective area of 377 deg2,
in the redshift range z ∈ [0.1, 0.6].
Methods. We quantified the purity and completeness of the sample through simulations. The statistical analysis has been performed
by simultaneously modelling the co-moving number density of galaxy clusters and the scaling relation between the intrinsic richnesses
and the cluster masses, assessed through stacked weak lensing profile modelling. The fluctuations of the matter background density,
caused by super-survey modes, have been taken into account in the likelihood. Assuming a flat Λ cold dark matter (ΛCDM) model,
we constrained Ωm, σ8, S 8 ≡ σ8(Ωm/0.3)0.5, and the parameters of the mass-richness scaling relation.
Results. We obtained Ωm = 0.24+0.03

−0.04, σ8 = 0.86+0.07
−0.07, and S 8 = 0.78+0.04

−0.04. The constraint on S 8 is consistent within 1σ with the results
from WMAP and Planck. Furthermore, we got constraints on the cluster mass scaling relation in agreement with those obtained from
a previous weak lensing only analysis.

Key words. cosmology: observations – cosmological parameters – large-scale structure of Universe

1. Introduction

Galaxy clusters lie at the nodes of the cosmic web, tracing the
deepest virialised potential wells of the dark matter distribu-
tion in the present Universe. Large samples of galaxy clusters
can be built by exploiting different techniques thanks to their
multi-wavelength emission. In particular, galaxy clusters can
be detected through the bremsstrahlung emission of the intra-
cluster medium in the X-ray band (e.g. Böhringer et al. 2004;
Clerc et al. 2014; Pierre et al. 2016), through the detection of the
Sunyaev-Zel’dovich effect in the cosmic microwave background
(CMB) (e.g. Hilton et al. 2018), or through their gravitational
lensing effect on the background galaxies (e.g. Maturi et al.
2005; Miyazaki et al. 2018). Furthermore, galaxy clusters can
be detected in the optical band by looking for overdensities and
peculiar features characterising cluster members in galaxy sur-
veys (e.g. Rykoff et al. 2014; Bellagamba et al. 2018).

? The data underlying this article will be shared on reasonable request
to the corresponding author.

The number counts and clustering of galaxy clusters are
effective probes to constrain the geometrical and dynami-
cal properties of the Universe (see e.g. Vikhlinin et al. 2009;
Veropalumbo et al. 2014, 2016; Sereno et al. 2015; Marulli et al.
2017, 2018, 2021; Pacaud et al. 2018; Costanzi et al. 2019,
Nanni in prep. and references therein). The formation and evo-
lution of galaxy clusters, being mostly driven by gravity, can
be followed with a high accuracy using N-body simulations
(Borgani & Kravtsov 2011; Angulo et al. 2012; Giocoli et al.
2012), which particularly allow one to calibrate, from a the-
oretical point of view, the functional form of the dark mat-
ter halo mass function in different cosmological scenarios (e.g.
Sheth & Tormen 1999; Tinker et al. 2008; Watson et al. 2013;
Despali et al. 2016). Many attempts have also been made to
investigate the impact of the baryonic physical processes on clus-
ter statistics, including the mass function (e.g. Cui et al. 2012;
Velliscig et al. 2014; Bocquet et al. 2016; Castro et al. 2021). In
addition, promising techniques to constrain the cosmological
parameters concern the study of the weak lensing peak counts in
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cosmic shear maps (e.g. Maturi et al. 2011; Reischke et al. 2016;
Shan et al. 2018; Martinet et al. 2018; Giocoli et al. 2018) and
galaxy cluster sparsity (e.g. Balmès et al. 2014; Corasaniti et al.
2021).

Although it is possible to predict with great accuracy the
abundance of dark matter haloes as a function of mass for a
given cosmological model, the cluster masses cannot be eas-
ily derived from observational data. Currently, the most reliable
mass measurements are provided by weak gravitational lens-
ing (e.g. Bardeau et al. 2007; Okabe et al. 2010; Hoekstra et al.
2012; Melchior et al. 2015; Schrabback et al. 2018; Stern et al.
2019), which consists in the deflection of the light rays coming
from background sources, due to the intervening cluster poten-
tial, and it accounts for both the dark and baryonic matter com-
ponents. As opposed to the other methods to estimate cluster
masses based on the properties of the gas and member galax-
ies, such as the ones exploiting X-ray emission, galaxy veloc-
ity dispersion, or the Sunyaev-Zel’dovich effect on the CMB,
the gravitational lensing method does not rely on any assump-
tion pertaining to the dynamical state of the cluster. However,
weak lensing mass measurements of individual galaxy clusters
are only feasible if the signal-to-noise ratio (S/N) of the shear
profiles is sufficiently high: this requires either a massive struc-
ture or deep observations. Thus, in cosmological studies of clus-
ter statistics, it is often necessary to stack the weak lensing signal
produced by a set of objects with similar properties, from which
a mean value of their mass is estimated. These mean mass val-
ues can be linked to a direct observable or mass proxy, which
can be used to define a mass-observable scaling relation. Such a
mass proxy could be, for example, the luminosity, the pressure,
or the temperature of the intracluster medium in the case of X-
ray observations, while it could be the richness (i.e. the number
of member galaxies) for optical surveys, or the pressure mea-
sured from the cluster Sunyaev-Zel’dovich signal.

In addition to the mass scaling relation, a crucial quantity that
has to be estimated accurately in any cosmological study of clus-
ters is the selection function of the sample. In fact, it is crucial
to properly account for purity and completeness of the cluster
catalogue. Once the selection function and the mass-observable
scaling relation have been accurately assessed, galaxy cluster
statistics provide powerful cosmological constraints in the low-
redshift Universe, which can be combined with high-redshift
constraints from the CMB. In particular, by measuring the abun-
dance of clusters as a function of mass and redshift, it is possi-
ble to provide constraints on the matter density parameter, Ωm,
and on the amplitude of the matter power spectrum, σ8. The
constraints on σ8 from clusters can be combined with the pri-
mordial matter power spectrum amplitude constrained by the
CMB in order to assess the growth rate of cosmic structures.
Moreover, combining cluster statistics with distance measure-
ments, for example from baryon acoustic oscillations or Type Ia
supernovae data, provides constraints on the total energy den-
sity of massive neutrinos, Ων, on the normalised Hubble con-
stant, h ≡ H0/(100 km s−1 Mpc−1), and on the dark energy equa-
tion of state parameter, w (Allen et al. 2011). Ongoing wide
extra-galactic surveys, such as the Kilo Degree Survey (KiDS)1,
the Dark Energy Survey2 (Dark Energy Survey Collaboration
2016), the surveys performed with the South Pole Telescope3

and with the Atacama Cosmology Telescope4, and future

1 http://kids.strw.leidenuniv.nl/
2 https://www.darkenergysurvey.org
3 https://pole.uchicago.edu/
4 https://act.princeton.edu/

projects, such as Euclid5 (Laureijs et al. 2011; Sartoris et al.
2016; Amendola et al. 2018), the Vera C. Rubin Observa-
tory LSST6 (LSST Dark Energy Science Collaboration 2012),
eRosita7, and the Simons Observatory survey8 will provide
highly complete and pure cluster catalogues up to high redshifts
and low masses.

In this work we analyse a catalogue of 3652 galaxy clusters
(Maturi et al. 2019) identified with the Adaptive Matched Identi-
fier of Clustered Objects (AMICO) algorithm (Bellagamba et al.
2018) in the third data release of the Kilo Degree Survey (KiDS-
DR3; de Jong et al. 2017). We measure the number counts of the
clusters in the sample as a function of the intrinsic richness, λ∗,
used as a mass proxy, and of the redshift, z. In addition, we esti-
mate the mean values of cluster masses in bins of λ∗ and z, fol-
lowing a stacked weak lensing analysis as in Bellagamba et al.
(2019). Then we simultaneously model the cluster number
counts and the masses, through a Bayesian approach consisting
in a Markov chain Monte Carlo (MCMC) analysis, taking the
selection function of the sample into account. Assuming a flat
Λ cold dark matter (ΛCDM) framework, we constrain the cos-
mological parameters σ8, Ωm, and S 8 ≡ σ8(Ωm/0.3)0.5, as well
as the scaling relation parameters, including its intrinsic scatter,
σintr. The analysis of cluster clustering within this dataset is per-
formed in Nanni (in prep.), where we obtain results in agreement
with those presented in this work.

The whole cosmological analysis is performed using the
CosmoBolognaLib9 (CBL) (Marulli et al. 2016) V5.4, a large
set of free C++/Python software libraries that provide an effi-
cient numerical environment for cosmological investigations of
the large-scale structure of the Universe.

The paper is organised as follows. In Sect. 2 we present
the AMICO KiDS-DR3 cluster catalogue and the weak lensing
dataset, also introducing the mass-observable scaling relation. In
addition, we discuss the methods considered in this work to esti-
mate the selection function of the sample and the uncertainties
related to the cluster properties. In Sect. 3 we present the theoret-
ical model used to describe the galaxy cluster counts, along with
the likelihood function. The results are presented and discussed
in Sect. 4, leading to our conclusions summarised in Sect. 5.

2. Dataset

2.1. The catalogue of galaxy clusters

The catalogue of galaxy clusters this work is based on, named
AMICO KiDS-DR3 (Maturi et al. 2019), is derived from the
third data release of KiDS (de Jong et al. 2017), which was
carried out with the OmegaCAM wide-field imager (Kuijken
2011) mounted at the VLT Survey Telescope, which is a 2.6 m
telescope situated at the Paranal Observatory. In particular, the
2 arcsec aperture photometry in u, g, r, and i bands is provided, as
well as the photometric redshifts for all galaxies down to the 5σ
limiting magnitudes of 24.3, 25.1, 24.9, and 23.8 for the afore-
mentioned four bands, respectively. For the final galaxy cluster
catalogue considered for cluster counts (Maturi et al. 2019), only
the galaxies with a magnitude of r < 24 have been considered for
a total of about 32 million galaxies. For the weak lensing anal-
ysis, instead, no limits in magnitude have been imposed for the
lensed sources in order to exploit the whole dataset available,

5 http://sci.esa.int/euclid/
6 https://www.lsst.org/
7 http://www.mpe.mpg.de/eROSITA
8 https://simonsobservcatory.org/
9 https://gitlab.com/federicomarulli/CosmoBolognaLib/
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Fig. 1. Distribution of the clusters as a function of redshift. Objects with
z > 0.6, not considered in the cosmological analysis, are covered by the
shaded grey area.

and the catalogue (developed by Hildebrandt et al. 2017) pro-
vides the shear measurements for about 15 million galaxies.

Galaxy clusters have been detected thanks to the application
of the AMICO algorithm (Bellagamba et al. 2018), which identi-
fies galaxy overdensities by exploiting a linear matched optimal
filter. In particular, the detection process adopted for this study
solely relies on the angular coordinates, magnitudes, and photo-
metric redshifts (photo-zs from now on) of galaxies. Unlike other
algorithms used in literature for cluster identification, AMICO
does not use any direct information coming from colours, as the
so-called red sequence for example. For this reason, AMICO
is also expected to be accurate at higher redshifts, where the
red sequence may not be prominent yet. The excellent perfor-
mances of AMICO have been recently confirmed by the analysis
made in Euclid Collaboration (2019), where the purity and com-
pleteness of the cluster catalogues extracted by applying six dif-
ferent algorithms on realistic mock catalogues reproducing the
expected characteristics of the future Euclid photometric survey
(Laureijs et al. 2011) have been compared. As a result of this
challenge, AMICO is one of the two algorithms for cluster iden-
tification that has been officially adopted by the Euclid mission.

The KiDS-DR3 sample covers a total area of 438 deg2, but
all the galaxies located in the regions affected by image arte-
facts, or falling in the secondary and tertiary halo masks used for
the weak lensing analysis (see de Jong et al. 2015), have been
rejected. This yields a final effective area of 377 deg2, contain-
ing all the cluster detections with an S/N > 3.5 and within the
redshift range z ∈ [0.1, 0.8] for a total of 7988 objects. Due to the
low S/N of the shear profiles for z > 0.6, which is not sufficient to
perform a stacked weak lensing analysis, we decided to exclude
the redshift bin z ∈ [0.6, 0.8] from the analysis. In Fig. 1 we
show the redshift distribution of the AMICO KiDS-DR3 cluster
sample.

2.2. Mass proxy

We exploit the cluster shear signal through a stacked weak lens-
ing analysis to estimate the mean cluster masses in bins of intrin-
sic richness and redshift. The intrinsic richness, λ∗, is defined as
the following:

λ∗j =

Ngal∑
i=1

Pi( j) with
{

mi < m∗(z j) + 1.5
Ri( j) < Rmax(z j)

, (1)

where Pi( j) is the probability assigned by AMICO to the ith
galaxy of being a member of a given detection j (see Maturi et al.
2019). The intrinsic richness thus represents the sum of the
membership probabilities, that is the weighted number of visi-
ble galaxies belonging to a detection, under the conditions given
by Eq. (1). The sum of the membership probabilities is an excel-
lent estimator of the true number of member galaxies, as shown
in Bellagamba et al. (2018) by running the AMICO algorithm
on mock catalogues (see Fig. 8 in the reference). In particular, in
Eq. (1), z j is the redshift of the jth detected cluster, mi is the mag-
nitude of the ith galaxy, and Ri corresponds to the distance of the
ith galaxy from the centre of the cluster. The parameter Rmax(z j)
represents the radius enclosing a mass M200 = 1014M� h−1, such
that the corresponding mean density is 200 times the critical
density of the Universe at the given redshift z j. In the follow-
ing analysis, indeed, we consider the masses evaluated as M200.
Lastly, m∗ is the typical magnitude of the Schechter function in
the cluster model assumed in the AMICO algorithm. We use the
term intrinsic richness as opposed to apparent richness, defined
in Maturi et al. (2019). In particular, since the threshold in abso-
lute magnitude is always lower than the survey limit, thanks to
its redshift dependence, λ∗ does not depend on the survey limit.
Conversely, the apparent richness is a quantity that includes
all visible galaxies and is therefore related to how a cluster is
observed given a certain apparent magnitude limit.

We set λ∗ = 20 as the threshold for the counts’ analysis in
order to exclude the bins affected by detection impurities and
severe incompleteness. Thus the final sample of galaxy clusters
considered for the counts’ analysis contains 3652 objects, with
λ∗ ≥ 20, and in the redshift bins z ∈ [0.1, 0.3], z ∈ [0.3, 0.45],
and z ∈ [0.45, 0.6]. With regard to the binning in intrinsic rich-
ness, we adopt four logarithmically spaced bins in the range
λ∗ ∈ [20, 137] for each redshift bin. To test the robustness of
our results with respect to this binning choice, we repeated the
analysis assuming different numbers of λ∗ bins and obtained neg-
ligible differences in the final results, that is to say far below the
1σ of the posterior distributions, and values of reduced χ2 always
consistent with 1. On the other hand, as we discuss in the next
section, in order to fully exploit the available data, we did not
impose any threshold in λ∗ in the weak lensing masses analysis,
and we chose a different binning in λ∗. To test the reliability of
this approach, we also performed the cosmological analysis by
imposing λ∗ ≥ 20 for the weak lensing masses, deriving results
fully in agreement with those obtained without assuming this
threshold, as detailed in Sect. 4.

2.3. Weak lensing masses

To estimate the mean masses of the observed galaxy clusters, we
followed the same stacked weak lensing procedure described in
Bellagamba et al. (2019), based on KiDS-450 data. The clusters
selected for the weak lensing analysis lie in the redshift range
z ∈ [0.1, 0.6], over an effective area of 360.3 deg2. This area
is slightly smaller compared to that considered for the counts’
analysis since it was derived from the masking described in
Hildebrandt et al. (2017). Despite the availability of galaxy clus-
ters up to z = 0.8 in the AMICO KiDS-DR3 catalogue, the S/N
of the stacked shear profiles is too low to perform the stack-
ing for z > 0.6. Therefore we base our analysis on the redshift
bins z ∈ [0.1, 0.3], z ∈ [0.3, 0.45], and z ∈ [0.45, 0.6], deriv-
ing the estimated mean masses in a flat ΛCDM cosmology with
Ωm = 0.3 and h = 0.7.
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Table 1. Cluster binning used for the weak lensing analysis.

z range zeff λ∗ range λ∗eff
log [M̄200/(1014 M� h−1)] Ncl zs,eff

[0.10, 0.30] 0.189 ± 0.001 [0, 15] 10.20 ± 0.09 −0.73± 0.07 1246 0.849 ± 0.002
[0.10, 0.30] 0.212 ± 0.002 [15, 25] 18.88 ± 0.12 −0.38± 0.07 684 0.867 ± 0.002
[0.10, 0.30] 0.222 ± 0.004 [25, 35] 29.02 ± 0.21 0.05± 0.07 209 0.879 ± 0.002
[0.10, 0.30] 0.228 ± 0.007 [35, 45] 39.75 ± 0.32 0.32± 0.06 82 0.877 ± 0.005
[0.10, 0.30] 0.222 ± 0.008 [45, 150] 56.59 ± 2.20 0.54± 0.06 44 0.890 ± 0.013
[0.30, 0.45] 0.374 ± 0.001 [0, 20] 15.10 ± 0.11 −0.41± 0.08 1113 0.948 ± 0.003
[0.30, 0.45] 0.387 ± 0.002 [20, 30] 24.08 ± 0.11 −0.07± 0.07 767 0.944 ± 0.004
[0.30, 0.45] 0.389 ± 0.002 [30, 45] 35.91 ± 0.27 0.21± 0.06 320 0.941 ± 0.005
[0.30, 0.45] 0.390 ± 0.005 [45, 60] 50.88 ± 0.50 0.41± 0.08 87 0.950 ± 0.015
[0.30, 0.45] 0.379 ± 0.006 [60, 150] 73.60 ± 2.09 0.68± 0.07 45 0.946 ± 0.012
[0.45, 0.60] 0.498 ± 0.001 [0, 25] 19.71 ± 0.11 −0.33± 0.09 1108 0.958 ± 0.001
[0.45, 0.60] 0.514 ± 0.002 [25, 35] 29.23 ± 0.12 −0.07± 0.07 761 0.961 ± 0.004
[0.45, 0.60] 0.523 ± 0.003 [35, 45] 39.25 ± 0.18 0.21± 0.07 299 0.961 ± 0.006
[0.45, 0.60] 0.513 ± 0.004 [45, 150] 55.12 ± 0.76 0.36± 0.07 197 0.960 ± 0.004

Notes. The computation of zeff and λ∗eff
and their uncertainties are described in Bellagamba et al. (2019). For the logarithm of the measured mean

masses, log M̄200, we quote the mean and the standard deviation of the posterior probability distribution. We note that Ncl is the number of clusters
in the bin. In the last column, zs,eff is the effective redshift of the lensed sources, obtained by following the procedure described in Giocoli et al.
(2021). Quoted masses refer to a flat ΛCDM model with Ωm = 0.3 and h = 0.7.

With an MCMC analysis, we sampled the posterior distri-
butions of the base 10 logarithm of the estimated mean cluster
masses, log M̄200, in 14 bins of intrinsic richness and redshift,
considering λ∗ ≥ 0 for a total of 6962 objects (see Table 1). As
detailed in Sect. 3.4, we account for the systematic errors affect-
ing the weak lensing mass estimates by relying on the results
found in Bellagamba et al. (2019). Specifically, we consider the
systematics due to background selection, photo-zs, and shear
measurements, affecting the measured stacked cluster profiles.
Such errors are then propagated into the mass estimates. In par-
ticular, the sum in quadrature of such contributions to systematic
errors, along with those produced by the halo model, orienta-
tion, and projections, is equal to 7.6%. The description of the
modelling, including a more extensive discussion on the statisti-
cal and systematic uncertainties, is detailed in Bellagamba et al.
(2019).

The log M̄200 posteriors are marginalised over the other
parameters entering the modelling, that is the concentration
parameter, c200, the fraction of haloes belonging to the miscen-
tred population, foff , and the root mean square deviation (rms) of
the distribution of the halo misplacement on the plane of the sky,
σoff . In particular, we derived the posteriors for c200, foff , andσoff

in each bin, assuming the following flat priors: c200 ∈ [1, 20],
foff ∈ [0, 0.5], andσoff ∈ [0 Mpc h−1, 0.5 Mpc h−1]. Such param-
eters are not constrained by the data, that is their posteriors
are statistically consistent with the priors. For what concerns
the miscentring parameters, they are related to the possible dif-
ference between the centre defined by the AMICO algorithm
using the galaxy overdensities and the mass centre related to the
weak lensing signal. The uncertainty due to the use of a grid in
AMICO indeed only impacts small scales not used in this anal-
ysis and thus they can be neglected.

The logarithm of the estimated mean mass values for differ-
ent bins of intrinsic richness and redshift are listed in Table 1.
In Fig. 2 we show the median value of the mass-intrinsic rich-
ness scaling relation, described in Sect. 3.1, obtained by only
performing the modelling of the weak lensing masses as in
Bellagamba et al. (2019), along with the 68% confidence level
obtained from the analysis of cluster counts and weak lensing
masses, detailed in Sect. 3. It turns out that the log M200 − log λ∗

relation is reasonably linear and with an intrinsic scatter of ∼0.1,
as we discuss in Sect. 4, indicating the reliability of λ∗ as a mass
proxy.

2.4. Selection function

In order to estimate the selection function of the AMICO KiDS-
DR3 cluster catalogue, we make use of the mock catalogue
described in Maturi et al. (2019). The construction of the mock
clusters is based on the original galaxy dataset, thus all the
properties of the survey are properly taken into account, such
as masks, photo-z uncertainties, and the clustering of galaxies.
In this way the assumptions necessary to build up the mock
catalogue are minimised. In particular, regarding the photo-z
uncertainties, the galaxies are drawn from the survey sample
and selected from bins of richness and redshift, using a Monte
Carlo sampling based on the cluster membership probability.
The probability that each galaxy is included in a given redshift
bin is driven by its own photo-z probability distribution func-
tion, which includes the contribution of the photometric noise.
In this way, the selection of the simulated cluster member galax-
ies mimics the real uncertainties of the photometric redshifts in
the photometric catalogue. Then, to derive the selection function,
the AMICO code was run on the mock catalogue, consisting of
9018 clusters distributed over a total area of 189 deg2. Only the
detections with an S/N > 3.5 are considered, with this being the
threshold applied to the real dataset.

In Fig. 3 we show the purity and completeness of the dataset,
which define the selection function. The completeness is defined
as the number of detections correctly identified as clusters over
the total number of mock clusters as a function of redshift and
intrinsic richness. Thus it provides a measure of how many
objects are lost in the detection procedure. On the other hand,
the purity is a measure of the contamination level of the cluster
sample. It is defined as the fraction of detections matching the
clusters in the mock catalogue, over the total number of detec-
tions, in a given bin of redshift and intrinsic richness. As shown
in Fig. 3, it turns out that the catalogue is highly pure, with
a purity approaching 100% over the whole redshift range for
λ∗ ≥ 20.
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Fig. 2. Logarithm of the masses in units of (1014 M� h−1), log M̄200, from
the AMICO KiDS-DR3 cluster catalogue as a function of the intrinsic
richness λ∗, in the redshift bins z ∈ [0.10, 0.30], z ∈ [0.30, 0.45], and
z ∈ [0.45, 0.60], from top to bottom. The black triangles represent the
mean values of log M̄200, given by the mean of the marginalised pos-
terior obtained in the weak lensing analysis, while the error bars are
given by 1σ of the posterior distribution. The orange lines represent the
median scaling relation obtained by modelling only log M̄200, following
the procedure described in Bellagamba et al. (2019). The grey bands
represent the 68% confidence level derived from the multivariate poste-
rior of all the free parameters considered in the cosmological analysis
described in Sect. 3.

In order to account for the selection function in the mod-
elling of cluster counts, we built a new dataset by applying the
purity and the completeness to the real cluster catalogue. This
dataset will be used to derive the multiplicative weights that will
be considered in the cluster counts’ model, as we detail in the fol-

lowing. Since we define the purity as a function of the observed
intrinsic richness, λ∗ob, we assigned each object in the real cata-
logue to a bin of observed intrinsic richness, in which we com-
puted the purity. Subsequently, we extracted a uniform random
number between 0 and 1, and if it is lower than the purity corre-
sponding to the bin, the object is considered in the aforemen-
tioned new dataset. Otherwise, it is rejected. In this way, the
final sample will statistically take the effects of impurities into
account. On the other hand, since the completeness is defined
in bins of true intrinsic richness, λ∗tr, it is required to implement
a method that assigns a value of completeness to an observed
value of intrinsic richness. For this purpose, we derived sev-
eral probability distributions from the mock catalogue describ-
ing the probability to obtain a true value of λ∗, given a range
of observed intrinsic richness defined by λ∗ low

ob and λ∗ up
ob , namely

P(λ∗tr|λ
∗ low
ob , λ

∗ up
ob ). We find that these distributions are reasonably

Gaussian. Then, given a galaxy cluster in our dataset with a
value of λ∗ob in a given range, we performed a Gaussian Monte
Carlo extraction from P(λ∗tr|λ

∗ low
ob , λ

∗ up
ob ) through which we obtain

a value of λ∗tr. Given the extracted true value of intrinsic rich-
ness, we assigned a completeness value to the considered object.
Having this new catalogue corrected for the purity and the com-
pleteness, we constructed a weight factor defined as the ratio
between the uncorrected counts and the corrected ones for bins
in intrinsic richness (denoted by ∆λ∗ob,i) and redshift (labelled as
∆zob, j). These weight factors, w(∆λ∗ob,i,∆zob, j), will be used to
weigh the counts’ model as described in Sect. 3.2. The value of
w(∆λ∗ob,i,∆zob, j) in the first bins of intrinsic richness amounts to
∼0.87, ∼0.76, and ∼0.64 in the redshift bins z ∈ [0.10, 0.30],
z ∈ [0.30, 0.45], and z ∈ [0.45, 0.60], respectively, while we
derived no correction for the other bins (i.e. in these bins the
weights are equal to 1). The measured counts of the AMICO
KiDS-DR3 clusters are shown in Fig. 4, along with the 68% con-
fidence level derived in Sect. 4.

3. Modelling

3.1. Model for the weak lensing masses

We modelled the scaling relation between the estimated clus-
ter mean masses and the intrinsic richnesses using the following
functional form:

log
M200

1014M�/h
= α + β

∫ ∞

0
dλ∗ P(λ∗|λ∗eff) log

λ∗

λ∗piv

+ γ

∫ ∞

0
dz P(z|zeff) log

E(z)
E(zpiv)

, (2)

where E(z) ≡ H(z)/H0, while zeff and λ∗eff
are the lensing-

weighted effective redshift and richness, respectively, whose
computation is described in Bellagamba et al. (2019). The prob-
ability distributions P(λ∗|λ∗eff

) and P(z|zeff) are assumed to be
Gaussian, with a mean equal to the values of λ∗eff

and zeff listed
in Table 1, and an rms given by the uncertainties on λ∗eff

and
zeff , respectively. The last term in Eq. (2) accounts for devi-
ations in the redshift evolution from what is predicted in the
self-similar growth scenario (Sereno & Ettori 2015). Following
Bellagamba et al. (2019), we set λ∗piv = 30 and zpiv = 0.35. In
Eq. (2) the observables are the estimated mean mass values,
log M̄200, shown in Table 1, along with the effective values of
redshift, zeff, and of intrinsic richness, λeff, in the given bin. Fur-
thermore, since log M̄200 depends on cosmological parameters,
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Fig. 3. Completeness (left panel) and purity (right panel) of the AMICO KiDS-DR3 cluster catalogue as a function of the redshift, z, and of the
intrinsic richness, λ∗. The completeness is a function of the true λ∗, i.e. λ∗tr, while the purity is defined as a function of the observed intrinsic
richness, λ∗ob. The shaded area in the right panel highlights the bins excluded from the number counts’ analysis, i.e. for λ∗ob < 20.
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Fig. 4. Number counts from the AMICO KiDS-DR3 cluster catalogue as a function of the intrinsic richness λ∗, in the redshift bins z ∈ [0.10, 0.30],
z ∈ [0.30, 0.45], and z ∈ [0.45, 0.60], from left to right. The black dots represent the counts directly retrieved from the catalogue, where the error
bars are given by the Poissonian noise. The solid blue lines represent the model computed by assuming the cosmological parameters obtained by
Planck Collaboration VI (2020) (Table 2, TT, TE, and EE+lowE), while the red dashed lines show the results based on the WMAP cosmological
parameters (Hinshaw et al. 2013) (Table 3, WMAP-only Nine-year). Both in the Planck and WMAP cases, the scaling relation parameters and the
intrinsic scatter have been fixed to the median values listed in Table 2, retrieved from the modelling. The grey bands represent the 68% confidence
level derived from the multivariate posterior of all the free parameters considered in the cosmological analysis.

we adopted the rescaling described in Sereno (2015), that is

M̄200, new = M̄200, ref

[
D
−

3δγ
2−δγ

d

(
Dds
Ds

)− 3
2−δγ H(z)−

1+δγ
1−δγ/2

]
new[

D
−

3δγ
2−δγ

d

(
Dds
Ds

)− 3
2−δγ H(z)−

1+δγ
1−δγ/2

]
ref

, (3)

where ref indicates the assumed reference cosmology, in other
words Ωm = 0.3 and h = 0.7, while the subscript new refers
to that of the test. We set the slope to δγ = 0, corresponding
to the case of a singular isothermal profile, with this being a
good approximation in general (as discussed in Sereno 2015).
For example, assuming M200 ' 1015 M� and c200 ' 3, δγ ' −0.1
is obtained, thus we varied δγ in the reasonable range [−0.2, 0.2]
and verified that this does not have an impact on the final results.
The terms Ds, Dd, and Dds are the source’s, the lens’, and the
lens-source’s angular diameter distances, respectively. In Dd,
Dds, and in the Hubble parameter, H(z), we assumed the effec-

tive redshift values, zeff, listed in Table 1. With regard to the red-
shifts of the sources, we considered the lensed source effective
redshifts, zs,eff, listed in Table 1, obtained by following the proce-
dure described in Giocoli et al. (2021). In particular, we obtained
zs,eff by weighting the redshift of each source by the correspond-
ing source density for each derived radial bin for each cluster.
We then considered the mean value of source redshift in bins of
cluster richness per redshift. We verified that we can neglect the
uncertainty on zs,eff in our analysis. In such mass rescaling, the
relative uncertainty on log M̄200, new is constant, corresponding to
the relative errors on log M̄200, ref .

3.2. Model for the cluster counts

The specific characteristics of the dataset must be included in the
model and in the covariance matrix of the likelihood function.
We describe the expectation value of the counts in a given bin of
intrinsic richness, ∆λ∗ob,i, and of observed redshift, ∆zob, j, as
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Table 2. Parameters considered in the joint analysis of cluster counts and stacked weak lensing data.

Parameter Description Prior Posterior

Ωm Total matter density parameter [0.09, 1] 0.24+0.03
−0.04

σ8 Amplitude of the matter power spectrum [0.4, 1.5] 0.86+0.07
−0.07

S 8 ≡ σ8(Ωm/0.3)0.5 Cluster normalisation parameter – 0.78+0.04
−0.04

α Normalisation of the mass-observable scaling relation [−2, 2] 0.04+0.04
−0.03

β Slope of the mass-observable scaling relation [0, 5] 1.72+0.08
−0.08

γ Redshift evolution of the mass-observable scaling relation [−4, 4] −2.37+0.37
−0.56

σintr,0 Normalisation of σintr [0.05, 1] 0.18+0.08
−0.10

σintr,λ∗ λ∗ evolution of σintr [−5, 5] 0.11+0.19
−0.22

Ωb Baryon density parameter N(0.0486, 0.0017) –
τ Thomson scattering optical depth at re-ionisation N(0.0544, 0.0365) –
ns Primordial power spectrum spectral index N(0.9649, 0.0210) –
h ≡ H0/(100 km s−1 Mpc−1) Normalised Hubble constant N(0.7, 0.1) –
s Slope correction to the halo mass function N(0.037, 0.014) –
q Amplitude correction to the halo mass function N(1.008, 0.019) –
δb Fluctuation of the matter density due to super-survey modes Gaussian (∗) –

Notes. In the third column, the priors on the parameters are listed, and in particular a range represents a uniform prior, while N(µ, σ) stands
for a Gaussian prior with mean µ and standard deviation σ. The Gaussian prior on δb is cosmology-dependent: both the mean and the standard
deviation change at each MCMC step. In the fourth column, we show the median values of the 1D marginalised posteriors, along with the 16th
and 84th percentiles. The posterior distributions of Ωb, τ, ns, h, s, q, and δb are not shown since these nuisance parameters are not constrained in
our analysis.

〈N(∆λ∗ob,i,∆zob, j)〉 = w(∆λ∗ob,i,∆zob, j) Ω

∞∫
0

dztr
dV

dztrdΩ

×

∞∫
0

dMtr
dn(Mtr, ztr)

dMtr

∞∫
0

dλ∗tr P(λ∗tr|Mtr, ztr)

×

∫
∆zob, j

dzob P(zob|ztr, corr)
∫

∆λ∗ob,i

dλ∗ob P(λ∗ob|λ
∗
tr) ,

(4)

where ztr is the true redshift, V is the co-moving volume, Ω is the
survey effective area, Mtr is the true mass, and dn(Mtr, ztr)/dMtr
is the mass function, for which the model by Tinker et al.
(2008) is assumed. The term w(∆λ∗ob,i,∆zob, j) is the weight factor
described in Sect. 2.4, accounting for the purity and complete-
ness of the sample. The probability distribution P(zob|ztr, corr),
assessed through the mock catalogue described in Sect. 2.4, is
a Gaussian accounting for the uncertainties on the redshifts. The
mean of such distribution, ztr, corr, is the true redshift corrected by
the redshift bias, and it is expressed as

ztr, corr = ztr + ∆zbias (1 + ztr) , (5)

where ∆zbias (1 + ztr) is the redshift bias term discussed in
Maturi et al. (2019), with ∆zbias = 0.02. In particular, this bias
corresponds to what was found in de Jong et al. (2017) by com-
paring the KiDS photo-zs to the GAMA spectroscopic redshifts
(see their Table 8). In order to assess the impact of its uncertainty,
we included ∆zbias as a free parameter in the model, assuming
a Gaussian prior with a mean equal to 0.02 and an rms equal
to 0.02, which is similar to the rms of the sample and much
larger than the rms of the mean (see Fig. 7 in Maturi et al. 2019).
As we verified, such uncertainty on ∆zbias does not significantly
impact our final results. Conversely, AMICO provides unbiased
estimates of redshift (see Maturi et al. 2019), thus we modelled
P(zob|ztr) by keeping the mean of such distributions fixed to the

central value of ∆ztr. In particular, in the mock catalogue, we
measured P(zob|ztr) in several bins of ztr, namely ∆ztr, and we per-
formed the statistical MCMC analysis assuming a common flat
prior on the rms in all the ∆ztr bins. The resulting rms of P(zob|ztr)
is equal to 0.025. AMICO also provides unbiased estimates for
λ∗, thus following the same procedure adopted for P(zob|ztr), we
derived an uncertainty of ∼17% on λ∗ob, defining the rms of the
Gaussian distribution P(λ∗ob|λ

∗
tr), whose mean is equal to λ∗tr. We

neglected the uncertainties on the rms of P(zob|ztr) and P(λ∗ob|λ
∗
tr),

amounting to ∼1%, since we verified their negligible effect on
the final results.

Furthermore, P(λ∗tr|Mtr, ztr) is a probability distribution that
weights the expected counts according to the shape of the mass-
observable scaling relation, and it is expressed as follows:

P(λ∗tr|Mtr, ztr) =
P(Mtr|λ

∗
tr, ztr) P(λ∗tr|ztr)

P(Mtr|ztr)
, (6)

where the distribution P(Mtr|λ
∗
tr, ztr) is a log-normal one whose

mean is given by the mass-observable scaling relation and the
standard deviation is given by the intrinsic scatter, σintr, set as a
free parameter of the model:

P(log Mtr|λ
∗
tr, ztr) =

1
√

2πσintr
exp

− x2(Mtr, λ
∗
tr, ztr)

2σ2
intr

 , (7)

where

x(Mtr, λ
∗
tr, ztr) = log

Mtr

1014M�/h

−

(
α + β log

λ∗tr
λ∗piv

+ γ log
E(ztr)
E(zpiv)

)
(8)

and

σintr = σintr,0 + σintr,λ∗ log
λ∗tr
λ∗piv

. (9)
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The P(Mtr|λ
∗
tr, ztr) distribution indeed accounts for the intrinsic

uncertainty that affects a scaling relation between the intrinsic
richness and the mass: given an infinitely accurate scaling rela-
tion, represented by the mean, the cluster mass provided by a
value of intrinsic richness is scattered from the true value. Fur-
thermore, P(λ∗tr|∆ztr) in Eq. (6) is a power law with an expo-
nential cut-off, derived from the mock catalogue by consider-
ing the objects with λ∗tr & 20. Specifically, similar to other
literature analyses (e.g. Murata et al. 2019; Costanzi et al. 2019;
Abbott et al. 2020), P(λ∗tr|Mtr, ztr) is assumed to be cosmology-
independent. Thus we assume that the ratio P(λ∗tr|ztr)/P(Mtr|ztr)
is cosmology-independent, where P(Mtr|ztr) acts as a normalisa-
tion of P(λ∗tr|Mtr, ztr):

P(Mtr|ztr) =

∞∫
0

dλ∗tr P(Mtr|λ
∗
tr, ztr) P(λ∗tr|ztr). (10)

3.3. Halo mass function systematics

As mentioned in Sect. 3.2, we assume the Tinker et al. (2008)
halo mass function to model the observed cluster counts. Follow-
ing Costanzi et al. (2019), in order to characterise the systematic
uncertainty in the halo mass function in dark matter only simu-
lations, we related the Tinker et al. (2008) mass function to the
true mass function via

n(M, z) = n(M, z)Tinker(s log(M/M∗) + q), (11)

where log M∗ = 13.8 h−1M� is the pivot mass, while q and s are
free parameters of the model with a Gaussian prior having the
following covariance matrix:

C(s̄, q̄) =

(
0.00019 0.00024
0.00024 0.00038

)
, (12)

and with s̄ = 0.037 and q̄ = 1.008 as the mean values.
Diagonalising the matrix (12), we obtained the following 1D
Gaussian priors: N(s̄, σs) = N(0.037, 0.014), and N(q̄, σq) =
N(1.008, 0.019), where N(µ, σ) stands for a Gaussian distribu-
tion with mean µ and standard deviation σ.

3.4. Likelihood

Our likelihood function encapsulates the description of cluster
counts and weak lensing masses. We base the likelihood term
describing the counts, Lcounts, on the functional form given by
Lacasa & Grain (2019), that is to say a convolution of a Poisso-
nian likelihood describing the counts, and a Gaussian distribu-
tion accounting for the super-sample covariance (SSC):

Lcounts =

∫
dδnz

b

∏
i, j

Poiss
(
Ni, j|N̄i, j +

∂Ni, j

∂δb, j
δb, j

) N(δb|0, S ).

(13)

In the equation above, N(δb|0, S ) is the Gaussian function
describing the SSC effects on cluster count measurements, which
is a function of the matter density contrast fluctuation, δb,
and has a covariance matrix S 10. In particular, nz is the num-
ber of redshift bins considered in the modelling procedure,
and it defines the dimension of the integration variable, δb =

10 For the computation of the S matrix, we refer readers to the
codes at https://github.com/fabienlacasa/PySSC developed by
Lacasa & Grain (2019).

{δb,1, . . . , δb,nz }, and of the S matrix, whose dimension is nz × nz.
Thus each δb, j represents the fluctuation of the measured mat-
ter density contrast, with respect to the expected one, in a given
bin of redshift. The indices i and j are the labels of the bins of
intrinsic richness and redshift, while Ni, j ≡ N(∆λ∗ob,i,∆zob, j) is
the observed cluster number counts in a bin of intrinsic richness
and redshift, and N̄i, j is the model defined in Eq. (4). The term
∂Ni, j/∂δb, j is the response of the counts, that is the measure of
how the counts vary with changes of the background density, and
it is expressed as follows:

∂Ni, j

∂δb, j
= w(∆λ∗ob,i,∆zob, j) Ω

∞∫
0

dztr
dV

dztrdΩ

×

∞∫
0

dMtr
dn(Mtr, ztr)

dMtr
b(Mtr, ztr)

∞∫
0

dλ∗tr P(λ∗tr|Mtr, ztr)

×

∫
∆zob, j

dzob P(zob|ztr, corr)
∫

∆λ∗ob,i

dλ∗ob P(λ∗ob|λ
∗
tr) , (14)

in other words, the response is similar to the model described in
Eq. (4), in which we also include the contribution of the linear
bias b(M, z).

For computational purposes, we consider in the analysis an
alternative form of the likelihood, L′counts, that is the integrand in
Eq. (13), of which we computed the natural logarithm:

lnL′counts = ln

∏
i, j

Poiss
(
Ni, j|N̄i, j +

∂Ni, j

∂δb, j
δb, j

)
· N(δb|0, S )

 .
(15)

Here, we set δb = {δb,1, . . . , δb,nz } as free parameters of the
model, with a multivariate Gaussian prior having S as the covari-
ance matrix. Due to the dependence on cosmological parameters
of the S matrix, the values of its elements change at every step
of the MCMC. In turn, a variation of S implies the change of the
prior on δb. At the end of the MCMC, we marginalised over δb
to derive the posteriors of our parameters of interest.

With regard to the likelihood describing the weak lensing
masses, Llens, we assumed a log-normal functional form and
then we considered its natural logarithm:

lnLlens ∝

Nbin∑
k=1

Nbin∑
l=1

[log M̄k
ob−log M̄l

mod] C−1
M,kl [log M̄l

ob−log M̄k
mod] ,

(16)

where Nbin corresponds to the number of bins in which the mean
mass M̄200, or M̄ob, was measured, through the weak lensing
analysis described in Sect. 2.3. Furthermore, M̄mod represents
the mass obtained from the scaling relation model described in
Eq. (2), where we assumed the effective redshift and intrinsic
richness values zeff and λ∗eff

listed in Table 1. The covariance
matrix CM in Eq. (16) has the following form:

CM,kl = δklE2
k + [σsys/ ln(10)]2 + δkl(σintr/

√
Ncl)2 , (17)

where Ek represents the statistical error on log M̄ob derived from
the posterior distribution of log M̄ob, where we stress that the rel-
ative uncertainties are constants after the rescaling described in
Sect. 2.3. The term σsys = 0.076 is the sum in quadrature of the
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Fig. 5. Constraints on Ωm, σ8, α, β, γ, σintr,0, and σintr,λ∗ , derived in a flat ΛCDM universe by combining the redshift bins z ∈ [0.1, 0.3], z ∈
[0.3, 0.45], and z ∈ [0.45, 0.6] and assuming a minimum intrinsic richness λ∗ob,min = 20 for cluster counts. The shown posteriors were also
marginalised over Ωb, τ, ns, h, s, q, and δb. The blue contours represent the results obtained from the joint analysis of cluster counts and weak
lensing masses, while the orange contours show the posteriors on α, β, and γ, derived from the analysis including only the weak lensing masses as
in Bellagamba et al. (2019). The confidence ellipses correspond to 68% and 95%, while the bands over the 1D marginalised posteriors represent
the 68% of confidence.

uncertainties on the background selection, photo-zs, shear mea-
surements, halo model, orientation, and projections, obtained in
Bellagamba et al. (2019), and Ncl is the number of clusters in the
bin of intrinsic richness and redshift in which the mean mass has
been derived. By dividing σintr by

√
Ncl, we neglected the cluster

clustering contribution to the last term of Eq. (17).
Thus, the logarithm of the joint likelihood, lnL, is given

by

lnL = lnL′counts + lnLlens . (18)

4. Results

We performed a cosmological analysis of cluster number counts
and stacked weak lensing based on the assumption of a flat
ΛCDM model. The aim is to constrain the matter density param-
eter, Ωm, and the square root of the mass variance computed on
a scale of 8 Mpc h−1 and σ8, with both being provided at z = 0,
along with the parameters defining the scaling relation between
masses and intrinsic richnesses, α, β, and γ in Eq. (2), and the
intrinsic scatter, σintr. Therefore we set Ωm, σ8, α, β, γ, and σintr
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Fig. 6. Comparison with WMAP and Planck results. Left panel: we show the Ωm −σ8 parameter space, along with the 1D marginalised posteriors
with the relative intervals between the 16th and 84th percentiles, in the case of the cluster counts’ analysis in the AMICO KiDS-DR3 catalogue
(solid grey lines). In the same panel, we also display the results from WMAP (Hinshaw et al. 2013) (Table 3, WMAP-only Nine-year; red dash-
dotted lines) and Planck (Planck Collaboration VI 2020) (Table 2, TT, TE, and EE+lowE; blue dashed lines). Right panel: we show the posteriors
for the parameter S 8, where the bands show the intervals between 16th and 84th percentiles. The symbols are the same as in the left panel.

as free parameters of the model, Eq. (4), as well as the baryon
density, Ωb, the optical depth at re-ionisation, τ, the primordial
spectral index, ns, the normalised Hubble constant, h, the Tin-
ker mass function correction parameters, q and s, described in
Sect. 3.3, and the fluctuation of the mean density of matter due
to super-survey modes, δb. We assumed flat priors for Ωm, σ8,
α, β, γ, and σintr, while we set Gaussian priors on the other
parameters (see Table 2). In particular, for the Gaussian prior
distributions of Ωb, τ, ns, and h, we refer readers to the values
obtained by the Planck Collaboration VI (2020) (Table 2, TT,
TE, and EE+lowE+lensing), assuming the same mean values
and imposing a standard deviation equal to 5σ for all the afore-
mentioned parameters, but h, for which we assumed a standard
deviation equal to 0.1. In this baseline cosmological model, we
also assumed three neutrino species, approximated as two mass-
less states and a single massive neutrino of mass mν = 0.06 eV,
following Planck Collaboration VI (2020). Finally, we assumed
a multivariate Gaussian prior for δb, as described in Sect. 3.4.

In our analysis, we constrained the value of the cluster nor-
malisation parameter, S 8 ≡ σ8(Ωm/0.3)0.5. The significance of
this parameter is rooted in the degeneracy between σ8 and Ωm,
being defined along the σ8 − Ωm confidence regions. Since the
number of massive clusters increases with both σ8 and Ωm, in
order to hold the cluster abundance fixed at its observed value,
any increase in σ8 must be compensated for by a decrease in Ωm,
implying that S 8 is held fixed.

From this modelling, we obtain Ωm = 0.24+0.03
−0.04, σ8 =

0.86+0.07
−0.07, and S 8 = 0.78+0.04

−0.04, where we quote the median, 16th
and 84th percentiles, as shown in Fig. 5 and Table 2. In Fig. 5 we
also show that the results on the mass-observable scaling relation
retrieved from this analysis, that is for α, β, and γ, are in agree-
ment within 1σwith those obtained by performing the modelling
of the weak lensing data only, as carried out by Bellagamba et al.
(2019). In particular, the inclusion of the cluster counts in the
analysis provides tighter constraints on the slope β, also govern-
ing the slope of the cluster model at low values of λ∗. Addition-
ally, the cluster count redshift evolution provides a more accurate
estimate of γ. Lastly, we find a tight constraint on the intrinsic
scatter, deriving σintr,0 = 0.18+0.08

−0.10 and σintr,λ∗ = 0.11+0.19
−0.22, which

confirms the reliability of λ∗ as a mass proxy. This result on σintr
is consistent within 1σ with that derived in Sereno et al. (2020)
from a weak lensing analysis of the sample of AMICO clusters
in KiDS-DR3.

As shown in Fig. 6, the constraints obtained for S 8 and σ8
are in agreement within 1σ with WMAP results (Hinshaw et al.
2013) (Table 3, WMAP-only Nine-year), and with Planck
results (Planck Collaboration VI 2020) (Table 2, TT, TE, and
EE+lowE). With regard to Ωm, we find an agreement within
1σ with WMAP and a 2σ tension with Planck. Furthermore, in
Fig. 7 we show the comparison with the S 8 constraints obtained
from additional external datasets. In particular, we find an agree-
ment within 1σwith the results obtained from the cluster counts’
analyses performed by Costanzi et al. (2019), based on SDSS-
DR8 data, and by Bocquet et al. (2019), based on the 2500 deg2

SPT-SZ survey data, as well as with the results derived from
the cosmic shear analyses performed by Troxel et al. (2018)
on DES-Y1 data, Hikage et al. (2019) on HSC-Y1 data, and
Asgari et al. (2021) on KiDS-DR4 data. The constraint on S 8
obtained from the cluster counts and weak lensing joint analysis
in DES (Abbott et al. 2020), S 8 = 0.65+0.04

−0.04, not shown in Fig. 7,
is not consistent with our result.

Following a more conservative approach, we repeated the
analysis also assuming the threshold in intrinsic richness λ∗ ≥
20 for the weak lensing data. This leads to Ωm = 0.27+0.04

−0.05,
σ8 = 0.83+0.06

−0.07, and S 8 = 0.78+0.04
−0.04, which are consistent within

1σ with the constraints derived from the analysis previously
described. Also for the other free parameters of the model, the
consistency within 1σ still holds.

5. Conclusions

We performed a galaxy cluster abundance analysis in the
AMICO KiDS-DR3 catalogue (Maturi et al. 2019), simultane-
ously constraining the cosmological parameters and the cluster
mass-observable scaling relation. In particular, we relied on the
intrinsic richness, defined in Eq. (1), as the observable linked
to the cluster masses. The sample exploited for cluster counts
includes 3652 galaxy clusters having an intrinsic richness of
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Fig. 7. Comparison of the constraints on S 8 ≡ σ8(Ωm/0.3)0.5 obtained,
from top to bottom, from the joint analysis of cluster counts and
weak lensing in the AMICO KiDS-DR3 catalogue (black dot), from
the results obtained by Planck Collaboration VI (2020) (blue dots),
Hinshaw et al. (2013) (red dots), Costanzi et al. (2019) (green dot),
Bocquet et al. (2019) (brown dot), Troxel et al. (2018) (magenta dot),
Hikage et al. (2019) (orange dot), and Asgari et al. (2021) (cyan dot).
The median, as well as the 16th and 84th percentiles are shown.

λ∗ ≥ 20 and, in the redshift bins, z ∈ [0.1, 0.3], z ∈ [0.3, 0.45],
and z ∈ [0.45, 0.6]. For the weak lensing analysis, we fol-
lowed the procedure developed by Bellagamba et al. (2019), not
assuming any threshold in λ∗. We assessed the incompleteness
and the impurities of the cluster sample by exploiting a mock
catalogue developed by Maturi et al. (2019), and we corrected
our data accordingly.

We assumed a model for cluster counts, shown in Eq. (4),
accounting for the redshift uncertainties and for the mass-
observable scaling relation. In particular, the mass-observable
scaling relation plays a crucial role in the P(λ∗tr|Mtr, ztr) term
given by Eq. (6), which also depends on the observed distribution
of galaxy clusters as a function of the intrinsic richness. Further-
more, this term includes the contribution of the intrinsic scatter
of the scaling relation, σintr, which is considered as an unknown
parameter. Subsequently, we modelled the cluster counts and the
scaling relation by combining the relative likelihood functions.

Assuming a flat ΛCDM model with massive neutrinos, we
found Ωm = 0.24+0.03

−0.04, σ8 = 0.86+0.07
−0.07, and S 8 = 0.78+0.04

−0.04,
which are competitive constraints, in terms of uncertainties,
with results from state-of-the-art cluster number counts’ anal-
yses. In addition, the result on S 8 is in agreement within 1σ
with the results from WMAP and Planck. We also derived
results for the scaling relation that are consistent within 1σ with
those obtained by only modelling the weak lensing signal as in

Bellagamba et al. (2019), thus validating the reliability of our
model. With regard to the intrinsic scatter, we found σintr,0 =
0.18+0.08

−0.10 and σintr,λ∗ = 0.11+0.19
−0.22, which is a very competitive

result compared to the present-day estimates in the field of
galaxy clusters, outlining the goodness of the assumption of λ∗
as the mass proxy.

In Nanni (in prep.), we analyse the AMICO KiDS-DR3
cluster clustering to derive constraints on S 8 and on the mass-
observable scaling relation. For the next step, we combine
counts, clustering, and weak lensing to improve the accuracy of
our results further. In addition, we expect more accurate con-
straints on S 8 and on the mass-observable scaling relation from
the analysis of the latest KiDS Data Release (DR4, Kuijken et al.
2019). It covers an area of 1000 square degrees, which is more
than two-thirds of the final area, and photometry extends to the
near-infrared (ugriZY JHKs), joining the data from the KiDS and
VIKING (Edge et al. 2013) surveys, thus allowing, for instance,
one to improve the photometric redshift estimates (Wright et al.
2019).
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