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Abstract

This thesis studies electricity markets and analyzes market mechanisms - operation rules

for participants in achieving supply-demand balance, to understand how competition

between resources, e.g., conventional generators, inelastic loads, and new market

participants, such as energy storage and hybrid resources, affects market efficiency.

We first consider the participation of conventional resources in a two-stage market,

i.e., day-ahead and real-time settlement. Although designed to allocate resources

efficiently and prevent speculation, price manipulation by strategic participants can

undermine these goals. To address price manipulation, some markets have proposed

system-level market power mitigation (MPM) policies, which substitute noncompetitive

bids with default bids based on estimated generation costs. Using equilibrium analysis,

we illustrate that such a policy in the day-ahead stage is more robust to price

manipulations than in real-time, which may lead to non-equilibrium solutions. Despite

being inelastic, loads can shift their allocation between the two stages to manipulate

prices and reduce their payments. Further, heterogeneity in cost coefficients, estimation

of dispatch cost in excess, and demand uncertainty tend to benefit generators. Together,

system-level MPM policies can have unintended consequences when implemented

without accounting for the conflicting interests of participants.

We then study how integrating energy storage affects market efficiency. Our

analysis indicates that the existing participation mechanism, where energy storage

bids power in a market, may diminish market benefits due to its unique operational

characteristics, e.g., the operating cost depends on charge-discharge cycles, unlike
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conventional generators. We propose a novel market mechanism based on an energy-

cycling function that maps cycle depth to per-cycle prices. An equilibrium analysis

illustrates the efficient competitive equilibrium that aligns with the social planner

problem, i.e., net surplus maximization. However, at the Nash equilibrium, stor-

age incurs reductions in profit relative to the competitive equilibrium due to price

manipulation by strategic generators.

Finally, we study the participation of hybrid resources combining energy storage

and renewable energy sources. We use the New York zonal model as an example of

a large-scale electricity market to benchmark the performance of the following two

types of market models. We consider (i) a granular model, where the market operator

manages the operation of constituent energy storage, and (ii) an integrated model,

where the owner manages the storage operation. Our analysis shows that granular

models lead to lower operating costs but add computational complexity, which may not

be desirable from the operator’s perspective. Though less computationally intensive,

integrated models result in more intervals violating the physical limits of constituent

energy storage.
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Preliminaries

Notation

We use the standard notation f(a, b) to denote a function of independent variables a

and b. However, we use f(a; b) to represent a function of independent variable a and

parameter b. We use || · || to denote the standard Euclidean norm. Also, |I| represents

the cardinality of the set I.

Given a set S of time indices S ⊆ {0, . . . , T}, S[j] denotes the jth smallest element

in S, e.g., S = {3, 1, 5}, S[2] = 3. Given a vector x = (x0, . . . , xT ) ∈ RT +1 and

the set S ⊆ {0, . . . , T}, xS ∈ R|S| denotes the order preserving vector of elements

indexed by S (preserving x order). We define the element xS(j) := xS[j], for example,

for the same set S = {3, 1, 5}, xS(2) = xS[2] = x3. For a vector xS and an index

j ∈ {2, 3, · · · , |S| − 2}, we define the triple difference operation

(∆j−1, ∆j, ∆j+1) := diff(x, S, j)

with ∆j := |xS(j + 1) − xS(j)|, which will be used to identify cycles. We next define a

direction operation pointing from t1 to t2, which will be used in adding (directed) edges

to a directed graph (digraph). For a vector xS and an index j ∈ {1, 2, · · · , |S| − 1} as

(t, t′) := dir(x, S, j) =
{︄ (︁

S[j + 1], S[j]
)︁
, if xS(j + 1) ≥ xS(j)(︁

S[j], S[j + 1]
)︁
, otherwise.

For a set S ′ of ordered time index pairs S ′ ⊆ {0, . . . , T} × {0, . . . , T}, (t, t′) ∈ S ′

denotes an ordered pair from t to t′.
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Chapter 1

Introduction

In economics, a market is defined as a coordination mechanism between buyers and

sellers following structured or implicit guidelines to facilitate an exchange of goods

and services. Such interactions between buyers and sellers create supply-demand

dynamics that establish prices in the market, a key component of markets. The price

conveys the product value to market participants and helps regulate its allocation

and distribution. One of the fundamental goals in market design is social welfare and

efficient operation, i.e., prices reflect true information resulting in arbitrage-free market

operation maximizing utility minus costs. In an ideal setting, this can be achieved by

participants following selfish actions to maximize their payoff, which when integrated

via a market mechanism — sets of participation rules in achieving supply-demand

balance — lead to an efficient market clearing. The pursuit of understanding this

phenomenon has attracted the attention of researchers from various disciplines making

seminal advances in market design.

Despite best efforts to strive for efficiency and prevent speculation, there are

market inefficiencies and social welfare losses indicated through price manipulation.

The decision of participants driven by prices can become a complex function of other

players’ decisions due to competition for market share while seeking to maximize

individual payoff and other factors that may include the flow of information, the market

design, etc. In this thesis, we focus on market mechanisms from the operator and
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resource owner’s perspectives to understand how competition amongst participants

affects market efficiency. Further along this line, we examine if conventional market

designs generalize to emerging technologies and whether existing market infrastructures

can efficiently schedule emerging technologies.

The rest of the chapter is organized as follows. We start with the general principles

of market design in Section 1.1, where we discuss a market clearing mechanism,

participant behavior, market equilibrium, and efficiency. In Section 1.2, we focus on

the electricity markets and explore the issues involved with emerging technologies.

We then conclude with a brief outline of our approach and an overview of the thesis

in Section 1.3.

1.1 Principles of Market Design

In this section, we briefly introduce the general principles of market design from

the field of economics to understand interactions in a market and the scheduling of

resources. A market design is successful if it exhibits good equilibrium properties for

the known rules and robust stability properties for the ones which are unknown [1, 2].

Although all market designs may not lead to desirable properties, they can provide

intuition into the cause of undesirable outcomes and identify potential sources of

deviations [3]. We describe market participants, market clearing, and the notion of

efficiency in the following subsection.

1.1.1 Social Planner and Market Efficiency

We consider market structures, which typically consist of market operators, producers,

and consumers. Market operators seek to achieve a balance between consumers, seeking

to consume resources, and producers, able to produce resources for consumption. Each

consumer l ∈ L consumes dl ≥ 0 units of resources at a utility of Ul(dl) and makes

a payment ρl in the market. Similarly, each producer j ∈ J dispatches qj ≥ 0 units
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of resources at a production cost of Cj(qj) and earns a revenue ρj. The payoff of

each consumer and producer is given by Ul(dl) − ρl and ρj − Cj(qj), respectively. The

market operator clears the market and schedules resources, i.e., balances supply and

demand.

We are interested in market mechanisms that result in efficient allocation or schedule

of resources, for which we adopt the widely known concept of Pareto efficiency [4].

Definition 1.1. An allocation is Pareto efficient if the payoff of a market player

cannot strictly increase without incurring a strict decrease in another player’s payoff

simultaneously.

Furthermore, any Pareto efficient allocation maximizes aggregate surplus, i.e.,

aggregate utility minus aggregate production cost [5]. In this thesis, we refer to a

schedule or an allocation as efficient if it maximizes the aggregate surplus or minimizes

the negative of aggregate surplus, denoted as the social planner objective. Precisely,

we can write the social planner problem as an optimization problem, given by:

min
dl,l∈L,qj ,j∈J

∑︂
j∈J

Cj(qj) −
∑︂
l∈L

Ul(dl) (1.1a)

s.t.
∑︂
l∈L

dl =
∑︂
j∈J

qj (1.1b)

For the purposes of this thesis, we adopt these well-established frameworks and focus

our attention on market mechanism designs. A detailed discussion on the notion of

aggregate surplus and Pareto efficiency can be found in references [4, 5].

1.1.2 Market Participation and Clearing Mechanism

Even though truthful participation results in an efficient market outcomes, participants

may not always reveal their true cost or utility function to restrict revealing private

information. Instead, parameterized demand or supply functions as a proxy to the

marginal utility or cost curve are widely used in some markets, which indicates their

willingness to participate at a given price.
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The study of supply function equilibrium can be traced back to Grossman [6]

(1981) and Hart [7] (1985). The model was further studied by Klemper and Meyer [8]

(1989) for a general setting with uncertainty and has been applied in various markets,

e.g., Green and Newberry [9] (1992) for electricity industry reforms, Lauseel [10] (1992)

for trade policy, Akgun [11] (2004) for merger analysis, etc.

Each consumer l submits a demand function hl(ωl, p) parameterized by ωl that

indicates the willingness of the consumer to consume dl units of resource at the market

prices p. Similarly, each producer j submits a supply function fj(ξj, p) parameterized

by ξj, indicating the willingness of producer j to supply resources at a price p in

the market. The operator generates the prices so that the supply-demand balance is

satisfied, i.e.,

∑︂
l∈L

hl(ωl, p) =
∑︂
j∈J

fj(ξj, p). (1.2)

Each consumer l consumes dl units of resource and pays pdl, while each producer j

supplies qj units and earns a revenue of pqj as part of the market settlement.

1.1.3 Participation Behaviour and Market Equilibrium

In this section, for the purposes of this work, we introduce two different types of

rational participants’ behavior, price-taking, and price-anticipating. Each consumer

l ∈ L and producer j ∈ J seeks to maximize their payoff. The payoff of consumer l is

given by:

πl(dl) := Ul(dl) − pdl = Ul

(︁
h(ωl, p)

)︁
− ph (ωl, p) (1.3)

where we substitute the parameterized demand function in (1.3). Similarly, the payoff

of each producer j ∈ J is given by:

πj(qj) := pqj − Cj(qj) = pfj

(︂
ξj, p

)︂
− Cj

(︂
f(ξj, p)

)︂
(1.4)

We first describe the price-taking behavior in markets.

4



Definition 1.2. A market participant is price-taking if it accepts the existing prices

in the market and does not anticipate the impact of its bid on the market prices.

Given the prices p in the market, the generator individual problem is given by:

max
ξj

πj(ξj; p) (1.5)

Similarly given the prices p, the individual bidding problem for consumer is given by:

min
ωl

πl(ωl; p) (1.6)

We next define the price-anticipating (or strategic) participants.

Definition 1.3. A market participant is price-anticipating (strategic) if it anticipates

the impact of its bid on the prices in two stages and has complete knowledge of other

participants’ bids.

The individual problem of a price-anticipating generator is:

max
qj ,p

πj

(︃
qj, p

(︂
qj; q−j, dl

)︂)︃
(1.7a)

s.t. (1.2) (1.7b)

where qd
−j := ∑︁

k∈J ,k ̸=j qk. The producer j maximizes its profit while anticipating the

market clearing prices in the market (1.2), along with complete knowledge of consumer

bids ωl, l ∈ L, and other generators’ bids ξk, k ∈ G, k ≠ j. Similarly, the individual

problem for strategic consumer l with complete knowledge of prices in the market (1.2)

and other participants’ bids:

min
dl,p

πl

(︃
dl, p

(︂
dl; qj, d−l

)︂)︃
(1.8a)

s.t. (1.2) (1.8b)

where the load l minimizes its payment in the market and d−l := ∑︁
l∈L,k ̸=l dl.

The market equilibrium due to the competition between price-taking participants

is referred to as competitive equilibrium or Walrasian equilibrium [12, 13], while the
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equilibrium due to the competition between price-anticipating participants is referred

to as Nash equilibrium [4, 14]. At the equilibrium, no participant has any incentive to

deviate from their bid, and market clears, as defined below.

Definition 1.4. We say the participant bids and market clearing prices (ωl, l ∈

L, ξj, j ∈ G, p) form a market equilibrium if the following conditions are satisfied:

1. For each consumer l ∈ L, the bid ωl maximizes their individual payoff.

2. For each producer j ∈ J , the bid ξj maximizes their individual payoff.

3. The supply-demand balance is satisfied with the market-clearing prices p given

by (1.2).

An equilibrium analysis of the market is often used to understand the efficiency and

stability of a market mechanism. Though equilibrium is hard to attain in reality due to

the dynamic nature of the market, descriptive and predictive equilibrium outcomes (if

possible) provide intuition about the behavior of individual participants [15]. Moreover,

it can help identify sources of undesirable outcomes, implications of market designs,

market clearing, market policies, etc. For further discussion on the philosophy of the

Nash equilibrium and its importance in market design, we refer to Holt and Roth [16].

1.2 Energy Markets

We now focus on wholesale electricity markets regulated by Federal Energy Regulatory

Commission (FERC) in the US and operated by Regional Transmission Organizations

(RTOs) or Independent System Operators (ISOs). It typically consists of three

sub-markets: energy markets, capacity markets, and ancillary services markets. In

particular, energy markets encompass the everyday production and trade of electricity

between producers and consumers through offer curves and bids.
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Energy market operation may constitute multiple stages at various time scales, e.g.,

week-ahead, day-ahead, hour-ahead, 5-minute, etc. In practice, many ISOs consider

a two-stage settlement system, namely day-ahead and real-time markets, as a norm

in the market [17]. The first stage, the day-ahead market, allows apriori dispatch

commitment for the next day and helps reduce exposure to price fluctuations due to

deviations from generation forecasts and demand estimates. The following stage, the

real-time market, allows market participation during the course of the day to balance

their day-ahead commitments while clearing at a faster time scale [18, 19].

Even with a robust design, there are concerns about market efficiency due to

existing and emerging challenges to the electric grid.

1.2.1 Existing Market with Conventional Resources

The main goal of a sequential two-stage settlement electricity market is to operate

efficiently and ensure proper incentives to encourage participation in the market.

Several works have modeled the competition between participants in electricity markets

in different market settings, e.g., in a single-stage settlement market [20–22] or a

two-stage settlement market [23–25], in an energy market [26, 27] or a capacity

market [28, 29], in perfect competition with price-taking participants [13, 30] or

imperfect competition with strategic participants [31, 32], etc.

The often price difference between the two stages in practice, due to intrinsic

uncertainty in the forecast, unscheduled maintenance or outage, etc., creates opportu-

nities for price speculation and arbitrage, which could be further exploited by strategic

participants to their benefit, signaling efficiency losses [33–35]. Furthermore, there

is limited or no understanding of inelastic load’s ability to exercise market power in

two-stage markets.

To encourage market competition, several ISOs use different mitigation strategies,

often triggered locally at predefined market conditions like congestion, to identify and
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mitigate non-competitive offers in either of the stages [36]. Despite the execution of

such local policies, market power concern remains, and some ISOs have documented

intervals with non-competitive participant behavior (e.g., ∼ 2% hours in the California

ISO region [37]). This has led to the development of initiatives aimed at implementing

system-level market power mitigation (MPM), i.e., bid mitigation similar to LMPM,

but system-wide for each stage separately [38, 39]. Such system-level policies, when

implemented, substitute in, e.g., real-time or day-ahead, any non-competitive bids

with default bids, which estimate generator costs based on the operator’s knowledge

of technology, fuel prices, and operational constraints [40, §39.7.1],[41]. Although such

market policies are straightforward, their effect on market outcome remains unknown if

implemented without accounting for the conflicting interest of individual participants.

1.2.2 Emerging Technologies

The electric grid is undergoing a rapid transformation due to several factors, e.g., smart

devices, penetration of renewable energy resources, increase in distributed energy

resources, demand response, aggressive deep decarbonization targets, etc. Although

the conventional infrastructure involved centralized operation with a unidirectional

flow of energy, i.e., from suppliers to consumers, several emerging technologies have

introduced a bi-directional flow of energy and led to the evolution of electricity markets.

In particular, energy storage systems like lithium-ion batteries have the technical

capability to provide essential grid services for system reliability and power quality.

These capabilities combined with the growing adoption of non-dispatchable renewable

energy sources are driving the growing participation of energy storage in grid operation

and electricity markets [42–47]. A number of market dispatch models utilizing storage

have been proposed for the purposes of e.g., integrating renewable energy sources [48,

49], supporting transmission and distribution networks [50, 51], providing demand

response [52].
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To incentivize participation in the market, the Federal Energy Regulatory Com-

mission requires independent system operators to allow storage bidding that reflects

their operational characteristics and constraints. However, the operational cost of

storage, mainly due to its degradation, depends on time-coupled charging-discharging

cycles rather than the energy supply, making it challenging to communicate. Further,

along this line, there is a limited understanding of how hybrid technologies, e.g.,

energy storage combined with solar energy, can be allowed to participate efficiently

and reliably. Such questions are increasingly becoming important due to the increased

diversity in participating resource technologies.

1.3 Contributions of this Thesis

The electricity market research requires an intricate understanding of the governing

physical laws and provides a unique framework to analyze the impact of participant-

centric principles on the market efficiency. In this work, we start by analyzing the

system in a simplified setting for a relaxed set of assumptions and progressively increase

the complexity with system constraints for a generalized discussion.

1.3.1 Two-stage Markets with Conventional Resources

We first consider the participation of conventional resources in a two-stage sequential

market in Chapter 2. This chapter is based on [32, 53, 54].

We study the competition between generators and loads in a market without any

market power mitigation strategy (called here standard market). The competitive

equilibrium (assuming price-taking participants) is efficient, in the sense that it aligns

with a hypothetical social planner [23]. Using the market equilibrium in the standard

market as a benchmark, we model and analyze the impact of system-level MPM

policies on participant behavior. We show that a real-time MPM policy leads to a

Nash game in the day-ahead, while generators participate truthfully in real-time. We
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characterize the competitive equilibrium of such a game, which is inefficient w.r.t the

social planner’s problem. Further, competition between price-anticipating participants

does not result in a stable market outcome, and a Nash equilibrium does not exist.

We then study the impact of a day-ahead MPM policy that leads to a generalized

Stackelberg-Nash game with loads acting as leaders in the day-ahead market and

generators acting as followers in the real-time market. The Nash equilibrium, assuming

that generators are homogeneous and bid symmetrically for closed-form analysis, is

robust to price manipulations compared to standard markets, i.e., a two-stage market

without any mitigation policies.

The market equilibrium with supply function bidding highlights the lack of guar-

antee of stable market outcome. That is, when participants are strategic, it is not

possible to guarantee the existence of a Nash equilibrium. This motivates the search

for alternative mechanisms that can provide guarantees of the existence of an equi-

librium and, thus, better mitigate market power. We consider the use of intercept

function bidding [55] as an alternative market participation strategy that provides

several benefits from the standpoint of market power mitigation. Further, a detailed

numerical study illustrates several additional insights into the proposed solution, such

as the fact that the model parameters of the alternative bidding mechanism can be

tuned to obtain a Nash equilibrium arbitrarily close to the competitive equilibrium, as

well as the odd fact that heterogeneity in generator cost can limit the market power

of the game leaders, i.e., loads.

Finally, we discuss the impact of uncertainty in cost estimation and demand

randomness on the market equilibria. Our analysis shows that at the Nash equilibrium

overestimation of generation cost and randomness in real-time demand tend to penalize

demand by increasing their payments and benefit generators by increasing their revenue.

Furthermore, despite of operator’s error in cost estimation, the competitive equilibrium

of the resulting game aligns with the social planner problem.
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1.3.2 Incentivizing Energy Storage

Market mechanisms for energy storage are studied in Chapter 3. This chapter is

based on [30, 56, 57]. Although the market power exists due to price manipulation by

strategic participants, the existing market mechanism is indeed incentive compatible

in a competitive market with price-taking participants, i.e., generators and loads.

However, rapid growth in emerging technologies, e.g., energy storage, is changing

the electricity grid and challenging the traditional market mechanisms. In particular,

these technologies have unique operational characteristics, and their participation

within the existing market design may lead to economic losses.

We consider two different bidding strategies for storage. In the first setting, storage

bids as a prosumer using a generalized supply function [55], which allows it to behave

as supply and demand, and is compensated based on spot prices. Although such a

market achieves a competitive equilibrium, it requires that storage owners have a

priori knowledge of cleared prices, and leads to prices and dispatch schedules that

do not align with the social planner problem. In order to overcome this inability, we

propose a new mechanism where storage owners bid using an energy-cycling function.

This function maps prices (in dollars per cycle depth) to the corresponding cycle depth

that the user is willing to perform and allows storage participants to be compensated

based on a per-cycle basis. We show that by properly adapting the market-clearing to

account for this bid, the competitive equilibrium of this mechanism exists, and leads

to a dispatch that aligns with the social planner. These goals are achieved by inducing

truthful bidding among storage owners that are independent of the clearing prices.

However, in the presence of strategic participants, the class of supply function

bidding, where participants bid the function slope as a parameter, can not guarantee a

stable market outcome. We propose a novel market mechanism based on an alternative

class of function bidding, i.e., intercept function bidding, where participants bid the
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intercept of the supply or energy-cycling function, motivated by [55, 58, 59], as the

parameter in the market. We model the competition between generators, which

submits an intercept function that maps power to prices, and energy storage, which

uses an intercept energy-cycling function that maps cycle-depths to per-cycle prices.

Drawing ideas from the slope function bidding with a scalar bid parameter, we

first consider a uniform intercept bidding strategy, i.e., each participant bids a unique

intercept, respectively, for the entire horizon. We characterize the unique competitive

equilibrium of the resulting game, assuming price-taking participants. Our analysis

shows that the market equilibrium requires additional conditions on the model pa-

rameters to align with the social planner’s objective, and participants may not always

reveal their truthful cost. For the assumptions that result in an efficient competitive

equilibrium, we provide a closed-form characterization of the unique Nash equilibrium

for the price-anticipating market participants. Further, the Nash equilibrium tends

towards the competitive equilibrium asymptotically as the number of participants

increases.

To relax the restriction of unique intercept bids for all intervals in the market

mechanism, we consider a non-uniform market mechanism where each participant

can bid separately for each interval. The resulting competitive equilibrium aligns

with the social planner’s objective regardless of the choice of model parameters.

Moreover, the Nash equilibrium asymptotically tends towards competitive equilibrium.

Finally, we provide a detailed numerical study to illustrate the impact of model

parameters. We show a steep misalignment of the competitive equilibrium with the

social planner problem for small slope values in the uniform bid mechanism. An

analysis of heterogeneity in cost coefficients shows that cheaper generators are most

affected at the Nash equilibrium. Moreover, a decrease in capital cost and an increase

in storage capacity benefits them with relatively higher profits. Finally, with increasing

levels of renewable energy penetration, energy storage earns a higher profit at the
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expense of ramping limit constraints of conventional generating sources.

1.3.3 Integration of Hybrid Energy Resources

Finally, we concentrate on the participation of hybrid energy resources, i.e., a combi-

nation of energy storage and a renewable energy resource, in a large-scale New York

Independent System Operator (NYISO) area in Chapter 4. This chapter is based

on [60]. The unique operational characteristics of these emerging technologies are

not easy to capture in the existing market design. With aggressive targets on deep

decarbonization, focus on distributed energy resources, and penetration of renewable

energy resources, ISOs and RTOs are searching for ways for reliable and efficient

participation of these technologies within the existing market structure.

With a solid theoretical understanding of the economics of various market mech-

anisms, we study the challenges in market design and efficient integration of new

market participants, such as hybrid resources as a combination of energy storage and

renewable energy resources. Drawing ideas from the existing market design, where

renewable generators and storage participate independently with storage state of

charge (SoC) managed by the operator, we investigate participation models of hybrid

resources. In the first model, a shared interconnection limit constrains the combined

output of a hybrid resource, while constituent resources participate independently

with ISO managing the SoC of energy storage. On the other hand, the second model

considers an integrated hybrid resource, e.g., a black box, participating by submitting

offers or bid curves and managing its storage SoC internally. These offer curves were

designed by the Lawrence Berkeley National Laboratory in collaboration with Electric

Power Research Institute.

The contributions in this study involve developing a production cost model with

multi-intervals and multi-stages in Polaris’ Power System Optimizer (PSO) to model

the participation of hybrid resources and adaptations in market software to incorporate
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their operational characteristics. Furthermore, we designed and simulated case studies

that consider various resource mixes and analyzed case scenarios in terms of system

reliability, economic efficiency, dispatch feasibility, etc. Our analysis shows that SoC

management by operator results in lower operating costs and fewer penalties due

to fewer violations of storage constraints. Intuitively, the granularity of the model

allows for an accurate representation of operational characteristics. However, it adds

to the complexity of market design and computational efficiency, which may not be

desirable to market operators. Moreover, the combined effect of an increase in market

penetration of hybrid resources, varying dependence of hybrid resources on the grid to

charge the constituent energy storage resource, etc., could lead to higher profits for

hybrid resources, indicating the willingness of hybrid resource owners for modifications

in the existing market design.

14



Chapter 2

Market Power in Existing
Electricity Markets Design

Many Regional Transmission Organizations (RTOs) and Independent System Opera-

tors (ISOs) conduct auctions to settle electricity transactions in a wholesale energy

market. Typically, suppliers, e.g., generator owners, offer to sell electricity as a function

of price, while consumers, e.g., utilities, offer to purchase electricity to meet their

energy demand. After all the bids are collected, the market is cleared achieving a

supply-demand balance. Such an electricity market often constitutes of a two-stage

settlement, namely day-ahead and real-time markets [17, 19]. The first stage, the

day-ahead (forward) market, clears a day before the delivery based on the hourly

forecasts of resources for the next day and accounts for the majority of energy trades.

The second stage, the real-time (spot) market, occurs at a faster timescale (typically

every five minutes) and is considered a last resort for participants to adjust their

commitment following forecast errors [23, 53, 61, 62].

Though such a coupled two-stage market was designed, in spirit, to mitigate any

form of speculation and arbitrage, the common price difference between the two stages

in practice signals efficiency losses [33, 34, 63]. The discrepancies occur, not only due

to uncertainty in load forecast, unscheduled maintenance, or shutdowns, but also due

to market manipulation by strategic participants who influence the market to their
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benefit [35, 64, 65].

To discourage suppliers from exploiting consumers, most operators employ inbuilt

local market power mitigation mechanisms (LMPM) triggered at pre-defined conditions,

e.g., congestion, during market clearing [36, 66]. Despite this, some operators, like

California Independent System Operator (CAISO), have documented periods of time

with non-competitive bids (approximately 2% hours in the case of CAISO [37]). It led

to the development of initiatives aimed at implementing system-level market power

mitigation (MPM), i.e., bid mitigation similar to LMPM, but system-wide for each

stage separately [38, 39]. Such system-level policies, when implemented, substitute

in, e.g., real-time or day-ahead, any non-competitive bids with default bids, which

estimate generator costs based on the operator’s knowledge of technology, fuel prices,

and operational constraints [40, §39.7.1],[41].

There exists vast literature on modeling the competition between participants in

electricity markets and understanding price manipulation opportunities in different

market settings [20–25]. Beyond understanding market power, its identification [67, 68],

and the development of metrics to quantify it [69], the design of mitigation strategies

has been an important subject of study for operators and academics. This includes,

e.g., CAISO’s local market power mitigation policies [36], congestion penalties [70],

virtual transactions [71], forward contracting [72, 73], demand shifting [74], capacity

regulation [75], etc.

However, the impact of system-level mitigation policies, such as those proposed by

CAISO, has received limited attention. Although such market policies are straight-

forward, their effect on market outcome remains unknown if implemented without

accounting for the conflicting interest of individual participants. In this chapter,

we wish to study the competition between market participants, i.e., generators and

inelastic loads, and understand the impact of system-level MPM policies in a two-stage

settlement market.
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The remainder of the chapter is organized as follows. In section 2.1, we formulate

the social planner problem, describe the two-stage market mechanism, and define two-

stage market equilibrium. In section 2.2, we discuss the conventional slope function

bidding and characterize the market equilibrium in a standard two-stage market. We

then model system-level market power mitigation policies, and characterize the market

equilibrium for different participation behavior. Section 2.3 motivates and describes

the use of intercept function bidding in modeling two-stage markets. We compare

the market equilibria in slope function and intercept function bidding in section 2.4.

Sections 2.5 and 2.6 discuss the limitation of the study and recommendations for

policymakers, respectively. Finally, the chapter summary is in section 2.7.

2.1 Market Model

In this section, we start with the formulation of the underlying social planner prob-

lem. We then describe the standard two-stage settlement electricity market design,

where a generator bids a supply function while demand bids quantities. Finally, we

define a general market equilibrium of the game due to competition between rational

participants in such a market setting.

2.1.1 Social Planner Problem

Consider a single-interval two-stage settlement market where a set G of generators

participate with a set L of inelastic loads to meet inelastic aggregate demand d ∈ R.

Each generator j ∈ G supplies gj ∈ R and each inelastic load l ∈ L consumes dl ∈ R

respectively, where ∑︁l∈L dl = d. We define G := |G| and L := |L| to denote the

number of generators and loads, respectively. Assuming a convex cost function Cj(gj)

for each generator j ∈ G, respectively, the social planner problem — minimum cost of

meeting aggregate inelastic demand — is given by:
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Figure 2-1. Two-stage market mechanism

min
gj ,j∈G

∑︂
j∈G

Cj(gj) (2.1a)

s.t.
∑︂
l∈L

dl =
∑︂
j∈G

gj (2.1b)

where (2.1b) enforces the supply-demand balance in the two-stage market.

2.1.2 Two-stage Market Mechanism

In this subsection, we define the two-stage market clearing, as shown in Figure 2-1.

The net output gj of each generator j is distributed between gd
j and gr

j such that

gj = gd
j + gr

j , (2.2)

where gd
j , gr

j represent power output in day-ahead and real-time markets, respectively.

Similarly, each load l allocates its inelastic demand dl over two stages such that

dd
l + dr

l = dl (2.3)

where dd
l , dr

l represent load allocation in day-ahead and real-time markets, respectively.

2.1.2.1 Day-ahead Market

The power output of each generator j ∈ G in the day-ahead market is denoted by gd
j .

Each generator j submits a supply function h : R × R → R, parameterized by θd
j , that
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indicates willingness of generator j to supply gd
j as a function of price

gd
j = h(λd; θd

j ) (2.4)

where λd denotes the price in the day-ahead market. Each load l ∈ L bids quantity dd
l

in the day-ahead market. Based on the bids (θd
j , dd

l ) from participants, the market

operator clears the day-ahead market to meet the supply-demand balance.

∑︂
j∈G

h(λd; θd
j ) = dd (2.5)

The optimal solution to the day-ahead dispatch problem (2.5) gives the optimal

dispatch (gd
j , dd

l ) and clearing prices λd to all the participants. Each generator j ∈ G

and load l ∈ L are paid λdgd
j and λddd

l as part of the market settlement.

2.1.2.2 Real-time Market

The power output of each generator j in real-time market is denoted by gr
j and their

bid is:

gr
j = h(λr; θr

j ) (2.6)

where λr denotes the price in the real-time market. The supply function bid is

parameterized by θr
j , indicating the willingness of generator j to supply gr

j at the price

λr. Each load l ∈ L submits the quantity bids dr
l . Given the bids (θr

j , dr
l ), the operator

clears the real-time market to meet the supply-demand balance.

∑︂
j∈G

h(λr; θr
j ) = dr (2.7)

Similar to the day-ahead market clearing, the optimal solution to the dispatch prob-

lem (2.7) gives the optimal dispatch and the market clearing prices λr to all the

participants, such that each generator j ∈ G and load l ∈ L produces or consumes

gr
j and dr

l , and is paid or charged λrgr
j and λrdr

l , respectively, as part of the market

settlement.
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2.1.2.3 Market Rules and Goal

In this section, we first define a set of rules to account for degenerate cases in the

market mechanism and then discuss the goal of a two-stage market.

Assumption 2.1. For v ∈ {d, r} and w ∈ {d, r}, if the net supply and demand of the

generators and loads in a stage follow

∑︂
j∈G

h(λv; θv
j ) = 0, dv = 0 =⇒ λv = λw, v ̸= w

i.e., the clearing price in that stage is set to the clearing prices of the other stage with

a non-zero demand.

Assumption 2.2. For v ∈ {d, r}, if the net supply and net demand of the generators

and loads in a stage follow

∑︂
j∈G

h(λv; θv
j ) = 0, dv ̸= 0 =⇒ λv = 0

i.e., the clearing price is set to zero, and demand is split evenly across all the loads.

We are interested in two-stage market outcomes that satisfy

∑︁
j∈G

(gd
j + gr

j ) = ∑︁
j∈G

gj = ∑︁
l∈L

(dd
l + dr

l ) = ∑︁
l∈L

dl = d (2.8)

and solve the social planner problem (2.1). Though the market outcome may deviate

from the optimal social planner solution, signaling efficiency losses due to price

manipulation by participants, we quantify such deviations to understand the behavior

of participants and the market outcome.

2.1.3 Participant Behavior and Market Equilibrium

In this section, for the purposes of our study, we define the individual problems and

market equilibrium in two-stage markets. Each generator j ∈ G seeks to maximize

their profit πj, given by:
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Generator Profit

πj(gd
j , gr

j , λd, λr) := λrgr
j + λdgd

j − Cj

(︂
gj

)︂
(2.9)

The individual problem of a price-taking generator, given the prices in the day-

ahead market λd and real-time market λr, :

Price-taking Generator Bidding problem

max
gd

j ,gr
j

πj(gd
j , gr

j ; λd, λr) (2.10)

In comparison, the individual problem of a price-anticipating generator is:

Price-anticipating Generator Bidding problem

max
gd

j ,gr
j ,λd,λr

πj

(︃
gd

j , gr
j , λd

(︂
gd

j ; gd
−j, dd

)︂
, λr

(︂
gr

j ; gr
−j, dr

)︂)︃
(2.11a)

s.t. (2.5), (2.7) (2.11b)

where gd
−j := ∑︁

k∈G,k ̸=j gd
k, and gr

−j := ∑︁
k∈G,k ̸=j gr

k . The generator j anticipates

the market clearing prices in the day-ahead and real-time market (2.5) and (2.7),

and has complete knowledge of load bids dd
l , dr

l , l ∈ L, and other generators’ bids

θd
k, θr

k, k ∈ G, k ̸= j. Similarly, each load l ∈ L aims to minimize their payments ρl, as:

Load Payment

ρl(dd
l , dr

l , λd, λr) := λddd
l + λrdr

l (2.12)

Substituting the coupling constraint for the load allocation across two stages (2.3)

in (2.12) we get,

ρl(dd
l , λd, λr) := λddd

l + λr(dl − dd
l ) (2.13)

For each load l ∈ L, the allocation in the day-ahead market dd
l determines its allocation

in the real-time market dr
l due to the demand inelasticity. Given the prices λd, λr, the

individual bidding problem of a price-taking load is given by:
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Price-taking Load Bidding problem

min
dd

l

ρl(dd
l ; λd, λr) (2.14)

Similarly, the individual problem of a strategic load l with complete knowledge of

prices in two stages (2.5) and (2.7), and other participants’ bids:

Price-anticipating Load Bidding problem

min
dd

l
,λd,λr

ρl

(︃
dd

l , λd
(︂
dd

l ; gd
j , dd

−l

)︂
, λr

(︂
dd

l ; gr
j , dr

−l

)︂)︃
(2.15a)

s.t. (2.5), (2.7) (2.15b)

where d
d

−l := ∑︁
l∈L,k ̸=l dd

l , d
r

−l := ∑︁
l∈L,k ̸=l dr

l .

2.1.3.1 Market Equilibrium

For the purpose of this study, we characterize the market equilibrium in a two-stage

settlement electricity market. At the equilibrium, no participant has any incentive to

deviate from their bid, and the market clears, as defined below; note that Definition 2.1

is identical to Definition 1.4.

Definition 2.1. We say the participant bids and market clearing prices (θd
j , θr

j , j ∈

G, dd
l , dr

l , l ∈ L, λd, λr) in the day-ahead and real-time respectively form a two-stage

market equilibrium if the following conditions are satisfied:

1. For each generator j ∈ G, the bid θd
j , θr

j maximizes their individual profit.

2. For each load l ∈ L, the allocation dd
l , dr

l minimizes their individual payment.

3. The inelastic demand d ∈ R is satisfied with the market-clearing prices λd given

by (2.5) and λr given by (2.7) over the two-stages of the market.

Definition 2.2. A market equilibrium that satisfies the Definition 2.1 is said to be

symmetric on the generator side if all the generators are homogeneous and make the

same decisions in both stages, i.e., θd
j := θd, θr

j := θr, ∀j ∈ G.
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2.2 Slope Function Bidding

In this section, we model the competition between generators (bidding conventional

supply functions and seeking to maximize individual profit) [13] and loads (bidding

demand quantities and minimizing payment) [76]. In conventional supply function

bidding, participants bid the slope of the function, and we refer to it as slope function

bidding in this work, as given by:

gv
j := h(λv; θv

j ) = θv
j λv, v ∈ {d, r} (2.16)

where the parameter θv
j ∈ R explicitly indicate willingness of generator j to produce

gv
j per unit price λv.

We first characterize the market equilibrium in a standard two-stage market

without any such mitigation policy [23], then model mitigation policies and the

resulting market equilibrium. For ease of analysis, we assume a quadratic cost function

for each generator j, parameterized by cost coefficient cj,

Cj(gj) = cj

2 gj
2 (2.17)

2.2.1 Standard Two-stage Market

The role of participants in a standard market without any mitigation policy is studied

extensively in the literature [13, 23, 31, 77]. Here, we cite the results from [23] that

analyze the role of strategic generators and inelastic demand in a standard two-stage

market and use them as a benchmark to analyze the impact of a mitigation policy in

the market.

Price-taking Participation and Competitive Equilibrium

For the individual incentive problem in a two-stage market, substituting the cost

function (2.17) and supply function (2.16) in (2.9), we get

πj(θd
j , θr

j ; λd, λr) = θd
j λd2 + θr

j λr2 − cj

2
(︂
θd

j λd + θr
j λr

)︂2
(2.18)
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and the individual problem for price-taking generator j is:

max
θd

j ,θr
j

πj(θd
j , θr

j ; λd, λr) (2.19)

Similarly, the individual problem for load l is given by (2.14). Given the prices, λd, λr,

we next characterize the resulting competitive equilibrium due to competition between

price-taking participants.

Theorem 2.1 (Proposition 1 [23]). A competitive equilibrium in a two-stage market

exists and is explicitly given by

θd
j + θr

j = c−1
j , θd

j ≥ 0, θr
j ≥ 0, ∀j ∈ G (2.20a)

dd
l + dr

l = dl, ∀l ∈ L (2.20b)

λd = λr = d∑︁
j∈G

c−1
j

(2.20c)

The resulting competitive equilibrium solves the social planner problem (2.1).

Moreover, it exists non-uniquely, and there is no incentive for a load to allocate

demand in the day-ahead market due to equal prices in two stages.

Price-anticipating Participation and Nash Equilibrium

The individual problem of price-anticipating generator j and price-anticipating load l

is given by (2.11) and (2.15), respectively. We next characterize the resulting Nash

equilibrium in such a market.

Theorem 2.2 (Proposition 4 [23]). Assume strategic generators are homogeneous

(cj := c, ∀j ∈ G). If there are at least three firms, i.e., G ≥ 3, a Nash equilibrium in

a two-stage market exists. Further, this equilibrium is unique and explicitly given by

θd
j = L(G − 1) + 1

L(G − 1)
G − 2
G − 1

1
c
, θr

j = 1
L + 1

(G − 2)2

(G − 1)2
1
c

(2.21a)

dd
l = L(G − 1) + 1

L(L + 1)(G − 1)d, dr
l = dl − dd

l (2.21b)
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λd = L

L + 1
G − 1
G − 2

c

G
d, λr = G − 1

G − 2
c

G
d (2.21c)

The resulting Nash equilibrium exists uniquely, where price-anticipating loads

anticipate the actions of generators and allocate demand to exploit lower prices in the

day-ahead market. Thus prices are different in two stages. Moreover, the net demand

allocation in the day-ahead and real-time market follows

∑︂
l∈L

dd
l = dd ∈ (0.5d, d),

∑︂
l∈L

dr
l = dr ∈ (0, 0.5d) (2.22)

2.2.2 Two-stage Market with an MPM Policy

ISOs have significant prior knowledge of market participants allowing them to evaluate

the competitiveness of energy bids. For example, operators are aware of the generator’s

technology, fuel prices, and operational constraints that can be used to estimate or

bound the generator’s cost [40, §39.7.1],[41] within a reasonable threshold under the

mitigation policies. We assume that the operator makes an error in estimating the

truthful cost of dispatching the generator in a stage with a mitigation policy.

Although it is reasonable to implement such mitigation policies in both day-ahead

and real-time, CAISO argues that real-time is more susceptible to market power and

day-ahead is relatively competitive [38]. Therefore, these market modifications are

being considered separately, starting with the real-time stage in the first phase and

followed by the day-ahead.

2.2.2.1 Real-time MPM Policy

In this section, we first discuss the modified market model, the individual incentives

of participants, and then characterize market equilibrium for a real-time MPM policy.
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Figure 2-2. Two-stage market mechanism with a real-time MPM policy

Modeling Real-time MPM Policy

In the case of a real-time MPM policy, the market ignores generators’ bids in real-time,

as shown in Figure 2-2, and roughly estimates the cost of dispatching generator j with

an error ϵj ≥ 0, given the day-ahead dispatch gd
j

gr
j = (cj + ϵj)−1λr − gd

j (2.23)

Using the two-stage generation and supply-demand balance (2.8) and real-time

dispatch (2.23) we get

λr = d∑︁
j∈G

(cj + ϵj)−1 (2.24)

Price-taking Participation and Competitive Equilibrium

For the individual incentive problem in a two-stage market with real-time MPM policy,

substituting the cost function (2.17), day-ahead supply function (2.16), real-time true

dispatch condition (2.23) and real-time clearing prices (2.24) in (2.9), we get

πj(θd
j , λd) = θd

j λd2 + d∑︁
k∈G

c−1
k

(︂
ωjd − θd

j λd
)︂

− cj

2
(︂
ωjd

)︂2
(2.25)
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where ωj := (cj+ϵj)−1∑︁
k∈G(ck+ϵk)−1 . Hence, an individual problem of a price-taking generator

is:

max
θd

j

πj(θd
j ; λd) (2.26)

Similarly, substituting the clearing price (2.24) in (2.13) we get,

ρl(dd
l , λd) := λddd

l + d∑︁
k∈G

(ck + ϵk)−1 (dl − dd
l ) (2.27)

such that the individual problem for load l is given by:

min
dd

l

ρl(dd
l ; λd) (2.28)

The competition between price-taking participants for individual incentives leads

to a set of competitive equilibria, as characterized below.

Theorem 2.3. The competitive equilibrium in a two-stage market with a real-time

MPM policy exists, and given by:

gd
j + gr

j = (cj + ϵj)−1∑︁
k∈G

(ck + ϵk)−1 d, θd
j ∈ R≥0 ∀j ∈ G (2.29a)

dd
l + dr

l = dl, ∀l ∈ L (2.29b)

λd = λr = d∑︁
k∈G

(ck + ϵk)−1 (2.29c)

We provide proof of the theorem in Appendix A. At the competitive equilibrium,

the market clearing prices are equal in the two stages, meaning there is no incentive

for a load to allocate demand in the day-ahead market, e.g., current market practice.

However, the resulting equilibrium in Theorem 2.3 is inefficient and does not always

align with the social planner problem.

Corollary 2.1. The competitive equilibrium in a two-stage market with a real-time

MPM policy (2.29) also solves the social planner problem (2.1) only when ϵj = 0, ∀j ∈

G,
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Price-anticipating Participation and Nash Equilibrium

The individual problem of each price-anticipating generator j, given by:

max
θd

j ,λd
πj

(︄
θd

j , λd
(︃

θd
j ; θ

d

−j, dd
)︃)︄

s.t. (2.5) (2.30)

where generator j maximizes its profit in the two-stage market. The individual problem

of price-anticipating load is:

min
dd

l
,λd

ρl

(︄
dd

l , λd
(︃

dd
l ; θd

j , d
d

−l

)︃)︄
s.t. (2.5) (2.31)

where the load l minimizes its payment in the market.

We study the resulting sequential game where players anticipate each other actions

and prices in the market, and the day-ahead clears before the real-time market.

To this end, we analyze the game backward, starting from the real-time market,

where prices are fixed due to MPM policy (2.24), followed by the day-ahead market,

where participants make decisions for optimal individual incentives and compute the

equilibrium path. Generators do not bid in real-time, but loads are allowed to bid in

the market. However, load makes decisions simultaneously in the day-ahead market

due to inelasticity, fixing their bids in the real-time market, which affects the two-stage

market clearing. The following theorem characterizes the two-stage Nash equilibrium

that satisfies the Definition (2.1).

Theorem 2.4. The Nash equilibrium in a two-stage market with a real-time MPM

policy does not exist.

We provide a brief insight below into the loss of equilibrium and proof of the

theorem in Appendix B. The price-anticipating participants compete with each other

to manipulate prices in the day-ahead given by (2.5):

λd = dd∑︁
j∈G

θd
j

(2.32)
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while the prices in the real-time λr (2.24) is fixed. Loads bid decreasing quantities dd
l

to reduce clearing prices in the day-ahead market and minimize the load payment.

Simultaneously, generators bid decreasing parameter θd
j to increase clearing prices

and maximize revenue. The competition between loads and generators for individual

incentives in the day-ahead market drives all the demand to the real-time market,

where generators operate truthfully. However, in our market mechanism, loads then

have the incentive to deviate and allocate demand in the day ahead where prices

are zero, meaning zero payment in the market, see Rule 2.2. Such unilateral load

deviations result in deviations from generators to increase clearing prices in the day-

ahead market. Therefore the equilibrium does not exist. Without such a market rule,

the Nash equilibrium does exist with undefined clearing prices in the day-ahead and

all demand allocated to the real-time market. Nevertheless, since day-ahead accounts

for a majority of energy trades, the resulting equilibrium is undesirable.

2.2.2.2 Day-ahead MPM Policy

In this section, we define the individual incentive of participants and characterize

market equilibrium for a day-ahead MPM policy.

Modeling Day-ahead MPM Policy

In the case of a day-ahead MPM policy, as shown in Figure 2-3, the market ignores

the generators’ bids and roughly estimates the cost of dispatching generator j in the

day-ahead with an error ϵj ≥ 0, as given by:

gd
j = (cj + ϵj)−1λd (2.33)

Moreover, using day-ahead power balance constraint, we get

λd = dd∑︁
j∈G

(cj + ϵj)−1 (2.34)
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Figure 2-3. Two-stage market mechanism with a day-ahead MPM policy

Price-taking Participation and Competitive Equilibrium

For the individual incentive problem in a two-stage market with a day-ahead MPM

policy, substituting the clearing price (2.34) in (2.9), we get

πj(θr
j ; λr) = (cj + ϵj)(ωjd

d)2 + θr
j λr2 − cj

2
(︂
ωjd

d + θr
j λr

)︂2
(2.35)

where ωj := (cj+ϵj)−1∑︁
k∈G(ck+ϵk)−1 . The individual problem for price-taking generator j is:

max
θr

j

πj(θr
j ; λr) (2.36)

and the individual problem for load l is given by (2.14). The resulting competitive

equilibrium given the clearing prices λd and λr is characterized below.

Theorem 2.5. The competitive equilibrium in a two-stage market with a day-ahead

MPM policy exists and is given by:

gd
j = (cj + ϵj)−1∑︁

j∈G c−1
j

d, gr
j =

ϵjc
−1
j

cj + ϵj

d∑︁
j∈G c−1

j

∀j ∈ G (2.37a)

dd
l + dr

l = dl, ∀l ∈ L, dd =

∑︁
j∈G

(cj + ϵj)−1

∑︁
j∈G

c−1
j

d, dr = d − dd (2.37b)

θr
j =

ϵjc
−1
j

cj + ϵj

, λd = λr = 1∑︁
j∈G c−1

j

d (2.37c)
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We provide proof of the theorem in Appendix C. Unlike the competitive equilibrium

for a real-time MPM policy in (2.29) with equal prices across stages, the loads at

equilibrium (2.37) allocate a majority of the demand in the day-ahead. The incentive

for day-ahead demand allocation is a desired market outcome and is not generally

satisfied by other market mechanisms. The resulting equilibrium exists as price-taking

loads do not anticipate the effect of their bid on the market prices, meaning the

payment remains the same for any allocation across the two stages. Moreover, the

market outcome (2.37) solves the social planner problem (2.1).

Price-anticipating Participation and Nash Equilibrium

The individual problem of each price-anticipating generator j, given by:

max
θr

j ,λr
πj

(︃
θr

j , λd
(︂
dd
)︂

, λr
(︂
θr

j ; θ
r

−j, dr
)︂)︃

s.t. (2.7) (2.38)

where generator j maximizes its profit in the market. The individual problem of

price-anticipating load l, is given by:

min
dd

l
,λr

ρl

(︄
dd

l , λd
(︃

dd
l ; d

d

−l

)︃
, λr

(︂
dd

l ; θr
j , d

r

−l

)︂)︄
s.t. (2.7) (2.39)

where load l minimizes its payment in the market.

In the market model with a day-ahead MPM policy, generators make decisions

in real-time while load can make decisions in the day-ahead. The resulting two-

stage sequential game is essentially a leader-follower Stackelberg-Nash game, where

generators are followers in the real-time market and loads are leaders in the day-ahead

market, and each participant in their respective groups competes amongst themselves

in a Nash game. We follow the terminology used in [78] to describe similar formulations

in different markets. For the closed form solution, we assume that generators are

homogeneous in the sense that they share the same cost coefficient, i.e. cj =: c, ∀j ∈ G
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and bid symmetrically in the market, i.e. θr
j =: θr, ∀j ∈ G. Under these assumptions,

the Nash equilibrium is characterized below.

Theorem 2.6. Assume that generators are homogeneous and bid symmetrically in

the market. Also, assume that estimation error is same for homogeneous generators,

i.e. ϵj := ϵ, ∀j ∈ G. If more than two generators are participating in the market

i.e., G ≥ 3 and the number of individual loads participating in the market satisfies
1
L

> c−ϵ(G−2)
(c+ϵ)(G−2) , then the symmetric Nash equilibrium in a two-stage market with a

day-ahead MPM policy exists uniquely as:

gd
j = c

c + ϵ

L

L + 1
G − 1
G − 2

d

G
, gr

j =
(︄

1 − c

c + ϵ

L

L + 1
G − 1
G − 2

)︄
d

G
(2.40a)

dd
l = c

c + ϵ

1
L + 1

G − 1
G − 2d, dr

l =
(︄

dl − c

c + ϵ

1
L + 1

G − 1
G − 2d

)︄
(2.40b)

θr = 1
c

(︄
G − 2
G − 1 − c

c + ϵ

L

L + 1

)︄
(2.40c)

λd = L

L + 1
G − 1
G − 2

c

G
d, λr = G − 1

G − 2
c

G
d. (2.40d)

Moreover, for 1
L

≤ c−ϵ(G−2)
(c+ϵ)(G−2) , a symmetric equilibrium does not exist.

We provide proof of the Theorem in Appendix D. Unlike the market with a real-

time MPM policy, the Nash equilibrium exists in the market with a day-ahead MPM

policy. However, it requires restrictive conditions on the number of participants in

the market and may not even exist in other cases. We discuss these cases with no

symmetric Nash equilibrium and provide intuition into participants’ behavior in the

market:

1. 1
L < c−ϵ(G−2)

(c+ϵ)(G−2) : In this case, the net demand is negative in the real-time market.

The first order condition implies that each generator j acts as load, paying

λrgr
j as part of the market settlement since their optimal bid θr

j < 0 and the

real-time clearing price λr > 0. However, if the generators bid θr
j > 0, then

the linear supply function implies that each generator j dispatch gr
j < 0 at
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the clearing prices λr < 0 earning revenue in the market. However, this is

not desirable from a load perspective since they are making payments in the

market and they have the incentive to deviate to minimize their payment. Hence,

symmetric equilibrium with negative demand in the real-time market does not

exist as the symmetric bid θr
j > 0 does not satisfy the first-order condition. The

dependence of the individual bid θr
j on the given bids from other participants

makes the closed-form analysis challenging, and any guarantee of the existence

of equilibrium is hard.

2. 1
L = c−ϵ(G−2)

(c+ϵ)(G−2) : In this case, no symmetric Nash equilibrium exists. Loads take

advantage of the truthful participation of generators in day-ahead market and

their ability to anticipate impact of bids on the clearing prices. Regardless of

generators’ bids, loads have the incentive to deviate by allocating demand in

the real-time market with a lower clearing price.

Corollary 2.2. For 1
L

> c−ϵ(G−2)
(c+ϵ)(G−2) , at the Nash equilibrium (2.40) in a two-stage

market with a day-ahead MPM policy, the demand allocation is given by:

∑︁
l∈L dd

l = dd = c
c+ϵ

L
L+1

G−1
G−2d (2.41a)

∑︁
l∈L dr

l = dr =
(︂
1 − c

c+ϵ
L

L+1
G−1
G−2d

)︂
d (2.41b)

Assuming ϵ = 0, the following relation holds,

dd ∈ (0.5d, d), dr ∈ (0, 0.5d)

2.2.3 Equilibrium Analysis

In this section, we study the properties of market equilibrium under the proposed

policy framework and compare it with the standard market equilibrium.
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Table 2-I. Competitive equilibrium (CE) and Nash equilibrium (NE) with a stage-wise
MPM policy (slope function bidding)

Instance Real-time MPM Day-ahead MPM

CE
Non-unique equilibrium Unique equilibrium

Do not achieve social cost Achieve social cost
Arbitrary demand allocation Higher demand in day-ahead

NE
Does not exist Symmetric equilibrium

- Social Cost same as CE
- Extra constraints on players

2.2.3.1 Comparison of Stage-wise MPM Policies

An MPM policy in real-time either results in an inefficient market outcome at the

competitive equilibrium or leads to no Nash equilibrium. However, an MPM policy in

the day-ahead leads to a stable market outcome that is robust to price manipulations,

e.g. see Nash equilibrium (2.40). Despite errors in cost estimations, the competitive

equilibrium is efficient (2.37). This is summarized in Table 2-I.

We further analyze the case of a day-ahead MPM policy to study the strategic

behavior of participants while regarding the respective competitive equilibrium in

Theorem 2.5 as a benchmark. In the case of a day-ahead MPM policy, loads act as

leaders in the day-ahead and generators as followers in real-time. The generator bids

to manipulate prices leading to inflated prices in real-time (2.40d) while the load shifts

its allocation in the day-ahead (2.40b), increasing prices in the day-ahead market.

Though the market equilibrium deviates from the competitive equilibrium (2.37), the

social cost remains the same due to the homogeneous participation of generators.

Table 2-II summarizes the aggregate profit and aggregate payment of generators and

loads, respectively.

Corollary 2.3. For L < G − 2, the aggregate payment of loads and aggregate profit

of generators at symmetric Nash equilibrium (2.40) is less than that at respective

competitive equilibrium (2.37). Moreover, for L ≥ G − 2 and 1
L

> c−ϵ(G−2)
(c+ϵ)(G−2) , the

aggregate payment of loads and aggregate profit of generators at symmetric Nash
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Table 2-II. Comparison between competitive equilibrium (CE) and Nash equilibrium (NE)
in a market with a day-ahead MPM policy (slope function bidding)

Case Generators total profit Loads total payment
CE 1

2
c
G

d2 c
G

d2

NE 1
2

c
G

d2
(︃

G
G−2 − c

c+ϵ
(G−1)2

(G−2)2
2L

(L+1)2

)︃
c
G

d2
(︃

G−1
G−2 − c

c+ϵ
(G−1)2

(G−2)2
L

(L+1)2

)︃

equilibrium (2.40) is greater than that at respective competitive equilibrium (2.37).

The corollary follows from comparing the aggregate profit (payment) at Nash

equilibrium to that at competitive equilibrium in Table 2-II for L < G − 2.

2.2.3.2 Comparison with a Standard Market

In this section, we compare the equilibrium in a day-ahead MPM policy market to a

standard market. The social cost at the competitive equilibrium remains the same

for the two markets with equal prices in the two stages. However, unlike in the

case of a day-ahead MPM policy, the competitive equilibrium in Theorem 2.1 exists

non-uniquely and there is no incentive for a load to allocate demand in the day-ahead

market.

Interestingly, at Nash equilibrium prices in the two stages are the same for a

day-ahead MPM policy market (2.40d) and a standard market (2.21c). Furthermore,

an error in the estimation of the cost of dispatching generators does not impact market

prices due to the participation of homogeneous generators. However, the dispatch

of generators and allocation of demand is different in the two market settings due

to a leader-follower structure between participants in the market with a day-ahead

MPM policy. To understand the impact of price-anticipating participants on market

equilibrium, we compare the aggregate profit (payment) in Table 2-II and 2-III,

respectively.

We restrict our comparison for 1
L

> c−ϵ(G−2)
(c+ϵ)(G−2) only since the Nash equilibrium in

Theorem 2.6 does not exist otherwise. In particular, for L = G−3 the aggregate profit
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Table 2-III. Comparison between competitive equilibrium (CE) and Nash equilibrium (NE)
in a standard market (slope function bidding)

Case Generators total profit Loads total payment
CE 1

2
c
G

d2 c
G

d2

NE 1
2

c
G

d2
(︃

G
G−2 − 2L(G−1)+2

(L+1)2(G−2)

)︃
c
G

d2
(︃

G−1
G−2 − L(G−1)+1

(L+1)2(G−2)

)︃

(payment) as shown in row 2 of Table 2-III at the Nash equilibrium in Theorem 2.2

equals to that of the competitive equilibrium. However, for L < G − 3 the aggregate

profit (payment) at Nash equilibrium is always less than the competitive equilibrium,

meaning the loads are winners. The change in the normalized aggregate profit

(payment) at the Nash equilibrium between a market with a day-ahead MPM policy

and a standard market is given by

2
(L + 1)2

1
G − 2

(︄
1 − L

G − 2 − L + ϵ

c + ϵ
L(G − 1)

)︄

where profit (payment) is normalized with the competitive equilibrium. The difference

depends on the number of participants and as the number of participants increases,

the difference tends to 0, since the Nash equilibrium in both cases approaches the

competitive equilibrium, respectively.

Figure 2-4 compares the total profit (payment) normalized with competitive

equilibrium for a day-ahead MPM (DA-MPM) policy market and a standard market

for cost estimation error ϵ = 0.1, respectively, as we change the number of loads

(l ∈ L, L ∈ {1, . . . , G − 3}), and generators (j ∈ G, G ∈ {4, . . . , 20}). The ratio

decreases monotonically as the number of generators increases, meaning the increased

competition between more generators to meet the inelastic demand gives more power to

loads, allowing them to reduce their payment even further, as shown by the horizontal

rows in all panels in Figure 2-4. Furthermore, the ratio increases monotonically as

the number of loads increases (for a large enough number of generators), meaning

the market power shifts between loads and generators, as shown by the vertical color

columns in panels (a) and (b) in Figure 2-4. In particular, in both markets, we observe
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Figure 2-4. Total profit and total payment at Nash equilibrium (NE) normalized with
competitive equilibrium (CE) (slope function bidding); total profit in (a) day-ahead MPM
(DA-MPM) and (b) standard markets, and total payment in (c) day-ahead MPM (DA-
MPM) and (d) standard markets; white cells denote no equilibrium

a reversal in power, e.g., for a large number of loads generators make a higher profit

at the expense of loads in the market and vice versa, as shown in panels (c) and (d)

in the Figure 2-4.

Additionally, implementing the day-ahead MPM policy helps reduce market power.

This leads to a total profit (payment) at Nash equilibrium that is closer to competitive

equilibrium levels than what is observed in standard markets, as demonstrated in panels

(a) and (b) for profit and panels (c) and (d) for payment in Figure 2-4. Unfortunately,

with a day-ahead MPM policy, the equilibrium does not always exists as shown by

white-colored cells in panels (a) and (c). Finally, in the limit L → ∞ =⇒ G → ∞,
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the Nash equilibrium converges to competitive equilibrium, also shown in Table 2-II.

2.2.4 Numerical Study

We now investigate how the cost estimation error, heterogeneity in cost coefficients,

and load size affect individual incentives at Nash equilibrium in the market with a day-

ahead MPM. We overcome the theoretical complexity of the closed-form analysis and

run numerical best-response studies to understand the impact on market equilibrium.

To this end, we consider the case of 2 price-anticipating loads and 5 price-anticipating

generators in a two-stage market. The individual aggregate inelastic load is given by

Figure 2-5. Net (top) and normalized (bottom) individual profit at Nash equilibrium (NE)
normalized with competitive Equilibrium (CE) w.r.t proportional error ϵj in cost estimation
of generators (slope function bidding)

dl = [99.4, 199.6]T MW from the Pennsylvania, New Jersey, and Maryland (PJM)

data miner day-ahead demand bids [79]. For each generator j with a truthful cost

38



coefficient cj = 0.1$/MW 2, ∀j ∈ G corresponding to the cost coefficients from the

IEEE 300-bus system [80]. We assume a proportional error ϵj = δjcj such that

estimated cost coefficient is given by ĉj = cj(1 + δj), ∀j ∈ G. The cost estimation

error of generators are sampled 10, 000 times from a Gaussian distribution with mean

10% and variance 2.5%, i.e. δj ∼ N(0.1, 0.025) ∀j ∈ {1, ..., 5}. The top and bottom

panel in Figure 2-5 plots the net profit and the normalized profit (normalized with the

competitive equilibrium) at Nash equilibrium, respectively. An increase in estimation

error results in a higher net profit at Nash equilibrium, as shown in the top panel in

Figure 2-5. Furthermore, errors in cost estimation also mitigate the market power of

loads with profits closer to the competitive one.

Figure 2-6. Net (top) and normalized (bottom) individual profit at Nash equilibrium
(NE) normalized with competitive equilibrium (CE) w.r.t cost coefficient of generators for
a DA-MPM policy (slope function bidding)

We next analyze the impact of heterogeneity in cost coefficients on market

equilibrium. For ease of exposition, we assume that the cost estimation error
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ϵj = 0 ∀j ∈ {1, ..., 5}. Our analysis is focused on capturing the qualitative im-

pact of heterogeneity in cost coefficients on system-level market power. To this end, we

choose a Gaussian distribution to model the uncertainty in the market operator’s esti-

mate for generators’ truthful cost as the first step toward understanding the potential

impact. The cost coefficients of generators are sampled 10, 000 times from a Gaussian

distribution with mean 0.1 and sample variance 0.001 for a sample of cost coefficients

from the IEEE 300-bus system [80], i.e. cj ∼ N(0.1, 0.001), ∀j ∈ {1, ..., 5}. The top

and bottom panel in Figure 2-6 plots the absolute profit and the normalized profit

(normalized with the competitive equilibrium) at Nash equilibrium, respectively. The

cheaper generators earn a higher profit when compared with the expensive generators

with higher cost coefficients at Nash equilibrium. However, the normalized profit ratio

in the bottom panel shows that expensive generators have a higher value than cheaper

ones, meaning that though expensive generators have lower absolute profit, these are

the least exploited in the market. We hypothesize that such a non-trivial behavior is

related to the nature of competition between strategic generators instead of an effect

of a day-ahead MPM policy. We admit that a closed-form analysis is theoretically

complex, and we do not have a thorough mechanism to validate our hypothesis.

In Figure 2-7 we show the absolute (top panel) and normalized (bottom panel)

load payment w.r.t smaller load size. For this, we keep the same number of loads

and generators in the market with varying load sizes for fixed net demand. We

again sample cost coefficients from Gaussian distribution with mean 0.1 and sample

variance 0.001 for a sample of cost coefficients from the IEEE 300-bus system [80], i.e.

cj ∼ N(0.1, 0.001), ∀j ∈ {1, ..., 5}. The cost estimation error ϵj = 0, ∀j ∈ {1, ..., 5}.

The top panel shows that though the net load payment remains the same as we

change the size of the load, the smaller load may even make a profit in the market

at the expense of a higher load. More formally to develop intuition, in the case of

homogeneous generators, the normalized payment ratio for individual load at Nash
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Figure 2-7. Net (top) and normalized (bottom) load individual payment (bottom) at
Nash equilibrium (NE) normalized with competitive Equilibrium (CE) w.r.t size of smaller
load d1, d1 < d2, d1 + d2 = d, for a DA-MPM policy (slope function bidding)

equilibrium in Theorem 2.6, is given by

G − 1
G − 2

(︄
1 − 1

(L + 1)2
G − 1
G − 2

d

dl

)︄

which is negative for a sufficiently small load. In particular, the smaller load has a

negative normalized ratio at the expense of a higher load (a ratio greater than 1), as

shown in the bottom panel of Figure 2-7. The larger load makes more payment at Nash

equilibrium than at the competitive equilibrium, while the aggregate payment of the

set of loads is still less than at the competitive equilibrium. Though the heterogeneity

in load size does not affect the net payment or the group behavior in the market, a

smaller load makes negative payments at the expense of larger loads and can exercise

more market power.
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2.3 Intercept Function Bidding

The analysis with supply function bidding in section 2.2 lacks the guarantee of a stable

market outcome. That is, when participants are strategic, it is not always possible

to guarantee the existence of a Nash equilibrium. This motivates the search for

alternative mechanisms that can provide guarantees of the existence of an equilibrium

and, thus, better mitigate market power.

In this section, we consider the use of intercept function bidding [55, 59], i.e.,

generators bid the intercept of the supply function, as an alternative market partici-

pation strategy that provides several benefits from the standpoint of market power

mitigation. Precisely, we model the competition between generators and loads in a

two-stage settlement electricity market where each generator bids the intercept of a

supply function seeking to maximize their aggregate profit, i.e.,

gv
j := h(λv; θv

j ) = bdλv − θv
j , v ∈ {d, r} (2.42)

where the parameter θv
j ∈ R indicate willingness of generator j to produce gv

j

per unit price λv. Meanwhile, loads bid demand quantities and seek to minimize

their payment in the market. Further, we assume a quadratic cost function for each

generator j, parameterized by cost coefficient cj,

Cj(gj) = cj

2 gj
2 (2.43)

We study the competition among the participants and consider the effect of super-

imposing default bids on the equilibrium outcome.

2.3.1 Standard Two-stage Market

In this section, we model the competition between generators and loads in a standard

two-stage market without any mitigation policy. The participants bid in both day-

ahead and real-time markets. We analyze such a game backward, starting from the

42



real-time market, for the equilibrium path. The resulting equilibrium is regarded as a

benchmark to determine the impact of the stage-wise system-level MPM policies later.

Price-taking Participation and Competitive Equilibrium

We first consider the case of price-taking participants in the market. Substituting (2.42)

and (2.43) into (2.10), we get the individual problem of generator j, given the prices

(λd, λr), as:

max
θd

j ,θr
j

−θd
j λd − θr

j λr − cj

2 (θd
j + θr

j )2 + cj(bdλd + brλr)(θd
j + θr

j ) (2.44)

The individual problem of load l is given in the optimization problem (2.14). We can

now characterize the competitive equilibrium in this market setting:

Theorem 2.7. A competitive equilibrium in a standard two-stage settlement market

without any mitigation policy exists and is given by

θd
j + θr

j =
bd + br − c−1

j∑︁
j∈G

c−1
j

d, ∀j ∈ G (2.45a)

∑︂
j∈G

(bdλd − θd
j ) =

∑︂
l∈L

dd
l ,
∑︂
j∈G

(brλr − θr
j ) =

∑︂
l∈L

dr
l (2.45b)

dd
l + dr

l = dl, ∀l ∈ L (2.45c)

λd = λr = 1∑︁
j∈G

c−1
j

d (2.45d)

We provide the proof of the theorem in Appendix E. Although the competitive

equilibrium in Theorem 2.7 exists non-uniquely, i.e., each load l is indifferent to

demand allocation due to equal prices in the two stages, the resulting dispatch and

prices align with the underlying social planner optimum (2.1).

Price-anticipating Participation and Nash Equilibrium

We next characterize the Nash equilibrium as a result of competition between price-

anticipating participants. We first characterize the interaction between generators

43



and loads in a real-time market for some given allocation in the day-ahead market.

This results in a real-time subgame equilibrium that will help compute the Nash

equilibrium in the two-stage market.

Theorem 2.8. We assume that there is more than one strategic generator in the

market, i.e., G > 1. The subgame equilibrium (gr
j , dr, λr) due to the interplay between

generators and loads in the real-time market, given the day-ahead market outcome

(gd
j , dd

l ), is an optimal primal-dual solution to an augmented convex social planner

problem, as mentioned below:

min
gr

j

∑︂
j∈G

(︄
1

2br(G − 1)gr
j

2 + cj

2
(︂
gd

j + gr
j

)︂2
)︄

(2.46a)

s.t.
∑︂
j∈G

gr
j =

∑︂
l∈L

dr
l (2.46b)

We provide the proof of the theorem in Appendix F. The strategic participation of

generators in real-time shifts the dispatch of generators, captured by the first term

in the objective function of the augmented social planner problem in Theorem 2.8.

Since the augmented problem is strictly convex, the subgame equilibrium is unique.

Moreover, the subgame equilibrium does not exist if there is only one generator in the

market and prices become indefinite.

The following theorem characterizes the resulting symmetric Nash equilibrium in

the market, where each individual generator solves (2.11) while each individual load

solves (2.15).

Theorem 2.9. Let’s assume that generators are homogeneous, i.e., cj := c, ∀j ∈ G.

If there is more than one generator participating in the market, i.e., G > 1, then the

two-stage symmetric Nash equilibrium uniquely existsand it is given by:

θd
j = bdc

G
d +

brc − G−2
G−1

brc + L+1
G−1

L + 1
G(G − 1)dd, ∀j ∈ G (2.47a)

θr
j = brc

G
d − G − 2

G(G − 1)dr, ∀j ∈ G (2.47b)
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gd
j = 1

G
dd, gr

j = 1
G

dr, ∀j ∈ G (2.47c)

dd
l = bddl

bd + br(G − 1) +
bd

1+brc(G−1)

bd + br(G − 1)dr − br

bd + br(G − 1)dd (2.47d)

dr
l = dl − dd

l , ∀l ∈ L (2.47e)

λd = brc(G − 1) + 2
brc(G − 1) + 1

c

G
d +

(︂
br

bd − 1
)︂

c + 1
bd(G−1)

brc(G − 1) + 1
dd

G
, (2.47f)

λr = λd +
1

G(G−1)

(︂
G−2
G−1 − brc

)︂
d

bd
(︂
brc + L+1

G−1

)︂
+ br

(︂
brc + 1

G−1

)︂
(G + L − 1)

(2.47g)

We provide the proof of the theorem in Appendix G. At the equilibrium, the load

allocation across stages depends on the slope of the bidding function, and operators

can tune these for a higher allocation in the day-ahead market, as observed in current

market practice. More specifically, we provide such a condition on the slope of the

intercept functions in Corollary 2.4. Moreover, for G = 1, the generator makes arbitrary

large bid decisions to drive prices high in the market, and the Nash equilibrium does

not exist.

Corollary 2.4. The load allocation across the two stages at the Nash equilibrium in a

standard market (2.47) is given by:

∑︁
l∈L

dd
l = bd(brc+ L+1

G−1)
bd(brc+ L+1

G−1)+br(brc+ 1
G−1)(G+L−1)

d (2.48a)

∑︁
l∈L

dr
l = br(brc+ 1

G−1)(G+L−1)
bd(brc+ L+1

G−1)+br(brc+ 1
G−1)(G+L−1)

d (2.48b)

Furthermore, for

bd ≥ br

(︂
brc + 1

G−1

)︂
(G + L − 1)(︂

brc + L+1
G−1

)︂ ,

the load allocation in the day-ahead market is higher than the real-time market, i.e.,

dd ≥ dr.

2.3.2 Two-stage Market with an MPM Policy

In this section, we model the impact of system-level MPM policies on market equilib-

rium. We assume that the operator makes an error in estimating the truthful cost of
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dispatching the generator in a stage with a mitigation policy.

2.3.2.1 Real-time MPM Policy

First, we model the real-time default-bid MPM policy, formulate the individual

problem for different participation behavior and characterize the market equilibrium.

Similarly, given the day-ahead dispatch gd
j , the operator roughly estimates the cost of

dispatching generator j with an error ϵj ≥ 0, e.g., see equation (2.23), such that the

real-time price is given by (2.24).

Price-taking Participation and Competitive Equilibrium

We first consider the case of price-taking participants in the market. We substitute

the day-ahead intercept function bid (2.42), real-time dispatch (2.23), and real-time

prices (2.24) in (2.10) to get the individual problem of price-taking generator j, given

the clearing price λd, as:

max
θd

j

π̃j(θd
j ; λd) := max

θd
j

⎛⎜⎜⎝ d∑︁
j∈G

(cj + ϵj)−1 − λd

⎞⎟⎟⎠ θd
j (2.49)

Similarly, substituting (2.24) in (2.14) gives the individual problem of load l as:

min
dd

l

ρ̃l(dd
l ; λd) := min

dd
l

⎛⎜⎜⎝λd − d∑︁
j∈G

(cj + ϵj)−1

⎞⎟⎟⎠ dd
l (2.50)

where the price λd is given in the market. The resulting competitive equilibrium is

characterized below:

Theorem 2.10. The competitive equilibrium in a two-stage market with a real-time

MPM policy existsand it is given by:

gd
j + gr

j = (cj + ϵj)−1∑︁
k∈G

(ck + ϵk)−1 d, θd
j ∈ R≥0 ∀j ∈ G (2.51a)

dd
l + dr

l = dl, ∀l ∈ L (2.51b)
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λd = λr = d∑︁
k∈G

(ck + ϵk)−1 (2.51c)

We provide proof of the theorem in Appendix H. The competition between genera-

tors and loads for a higher and lower price market, respectively, leads to divergent

behaviors. A set of equilibria exists in the market for equal prices in two stages.

However, at such an equilibrium, loads do not have any incentive to allocate demand

in the day-ahead market. Moreover, the resulting competitive equilibrium does not

always aligns with the social planner problem (2.1).

Price-anticipating Participation and Nash Equilibrium

We next characterize the market equilibrium for the competition between price-

anticipating participants. Similar to section 2.2 the individual problem of the price-

anticipating generator j is:

max
θd

j ,λd
πj

(︄
θd

j , λd
(︃

θd
j ; θ

d

−j, dd
)︃)︄

(2.52a)

s.t. (2.5) (2.52b)

The individual problem of the price-anticipating load is:

min
dd

l
,λd

ρl

(︄
dd

l , λd
(︃

dd
l ; θd

j , d
d

−l

)︃)︄
(2.53a)

s.t. (2.5). (2.53b)

The following theorem characterizes the Nash equilibrium.

Theorem 2.11. If there is more than one generator participating in the market, i.e.,

G > 1, the two-stage Nash equilibrium in a market with a real-time MPM policy

uniquely exists, as:

gd
j = 0, gr

j = (cj + ϵj)−1∑︁
k∈G

(ck + ϵk)−1 d, θd
j = bd∑︁

k∈G
(ck + ϵk)−1 d, ∀j ∈ G (2.54a)

47



dd
l = 0, dr

l = dl, ∀l ∈ L (2.54b)

λd = λr = 1∑︁
j∈G

(cj + ϵj)−1 d (2.54c)

We provide proof of the theorem in Appendix I. For a non-zero demand allocation

in the day-ahead market, generators have the incentive to change their bid while

attempting to manipulate prices and extract higher profit. Loads attempt to decrease

prices to seek minimum payment simultaneously. The mutual competition to outbid

each other results in the same price across stages, and all the demand shifts to

the real-time market. Although there is no price difference across stages, i.e., no

arbitrage opportunity, the market dispatch does not always align with the social

planner optimum, i.e., efficient market equilibrium. Furthermore, such an equilibrium

may not be desirable from the operator’s perspective. In practice, day-ahead accounts

for a majority of energy trades.

2.3.2.2 Day-ahead MPM Policy

In this section, we consider the impact of a day-ahead MPM policy. As discussed in

section 2.2, the operator roughly estimates the cost of dispatching generator j with an

error ϵj ≥ 0 in the day-ahead, e.g., see equation (2.33), such that the day-ahead price

is given by (2.34). Each generator has the flexibility to bid in the real-time market

and we characterize the resulting market equilibrium in the following subsection.

Price-taking Participation and Competitive Equilibrium

The individual problem of price-taking generator j is given by:

max
θr

j

π̃j(θr
j ; λr) := max

θr
j

−θr
j λr − cj

2

⎛⎜⎜⎝ (cj + ϵj)−1dd∑︁
j∈G

(cj + ϵj)−1 + brλr − θr
j

⎞⎟⎟⎠
2

(2.55)

where we substitute (2.33) and (2.34) in (2.10). Similarly, the individual problem of

load l is given by (2.14).
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For brevity, we assume ϵj = ϵcj, ∀j ∈ G, for a constant parameter ϵ ∈ R. However,

the results generalize for any arbitrary ϵj. The resulting competitive equilibrium is

characterized in the theorem below.

Theorem 2.12. The competitive equilibrium in a market with a day-ahead MPM

policy exists, and is given by:

gd
j = 1

1 + ϵ

c−1
j∑︁

j∈G
c−1

j

d, gr
j = ϵ

1 + ϵ

1
cj

d∑︁
j∈G

c−1
j

, ∀j ∈ G (2.56a)

dd
l + dr

l = dl; dd = 1
1 + ϵ

d, dr = ϵ

1 + ϵ
d (2.56b)

θr
j =

(︄
br − 1

cj

ϵ

1 + ϵ

)︄
d∑︁

j∈G
c−1

j

, ∀j ∈ G (2.56c)

λd = λr = d∑︁
j∈G

c−1
j

(2.56d)

We provide the proof of the theorem in Appendix J. Despite the error in estimation,

the competitive equilibrium in Theorem 2.12 still aligns with the social optimum (2.1).

The parameter ϵj reallocates load partially into the real-time market, as shown

in (2.56b). At the equilibrium, the load enforces equal prices in the two stages.

However, due to the existence of ϵ in the day-ahead, the generator’s marginal cost is

cheaper (expensive) when ϵ < 0 (> 0), which leads to a higher (lower) day-ahead load

allocation to guarantee equal prices at the equilibrium.

Price-anticipating Participation and Nash Equilibrium

We next consider the competition between price-anticipating participants in a market

with a day-ahead MPM policy. The following theorem characterizes the two-stage

Nash equilibrium.

Theorem 2.13. If there are at least two generators participating in the market, i.e.,

G ≥ 2, then a Nash equilibrium in a market with a day-ahead MPM policy exists and
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is uniquely given by

gd
j =

⎛⎝1 + ϵ

∑︁
j∈G C−1

j∑︁G
j=1 c−1

j

⎞⎠−1⎛⎝1 − 1
L + 1

∑︁
j∈G C−1

j∑︁
j∈G c−1

j

⎞⎠ c−1
j∑︁

j∈G c−1
j

d, ∀j ∈ G (2.57a)

gr
j =

(︁
(1 + ϵ(L + 1)

)︁ ⎛⎝1 + ϵ

∑︁
j∈G C−1

j∑︁G
j=1 c−1

j

⎞⎠−1
1

L + 1
C−1

j∑︁
j∈G c−1

j

d, ∀j ∈ G (2.57b)

dd
l =

⎛⎝1 + ϵ

∑︁
j∈G C−1

j∑︁G
j=1 c−1

j

⎞⎠−1⎛⎝dl +
(︄

1
L + 1d − dl

)︄ ∑︁
j∈G C−1

j∑︁
j∈G c−1

j

⎞⎠ , ∀l ∈ L (2.57c)

dr
l =

⎛⎝1 + ϵ

∑︁
j∈G C−1

j∑︁G
j=1 c−1

j

⎞⎠−1⎛⎝ϵdl +
(︄

dl − 1
L + 1d

)︄⎞⎠ ∑︁
j∈G C−1

j∑︁
j∈G c−1

j

, ∀l ∈ L (2.57d)

λd =
(︁
(1 + ϵ

)︁⎛⎝1 + ϵ

∑︁
j∈G C−1

j∑︁G
j=1 c−1

j

⎞⎠−1⎛⎝1 − 1
L + 1

∑︁
j∈G C−1

j∑︁
j∈G c−1

j

⎞⎠ d∑︁
j∈G c−1

j

, (2.57e)

λr =
⎛⎝1 + ϵ

∑︁
j∈G C−1

j∑︁G
j=1 c−1

j

⎞⎠−1
⎛⎜⎝(1 + ϵ) + 1

L + 1

⎛⎝1 −
∑︁

j∈G C−1
j∑︁

j∈G c−1
j

⎞⎠
⎞⎟⎠ d∑︁

j∈G c−1
j

(2.57f)

where Cj = 1
br(G−1) + cj.

We provide the proof of the theorem in Appendix K. Here Cj = 1
br(G−1) + cj > cj

can be understood as the augmented cost coefficient of dispatching generators in the

real-time market. Unlike the standard two-stage Nash equilibrium in Theorem 2.9,

in the presence of a day-ahead MPM policy, the resulting Nash equilibrium always

leads to higher prices in the real-time market. As generators operate truthfully in the

day-ahead market, loads exploit this opportunity to allocate higher demand in the

day-ahead market to seek minimum payment. Generators, with the flexibility to bid in

the real-time market, attempt to manipulate and drive prices in the real-time market.

The design of the day-ahead MPM policy puts generators in an inherent disadvantage

position as followers in the market. However, the ability of load to manipulate the

market eventually diminishes as the number of generators increases in the market as

discussed in the next section.

Corollary 2.5. At the Nash equilibrium (2.57) in a market with a day-ahead MPM
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Table 2-IV. Competitive equilibrium (CE) and Nash equilibrium (NE) with a stage-wise
MPM policy (intercept function bidding)

Instance Real-time MPM Day-ahead MPM

CE
Non-unique equilibrium Unique equilibrium

Does not always solve social planner Solves social planner
Arbitrary load allocation Majority load in day-ahead

NE

Unique and efficient Unique and non-efficient
All load in real-time Load distributed across two stages

Undesirable to operator Desired market power mitigation

policy, the load allocation in the day-ahead and the real-time market is given by:

dd =

⎛⎜⎝1 + ϵ

∑︁
j∈G

(︂
1

br(G−1) +cj

)︂−1∑︁G

j=1 c−1
j

⎞⎟⎠
−1
⎛⎜⎜⎜⎝1 − 1

L+1

∑︁
j∈G

(︂
1

br(G−1) +cj

)︂−1

∑︁
j∈G

c−1
j

⎞⎟⎟⎟⎠ d (2.58a)

dr =

⎛⎜⎝1 + ϵ

∑︁
j∈G

(︂
1

br(G−1) +cj

)︂−1∑︁G

j=1 c−1
j

⎞⎟⎠
−1 (︂

ϵ + 1
L+1

)︂ ∑︁
j∈G

(︂
1

br(G−1) +cj

)︂−1

∑︁
j∈G

c−1
j

d (2.58b)

Assuming ϵ = 0, the following relation holds,

dd ∈ (0.5d, d), dr ∈ (0, 0.5d)

The proof uses the relation br > 0 and sums up the individual load allocation at

the Nash equilibrium (2.57).

2.3.3 Equilibrium Analysis

In this section, we analyze the impact of system-level mitigation policies by comparing

the resulting market equilibria with standard market equilibrium.

2.3.3.1 Comparison of Stage-wise MPM Policies

We first discuss the case of the real-time MPM policy followed by the day-ahead MPM

policy, as summarized in Table 2-IV. The mitigation policies in real time result in

equal prices across stages, which is the same as the system marginal cost for ϵ = 0.

The market outcome does not always align with the social planner optimum (2.1)

at both competitive (2.51) and Nash equilibrium (2.54). Moreover, the competitive
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equilibrium outcome fails to incentivize loads to allocate demand in the day-ahead

market (2.51b). On the other hand, Nash equilibrium incentivizes loads to allocate

demand to the real-time market entirely (2.54b), making it undesirable from the

operators’ perspectives.

The day-ahead MPM policy results in a unique competitive equilibrium (2.56)

that aligns with the social planner optimum (2.1) while incentivizing loads to al-

locate demand to the day-ahead (2.56b). At the Nash equilibrium, the mitigation

policy leads to generators participating as followers and limiting their market power.

Generators participate strategically in real-time, inflating the prices above the sys-

tem marginal cost (2.57f). However, loads acting as leaders anticipate the real-time

sub-game equilibrium and shift demand allocation and drive prices in the day-ahead

market (2.57e).

Table 2-V. Comparison of normalized Nash equilibrium (normalized with competitive
equilibrium) between a standard market and a day-ahead MPM policy market (intercept
function bidding); ϵ = 0

Metric Standard DA-MPM
Cost 1 1 + 1∑︁

j∈G
c−1

j

∆
(L+1)2

Generators’ 1 + 2
brc(G−1)+1

dddr

d2 1 −

∑︁
j∈G

(︂
1

br(G−1) +cj

)︂−1

∑︁
j∈G

c−1
j

2L
(L+1)2

Profit + 2
bdc(G−1)

(dd)2

d2 + 2
brc(G−1)

(dr)2

d2 − 1∑︁
j∈G

c−1
j

∆
(L+1)2

Loads’ 1 + 1
brc(G−1)+1

dddr

d2 + 1
bdc(G−1)

(dd)2

d2 1 −

∑︁
j∈G

(︂
1

br(G−1) +cj

)︂−1

∑︁
j∈G

c−1
j

L
(L+1)2

Payment + 1
brc(G−1)

(dr)2

d2

where ∆ := ∑︁
j∈G

cj(︂
1

br(G−1) +cj

)︂2 −

(︄∑︁
j∈G

(︂
1

br(G−1) +cj

)︂−1
)︄2

∑︁
j∈G

c−1
j

Corollary 2.6. For ϵ = 0, the total generator profit at the Nash equilibrium in a

market with a day-ahead MPM policy (2.57) is always below the competitive equilibrium
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levels (2.56).

The loads are favored in the competition with a total payment at Nash equilibrium

below the competitive equilibrium levels, as shown in row 3 of Table 2-V. Assuming

ϵ = 0, the social cost is higher at the Nash equilibrium (2.57) than the competitive

equilibrium (2.56), as shown in column 1 of Table 2-V.

Corollary 2.7. Assuming ϵ = 0 and generators are homogeneous, i.e., cj = c, ∀j ∈

G, the social cost at the Nash equilibrium (2.57) is the same as the competitive

equilibrium (2.56).

The corollary uses the fact that for homogeneous generators ∆ = 0, as shown in

Table 2-V.

2.3.3.2 Comparison with a Standard Market

We next compare only the equilibrium for a day-ahead MPM policy with equilibria

in a standard market, as the real-time MPM policy market equilibrium results in

undesirable market outcomes. Unlike a set of competitive equilibria in a standard

market (2.45), the competitive equilibrium in the market with a day-ahead MPM policy

is unique and incentivizes loads to allocate demand in the day-ahead market (2.56).

Interestingly at the Nash equilibrium in a market with a day-ahead MPM policy,

clearing prices in real-time are always higher than in the day-ahead market (2.57f)

due to the leader-follower structure and strategic participation of generators in real-

time only. However, in the standard market, generators exploit the inelasticity of

demand to manipulate the prices at Nash equilibrium in two stages resulting in

higher day-ahead clearing prices (2.47g) under certain conditions, i.e., the number of

generators participating in the market and slope of the intercept function. We study

the role of price-anticipating participants in a standard market and market with a

day-ahead mitigation policy from the market and individual perspectives, i.e., social
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cost, generators’ profit, and loads’ payment in Tables 2-V.

For the sake of comparison between the two market settings, we evaluate the Nash

equilibrium with the assumption that generates are homogeneous and participate

symmetrically in the market. Also, we assume that ϵ = 0. Since generators are

homogeneous, the market clears with the minimum cost of dispatch that equals the

social planner cost, as shown in column 1 of Table 2-V. We next look at the individual

perspective to evaluate the properties of the Nash equilibrium. In the standard market,

generators win the competition at the Nash equilibrium since they always earn a

higher profit than the one achieved in the competitive equilibrium level, as shown in

row 2 of Table 2-V. However, in the case of the day-ahead MPM policy, loads win

the competition with lower payment at the Nash equilibrium than the competitive

equilibrium, as shown in row 3 of Table 2-V. Although the day-ahead MPM policy

does have the intended mitigation effect on the market power of generators, it results

in loads exercising market power at the expense of generators.

Figure 2-8 compares the (normalized) aggregate profit and (normalized) aggregate

payment at the Nash equilibrium in the standard market with a day-ahead MPM

policy (DA-MPM) market, respectively. For simplicity, we assume that bd = br = 1
c
.

The aggregate generator profit (load payment) at the Nash equilibrium is normalized

with the corresponding competitive equilibrium levels, which are the same in both

market settings, and analyzed as we increase the number of participants in the market.

The aggregate profit ratio in the DA-MPM policy market, as given by

1 − brc(G − 1)
1 + brc(G − 1)

2L

(L + 1)2 ,

increases monotonically in the number of loads due to increased competition between

loads, signaling a recovery in efficiency, whereas the ratio decreases monotonically

in the number of generators due to increased competition between generators. This

increased competition with an increase in the number of generators exacerbates their
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Figure 2-8. Total profit (a) and total payment (b) at Nash equilibrium (NE) normalized
with competitive equilibrium (CE) in a market with day-ahead MPM (DA-MPM), and total
profit (c) and total payment (d) at Nash equilibrium (NE) normalized with competitive
equilibrium (CE) in a standard market (intercept function bidding).

exploitation in the market, as shown by darker colors in the rows of panels (a) and (b)

in Figure 2-8.

However, the aggregate profit or payment ratio in the standard market increases

with the number of loads and decreases with the number of generators, as shown

in panels (c) and (d) in Figure 2-8. This implies that generators always win the

competition in the standard market with higher profit levels at the Nash equilibrium
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compared to the competitive equilibrium. Moreover, the day-ahead MPM policy results

in the complete mitigation of generator market power, as shown in the comparison

of generator normalized aggregate profit in the two markets in panels (a) and (c) in

Figure 2-8, respectively.

2.3.4 Numerical Study

In this section, we analyze the impact of market parameters on the Nash equi-

librium in a market with a day-ahead MPM policy (see Theorem 2.13) using a

numerical case study. For ease of analysis, we consider the test case of 2 strategic

generators and 4 strategic loads in the two-stage market setting. The individual

aggregate inelastic demand bids for a mix of smaller and larger loads are given by

dl = [0.2, 25.6, 106.6, 199.6]T MW from the Pennsylvania, New Jersey, and Maryland

(PJM) data miner day-ahead demand bids [79] with total aggregate inelastic demand

d = 332 MW . For brevity and ease of analysis, we assume ϵ = 0.

First, we look at the impact of the homogeneous slope constant br of the intercept

bidding function (2.42) on the Nash equilibrium (2.57). Figure 2-9 illustrates the

payment of loads and profit of generators as we increase the parameter br in the

top panel and bottom panel respectively. In this case, we fix the heterogeneous cost

coefficients of the generators to be c = [0.1, 0.11]T $/(MW )2 corresponding to the cost

coefficients from the IEEE 300-bus system [65, 80]. As br increases, 1
br(G−1) + cj → cj

and loads payment decreases, see bottom row in Table 2-V. This decrease in payment

is attributed to the lower profit of generators in the market as shown in the top and

bottom panels in Figure 2-9. Though the larger value of br impacts the individual

interests, its impact on social cost diminishes as Cj → cj and ∆ → 0 as shown

in Table 2-V. Interestingly, the social cost at Nash equilibrium further aligns with

the competitive equilibrium for smaller values of br as
(︃

1
br(G−1) + cj

)︃−1
→ 0 and

∆ → 0. This alignment suggests that the market operator can possibly optimize for
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Figure 2-9. Individual load payment and generator profit w.r.t market parameter br for
Nash equilibrium (NE) and competitive equilibrium (CE) (intercept function bidding).

the parameter br to reduce efficiency loss in the case of Nash equilibrium.

In Figure 2-10 we show the demand allocation and generator dispatch in the

two-stage as we change the parameter br in the left and right panel respectively. For

this case also, we keep the same cost coefficients of generators c = [0.1, 0.11]T $/(MW )2.

The allocation at Nash equilibrium deviates from the competitive equilibrium due to

price manipulation by participants. As br increases
(︃

1
br(G−1) + cj

)︃
→ cj and prices

in the real-time market decreases (2.57f) leading to higher allocation of loads (2.57d)

and higher generator dispatch (2.57b) in the real-time market. Amongst all the loads,

smaller loads increase their allocation in the day-ahead market leading to negative

demand allocation in the real-time stage at the expense of lower generator profit, and

therefore as br increases, it earns money instead of making payments owing to higher

prices in the real-time stage as shown in the Figure. 2-10. This also implies that loads

have an incentive to break their demand into multiple smaller units, we skip such
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Figure 2-10. Day-ahead and real-time load allocation and generator dispatch w.r.t
parameter br for Nash equilibrium (NE) and competitive equilibrium (CE) (intercept
function bidding).

analysis in this study for future work.

Now we analyze the impact of heterogeneity of generators in terms of different

cost coefficients on the Nash equilibrium (2.57). The coefficients are sampled 10, 000

times from a normal distribution with mean 0.1 as we increase the variance, i.e.

c1 ∼ N (0.1, ·), c2 ∼ N (0.1, ·) for fixed value of parameter br = 10. The top panel

and bottom panel in Figure 2-11 plot mean value and 95% confidence interval for the

aggregate payment of loads and aggregate profit of generators at Nash equilibrium

normalized with the aggregate value of the competitive equilibrium, respectively. As

the variance increases, we see two phenomena overlapping. First, it is more likely

to obtain instances where generators are highly heterogeneous. Second, it is also

more likely to obtain different absolute values for ∑︁j∈G c−1
j . This interplay leads to

opportunities for generators (resp. loads) to increase (resp. decrease) their profit

(resp. payments) and vice versa. The exact mechanism of this phenomenon is further
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Figure 2-11. Ratio of Nash equilibrium (NE) and competitive equilibrium (CE) for
aggregate individual profit/payment w.r.t variance; c1 ∼ N (0.1, ·), c2 ∼ N (0.1, ·) sampled
10,000 times (intercept function bidding).

discussed below.

We next analyze the relation between the aggregate profit or aggregate payment of

participants w.r.t ∆, which serves as measure of the heterogeneity of the generators.

The cost coefficients are again sampled 10, 000 times from a normal distribution with

mean 0.1 and fixed variance 0.035, i.e. c1 ∼ N (0.1, 0.035), c2 ∼ N (0.1, 0.035) for fixed

value of parameter b = 10. The parameter ∆ associated with the generators depends

non-linearly on the cost coefficients as shown in Table 2-V and approaches to 0 as

the difference between the cost coefficients |c1 − c2| → 0. In such a case, the ratio of

aggregate profit of generators at the Nash equilibrium and competitive equilibrium is
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Figure 2-12. Ratio of Nash equilibrium (NE) and competitive equilibrium (CE) for
aggregate individual profit/payment w.r.t ∆ for some fixed variance; c1 ∼ N (0.1, 0.035),
c2 ∼ N (0.1, 0.035) sampled 10,000 times (intercept function bidding).

given by:

1 −
(︄

1 − 1
1 + bc(G − 1)

)︄
2L

(L + 1)2

Observe that as c → 0, the aggregate profit of generators aligns with the competitive

equilibrium and misalignment increase with increase in cost coefficient c. Similar

observations can be made in the case of heterogeneous generators also. In particular,

if |c1 − c2| ≈ c1, or equivalently one of the generator is extremely cheap (c2 << c1),

then
(︃

1
/︂∑︁

j∈G c−1
j

)︃
→ 0 and the ratio of profit as mentioned in Table 2-V and given

by: (︄
1 − 2L

(L + 1)2

)︄
+

⎛⎜⎝
⎛⎝1 −

∑︁
j∈G C−1

j∑︁
j∈G c−1

j

⎞⎠ 2L

(L + 1)2 − 1∑︁
j∈G c−1

j

∆
(L + 1)2

⎞⎟⎠
aligns with competitive equilibrium. The left panel of Figure 2-12 illustrates the ratio
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as ∆ increases signaling higher levels of heterogeneity in generator cost. This implies

that a market with even one cheap generator can counter the market power of all the

strategic participants.

2.4 Comparison of Slope and Intercept Function
Bidding

In this section, we compare the intercept function bidding with the conventional slope

function bidding, in a standard market (without the implementation of an MPM

policy). Our goal is to further understand the impact of the functional form of the

bid on the market power of respective participants.

The competitive equilibrium exists non-uniquely and aligns with the social planner

problem (2.1) in both market mechanisms. We next consider the case of price-

anticipating participants and compare the resulting Nash equilibrium. At the unique

symmetric Nash equilibrium in slope function bidding in Theorem 2.2, loads allocate

more demand in the day-ahead market to exploit lower prices. However, the load

allocation at the Nash equilibrium in the intercept function in Theorem 2.9 is a function

of market parameters bd and br. Figure 2-13 plots the aggregate load allocation in

the day-ahead market as the slope of the intercept function bid changes in the day-

ahead and real-time markets. We assume 4 strategic homogeneous generators and

4 strategic loads are participating in a standard two-stage market setting. The mix

of individual inelastic demand bids is given by dl = [0.2, 25.6, 106.6, 199.6]T MW

from Pennsylvania, New Jersey, and Maryland (PJM) data miner day-ahead demand

bids [79] with total aggregate inelastic demand d = 332MW . We assume a cost

coefficient cj = 0.1$/MW 2, ∀j ∈ G of homogeneous generators corresponding to the

cost coefficients from the IEEE 300-bus system [80]. The aggregate allocation in the

day-ahead market (normalized with the total inelastic demand) can be increased by

the operator with the help of appropriate slope parameters.
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Figure 2-13. Normalized load allocation in the day-ahead stage in a standard market
(intercept function bidding).

Figure 2-14 compares the (normalized) aggregate profit at Nash equilibrium in

the standard market without any mitigation policy. We change the value of the

slope parameter for the intercept function bid to understand the impact of model

parameters, i.e.,

bd = br = b, b ∈ {(c + ϵ)−1, c−1, (c − ϵ)−1},

where ϵ = 0.025$/MW 2. The aggregate profit is normalized with the profit at

competitive equilibrium levels. In the slope function bidding based market mechanism,

there is a shift in the market power between loads and generators, e.g., loads win the

competition for a relatively large number of generators in the market and vice versa.

In particular, for a small number of loads and a large number of generators, loads
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exercise market power with lower payments at the expense of increased competition

between generators. Similarly, a decrease in the number of generators and an increase

in the number of loads favors generators in the market, as shown in panel (d) in

Figure 2-14. However, generators always win the competition with higher profits at the

Nash equilibrium in the intercept function bidding based market mechanism, as shown

in panel (b) in Figure 2-14. Moreover, such behavior, where generators always win

the competition, exists regardless of slope parameter values in the intercept function

bid, as shown in row 2 of Table 2-V and panels (a),(c) in Figure 2-14.

Figure 2-14. Aggregate generators’ profit at Nash equilibrium (NE) normalized with
competitive equilibrium (CE) in a standard market (intercept function bidding) (a) with
parameters bd = br = (c + ϵ)−1, (b) with parameters bd = br = c−1, (c) with parameters
bd = br = (c − ϵ)−1, and (d) slope function bid.
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2.5 Limitations of the Study

The closed-form analysis of supply function equilibrium in a two-stage settlement

market is theoretically complex and the system is often analyzed under certain

simplifying market assumptions. While there are works that certainly consider a more

relaxed set of assumptions, they either study single-stage market [13, 30, 31, 81],

competitive market structure [30, 82, 83], inelastic demand [84, 85], homogeneous

participants or symmetric participation [23, 86], etc. Given that the supply-function

Nash equilibria are generally hard to characterize, even for a single-stage market,

the literature often uses this approach as a zero-order analysis [23, 86]. We further

note that our findings are consistent with the theory in our numerical experiments,

where we relax, for e.g., the homogeneity constraints. Although capacity constraints,

network constraints, etc., impact market power, our focus is on system-level market

power, which occurs regardless of these constraints.

2.6 Implications for Policymakers

This chapter highlights the importance of counterfactual analysis of two specific system-

level policies in the CAISO area. Despite the CAISO’s proposal of implementing a

real-time MPM policy in the first phase, it should not be deployed by itself. We show

that such a policy results in an inefficient competitive equilibrium, while the Nash

equilibrium does not always exist. We believe that if a strategy does not work well in

a simple setting, then it is unlikely to do well in a more complicated one. A day-ahead

policy seems to have a reasonable impact on the market outcome that merits further

analysis (with capacity constraints, network constraints, etc.) and consideration.

Despite errors in cost estimations of generators, it results in an efficient competitive

equilibrium, meaning the outcome aligns with the social planner problem. Moreover,

the Nash equilibrium is more robust to market power and price manipulations.
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2.7 Chapter Summary

This chapter has considered market mechanisms to model the competition between

generators and inelastic loads in a two-stage settlement market and study the impact

of system-level market power mitigation policies on participant behavior. Although

the competitive equilibrium is efficient, market power exists in the presence of price-

anticipating participants in a standard two-stage market. Further, despite being

inelastic, loads can shift their allocation across stages to win the competition for a

sufficiently large number of participating generators in a market.

Understanding market power and strategies for mitigating it has been an extensive

subject of study in the literature. ISOs have proposed to implement system-level

policies to mitigate market power and encourage fair competition in the market. For

example, per the CAISO’s policy initiative, non-competitive bids are substituted with

the default bids based on estimated generator costs. Using the benchmark in the

standard market setting, we first analyze a market with real-time MPM policy and

show the resulting competitive equilibrium is inefficient, and the Nash equilibrium

results in undesirable market outcomes.

A day-ahead MPM policy, when accounting for generator and load incentives, leads

to a generalized Stackelberg-Nash game where load decisions (leaders) are performed in

the day-ahead market and generator decisions (followers) are relegated to the real-time

market. Despite the estimation error, in the case of a day-ahead MPM policy, the

competitive equilibrium aligns with the social planner problem. Further, the Nash

equilibrium is robust to price manipulations compared to the standard market. A

more nuanced analysis of cost estimation error and heterogeneity in cost coefficients

benefits generator. In the case of heterogeneous generators, expensive generators

are less affected in the market. Also, the load size diversity highlights the role of a

sufficiently smaller load in exercising market power at the expense of larger loads.
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Chapter 3

Market Mechanism for Energy
Storage

In the previous chapter, we studied competition between conventional resources, i.e.,

generators and inelastic loads, in a two-stage settlement market. We now turn our

attention to emerging energy resources, specifically battery storage, and wish to design

market mechanisms that lead to the efficient dispatch of these resources.

The power system is undergoing rapid changes due to the increased penetration

of renewable energy sources and the desire for a reduced carbon footprint. However,

the intermittency of popular renewable sources, e.g., solar and wind energy, coupled

with new variations in load patterns due to demand-side management and devices

such as electric vehicles, are affecting system reliability [87, 88]. Energy storage

resources (ESR) have been widely proposed as means to provide the grid services

required to maintain grid reliability and power quality. in particular, lithium-ion

based battery storage is one of the fastest growing storage modalities for the power

grid [47]. However, in contrast with traditional generators, the cost of dispatching

storage cannot be directly quantified in terms of supplied power alone. For example,

degradation due to numerous charging and discharging half-cycles plays an important

role in the operational cost associated with battery storage [89, 90].

Recent works have proposed various ways of bidding storage in the market that
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accounts for its operational cost. The first approach looks at developing control actions

in the form of charge-discharge power bids or control actions, using existing market

and reserve interfaces so as to maximize profit (revenue earned in the market minus

the operation cost) [89, 91–95], or by explicitly incorporating the operation cost of

storage in the market objective through some proxy to degradation [96, 97]. From

an ISO perspective, such a bidding mechanism is easy to integrate into the existing

market design, like conventional generators submitting supply functions that map

prices to power [13]. However, due to the time-coupled and nonlinear nature of the

cycling cost of storage [98], power-based models fail to communicate the operational

characteristics of storage, leading to uneconomical dispatch and loss of potential profit.

Moreover, these works provide little insight into how storage owner incentives can

affect the ability of a system operator to efficiently operate the grid.

The second approach uses physics informed model to design bidding parameters [30,

99, 100]. In particular, leveraging the state-of-charge (SoC) dependent degradation

cost of storage, piece-wise linear SoC-dependent bids are proposed that map charge-

discharge offers to the pre-partitioned SoC range [99, 100]. Once all the bids are

submitted, the ISO schedule storage using the current SoC. The resulting optimization

strategies rely on unknown prices that must be estimated or accounted for by solving

economic dispatch problems without energy storage. These also assume participants

are willing to share their private information on SoC telemetry truthfully. Further,

there is little or no insight into participant behavior, market efficiency, theoretical

guarantees of market outcome, etc.

This chapter provides insight into this problem through a novel market mechanism

design that captures the effect of storage and generator owner incentives. We compare

this approach to existing strategies through analysis of the overall system efficiency

and model the competition between generators and energy storage in a market. More

specifically, we consider a multi-interval market model where generators incur a
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quadratic cost for power supply, and storage owners quantify the storage usage cost

based on the degradation induced by the energy cycles. Our formulation exploits

previous work combining the Rainflow cycle counting algorithm with a cycle stress

function to obtain a notably convex cycling cost function [56, 98].

The remainder of the chapter is organized as follows. In section 3.1, we formulate

the social planner problem. We then discuss the operation cost of storage and its

properties in section 3.2. In section 3.3, we discuss the power-based market mechanism,

characterize the market equilibrium, and discuss the misalignment with the social

planner problem. In section 3.4, we discuss a cycle-aware market mechanism. We

then analyze the competition between conventional generators and cycle-aware energy

storage. Finally, the chapter summary is provided in section 3.5.

3.1 Preliminaries

In this section, we formulate a social planner problem that aims to achieve optimal

economic dispatch by minimizing the total cost of dispatching both generators and

energy storage.

3.1.1 Social Planner Problem

Consider a multi-interval horizon T := {1, 2, ..., T} where a set G of generators and

a set S of energy storage participate in a market to meet a given inelastic demand

profile d ∈ RT . For each generator j ∈ G, the power output over the time horizon is

denoted by a vector gj ∈ RT whose elements are each subject to capacity constraints

g
j

≤ gj,t ≤ gj, t ∈ T , (3.1)

where g
j
, gj denote the minimum and maximum generation limits, respectively. Analo-

gously, for each energy storage s ∈ S of capacity Es, the discharge (positive) or charge

(negative) rates over the time horizon is denoted by a vector us ∈ RT . We assume
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each charge or discharge rate us,t is bounded as

us ≤ us,t ≤ us, t ∈ T . (3.2)

where us, us denote the minimum and maximum rate limits, respectively. The corre-

sponding amount of energy stored is characterized by a normalized state of charge

(SoC) profile xs ∈ RT +1, with the initial SoC xi,0 = xi,o. The SoC evolves over the

time horizon according to

xs,t = xs,t−1 − 1
Es

us,t, t ∈ T , . (3.3)

This evolution over the time horizon can be rewritten compactly as

Axs = − 1
Es

us, (3.4)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 1 0 . . . 0
0 −1 1 . . . ...
... . . . . . . . . . 0
0 . . . 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ RT ×(T +1).

To account for the cyclic nature of storage, we impose periodic constraints on the

SoC that forces the storage to cycle back at the end of the optimization horizon. This

periodicity requirement as an equality constraint is best suited when the following

day’s prices or forecasts are not known a priori, i.e.,

xi,0 = xs,t = xo. (3.5)

We note, however, that our results do not depend on the particular choice between

equality or inequality in (3.5). Substituting (3.3) into (3.5) leads to

1T ui = 0. (3.6)

The normalized SoC satisfies

0 ≤ xs,t ≤ 1, t ∈ T , (3.7)
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which can be rewritten using equation (3.3) and (3.5) as

(xo − 1)1 ≤ Ãui ≤ xo1, (3.8)

where

Ã = 1
E

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 . . . 0
1 1 . . . ...
... . . . . . . 0
1 . . . 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ RT ×T ,

is a lower triangular matrix. Finally, the social planner problem is given by

SOCIAL PLANNER

min
gj ,j∈G,us,i∈S

∑︂
s∈S

Cs(us) +
∑︂
j∈G

(︃
cj

2 gT
j gj + qj1T gj

)︃
(3.9a)

s.t. d =
∑︂
j∈G

gj +
∑︂
i∈S

us (3.9b)

(3.1), (3.2), (3.6), (3.8),

where (3.9b) enforces power balance for all time intervals. We use Cs(us) to represent

the operational cost of storage unit s, to be defined in the next subsection, and assume

quadratic cost functions for the generators. For ease of analysis we assume without

loss of generality that the linear coefficient qj = 0.

3.2 Storage Cost Model

The intrinsic degradation incurred due to repeated charging and discharging half-

cycles1 constitutes the main operational cost of storage. We adopt the Rainflow cycle

counting based method [101, 102] to enumerate the cycles, which we incorporate into

a cycle based cost function [56, 91, 98]. For each storage unit s ∈ S, the Rainflow

cycle counting algorithm maps the SoC profile xs to the associated charge-discharge

half-cycles, summarized in a vector of half-cycle depths νs ∈ RT .

νs := Rainflow(xs). (3.10)
1A full cycle is defined to consist of a charging half-cycle and a discharging half-cycle of the same

depth.
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Using the cycle depth vector2 νs one can quantify the capacity degradation using a

cycle stress function Φ(·) : [0, 1]T ↦→ [0, 1]. In general, Φ(·) is well approximated3 by a

quadratic function [98], thus we consider here

Φ(νs) := ρ

2νT
s νs, (3.11)

where ρ is a given constant coefficient [56, 98]. This vector of identified half-cycle

depths νs is used to compute the total degradation cost of storage s as

bs

2 νT
s νs = ρBsEs

2 νT
s νs,

where Bs is the unit capital cost per kilowatt-hour of storage capacity Es, and

bs := ρBsEs is a constant.

3.2.1 Rainflow Algorithm Based Cycle Map

In order to map the SoC profile xs to cycle depths νs we introduce a cycle identification

approach (Algorithm 1) based on the Rainflow algorithm [101]. In addition to the

vector of half-cycle depths νs, our algorithm outputs a set Sf of ordered time index

pairs, which are used to compute the cycle depth of full-cycles from xs, and a residual

set Sr of time indices, which are used to compute residual individual half-cycle depths

from xs. While the sets Sf and Sr are not standard outputs of the Rainflow algorithm,

they will be particularly useful in our reformulation of the Rainflow algorithm as a

piece-wise affine map. For brevity and ease of understanding, we ignore the index s

associated with energy storage.

The main stages of our version of the Rainflow algorithm follow:

• (Switching Time Identification): Starting with Sr = {0, T}, traverse x from x0

to xT and store in Sr the time indices where the profile x changes direction, e.g.,
2In order to maintain a fixed-size vector νs we fill in zero-depth half-cycles at the tail when there

are less than T half-cycles.
3The empirical stress function in [98] is Φ(νs) :=

∑︁
t∈T

ρ
2 (νs,t)ρb with the coefficient ρb = 2.03 [98].
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switches between charging and discharging. This procedure comprises steps 1-5

in Algorithm 1.

• (Full Cycle Extraction): Looping through j = 2 : |Sr| − 2, compute the net

SoC changes between four consecutive switching points, i.e., (∆j−1, ∆j, ∆j+1) :=

diff(x, Sr, j). If ∆j−1 ≥ ∆j and ∆j+1 ≥ ∆j, extract a full cycle of depth ∆j i.e.,

remove Sr[j] and Sr[j + 1] from Sr and add dir(x, Sr, j) to Sf . The extracted

charging and discharging half-cycle of depth ∆j is added into the cycle depth

vector d. This stage is described in steps 7-17 of Algorithm 1.

• (Half-cycle Extraction): Once all full cycles are extracted, iterate through j = 1 :

|Sr| − 1 to add the depths of all remaining half-cycles. This stage is described

in steps 18-20 of Algorithm 1.

We illustrate this procedure using an example SoC profile shown in Fig. 3-1. After

steps 1-5 we start with sets Sr = {0, 1, 2, 3, 4} and Sf = ∅. Since ∆1 ≥ ∆2 and

∆3 ≥ ∆2, with (∆1, ∆2, ∆3) := diff(x, Sr, 2), a full cycle of depth x1 − x2 is extracted

(see the center panel of Fig. 3-1). This operation leaves the residual charging half-cycle

from x0 to x3 and x3 to x4, shown in the right panel of Fig. 3-1. The output of

the algorithm is then d = [x1 − x2, x1 − x2, x3 − x0, x3 − x4]T , Sr = {0, 3, 4}, and

Sf = {(1, 2)}.

Figure 3-1. Example SoC profile (left), its extracted full-cycle (middle) and half-cycles
(right).
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Algorithm 1: Rainflow Cycle Counting
Result: vector d ∈ RT , sets Sf and Sr

Input: SoC Profile x
Initialize: Sr = {0, T}, Sf = ∅, d = 0⃗, counter k = 1

1 for t = 1 : T − 1 do
2 if sgn(xt+1 − xt) == − sgn(xt − xt−1) then
3 Sr = Sr + {t};
4 end
5 end
6 Cycle = true;
7 while Cycle == true and |Sr| > 3 do
8 Cycle = false;
9 for j = 2 : |Sr| − 2 do

10 (∆j−1, ∆j, ∆j+1) = diff(x, Sr, j);
11 if ∆j−1 ≥ ∆j, and ∆j+1 ≥ ∆j then
12 Sr = Sr − {Sr[j], Sr[j + 1]}, Sf = Sf + dir(x, Sr, j) ;
13 d(k) = d(k + 1) = ∆j and k = k + 2;
14 Cycle = true, and restart from step 7;
15 end
16 end
17 end
18 for j=1:|Sr| − 1 do
19 d(j + k − 1) = |xSr(j + 1) − xSr(j)|;
20 end

3.2.2 Matrix Representation of Rainflow Algorithm

We now illustrate how the Rainflow algorithm can be represented by the piece-wise

linear map from the SoC profile xs to the cycle depth vector νs:

νs = Rainflow(xs) = M(xs)T xs. (3.12)

Here M(xs) ∈ R(T +1)×T is an incidence matrix for a xs-dependent directed graph

G(xs) := G(xs; Vs, Es), with rows and columns representing nodes in Vs and edges in

Es, respectively. We represent the (i, j)th element of M(xs) as Mij(xs), or just Mij

if its dependence on xs is clear from the context. The graph G(xs) consists of T + 1

nodes, indexed by t ∈ {0, 1, . . . , T}.

For brevity and ease of understanding, we ignore the index s associated with energy
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storage. Algorithm 2 provides the procedure for finding the edges of G(x), which is

summarized as follows.

• Each full cycle identified by Algorithm 1 corresponds to an element (t1, t2) ∈ Sf .

For each of these cycles add (t1, t2) to the edge set E twice, i.e. E = E ∪

{(t1, t2), (t1, t2)}, as outlined in steps 1-3 in Algorithm 2.

• Using the residual set Sr output from Algorithm 1 and the direction operation

dir(x, Sr, j), iterate through j = 1 : |Sr| − 1 to add one directed edge, corre-

sponding to each half-cycle to connect nodes Sr[j] and Sr[j + 1]. See steps 4-6

in Algorithm 2.

Algorithm 2: Rainflow Incidence Matrix M
Result: Incidence Matrix M(x) ∈ R(T +1)×T

Input: SoC profile x, sets Sr and Sf

Initialize: Digraph G(x; V , E), V = [0, . . . , T ], E = ∅
1 for i =1:|Sf | do
2 E = E ∪ {Sf [i], Sf [i]};
3 end
4 for j=1:|Sr| − 1 do
5 E = E + dir(x, Sr, j);
6 end
7 Define M(x) as the incidence matrix for G and attach zero columns as

necessary.

We illustrate this for an example in the left panel of Fig. 3-2. Given a profile x

with elements as (x0, . . . , x5), there are two cycles with depth x3 −x2 and x1 −x4. The

output of Algorithm 1 would be Sf = {(3, 2), (1, 4)}, Sr = {0, 5}, and d = [x3−x2, x3−

x2, x1 − x4, x1 − x4, x5 − x0]T . This leads to E = {(3, 2), (3, 2), (1, 4), (1, 4), (5, 0)},

shown in the right panel of Fig. 3-2.

We specify the incidence matrix M(x) of the graph G(x) such that the edges are

indexed according to the order in which they are added. Then zero columns are

attached to fill in the remainder of the incidence matrix such that M(x) ∈ R(T +1)×T
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Figure 3-2. Example SoC profile and its associated graph.

always holds. For example, the incidence matrix for the SoC profile in Fig. 3-2 is

M(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −1
0 0 1 1 0

−1 −1 0 0 0
1 1 0 0 0
0 0 −1 −1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

3.2.3 Convexity of Operation Cost

The total cost of storage operation in terms of its cycling cost is given by:

Cs(xs) =
∑︂
s∈S

bs

2 νT
s νS =

∑︂
s∈S

bs

2 xT
s M(xs)M(xs)T xs (3.13)

Temporal coupling arises through the dependence of the incidence matrix M(xs) on

the SoC profile xs. Cs(·) : RT ↦→ R denotes the cycling cost function in terms of

half-cycle depths. We now show that the operation cost of storage is convex. Our

results build on the fact that under mild assumptions, the cycling cost function Cs(x)

in (3.13) is convex [98].

Theorem 3.1 (Cycling Cost Convexity [98]). For a given convex stress function Φ,

the cycling cost function Cs(xs) (3.13) is convex with respect to the SoC profile xs.

This striking result appeared in [98] in the study of cycling-cost aware models for

pay-for-performance storage operation. The proof relies on an implicit assumption
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in their induction method, which restricts combinations of two SoC profiles to those

consisting of the same number of non-zero step changes. Extensions of that proof

method rely on identifying and enumerating new scenarios. We avoid the need for this

enumeration through an alternate proof method, which builds upon [98, Lemma 1] to

extend the applicability of their result. We provide the proof in Appendix L.

In order to define the storage cost function in terms of the storage charge-discharge

rate vector us, we define a piece-wise linear mapping from this rate vector us to the

corresponding half-cycle depth vector νs, as described in the following proposition.

Proposition 3.1. The total degradation cost Cs(us) in (3.9a) is given by

Cs(us) = bs

2 uT
s N(us)T N(us)us. (3.14)

The matrix N(us) is defined as

N(us) := − 1
Es

M(xs)T A†, (3.15)

where A† denotes the Moore-Penrose generalized inverse [103] of A and A is defined

following (3.4). The matrix M(xs) ∈ R(T +1)×T is the incidence matrix for the SoC

profile xs and satisfies

νs = Rainflow(xs) = N(us)us = M(xs)T xs. (3.16)

Proof. We can explicitly write the SoC profile xs from (3.4) in terms of us as:

xs = − 1
Es

A†us + (I − A†A)w (3.17)

for any arbitrary vector w ∈ RT +1 [104]. Given the matrix A in (3.4) and any incidence

matrix M(xs), the following holds

M(xs)T (I − A†A) = 0T ×(T +1)

To see this, notice that the columns of the incidence matrix M(xs) are given by a

linear combination of the rows of the matrix A and A(I − A†A) = 0T ×(T +1). In other

76



words, the matrix M(xs)T is in the null space of matrix I − A†A. Therefore we have

M(xs)T xs = − 1
Es

M(xs)T A†us = N(us)us

such that N(us) := − 1
Es

M(xs)T A† and the total degradation cost is given by

Cs(us) = ρBsEs

2 usTN(us)T N(us)us = bs

2 uT
s N(us)T N(us)us.

Remark 1. The piece-wise linear and temporally coupled cost function Cs(·) is

convex [56, 98]. However, the cost function (3.14) is not differentiable everywhere

with respect to the storage rate us due to its piece-wise linear structure. At the point

of non-differentiability we define all m possible associated matrices for a given us as

Nk(us), k ∈ {1, 2, ..., m} and the following relation holds:

Nk(us)us = N(us)us = νs, ∀k ∈ {1, 2, ..., m}.

See, e.g., [56] for more details.

Example 1. We illustrate this procedure for three sample SoC profiles xl, xm, xr in

Figure 3-3. The Moore-Penrose generalized inverse of A defined in (3.4) for the profiles

in Figure 3-3 is given by:

A† =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−4/5 −3/5 −2/5 −1/5
1/5 −3/5 −2/5 −1/5
1/5 2/5 −2/5 −1/5
1/5 2/5 3/5 −1/5
1/5 2/5 3/5 4/5

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (3.18)

The Rainflow cycle counting algorithm sequentially compares the change in SoC

between the points in the profile where it changes its direction, i.e., starts charging

after discharging or vice-versa. In particular, for any three consecutive changes, the

algorithm extracts the full-cycle if the second one is the smallest among the three.
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Figure 3-3. Examples of SoC profile with a full-cycle (l: left), without any full-cycle (m:
middle), and with a full-cycle of zero depth (r: right).

After extracting all the full-cycles, the profile has only half-cycles that cannot form

a full-cycle. See, e.g., [56] for more details. Similar to the example in Figure 3-1,

the SoC profile xl in the left panel of Figure 3-3 has a full-cycle of depth xl,1 − xl,2, a

charging half-cycle of depth xl,3 − xl,0 and a discharging half cycle xl,3 − xl,4. Thus

the associated incidence matrix Ml(xl) from the Rainflow cycle counting algorithm, as

well as the unique depth vector νl = Ml(xl)T xl [56] for the SoC profile xl is given by

Ml(xl) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0
1 1 0 0

−1 −1 0 0
0 0 1 1
0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , νl =

⎡⎢⎢⎢⎢⎣
xl,1 − xl,2
xl,1 − xl,2
xl,3 − xl,0
xl,3 − xl,4

⎤⎥⎥⎥⎥⎦ (3.19)

Now, unlike the SoC profile xl, the SoC profile xm in the middle panel of Figure 3-

3 does not have any cycle. It contains a charging half-cycle of depth xm,3 − xm,0

and a discharging half-cycle of depth xm,3 − xm,4. Similarly, the incidence matrix

Mm(xm) from the Rainflow cycle counting algorithm and the unique depth vector

νm = Mm(xm)T xm for the SoC profile xm is given by

Mm(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −1 0
0 0 0 0
0 0 0 0
0 0 1 1
0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , νm =

⎡⎢⎢⎢⎢⎣
0
0

xm,3 − xm,0
xm,3 − xm,4

⎤⎥⎥⎥⎥⎦ (3.20)

We attach zeros to both the incidence matrix Mm(xm) and depth vector νm to keep

the dimensions consistent. Substituting the equation (3.18),(3.19), and (3.20) in the
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equation (3.15), the associated matrix Nl(ul), Nm(um) for the left and middle panels

are respectively given by

Nl(ul) = 1
E

⎡⎢⎢⎢⎢⎣
0 1 0 0
0 1 0 0

−1 −1 −1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦ , Nm(um) = 1
E

⎡⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0

−1 −1 −1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦ , (3.21)

Here ul, um denote the storage rate for the example SoC profiles in the left and

middle panel of Figure 3-3 such that the depth vector follows

Nl(ul)ul = 1
E

⎡⎢⎢⎢⎢⎣
ul,2
ul,2

−ul,1 − ul,2 − ul,3
ul,4

⎤⎥⎥⎥⎥⎦ = νl, Nm(um)um = 1
E

⎡⎢⎢⎢⎢⎣
0
0

−um,1 − um,2 − um,3
um,4

⎤⎥⎥⎥⎥⎦ = νm

Now, unlike the left and middle panels profile, the profile in the right panel of

Figure 3-3 shows an interesting case as mentioned in Remark 1 with xr,1 = xr,2 or

ur,2 = 0. The profile xr has a full-cycle of depth xr,1 − xr,2 = 0, a charging half-cycle

of depth xr,3 − xr,0 and a discharging half-cycle of depth xr,3 − xr,4. In particular, for

xr,2 = xr,1 ∓ ϵ for any ϵ → 0+ the associated matrices Mr(xr), Nr(xr) are given by

Ml, Nl (resp. Mm, Nm) whenever xr,2 = xr,1 − ϵ (resp. xr,2 = xr,1 + ϵ) with ϵ → 0+.

Hence, the depth vector can be computed in two ways using:

νr = Nl(ul)ur = 1
E

⎡⎢⎢⎢⎢⎣
ur,2
ur,2

−ur,1 − ur,2 − ur,3
ur,4

⎤⎥⎥⎥⎥⎦ = Nm(um)ur. (3.22)

Therefore, the cost function Cr(ur) (3.14) becomes non-differentiable with respect

to the storage rate ur.

3.3 Power Based Market Mechanism

We next exploit the analytical expression for the cost of storage degradation to evaluate

whether the competitive equilibrium of participants bidding with the generalized linear
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supply function leads to an efficient system dispatch that minimizes the social cost.

For ease of exposition we consider in this section the simplified setting where the only

constraint in the market clearing is (3.9b). However, our results generalize beyond this

assumption, at the cost of a more involved analysis. We next define the bidding form,

the market-clearing, and the market settlement as part of the market mechanism.

3.3.1 Market Mechanism

We first formulate the market mechanism where all the participants submit a linear

supply function. Several approaches based on a linear supply function have been

proposed to analyze the participation of generators in the market [13]. Here we extend

this framework to heterogeneous participants comprising both generators and storage.

We specify the bid for generator j as

gj = αjΘj (3.23)

and the bid for storage s as

us = βŝΘ̂s . (3.24)

where Θj ∈ RT and Θ̂s ∈ RT denote the marginal prices aimed at incentivizing

participation. These supply function bids are parameterized by αj ≥ 0 and βŝ ≥ 0,

which indicate the willingness of generator j and storage s to produce at the price Θj

and Θ̂s, respectively. The market operator collects the supply function bids from all

the participants and associates a cost function with generator j that is given by

T∑︂
t=1

∫︂ gj,t

0
Θj,tdgj,t =

T∑︂
t=1

∫︂ gj,t

0

1
αj

gj,tdgj,t = 1
2αj

gT
j gj (3.25)

as well as a cost function for storage unit s that is given by

T∑︂
t=1

∫︂ us,t

0
Θ̂s,tdus,t = 1

2βŝ

uT
s us. (3.26)
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Given the bids (αj, j ∈ G, β̂si ∈ S), the operator solves the economic dispatch problem

that minimizes total generation and storage costs to meet inelastic demand d ∈ RT :

min
us,s∈S,gj ,j∈G

∑︂
s∈S

1
2βŝ

uT
s us +

∑︂
j∈G

1
2αj

gT
j gj (3.27a)

s.t. (3.9b) (3.27b)

The optimal solution to (3.27) gives the dispatch and the market-clearing prices for

the participants at each time interval. More precisely, the generator j and the storage

s produce the dispatch quantities gj and us and are paid ΘT
j gj and Θ̂

T

s us as part of

the market settlement respectively.

The individual prices Θj and Θ̂s are functions of dual variables associated with

operational constraints of generators and storage. In the simplified setting where only

the power balance constraint is binding Θj = λ and Θ̂s = λ.

In this section, we consider the competition between price-taking generators and

energy storage. A price-taking assumption is usually evaluated as a benchmark in

the sense that if a market mechanism does not behave as desired under price-taking

assumptions, it is unlikely to perform well otherwise.

The participants choose their bids to maximize their individual profit as defined

below:

max
gj

π(λ, gj) := max
gj

λT gj − cj

2 gT
j gj (3.28a)

= max
αj≥0

αjλ
T λ − α2

j

cj

2 λT λ (3.28b)

max
us

π(λ, us) := max
us

λT us − bs

2 uT
s N(us)T N(us)us (3.29a)

= max
βŝ≥0

βŝλ
T λ − bsβŝ

2

2 λT N(λ, βŝ)T N(λ, βŝ)λ (3.29b)

where we have substituted the linear supply function bids (3.23) and (3.24) with

Θj = Θ̂s = λ respectively.
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3.3.2 Market Equilibrium

We next define and characterize the competitive equilibrium under which none of the

participants has any incentive to change its decision while the market is cleared; note

that Definition 3.1 is identical to Definition 1.4.

Definition 3.1. Under price-taking assumptions, we say the bids (βŝ, s ∈ S, αj, j ∈

G, λ) form a competitive equilibrium if the following conditions are satisfied:

1. For each generator j ∈ G, the bid αj maximizes their individual profit.

2. For each storage element s ∈ S, the bid βŝ maximizes their individual profit.

3. The inelastic demand d ∈ RT is satisfied with the market-clearing prices λ.

We first propose a lemma that will enable us to characterize the competitive

equilibrium in the market.

Lemma 3.1. For any β ∈ R, β > 0 and λ ∈ RT , the following holds

N(βλ) = N(λ).

The proof uses the fact that the scalar multiplier β only scales the input profile to

the piece-wise linear map N but the profile behavior, i.e., charging-discharging charac-

teristics remains unchanged. The following proposition characterizes the competitive

equilibrium.

Theorem 3.2. The competitive equilibrium of the prosumer based market mecha-

nism (3.27) is uniquely determined by:

αj = 1
cj

, ∀j ∈ G (3.30a)

βŝ = 1
bs

λT λ

λT N(λ)T N(λ)λ, ∀i ∈ S (3.30b)
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λ = δd, δ−1 =
⎛⎝∑︂

s∈S

1
bs

dT d

dT N(d)T N(d)d +
∑︂
j∈G

1
cj

⎞⎠ (3.30c)

We provide the proof of the Theorem in Appendix M. Though the market achieves

unique competitive equilibrium, the optimal decision parameter of the storage is a

temporally coupled function of the market-clearing prices unknown to the participants

beforehand. Moreover, the equilibrium achieved requires restrictive conditions on the

market to align its solution with the social planner’s optimum as characterized in the

next subsection. In particular, the linear supply function bidding mechanism fails to

reflect the true cost of storage participation even in the simple market setting.

3.3.3 Social Welfare Misalignment

We next characterize the gap between the market equilibrium and social optimum in

the following theorem.

Theorem 3.3. The competitive equilibrium (g∗
j , j ∈ G, u∗

s, s ∈ S, λ∗) for the SYS-

TEM (3.27) solves the SOCIAL PLANNER (3.9) if and only if there exists convex

coefficients δk ≥ 0,
∑︁m

k=1 δk = 1, such that the following holds

m∑︂
k=1

δkNT
k (d)Nk(d)d = dT N(d)T N(d)d

dT d
d. (3.31)

We provide the proof of the Theorem in Appendix N. While the linear supply

function bidding mechanism does reflect the quadratic cost function for generators4, in

general it fails to reflect the incentive of storage unit in the market as the associated

condition (3.31) may not hold. As an example where this condition holds, consider

a market with 2 time periods t = {1, 2} and the inelastic demand d = d0[1, 1]T such

that d0 ∈ R+. Since u ∝ d at the market equilibrium, the only associated matrix
4For the generator cost function in (3.9a) with cj ̸= 0, qj ̸= 0, a time dependent bid αj(t) ∈ RT

can be used to reflect a general cost function.
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N =
(︂

1 1
0 0

)︂
, such that

N(d)T N(d)d =
(︄

1 1
1 1

)︄
d =

(︄
2d0
2d0

)︄
dT N(d)T N(d)d

dT d
d = 4d2

0
2d2

0
d = N(d)T N(d)d.

This misalignment between the market equilibrium and the social optimum moti-

vates our mechanism design in the next section.

3.4 Cycle Aware Market Mechanism

In the previous section, storage bids using a generalized supply function [55], that

allows it to behave as supply and demand, and is compensated based on spot prices.

Although such a market achieves a competitive equilibrium, it requires that storage

owners have a priori knowledge of cleared prices, and leads to prices and dispatch

schedules that do not minimize the social cost. In order to overcome this inability to

minimize social costs, we propose a new mechanism where storage owners bid using

an energy-cycling function. This function maps prices (in dollars per cycle depth) to

the corresponding cycle depth that the user is willing to perform and allows storage

participants to be compensated based on a per-cycle basis.

3.4.1 Slope Function Bidding

We first consider the case where energy storage bids the slope of the energy-cycling

function, as discussed in the next subsection.

3.4.1.1 Market Mechanism

We consider generators that provide the linear supply function bids defined in (3.23)

and generalize this idea to propose an energy-cycling function bid for storage. In

particular, each energy storage s indicates the schedule of cycle depths as function of
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per-cycle prices given by

νs = βsθs . (3.32)

Here θs ∈ RT are per-cycle prices aimed at incentivizing storage participation. This

function is parameterized by a constant βs ≥ 0 and indicates all the charging or

discharging half-cycle depths νs the storage is willing to undergo at the price θs. With

per-cycle prices θs from the market, the storage unit s can choose its bid in order to

maximize its profit, which as function of the bid βs, is given by:

πus(βs, θs) =θT
s νs − bs

2 uT
s N(us)T N(us)us = θT

s νs − bs

2 νT
s νs (3.33)

=βsθ
T
s θs − bsβ

2
s

2 θT
s θs, (3.34)

where we used (3.32) and (3.16) to obtain (3.34).

We consider the case of competition between price-taking participants. A price-

taking storage owner seeks to maximize (3.34), i.e., find βs that satisfies:

∂πus

∂βs

= (1 − bsβs))θT
s θs = 0 =⇒ βs = 1

bs

, ∀s ∈ S (3.35)

Thus, this cycle aware market mechanism leads to an optimal bid βs that is not only

independent of prices in the market but also truthful.

We now illustrate a cycle aware market-clearing where both generator and storage

are incentive compatible and market aligns with social planner’s problem while

satisfying the demand. In this setting, the market operator collects supply function

bids from all the participants and solves the following economic dispatch problem that

minimizes the total cost of generator and storage dispatch:

min
(us,νs),s∈S,gj ,j∈G

∑︂
s∈S

1
2βs

νT
s νs +

∑︂
j∈G

1
2αj

gT
j gj (3.36a)

s.t. νs = N(us)us, s ∈ S (3.36b)

(3.1), (3.2), (3.6), (3.8), (3.9b)
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where (3.36b) implements the Rainflow algorithm. The optimal solution to cycle aware

system (3.36) gives the dispatch and two set of prices. More precisely as part of the

market settlement, generator j produces gj and gets paid ΘT
j gj where

Θj = λ + η
j

− ηj. (3.37)

Here η
j
, ηj are the dual variables associated with the generator capacity constraint (3.1)

and the vector λ denotes the market-clearing prices or the dual variable associated

with the constraint (3.9b). The storage unit s produces a cycle depth schedule νs

and gets paid θT
s νs with the prices θs given by the dual variable associated with the

constraint (3.36b).

The piece-wise linear constraint (3.36b) makes the dispatch problem (3.36) non-

convex and challenging to solve numerically. However, substituting the rainflow

constraint (3.36b) in the cost function objective (3.36a) leads to an equivalent convex

optimization problem that can be solved by the convex programming as formalized in

the following proposition.

Proposition 3.2. Any locally optimal solution (gj, j ∈ G, us, s ∈ S, νs, s ∈ S, λ, θs, s ∈

S) of the cycle aware system (3.36) is also a globally optimal solution.

We provide the proof of the Proposition in Appendix O. The equivalent convex

problem formulation ensures that the optimal dispatch and clearing prices are incentive

compatible [56]. We discuss the competitive equilibrium in such a market in the next

subsection.

3.4.1.2 Market Equilibrium

We next redefine and characterize the competitive equilibrium of the market com-

petition under the proposed mechanism; note that Definition 3.2 is identical to

Definition 1.4.
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Definition 3.2. Under the price-taking assumptions, the bids (βs, s ∈ S, αj, j ∈ G)

form a competitive equilibrium if the following conditions are satisfied:

1. For each generator j ∈ G, the bid αj maximizes their individual profit.

2. For each storage s ∈ S, the bid βs maximizes their individual profit.

3. For each storage element s ∈ S, the Rainflow constraint is satisfied with per-cycle

prices θs.

4. The inelastic demand d ∈ RT is satisfied with the market-clearing prices λ.

The following is our main result and highlights the alignment of proposed market

mechanism with the social planner’s problem.

Theorem 3.4. The competitive equilibrium of the cycle aware market mechanism (3.36)

also solves the SOCIAL PLANNER problem (3.9).

Proof. Under price-taking assumptions, given prices (Θj, j ∈ G) from the market-

clearing (3.36), the optimal bid is given by

∂πgj

∂αj

= ∂

∂αj

(︃
Θj

T gj − cj

2 gT
j gj

)︃
= 0 =⇒ αj

∗ = 1
cj

.

and for (θs, s ∈ S) the optimal decision parameter from (3.35) is given by

β∗
s = 1

bs

, ∀s ∈ S.

Therefore using the optimal solution of (3.36) from Proposition 3.2 along with the

the optimal bid of participants given by (β∗
s , s ∈ S, α∗

j , j ∈ G), we recover the social

planner problem (3.9). Hence the competitive equilibrium of (3.36) also solves the

SOCIAL PLANNER problem.

We end by noting that, although the cycle aware system in (3.36) may have

non-unique optimal schedule u∗
s and θ∗

s due to the piece-wise linear rainflow con-

straint (3.36b), the cycle aware market mechanism aligns with the social planner
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problem, and any such solution will be optimal. We further note that the additional

assumption of uniform pricing leads to the set of unique optimal schedule and prices.

3.4.1.3 Numerical Study

In this section we provide a numerical example comparing the competitive equilibrium

of the power based market mechanism (PBM) and the cycle based market mechanism

(CBM). We use aggregate demand data of the Millwood Zone operated by the New

York ISO (date: 8/10/2020) [105]. For ease of analysis we assume one generator

and one aggregate energy storage. The aggregate cost coefficients of the generator

are c = 0.1$/(MW )2 and a = 20$/MW in equation (3.9a) [80] and the empirical

cost coefficients of the quadratic cycle stress function is ρ = 5.24 × 10−4 [98]. The

generation has sufficient capacity to meet the demand, i.e. g = 0 and g ≥ maxt{dt}.

The storage rate limits are given by u = E
4 and u = −E

4 , which corresponds to storage

requiring four hours (slots) to completely charge or discharge.

We use a canonical generation centric dispatch (GCD) model in which market

accounts for only generation cost i.e. disregarding storage degradation cost from the

objective function leading to a cycle unaware dispatch strategy as a benchmark case.

This hidden cycling cost is calculated from the storage SoC profile of the optimal

solution. These costs are then added to the cost function value to compute the total

social cost, i.e. social cost = generation cost + (hidden) cycling cost.

Figure 3-4 illustrates the social cost and cycling cost of storage as we (a) increase

the storage capital cost given a fixed storage capacity and (b) increase the storage

capacity given a fixed storage capital cost. In the top panel of Figure 3-4a we fix the

storage capacity to be E = 100MWh. As expected the social cost increases with the

capital cost and our proposed CBM gives the lowest social cost, while GCD has the

highest costs as it does not account for cycling costs in the optimization. The bottom

panel in Figure 3-4a shows the cycling cost of storage under the three mechanisms.
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(a) Cost w.r.t storage capital cost (b) Cost w.r.t storage capacity

Figure 3-4. (Top) Social cost and (Bottom) cycling cost in the cycle based mechanism
(CBM), power based mechanism (PBM) and generation centric dispatch (GCD) w.r.t
storage capital cost and storage capacity.

As expected GCD utilizes the storage without any restrictions leading to higher cost.

Since the PBM overestimates the cost of storage, it leads to more restrictive use of

storage and hence lower cycling cost compared to CBM. Although CBM incurs higher

storage cost, the incentive compatibility allows it to reduce the total social cost.

In Figure 3-4b we fix the storage capital cost to be B = 200$/kWh [106] and

increase storage capacity. The social cost decreases with the storage capacity for CBM

and PBM. Thus the benefits of accounting for degradation increase when storage

capacity increases (top panel of Figure 3-4b). Further, not accounting for storage

cost, as in GCD, leads to overall higher social cost. This is because as the capacity

increases, storage can supply the required power with fewer or (relatively) shallower

cycles, thus decreasing the social cost of CBM and PBM. The cycling cost is shown in
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the bottom panel in Figure 3-4b.

(a) Profit w.r.t storage capital cost (b) Profit w.r.t storage capacity

Figure 3-5. Storage profit in the cycle based mechanism (CBM), power based mechanism
(PBM) and generation centric dispatch (GCD) w.r.t storage capital cost and storage
capacity.

Figure 3-5 compares the profit of the storage as we increase the storage capital

cost and increase the storage capacity respectively. In Figure 3-5a we fix the storage

capacity to be E = 100MWh whereas in Figure 3-5b we fix storage capital cost to

be B = 200$/kWh. As expected storage earns more profit in CBM as compared to

PBM due to realistic representation of cost of storage degradation. The GCD leads

to losses for the storage due to the large unaccounted for cycling cost of storage. As

storage capital cost decreases or the storage capacity increases, storage incurs lower

degradation cost while earning more profit at the peak period.

3.4.2 Intercept Function Bidding

In the previous section, storage bids the slope of the energy-cycling function that

allows the resulting competitive equilibrium to align with the social planner problem.

However, in the presence of strategic participants, slope function bidding can not

always guarantee a stable market outcome (see, e.g., section 2.2.2). In this section,

participants bid the intercept of the supply or energy-cycling function, motivated

by [55, 58, 59], as a parameter in the market.
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For ease of analysis we consider in this section simplified setting where the only

constraint in the market clearing is (3.9b). Furthermore, we model the cyclic nature

of storage by imposing periodicity penalty term Qs(us) with penalty parameter γs

that constrain the storage to cycle back in the end, i.e.,

Qs(us) := 1
2γs

⎛⎝∑︂
t∈T

us,t

⎞⎠2

. (3.38)

The modified social planner problem is given by,

min
gj ,j∈G,us,s∈S

∑︂
s∈S

Cs(us) +
∑︂
s∈S

Qs(us) +
∑︂
j∈G

cj

2 gT
j gj (3.39a)

s.t. (3.9b) (3.39b)

where we assume a quadratic operation cost for the generator’s power supply.

Each generator j submits an intercept supply function that maps power dispatch

to prices as

gj = ajλ − Ψj (3.40)

where λ ∈ R|T | denote the market prices, aj ∈ R>0 represents the constant slope and

parameter Ψj ∈ R|T | indicate willingness of generator j to participate in the market.

Similarly, storage submits an intercept energy-cycling function that maps the schedule

of cycle depths to per-cycle prices as

νs = hsθs − Γs (3.41)

where θs ∈ R|T | denote the per-cycle prices that incentivizes storage, hs ∈ R>0 denote

the constant slope of the function and parameter Γs ∈ R|T | indicate willingness of

storage s to participate in the market. The market operator interprets the submitted

bids and associates a cost function for generator j, as given by

Rj(gj, Ψj) =
T∑︂

t=1

∫︂ gj,t

0
λj,tdgj,t =

T∑︂
t=1

∫︂ gj,t

0

gj,t + αj,t

aj

dgj,t = 1
2aj

||gj||22 + gj
T Ψj

aj

91



and for storage s, as given by

Rs(νs, Γs) =
T∑︂

t=1

∫︂ νs,t

0
θs,tdνs,t = 1

2hs

||νs||22 + νs
T Γs

hs

.

Given the bids (Ψj, j ∈ G, Γs, s ∈ S), the operator solves the associated economic

dispatch problem to meet inelastic demand d ∈ R|T | at minimum cost, as given by:

min
gj ,j∈G,us,νs,s∈S

∑︂
j∈G

Rj(gj, Ψj) +
∑︂
s∈S

(︁
Rs(νs, Γs) + Qs(us)

)︁
(3.42)

s.t. (3.9b), (3.36b)

The optimal primal-dual solution of the economic dispatch problem (3.42) gives the

dispatch and prices for generators and storage. In particular, each generator j and

storage s dispatch power gj and us while compensated λT gj and θs
T νs as part of

the market settlement, respectively. The resulting prices (λ, θs, s ∈ S) are the dual

variables associated with the operational constraints (3.9b) and (3.36b), respectively.

3.4.2.1 Uniform Bid - Market Mechanism

We first consider a market mechanism where participants bid uniformly across all time

intervals. Drawing ideas from the slope function bidding with a scalar bid parameter,

each participant bids a unique intercept, respectively, for the entire horizon. Each

generator j submits

gj = ajλ − αj1 (3.43)

where Ψj = αj1. αj ∈ R is the parameter and 1 is standard vector of all ones.

Similarly, each storage s submits

νs = hsθs − βs1 (3.44)

where Γs = βs1. βs ∈ R is the parameter and 1t = Iθs,t>0, ∀t ∈ {1, ..., T}. Here Iθs,t>0

is an indicator function. θs ∈ R|T | denote the per-cycle prices that incentivizes storage

and hs ∈ R>0 denote the constant slope of the function. We first characterize the
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competitive equilibrium, assuming price-taking participants, and then characterize

the Nash equilibrium which assumes price-anticipating participants.

We make the following assumptions regarding participation of energy storage in

markets. These assumptions are primarily made for ease of closed-form analysis.

Assumption 3.1. Energy storage units are homogeneous and take a symmetric

position in the market, i.e., bs := b, hs := h, βs := β, γs := γ, ∀s ∈ S.

Assumption 3.2. The associated SoC profile of energy storage s ∈ S does not satisfy

Definition I.2, i.e., it is not a boundary profile.

Price-taking Participation and Competitive Equilibrium

Given the market prices (λ, θs, s ∈ S), we model the competition between price-taking

participants and characterize the resulting competitive equilibrium.

Theorem 3.5. Suppose Assumption 3.1 holds. A competitive equilibrium that satisfies

Definition 3.1 exists uniquely in the multi-interval electricity market, as given by:

αj = ajcj − 1
Tcj

1T λ, gj =
(︄

ajI − ajcj − 1
Tcj

11T

)︄
λ, ∀j ∈ G (3.45a)

β = hb − 1
b1T1

1
T θ, u := us = (|S|Z + Y )−1Zd, ∀s ∈ S (3.45b)

λ = Z(|S|Z + Y )−1Y d, θ := θs = 1
h

(︄
I + hb − 1

1T1
11

T

)︄
N(u)u (3.45c)

where

Z := 1∑︁
j∈G

aj

⎡⎢⎢⎢⎣I + 1
T

⎛⎜⎜⎝
∑︁

j∈G
aj∑︁

j∈G
c−1

j

− 1

⎞⎟⎟⎠11T

⎤⎥⎥⎥⎦ (3.46a)

Y := 1
γ

11T + 1
h

Nδ(u)T

(︄
I + hb − 1

1T1
11

T

)︄
Nδ(u). (3.46b)

and Nδ(u) := ∑︁m
k=1 δkNk(u). Here δk ≥ 0,

∑︁m
k=1 δk = 1 are convex coefficients

associated with all m possible matrices Nk, k ∈ {1, ..., m}, see e.g. Remark 1.

Moreover, under the assumption that ajcj = 1 ∀j ∈ G and hb = 1 the competitive

equilibrium aligns with the social planner problem (3.39).

93



We provide the proof of the Theorem in Appendix P. Unlike the slope bidding

mechanism in section 3.4.1, the uniform bid design in the intercept bidding market

mechanism requires additional conditions on the market model to align with the social

planner problem (3.39). The alignment of competitive equilibrium with the social

planner solution is a desired market outcome indicating efficient dispatch and the

property is often regarded as a benchmark for the classification of market design.

Intuitively, the restriction of uniform bid couples the decision of participants across

time intervals, leading to an aggregated behavior over the horizon, and does not endow

them with the flexibility to change their bid based on price fluctuations.

Price-anticipating Participation and Nash Equilibrium

We next consider the competition between price-anticipating participants in the market.

Each participant anticipates other’s actions and makes the decision that maximizes

their individual incentive. The following theorem characterizes the Nash equilibrium

that satisfies the Definition 3.1.

Theorem 3.6. Suppose Assumption 3.1 and 3.2 holds. Furthermore, we assume

ajcj = 1 ∀j ∈ G and hb = 1 then a Nash equilibrium that satisfies Definition 3.1 exists

uniquely and is characterized below:

αj =

c−2
j∑︁

j∈G
cj

−2

(︂
r1
q

+ m1r2
wq

)︂
(
∑︁
j∈G

c−1
j )2∑︁

j∈G
c−2

j

− m2r2
wq

, β = m1

w
+

m2
w

(︂
r1
q

+ m1r2
wq

)︂
(
∑︁
j∈G

c−1
j )2∑︁

j∈G
c−2

j

− m2r2
wq

(3.47a)

u := us = H−1d̂, ∀s ∈ S, gj = c−1
j λ − αj1, ∀j ∈ G (3.47b)

λ =
d − |S|H−1d̂ + ∑︁

j∈G
αj1∑︁

j∈G
c−1

j

, θ := θs = bN(u)H−1d̂ + bβ1 (3.47c)

where

r1 := 1T (I − |S|H−1)2d, r2 :=

∑︁
j∈G

c−1
j

b−1 1T (I − |S|H−1)|S|H−1N(u)T
1 (3.48a)
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q := T −

∑︁
j∈G

c−2
j

(∑︁
j∈G

c−1
j )2 1T (I − |S|H−1)21 (3.48b)

m1 := dT H−1

⎛⎜⎜⎝I +

∑︁
j∈G

c−1
j

γ
11T

⎞⎟⎟⎠H−1N(u)T
1 (3.48c)

m2 := 1T H−1

⎛⎜⎜⎝I +

∑︁
j∈G

c−1
j

γ
11T

⎞⎟⎟⎠H−1N(u)T
1 (3.48d)

w :=

∑︁
j∈G

c−1
j

b−1 1
T N(u)H−1

⎛⎜⎜⎝H + I +

∑︁
j∈G

c−1
j

γ
11T

⎞⎟⎟⎠H−1N(u)T
1 (3.48e)

H := |S|I +

∑︁
j∈G

c−1
j

γ
11T +

∑︁
j∈G

c−1
j

b−1 N(u)T N(u) (3.48f)

d̂ := d +
∑︂
j∈G

αj1 −

∑︁
j∈G

c−1
j β

b−1 N(u)T
1 (3.48g)

We provide the proof of the Theorem in Appendix Q. The penalty parameter γs

can be tuned to satisfy the Assumption I.2. We now consider the asymptotic behavior

of the resulting Nash equilibrium in a uniform bid market mechanism, as the number

of participants increases in the market. Ideally, as competition between participants

increases, the market tends to become competitive leading to the socially optimal

dispatch. We first propose a lemma that will enable us to analyze the asymptotic

behavior of participants.

Lemma 3.2. For any u ∈ R|T |, ∃ y ∈ R|T | such that the following holds:

1 = Nδ(u)T Nδ(u)y

where Nδ(u) := ∑︁m
k=1 δkNk(u). Here δk ≥ 0, ∑︁m

k=1 δk = 1 are convex coefficients as

defined for the piece-wise linear Rainflow map Nk(u), k ∈ {1, ..., m} between storage

profile u and associated depth vector ν [30].

We provide proof of the lemma in Appendix R. Lemma 3.2 provides formal proof of

the intuition that a directed path exists that joins the vertices or nodes 0 and T of the
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directed graph G(x) in Algorithm 2, associated with the piece wise linear map between

the SoC profile x for the rate u and cycle-depth vector ν. We now characterize the

asymptotic behavior of the Nash equilibrium for a unilateral increase in the number

of participants and the case where the number of participants increases in both sets

of players.

Theorem 3.7. Suppose Assumption 3.1 and 3.2 holds. The Nash equilibrium in

the uniform bid market mechanism aligns with the social planner problem (3.39),

asymptotically, i.e., |G| >> |S|, |S| >> |G|, or |S| >> 1 and |G| >> 1 s.t. |S|∑︁
j∈G

c−1
j

→

constant

We provide proof of the theorem in Appendix S. Interestingly, increasing the

number of participants in either group helps counter the market power of all the

participants, and the market equilibrium tends towards the competitive equilibrium.

We next investigate the properties of market equilibrium for the uniform bid market

mechanism with a numerical example. We consider the case of 3 generators and 3

energy storage units in a market. We assume that storage units are homogeneous,

i.e., hs := h, bs := b, γs := γ, ∀s ∈ S. The scaled aggregate demand, as sampled

from the CAISO day-ahead demand forecast data of Apr 09, 2023, is given by

d = [188.68; 181.46; 192.38; 18.03; 236.34; 201.53]T MW .

Comparison of Competitive Equilibrium with Social Planner

In Figure 3-6, we plot the social cost at competitive equilibrium and provide a

comparison with the social planner solution w.r.t. model parameters, i.e., the slope

of the intercept supply and intercept energy-cycling function, aj and h in panel (a)

and (b), respectively. For each generator j, we assume the cost coefficient cj =

0.1$/MW 2, ∀j ∈ G corresponding to the cost coefficients from the IEEE 300-bus

system [80]. We fix the storage capacity to be E = 50MWh and storage capital cost

as B = 200$/kWh for each storage unit. Further, we assume that the quadratic cycle
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stress function has the empirical cost coefficients as ρs = 5.24 × 10−4, ∀s ∈ S [98] and

the penalty parameter γs = 10−4, ∀s ∈ S.

Figure 3-6. Social cost at competitive equilibrium and social planner solution w.r.t (a)
slope aj := a ∀j ∈ G of intercept function and (b) slope hs = h, ∀s ∈ S of intercept
energy-cycling function.

In the left panel of Figure 3-6, we fix the model parameter h = b−1 and plot the

social cost w.r.t. the model parameter aj := a, ∀j ∈ G. Similarly, in the right panel

of Figure 3-6, we fix the model parameter aj = c−1
j and plot the social cost w.r.t.

the model parameter hs = h, ∀s ∈ S. As expected, the social cost at competitive

equilibrium does not always align with the social planner solution. At the point

ajcj = 1, hb = 1, the competitive equilibrium is efficient and achieves the social

planner cost. The deviations from ajcj = 1, hb = 1 can be understood as due to

inaccurate estimation of the truthful cost function of generators and storage, resulting

in efficiency losses. An overestimation of truthful cost function, i.e., low values of aj

and h in panels (a) and (b), respectively, penalizes the market with steeper loss in

efficiency. We next analyze the Nash equilibrium and compare it with the competitive

equilibrium in the following subsection.
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Comparison of Nash and Competitive Equilibrium

We restrict our comparison for ajcj = 1, ∀j ∈ G, hb = 1 only since the Nash equilibrium

in Theorem 3.6 is characterized under these assumptions. Figure 3-7 illustrates the

social cost (top) and aggregate profit of homogeneous storage units (bottom) as we (a)

increase the storage capital cost for a fixed storage capacity of each unit E = 50MWh

and (b) increase the storage capacity for a fixed storage capital cost of B = 200$/kWh,

respectively.

As expected, the social cost increases while the storage profit decreases with the

capital cost at the equilibrium. Since storage is relatively expensive due to high capital

cost and relies on other resources, e.g., generators, for its charging needs, these are

exploited in the market resulting in negative profits at the Nash equilibrium compared

to the competitive equilibrium with positive profits. With an increase in the capacity,

storage is able to supply power with relatively shallower cycle depths resulting in a

decrease in the social cost and an increase in the storage profit, as shown in panel (b)

in Figure 3-7. Similarly, at the Nash equilibrium, generators manipulate the price and

earn profit at the expense of storage that loses at the equilibrium.

Figure 3-8 analyzes the absolute (top) and normalized (bottom, normalized with

the competitive equilibrium) profit of individual generators at the Nash equilibrium

w.r.t the heterogeneity in the cost coefficients. We consider a market with 5 generators

and 3 homogeneous storage units. Thee capital cost is fixed to be B = 200$/kWh

and storage capacity to be E = 50MWh for each storage unit. We sample the cost

coefficients of generators 10, 000 times from a Gaussian distribution with mean 0.1 and

variance 0.001, i.e., cj ∼ N(0.1, 0.001), ∀j ∈ {1, .., 5}. At Nash equilibrium, a cheaper

generator with a lower cost coefficient earns higher profits, while expensive generators

with a higher cost coefficient have a higher normalized profit value, as shown in the

top and bottom panels in Figure 3-8. The expensive generators win the intra-group
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Figure 3-7. (Top) Social cost and (Bottom) aggregate storage profit at competitive and
Nash equilibrium w.r.t (a) storage capital cost and (b) storage capacity.

competition between strategic generators at the expense of cheaper generators.

Figure 3-9 illustrates the aggregate storage profit at the Nash equilibrium w.r.t the

average cost coefficient of generators. We assume 3 homogeneous storage units with

capital cost B = 200$/kWh and capacity E = 50MWh for each storage unit. In each

of the 10, 000 iterations, we sample the cost coefficient of 5 generators from a Gaussian

distribution with mean 0.1 and variance 0.001, i.e., cj ∼ N(0.1, 0.001), ∀j ∈ {1, .., 5},

and compute its average to obtain an average cost coefficient. As generators becomes

expensive, with a higher cost coefficient on average, storage profit increases due to the

increased competition.

3.4.2.2 Non-uniform Bid - Market Mechanism

In this section, we propose a non-uniform bidding mechanism that endows participants

with the flexibility to bid separately for separate intervals in a market. In particular,
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Figure 3-8. (Top) Absolute and (Bottom) normalized generators profit at Nash equilibrium
(normalized with competitive equilibrium) w.r.t cost coefficient of generators.

Figure 3-9. Aggregate storage profit at Nash equilibrium w.r.t average cost coefficient of
generators.
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generator j submits an intercept function with constant slope aj, as

gj = ajλ − αjαjαj (3.49)

where Ψj = αjαjαj, αjαjαj ∈ R|T |. Similarly, storage s submits an intercept energy-cycling

function with constant slope hs, as

νs = hsθs − βsβsβs (3.50)

where Γs = βsβsβs, βsβsβs ∈ R|T |. We first characterize the competitive equilibrium, assuming

price-taking participants, and then characterize the Nash equilibrium, assuming price-

anticipating participants.

Price-taking Participation and Competitive Equilibrium

Given the market prices (λ, θs, s ∈ S), we characterize the resulting competitive

equilibrium due to competition between price-taking participants.

Theorem 3.8. The competitive equilibrium exists uniquely and aligns with the social

planner problem (3.39) in the multi-interval electricity markets. The optimal bid of

participants is given by:

αjαjαj = ajcj − 1
cj

λ, ∀j ∈ G, βsβsβs = hsbs − 1
bs

θs, ∀s ∈ S (3.51a)

The optimal dispatch at the equilibrium is the solution to the social planner prob-

lem (3.39).

We provide the proof of the Theorem in Appendix T. Unlike the competitive

equilibrium in Theorem 3.5 for uniform bid market mechanism, the equilibrium in

Theorem 3.8 always aligns with the social planner problem.

Price-anticipating Participation and Nash Equilibrium

We next characterize the resulting Nash equilibrium due to competition between

strategic participants in a non-uniform bid market mechanism.
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Theorem 3.9. We assume storage units are homogeneous and the following holds

ajcj = 1 ∀j ∈ G, hsbs = 1 ∀s ∈ S

Further, assume an SVD decomposition [103]

N(u) = V ΣW T =
[︂
v⊥ v

]︂ [︄0 0
0 Λ1/2

]︄ [︂
w⊥ w

]︂T
(3.52)

where V ∈ R|T |×|T |, Σ ∈ R|T |×|T |, W ∈ R|T |×|T | and V, W are unitary matrices. Here

Λ1/2 ∈ Rr×r is full rank (say r) such that v⊥ ∈ R|T |×(|T |−r), v ∈ R|T |×r, w⊥ ∈ R|T |×(|T |−r)

and w ∈ R|T |×r. Also assume y ∈ R|T | such that

1 = N(u)T N(u)y

Then the first-order conditions for an optimal bid of individual participants are given

by:

αααj =
c−2

j

(∑︁
j∈G

cj
−1)2 w

⎛⎝Q̃wT (d +
∑︂
j∈G

αj) +
(︂
Ir − |S|Q−1

)︂
Pβ

⎞⎠ (3.53a)

wT d = 1
|S|

⎡⎢⎢⎣Ir −

∑︁
j∈G

c−2
j

(∑︁
j∈G

cj
−1)2 (Ir − |S|Q−1)

+

⎛⎜⎜⎝Q −

∑︁
j∈G

c−2
j

(∑︁
j∈G

cj
−1)2 Q̃Q

⎞⎟⎟⎠
⎛⎜⎜⎝Ir +

∑︁
j∈G

c−1
j

γ
zzT

⎞⎟⎟⎠
−1
⎤⎥⎥⎥⎦QPβββ (3.53b)

where

Q := |S|Ir +

∑︁
j∈G

c−1
j

γ
zzT + (b

∑︂
j

c−1
j )Λ, (3.54a)

P :=
|S| ∑︁

j∈G
c−1

j

b−1 Q−1Λ1/2vT , Q̃ := (Ir − |S|Q−1)2 (3.54b)

z := ΛwT y (3.54c)

and Ir ∈ Rr×r is the standard identity matrix.

The KKT conditions of the economic dispatch problem (3.42) along with (3.53)

form the necessary conditions for the Nash equilibrium.
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We provide proof of the theorem in Appendix U. Even in the case of a simple

setting with only a power balance constraint, the closed-form solution at the Nash

equilibrium is theoretically complex. To gain insights, we analyze the asymptotic

behavior of the resulting Nash equilibrium as follows.

Theorem 3.10. Assuming storage units are homogeneous and participate symmet-

rically in the market. The partially symmetric Nash equilibrium in non-uniform bid

market mechanism aligns with the social planner problem (3.39), asymptotically, i.e.,

|G| >> |S|, |S| >> |G|, or |S| >> 1 and |G| >> 1 s.t. |S|∑︁
j∈G

c−1
j

→ constant.

We provide proof of the theorem in Appendix V. The Nash equilibrium aligns with

the competitive equilibrium asymptotically. Furthermore, increasing the number of

participants in either group helps counter the market power of all the participants,

and the market equilibrium tends towards the competitive equilibrium.

Illustrative Case Study

We now illustrate the performance of competitive equilibrium by investigating the

aggregate profit of energy storage using a six-interval market as an example from

the CAISO. We consider a market with 10 generators and 3 storage units subject

to technical constraints, e.g., ramping constraints, capacity constraints, etc., and

investigate the equilibrium as we change the penetration level of renewable energy

resources, storage capital cost, and storage capacity. Each energy storage with capacity

E = 100MWh and capital cost B = 200$/kWh has rate limits as us = E
4 and us = −E

4 ,

i.e., it takes four hours (slots) for energy storage to charge or discharge completely.

Further, Table 3-I summarizes the characteristics of available generators. The ramping

limit of each generator j is considered to be 5% − 15% of the maximum capacity [107].

The cost coefficient and capacity limit of generators corresponds to the IEEE 300-bus

system [80].
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Table 3-I. Generator Characteristics

Qty. Cost Maximum Ramp Ramp
Coefficient Capacity up down
($/MW 2) (MW ) (MW ) (MW )

2 0.01 100 5 5
1 0.01 150 10 10
3 0.04 200 15 15
2 0.1 200 20 20
2 0.27 200 30 30

The scaled aggregate demand (without accounting for the renewable energy, i.e.,

0% penetration) is given by d = [203.84; 192.87; 196.53; 124.78; 242.08; 204.77]T MW .

The net demand is given by d = [188.68; 181.46; 192.38; 18.03; 236.34; 201.53]T MW

(with 100% penetration), as sampled from the CAISO day-ahead demand forecast

data for Apr 09, 2023 and shown in the panel (a) of Figure 3-10. We plot the social

cost and aggregate profit of generators and storage w.r.t the penetration level in the

panel (b) of Figure 3-10. With an increase in the penetration level, high ramping limit

expensive generators and storage units are used to meet the demand, increasing the

social cost and profit of participants.

Figure 3-10. (a) Hourly demand and net demand (100% penetration of renewable energy
sources) from CAISO April 09, 2023 and (b) social cost and aggregate profit at competitive
equilibrium w.r.t renewable energy source penetration level.

In Figure 3-11 we fix the penetration level at 50% and illustrate the social cost
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and aggregate profit as we (a) increase the storage capital cost for a fixed storage

capacity or (b) increase the storage capacity for a fixed capital cost. In the left panel

of Figure 3-11 we fix the storage capacity at E = 100MWh for each storage unit.

The social cost and aggregate profit of generators increase with the capital cost. The

aggregate profit of storage first increases due to an increase in capital cost resulting

in shallower cycle depths. However, a further increase in the capital cost results in

limited participation of storage in the market and decreases its profit, as shown in the

panel (a) in Figure 3-11.

Figure 3-11. Social cost and aggregate profit at competitive equilibrium w.r.t (a) storage
capital cost (in $/kWh) and (b) storage capacity (in MWh).

In panel (b) in Figure 3-11 we fix storage capital cost at B = 200$/kWh for each

storage unit. As expected, the social cost and aggregate profit of generators decrease

with the storage capacity. With an increase in storage capacity, storage can dispatch

at shallower cycle depths resulting in an increased market share and increased profits.

3.4.2.3 Efficiency and Tractability Trade-off

The closed-form study of strategic participant behavior is theoretically complex.

The temporal coupling and nonsmooth nature of storage operation cost in the form

of its degradation costs poses additional complexity to this task. In this work,
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drawing motivation from the traditional slope function bidding, we propose a uniform

bid mechanism where participants bid a single parameter. Although the resulting

competitive equilibrium requires additional assumptions for market efficiency, the

mechanism guarantees a stable market outcome.

We then analyze a market mechanism based on non-uniform bid functions, where

participants have the flexibility to bid separately for each time interval. In this case,

the competitive equilibrium is always efficient and aligns with the social planner

solution. However, the closed-form analysis of Nash equilibrium, though efficient

asymptotically, is challenging. Our analysis raises a question of a trade-off between

desirable market features, i.e., efficiency, and the tractability of resource participation

behavior, meaning a guarantee of stable market outcome.

3.5 Chapter Summary

This chapter considered the generalization of existing market design to emerging

technologies, e.g., battery storage. We model the competition between generators and

energy storage in a market that intrinsically accounts for the convex operating cost of

storage based on its degradation due to charge-discharge cycling.

We first analyze the existing market mechanism where both generators and storage

bid linear supply functions. Under the price-taking assumptions, the competitive

equilibrium in such a market requires restrictive conditions to align with the social

optimum. Furthermore, the optimal bid of storage is a temporally coupled function of

market prices which may not be desirable. We then propose a novel energy-cycling

function for storage where storage bids cycle depths as a function of per-cycle prices.

This type of storage bidding function incentivizes the participants to reflect their true

cost in the market, i.e., the competitive equilibrium in such a market aligns with the

social planner.
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We close by comparing market mechanisms and contrasting participating behavior

at Nash equilibrium. A uniform intercept bid function can guarantee a stable market

outcome. However, it requires additional market assumptions for efficient resource

allocation. In the case of a non-uniform bid market mechanism, competitive equi-

librium always aligns with the social planner solution, but any guarantee of Nash

equilibrium is theoretically complex. Illustrative examples show strategic generators

win the competition at the expense of energy storage. However, in a general market

setting with high ramping constraints, due to the increased penetration of renewable

energy resources, energy storage earns relatively higher profit with an increase in its

participation to satisfy system requirements.
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Chapter 4

Integration of Hybrid Energy
Resources

In this chapter, we shall study the participation of hybrid energy resources, which

commonly involve a combination of multiple generation technologies lying behind a

shared point of interconnection. For the purposes of this work, we focus our attention

on the combination of energy storage (ESR) with variable renewable energy resources

(VER), witnessing a rapid increase in its adoption due to aggressive decarbonization

targets, increased penetration of intermittent renewable energy resources, the need

for flexible resources, etc. These hybrid resources can provide technical services for

enhanced power dispatch flexibility, reduced energy curtailment losses, and improved

system reliability.

However, the complexity in the operation and regulation of these emerging tech-

nologies poses a unique challenge to the existing market design, e.g., the operation cost

of energy storage depends on the charge-discharge cycles compared to the renewable

energy resources with zero marginal operation cost. Several market operators, i.e.,

ISOs and RTOs, are re-evaluating market participation policies for efficient allocation

of resources and reliability of the grid.

In this chapter, we use production cost modeling to conduct simulations of different

participation models and analyze their impact on the market. In section 4.1, we describe
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the participation models outlined by several ISOs, i.e., independent participation with

component resources participating separately with physical constraints and integrated

participation as a single resource [60]. We then discuss the multi-interval and multi-

timescale production cost model setup in the New York ISO area in section 4.2. A

discussion of case scenarios is provided in section 4.3. Finally, we discuss the key

metrics for the study and results of the simulations from Polaris’ Power System

Optimizer (PSO) software in section 4.4. Finally, we summarize the chapter in

section 4.5.

4.1 Market Participation Models

Hybrid energy resource participation in the market depends on various factors, e,g.,

the configuration of component resources, regulatory constraints, market policies, etc.

In particular, the underlying resources can participate separately with or without

a linking constraint in the market, referred to as 2R Linked or 2R ISO-Managed

Co-located model, respectively. Alternatively, a hybrid resource can compete as a

single integrated resource with or without the intervention of the market operator

for SoC management, referred to as 1R ISO-Managed-Feasibility or 1R Self-Managed

Hybrid model. Moreover, a linking constraint can limit the hybrid resource’s ability

to charge from the grid. Figure 4-1 depicts these participation models. Several other

modes of participation may exist, and we refer to [60] for more details.

In this chapter, we will focus our attention on 2R ISO-Managed Co-located, 2R

Linked Co-located, and 1R Self-Managed Hybrid models.

4.1.1 Stand-alone Resource Participation Model

We start with participation models for constituent resources of the hybrid energy

resources, (i) renewable energy resources, and (ii) energy storage. Unlike conventional

electric generators, renewable energy resources, e.g., wind and solar energy, has a
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Figure 4-1. Hybrid energy resource market participation models; reproduced from [60]

variable capacity limit and can be operated flexibly with small variable energy costs.

On the other hand, energy storage, e.g., battery storage, has a fixed capacity and

relies on other resources for charging.

Variable Energy Resource Participation Model

VER submits offers in both day-ahead and real-time markets that reflect its will-

ingness to participate in the market. Since the offer prices are zero or negative due

to production-based subsidies, markets typically schedule them at their maximum

operating limit. However, in some peak periods with congested transmission lines,

VER dispatch may be curtailed for system reliability and even penalized for deviations

from the curtailment.

For each VER, the power dispatch, upward reserve schedule, and downward reserve
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schedule at time t is denoted by Pver,t, Rr+
ver,t, Rr−

ver,t, subject to constraints

Pver,t +
∑︂

r+∈R+

Rr+

ver,t ≤ P forecast
ver , t ∈ T , ver ∈ VER (4.1a)

Pver,t −
∑︂

r−∈R−

Rr−

ver,t ≥ 0, t ∈ T , ver ∈ VER (4.1b)

Rr+

ver,t ≥ Rr%,+

ver P max
ver , t ∈ T , ver ∈ VER, r+ ∈ R+ (4.1c)

Rr−

ver,t ≥ Rr%,−

ver P max
ver , t ∈ T , ver ∈ VER, r− ∈ R− (4.1d)

Here R+, R− denotes the set of upward and downward reserve categories, e.g., spinning

reserve, regulation reserve, etc., VER denotes the set of variable renewable energy

resources, and T denotes the set of time intervals. Rr%,+
ver , Rr%,−

ver represents the reserve

requirement as a fraction of the maximum power output limit denoted by P max
ver .

P forecast
ver represents the power forecast for the variable renewable energy resource.

Equations (4.1a) and (4.1b) constrains the net power output, and equations (4.1c)

and (4.1d) restrict the reserve schedule of VERs.

Energy Storage Participation Model

Energy storage may also submit an offer curve to account for its cost of operation.

For each ESR, we denote the discharge power and charge power output at time t

as P d
esr,t, and P c

esr,t, respectively. Rr+
esr,t, Rr−

esr,t represents the upward and downward

reserve schedule at time t, such that,

P d
esr,t − P c

esr,t +
∑︂

r+∈R+

Rr+

ver,t ≤ MaxDesr, t ∈ T , esr ∈ ESR (4.2a)

P d
esr,t − P c

esr,t −
∑︂

r−∈R−

Rr−

ver,t ≥ −MaxCesr, t ∈ T , esr ∈ ESR (4.2b)

P d
esr,t ≥ 0, P c

esr,t ≥ 0, Rr+

esr,t ≥ 0, Rr−

esr,t ≥ 0 (4.2c)

Here MaxDesr, MaxCesr represents the maximum discharge and charge limit of energy

storage esr ∈ ESR. Equations (4.2a) and (4.2b) constrain the maximum discharge

and charge power dispatch of ESR, respectively. The initial stored energy level of each
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ESR is given by:

SOCesr,0 = SSOCesr, esr ∈ ESR (4.3a)

such that the SoC of each ESR esr at the end of time t ∈ T , denoted by SOCesr,t ≥ 0,

follows:

SOCesr,t = SOCesr,t−1 − 1
ηd

esr

P d
esr,t + ηc

esrP
c
esr,t, t ∈ T , esr ∈ ESR (4.4a)

SOCESR,T = TSOCesr, esr ∈ ESR (4.4b)

where ηd
esr, ηc

esr denotes the discharge and charge efficiency, respectively. SSOCesr

and TSOCesr represent the initial and target SoC, i.e., SOCesr,0, SOCesr,T of an ESR,

respectively. Finally, the SoC of ESR is subject to limits, given by:

SOCesr,t + ηc
esr

∑︂
r−∈R−

Rr−

esr,t ≤ SOCmax
esr , t ∈ T , esr ∈ ESR (4.5a)

SOCesr,t − 1
ηd

esr

∑︂
r+∈R+

Rr+

esr,t ≥ SOCmin
esr , t ∈ T , esr ∈ ESR (4.5b)

where SOCmax
esr and SOCmin

esr represent the maximum and minimum SoC limits, respec-

tively. Equations (4.5a) and (4.5b) ensures that ESR has the capacity for any reserve

requirements. We do not capture the impact of reserve capacity on SoC evolution to

avoid the conservative operation of ESR (see, e.g., [60] for more details).

4.1.2 2R ISO-Managed Co-located Model

Each component resource uses the existing market participation model that reflects its

operational constraints. With complete knowledge of SoC constraints and telemetry

data, the market operator optimizes the ESR schedule over the time horizon and

ensures the feasibility of its dispatch. Moreover, the combined dispatch of VER and

ESR is subject to interconnection line constraint or AC/DC converter limit, such that

Pver,t +
∑︂

r+∈R+

Rr+

ver,t + P d
esr,t − P c

esr,t +
∑︂

r+∈R+

Rr+

esr,t ≤ F line,t,
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t ∈ T , ver ∈ VER, esr ∈ ESR, line ∈ LIN E (4.6)

where F line represent the interconnection or inverter limit and LIN E is the set of

transmission line constraints. Such constraints are implemented in the CAISO area

and referred to as aggregate capability constraints.

4.1.3 2R Linked Co-located Model

In this model, each component participates separately in the market with an additional

linking constraint that can limit the ability to charge from the grid, e.g., to receive

Investment Tax Credit(ITC) benefits prior to the 2022 Inflation Reduction Act (IRA).

More formally, the combined dispatch is subject to a lower bound given by:

Pver,t −
∑︂

r−∈R−

Rr−

ver,t + P d
esr,t − P c

esr,t −
∑︂

r−∈R−

Rr−

esr,t ≥ −F line,t,

t ∈ T , ver ∈ VER, esr ∈ ESR, line ∈ LIN E (4.7)

where F line represent the linking constraint. Such constraints are implemented in the

NYISO area and referred to as scheduling limits.

4.1.4 1R Self-Managed Hybrid Model

The hybrid energy resource participates as a single integrated resource, submitting a

set of offer curves that indicate its willingness to participate in the market. Unlike

conventional generation resources, the integrated single energy resource could also

charge from the grid. The SoC of the constituent energy storage resource is managed

internally. The market operator does not model the constraints of constituent resources

or receive telemetry data, which may result in an infeasible schedule, and the resource

owner is held responsible for the feasibility of the dispatch.

For each integrated resource, we denote the discharge power, charge power, upward

reserve schedule, and downward reserve schedule at time t as P d
hyb,t, P c

hyb,t, Rr+
hyb,t, and

Rr−
hyb,t, respectively. The dispatch of integrated hybrid resources is subject to capacity
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constraints such that

P d
hyb,t − P c

hyb,t +
∑︂

r+∈R+

Rr+

hyb,t ≤ MaxDhyb, t ∈ T , hyb ∈ HYB (4.8a)

P d
hyb,t − P c

hyb,t −
∑︂

r−∈R−

Rr−

hyb,t ≥ −MaxChyb, t ∈ T , hyb ∈ HYB (4.8b)

P d
hyb,t − P c

hyb,t +
∑︂

r+∈R+

Rr+

hyb,t ≤ F Rate
line,t, t ∈ T , hyb ∈ HYB, line ∈ LIN E (4.8c)

where HYB denote the set of the integrated hybrid resources. MaxDhyb, MaxChyb

represents the maximum discharge and charge limit of integrated resource hyb ∈ HYB.

F Rate
line,t denotes the interconnection or inverter limit for the integrated hybrid resource.

4.1.4.1 Hourly Offer Curve Strategy

In this section, we briefly discuss the strategy for the offer curve of integrated hybrid

resources. The lack of historical data and unique operational characteristics of

constituent resources poses a challenge to offer curve design for efficient resource

operation. We adopt hourly price-quantity bid curves developed from a stochastic

optimization formulation that accounts for uncertainty in VER dispatch and market

prices. The formulation models a price-taking hybrid resource seeking to maximize

its expected profit given the prices in the market and subject to joint operational

constraints of constituent resources. The model generates offer curves for multiple

SoC bands to reflect the willingness of the constituent ESR resource to participate in

the market and prevent any infeasible dispatch near physical limits [60, 108].

4.2 Production Cost Model Setup

We adopt the two-stage settlement framework, i.e., day-ahead and real-time market.

The day-ahead market solves a unit-commitment and economic dispatch problem for

a three-day optimization horizon, 24-hour binding intervals with a 48-hour look-ahead

advisory window. The model uses a 1-hr time resolution providing the commitment

and schedule of participating resources based on the forecasts for the next day. The
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second stage, i.e., the real-time market, also solves a unit commitment and economic

dispatch problem at a 1-hour time resolution, allowing for the commitment of quick

start resources and imbalance adjustments. Although the real-time market may

operate at a faster time scale, i.e., 15-minute intervals, for simplicity and ease of

implementation, we adopt a 1-hr time resolution in this model.

4.2.1 Real-time Operational Plan

In this phase of the study, we consider the participation of hybrid energy resources

in the day-ahead market and then use a set of real-time operational plans in the

real-time market, i.e., Storage Follow (SF) and Hybrid Balance (HB). In the Storage

Follow plan, the energy storage component aims to follow its day-ahead schedule

interpolated in the real-time market, whereas, in the Hybrid Balance plan, the energy

storage component deviates from its day-ahead schedule while accounting for the VER

forecast errors to meet the day-ahead hybrid resource schedule in real-time.

These operational plans implemented using a set of additional constraints allow

for the comparison of participation models in the day-ahead market and their impact

on the system in the presence of uncertainty in the real-time market. Alternatively,

the hybrid resources could participate in real-time also, e.g., by submitting a separate

set of offer curves to account for the forecast errors, and we have considered it for the

next phase of this study.

4.2.2 New York Bulk Power System

We use the zonal New York Bulk Power System test case in this work to mimic

the NYISO operation in the market. The zonal model prevents unintended intra-

zonal congestion or infeasibilities and provides a framework for the study of hybrids.

The model includes approximately 5,433 MW of nuclear resources, 12,654 MW of

combined cycle (CC) resources, 11,945 MW of steam turbine (ST) resources, 5,702
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MW of combustion turbine (CT) and internal combustion (IC) resources, 1,409 MW

of pumped storage hydropower (PSH) resources, 4,343 MW of conventional hydro

resources, 1,985 MW of wind resources, 57 MW of utility-scale solar resources, 315

MW of distributed photovoltaic, and 41 MW of energy storage resources. Resources

technology and fuel type, e.g., heat rate curve shape, maintenance costs, startup

costs, shutdown costs, outage rates, startup times, shutdown times, etc., are used

to determine the operating characteristics of the conventional resources. We also co-

optimize for ancillary services, e.g., regulation, 10-minute spinning reserves, 10-minute

non-spinning reserves, and 30-minute reserves. For this work, we assume that hybrid

energy resources do not provide reserve provisions.

We consider two simulation periods, i.e., the month of April with a peak load of

18,438 MW and July with a peak load of 30,953 MW, and use adjusted load data

from NYISO for the year 2019. NREL’s Wind Toolkit Dataset and NREL’s PVWatts

Calculator [109] are utilized to generate a standardized hourly generation profile and

adjusted according to NYISO historical data and capacity forecast. Further, the

imports and exports are assumed to be fixed schedules corresponding to actual flows

from 2019. We refer to [60] for a detailed discussion on resource mix and associated

modeling assumptions.

4.3 Case study

In this section, we define the case studies to understand the impact of participation

models for different resource mix scenarios and real-time operational plans. We consider

a combination of resource mix, operational strategies, and participation models to

analyze the impact on the system, as shown in Figure 4-2. The low VER penetration

case corresponds to the existing scenario, while the high VER penetration assumes

70% VER penetration, including approximately 9 GW of offshore wind generation, 6

GW of distributed photovoltaic (DPV) solar generation, 3,000 MW of storage, etc.
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Figure 4-2. Case scenario matrix

For the case of low hybrid energy resource penetration, we consider the addition of

473 MW of new battery resources to the existing 973 MW of VER (57 MW utility-scale

PV and 916 MW wind energy). The case of high hybrid penetration includes 1500

MW of hybrid energy storage resource co-located with 2,084 MW of utility-scale PV

and 916 MW of wind energy, as shown in Figure 4-3. The long-term forecasts for

the resource mix and its zone are based on the New York Climate Leadership and

Community Protection Act (CLCPA), NYISO Congestion Assessment and Resource

Integration Study (CARIS), and EIA annual energy outlook for the year 2030. We

refer to [60] for more details.

Figure 4-3. High VER capacity by resource type and zone

We assume all the battery storage units are four-hour duration battery storage,

i.e., it takes 4 hours to completely charge or discharge the battery, with 85% roundtrip

efficiency and initial SoC of 50%. Moreover, we ignore the battery cycle limits or

degradation costs for this phase of the study. We also assume that each hybrid energy

resource has 0.5 energy storage dispatch capacity to VER generation capacity, and
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the interconnection or inverter limit is the same as the maximum generation capacity

of underlying VER.

Figure 4-4. Case scenarios

Figure 4-4 represents the various case scenarios for both simulation periods, i.e.,

April and July. We consider the case with no hybrids for both low (case 1) and high

VER (case 10) as a benchmark and provide a comparison with other scenarios. The no

grid charging option (cases 2,3,6, and 7) is only considered for the low VER resource

mix since the linking constraint may not remain useful after the 2022 IRA act. Finally,

the unconstrained grid charging option (cases 4,5,8,9, and 11-14) is simulated across

VER penetration levels and the real-time operational plans.

4.4 Key Metrics and Results

In this section, we discuss the results of participation models for different cases in

Figure 4-4 using key metrics from the market perspective, e.g., economic efficiency,

reliability, etc., and operator perspective, e.g., resource profit.

4.4.1 Economic Efficiency

We evaluate the economic efficiency of the participation model by analyzing the social

welfare or the cost of operation compared to the base case (without any hybrids).
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The operation cost provides a quantitative measure to compare different models. It is

computed as the sum of production costs, e.g., the fuel cost, no-load costs, startup cost,

shutdown cost, etc. For this work, we only consider the cost of operation in real-time

markets and compare the delta operating cost, i.e., the operating cost difference

between the participation model for a case scenario and the associated base case, as

shown in Figure 4-5. Also, we assume that the MIP gap for all case scenarios is 0.01%.

Figure 4-5. Production cost and delta operating cost (production cost difference w.r.t to
the base case) for different case scenarios; NoGC: no grid charging, UnGC: unconstrained
grid charging

We make a few observations from the comparison of the operating cost. The 2R

ISO-Managed Co-located participation (2RC) option performs better for April and

July under Storage Follow (SF) real-time operational plan than the 1R Self-Managed

Hybrid (1RS) option. This is true for both low VER and High VER penetration

cases, i.e., case 4 compared to case 5 and case 11 compared to case 12. The 2RC

option results in higher savings in operating costs than the 1RS option that may even

increase the operating cost, e.g., low VER penetration level for SF in April and high

VER penetration level for SF in July, compared to the base case (case 1).
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In particular, the day-ahead dispatch of hybrid energy resources based on the offer

curves resulted in an infeasible schedule for the constituent energy storage in the

real-time market and the operating cost increases for the 1RS option. The inability

of energy storage to follow its schedule in real-time resulted in deficits and increased

reliance on expensive quick-start generation resources, e.g., gas turbines and internal

combustion engines, for the supply-demand balance. In comparison, the 2RS model

schedules cheaper thermal resources, e.g., combined cycle plants with a day-ahead

start-up notification, while accounting for the physical limits of the constituent energy

storage and less involvement of expensive quick-start generation resources in the

real-time market. Since the market operator manages the SoC of energy storage in the

2RC option compared to the 1RS option, it also results in optimized utilization of the

constituent energy storage. Similarly, for the no grid charging operational sensitivity

and SF real-time operational plan (case 2 compared to case 3), the 2R ISO-Managed

Linked Co-located participation option (2RL) results in higher cost savings than the

1RS option due to limited use of expensive quick-generation resources.

Furthermore, the 1RS option observed a higher increase in the operating cost for

the unconstrained grid charging option compared to the no grid charging option for

the SF real-time operation plan in April. Interestingly, the ability to charge from

the grid in the unconstrained grid charging operation sensitivity leads to frequent

intervals of maximum charge and discharge dispatch of hybrid energy resources in the

1RS option in the day-ahead market compared to the no grid charging operational

sensitivity. The dispatch at maximum levels resulted in higher penalties due to the

infeasible dispatch of constituent energy storage in the real-time market. However, a

pattern reversal is observed for the 2RC and the 2RL option. The ability to charge

from the grid in the unconstrained grid charging option provides more opportunities

for energy arbitrage and higher cost savings.

In the case of the Hybrid Balance (HB) real-time operation plan, a similar pattern
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to that of SF is observed, with the 2RC option generally performing better than

the 1RS option. However, in the HB operation plan, the 2RC and 1RS options

increase the operating cost compared to the base case scenario in April, i.e., the delta

operating cost of 0.07% in case 8 compared to 0.15% in case 9. In particular, for a

low VER penetration level in April, we observe that it may not be beneficial for the

hybrid energy resource to align its real-time schedule with its day-ahead dispatch.

The balance of the hybrid energy resource schedule for the present interval due to

forecast errors might be a myopic strategy, impeding its ability to maintain a schedule

balance later in the day and resulting in a higher operating cost compared to the

base case. Similar to the case of the SF real-time operation plan, a higher increase in

the operating cost for the 1RS option is attributed to the increased use of expensive

quick-start generation resources in the real-time market.

For the low VER penetration case in July, there is a lower reduction in the operating

cost for the 2RC option in HB real-time operation plan compared to the SF real-time

operation plan, i.e., -0.05% compared to -0.11%, due to its strategy of maintaining

a schedule balance for the day. Further, due to the peak load conditions in July,

additional resources, e.g., combined cycles (CCs) and steam turbines (STs), are used

to meet the demand. The 2RC and 2RL option schedule CCs efficiently at higher

generation levels and require less generation from expensive STs. This results in

relatively lower operating costs of the 2RC or 2RL option than the 1RS option for the

unconstrained and no grid charging operation sensitivity. Finally, for the high VER

penetration levels, both 2RC and 1RS options in HB real-time operation plan result

in similar operating costs within the MIP gap compared to the base case.

4.4.2 System Reliability

System reliability is a critical metric for the safe operation and performance of the

electric grid from the market operator’s perspective. Participation model, resource mix,
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VER penetration level, adoption of hybrid energy resources, and system constraints,

e.g., transmission limits, ramping capabilities, availability of quick-start resources,

reserve requirement, etc., could impact system reliability and any disruption may result

in significant consequences, e.g., economic losses, infeasible dispatch, load shedding,

etc.

This study uses the steady-state reliability metrics, e.g., power imbalances, reserve

shortages, etc., in the day-ahead and real-time markets to analyze the reliability

implications of hybrid energy resource participation. In the multi-interval and multi-

timescale study, no reliability concerns for the system, e.g., instances of violation of

energy storage SoC, violation of hybrid energy resource interconnection limit, load

shedding, over-generation, or reserve shortages, are observed in the real-time scheduling

cycle for all the case scenarios. In particular, any infeasible hybrid energy resource or

energy storage schedule in the market is satisfied with the help of quick-start resources.

4.4.3 Profits and Incentives

In this subsection, we consider the impact of participation options from the hybrid

energy resource owner perspective. The short-run profits in two-stage markets are

computed as the sum of day-ahead revenue, i.e., the product of dispatch and market

clearing prices in the day-ahead market, and adjusted revenue in the real-time market,

i.e., the product of dispatch deviations in real-time from day-ahead and the market

clearing price in the real-time market. The adjusted real-time revenue does not

consider the day-ahead component of the real-time dispatch while computing the

product with the real-time market clearing prices.

Aside from the two-stage settlement profit that provides intuition into the market

power of participants, the day-ahead and adjusted real-time revenue allows us to

compare the participants’ behavior in each stage separately, as shown in Figure 4-

6. The delta profit compares the two-stage settlement profit of the 2RC or 2RL
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participating option with the corresponding 1RS option for each of the case scenarios.

Moreover, the two-stage profits do not include any ITC benefits, maintenance costs,

degradation costs, etc., and only account for the resource dispatch and market clearing

prices.

Figure 4-6. Aggregate hybrid energy resource day-ahead revenue, real-time (adjusted)
revenue, two-stage settlement profit, and delta profit for 2R ISO-Managed Co-located
participation option w.r.t 1R Self-Managed Hybrid option) for different case scenarios;
NoGC: no grid charging, UnGC: unconstrained grid charging

First, for both SF and HB real-time operation plans in April, the 1RS options

had a higher revenue in the day-ahead market than the 2RC or 2RL options. Such a

difference is observed for both low VER and high VER penetration levels, i.e., April

month cases 2-8 and 11-14 in Figure 4-6. Since the SoC is managed internally in the

1RS option, the offer curve allows hybrid energy resources to clear higher dispatch in

the day-ahead market than the 2RC or 2RL options with explicit consideration for

the SoC limits. However, in the real-time market with SoC limits for all participating

options, the 1RS options result in higher buybacks due to the infeasibility of energy

storage dispatch, often at clearing prices higher than the day-ahead markets. These

buybacks are further exacerbated by the aggressive bidding strategy and lack of SoC
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management in the day-ahead market, followed by the forecast errors in real-time

markets. The buybacks or repurchases result in negative revenue from hybrid energy

resources and, generally, a lower two-stage settlement profit than the 2RC or 2RL

options, as shown in the real-time revenue and two-settlement profit columns for April

month cases 2-8 and 11-14 in Figure 4-6.

For the SF and HB real-time operation plan in July, the 1RS option had lower

day-ahead revenues than the 2RC or 2RL options in both low VER and high VER

penetration scenarios. Such reduction in revenue compared to April is attributed to

peak load conditions in July, resulting in increased use of conventional resources with

long start-up times at higher production levels and lower day-ahead dispatch of hybrid

energy resources. The repurchases in real-time are still higher for the 1RS option

due to dispatch infeasibilities than the 2RC or 2RL options, except in the case of HB

real-time operation plan for unconstrained grid charging, resulting in lower two-stage

settlement profits, i.e., July month cases 2-8 and 11-14 in Figure 4-6

The real-time revenue is always negative, meaning all participation models adjust

their day-ahead commitment. Intuitively, any forecast error in the SF operation plan

would mean that hybrid energy resource dispatch has deviated from the day-ahead

market resulting in real-time market adjustments. Similarly, any forecast error causing

deviations in SoC levels of ESR to maintain a balance in the HB operation plan could

lead to intervals with insufficient storage capacity later and, consequently, adjustments

in hybrid energy resource dispatch. Further, any infeasible ESR dispatch in real-time

for the 1RS option would also lead to imbalanced payments. Finally, the HB operation

plan results in higher adjustments than the SF due to a greater likelihood of small

deviations in early intervals resulting in insufficient ESR capacity in later intervals.
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Figure 4-7. One sample week for Area E hybrid energy resource for low VER penetration
level, SF real-time operational plan, and unconstrained grid charging operation sensitivity,
July simulation period; 2RC option (left column) and 1RS (right column), (a) hybrid
energy resource dispatch, (b) VER dispatch, (c) ESR dispatch, (d) ESR SoC level, and (e)
market clearing prices.
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4.4.3.1 Illustration of Storage Follow Real-time Operation Plan

Figure 4-7 illustrates the behavior of hybrid energy resources from Area E, i.e., New

York Control Area Load Zone E – Mohawk Valley, and its constituent components for

the low VER penetration in July. The left and right columns in Figure 4-7 plots the

behavior for 2RC and 1RS option for the SF real-time operation plan, respectively.

The day-ahead and real-time dispatch of hybrid energy resources with maximum and

minimum capacity limits is shown in panel (a) in Figure 4-7. Panel (b) in Figure 4-7

plots the day-ahead forecast and actual dispatch of the VER component. ESR dispatch

with capacity limits and its SoC with SoC limits for day-ahead and real-time are

shown in panels (c) and (d) in Figure 4-7, respectively. Finally, panel (e) in Figure 4-7

plots the market clearing prices for two stages at the location of the hybrid facility.

The 1RS option for July results in a lower day-ahead revenue due to lower day-

ahead dispatch than the 2RC option. It can be observed with fewer spikes for the 1RS

option in the right plot compared to the 2RC option in the left plot in panel (a) in

Figure 4-7. Since the SoC is managed internally in the 1RS option, the day-ahead

schedule may not be feasible for ESR in real-time, as observed in the right plots in

panels (c) and (d) in Figure 4-7, respectively. The implicit management of SoC by the

resource owner using the offer curves can lead to the SoC levels outside the physical

bounds in the day-ahead market, further exacerbating the dispatch infeasibilities in

the real-time market. These dispatch infeasibilities meant buybacks in the real-time

market, often at prices higher than the day-ahead market, as shown in panel (e) in

Figure 4-7.

4.4.3.2 Illustration of Hybrid Balance Real-time Operation Plan

Similarly, we plot the behavior of hybrid energy resources from Area J, i.e., New York

Control Area Load Zone J – New York City, and its constituent components for the

high VER penetration in Figure 4-8. The left and right columns plot the behavior for
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Figure 4-8. One sample week for Area J hybrid energy resource for high VER penetration
level, HB real-time operational plan, and unconstrained grid charging operation sensitivity,
July simulation period; 2RC option (left column) and 1RS (right column), (a) hybrid
energy resource dispatch, (b) VER dispatch, (c) ESR dispatch, (d) ESR SoC level, and (e)
market clearing prices.
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2RC and 1RS options for HB real-time operation plan in July. Panels (a),(b),(c),(d),

and (e) shows hybrid energy resource dispatch with its limits, VER dispatch, ESR

dispatch with capacity limits, ESR SoC with SoC limits, and market clearing prices

for the two stages, respectively.

The 1RS option for the HB real-time operation plan in July has a lower day-ahead

revenue due to lower day-ahead dispatch than the 2RC option. However, unlike the

SF operation plan, the 2RC option has comparable or higher repurchases in real-time

markets than the 1RS option. For example, in intervals 7-13 and 65-70, the 2RC

option fails to follow a hybrid schedule balance under the HB operation plan due to

limited stored energy levels (SoC) of the constituent ESR resource and forecast errors,

as shown in panels (a)-(c) in Figure 4-8. In comparison, the 1RS option had fewer

instances. The significant deviations in ESR SoC to follow the operation plan and

repurchases at a higher price in real-time markets lead to lower real-time revenue for

the 2RC option, as shown in panels (a)-(c) in Figure 4-8.

Finally, in Figure 3, the delta profit seems to be higher for the low VER than the

high VER penetration level scenarios in April, i.e., 9% compared to 5.27% for case

2, while a reverse pattern can be observed with delta profits higher for high VER

compared to low VER penetration level scenarios in July, i.e., 10.61% compared to

3.72%. In particular, the 2RC option resulted in higher profits for the current resource

mix compared to future resource mix scenarios in low peak load months. Intuitively,

the reduction in profits can be attributed to the decrease in energy prices with an

increase in the penetration of resources with zero marginal cost. However, in the peak

load conditions of July, the future resource mix results in higher profits since the hybrid

energy resources are underutilized in the existing market, with conventional generators

operating at higher production levels to satisy peak load conditions. Furthermore, all

participation models in unconstrained grid charging typically outperform the no grid

charging scenarios, except for a few cases in the HB real-time operation plan.
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4.4.4 SoC Feasibility

This metric investigates the ability of hybrid energy resources to follow SF or HB

real-time operation strategies and identifies instances of the violation of these strategies.

It determines whether the ESR component (under the SF operation plan) and the

hybrid energy resource (under the HB operation plan) can execute day-ahead dispatch

schedules in the real-time stage while accounting for forecast errors in the renewable

component. However, these operational strategies might not be feasible to implement

in real-time due to physical and operating limitations of the constituent energy storage

resources, such as minimum and maximum SoC restrictions, minimum and maximum

charge and discharge restrictions, efficiency losses, and minimum and maximum

generation limits, as well as the hybrid energy resource, such as the inverter or

interconnection limit. A violation of the real-time operational plan under consideration

can occur due to the following reasons:

1. Insufficient discharge capacity: A violation of the real-time operation strategy

could occur due to physical restrictions associated with the maximum discharge

limit of constituent energy storage. It could happen when the forecast error from

the VER component results in the ESR component not being able to increase

its power output any further to balance out the VER variations.

For example, as shown in Figure 4-9 panel (a), at hour 29 in July, the hybrid

energy resource in Area J had a day-ahead dispatch schedule of 250.85 MW

(25.85 MW from the VER component and 225 MW from the ESR component).

However, a lower VER component realization of 16.36 MW meant that the ESR

component should increase its real-time dispatch to 234.49 MW to adhere to

the HB real-time operational plan. Unfortunately, the ESR component had a

maximum discharge limit of 225 MW and could not increase its power output

any further, resulting in a violation of the HB real-time operational plan.
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Figure 4-9. Illustration of violation of real-time operation plans; Constituent ESR resource
of hybrid energy resource in (a) Area J has insufficient discharge capacity under 2RC/HB
option, (b) Area J has insufficient charge capacity under 2RC/HB option, (c) Area E has
insufficient SoC capacity under 1RS/SF option, (d) Area E has maxed out SoC capacity
under 1RS/SF option.

2. Insufficient charge capacity: In this case, a violation of the real-time operational

strategy occurs due to the maximum charge limit of the ESR component. We

observe an instance of insufficient charge capacity caused by an under-forecast

error from the VER component. In other words, the ESR component cannot

decrease its power output, i.e., charge any further, to balance out the VER

variation.

For example, Figure 4-9 panel (b) shows that in July, at hour 11, the hybrid

facility in Area J had a day-ahead dispatch schedule of 67.82 MW (292.82 MW

generation from the VER component and 225 MW charging from the ESR
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component). However, a higher VER component realization of 308.90 MW

meant that the ESR component had to increase its real-time consumption to

-241.08 MW to follow the HB real-time operational plan. However, the ESR

component with a maximum charge limit of -225 MW could not decrease its

power output or increase its power consumption, thus violating the HB real-time

operational plan.

3. Insufficient SoC or no available energy: In this case, the hybrid energy resource

does not follow its real-time operational strategy due to insufficient SoC of the

constituent energy storage. These instances are associated with a minimum SoC

limit or a minimum level of stored energy, which may result from forecast errors

from the renewable component or infeasible day-ahead schedules. When this

occurs, ESR cannot increase its power output further to balance out renewable

energy fluctuations under the HB option or continue discharging and following

its day-ahead storage schedule under the SF option.

For example, consider a hybrid facility in Area E (modeled using the 1R option).

At hour 39 in July, the ESR component had 318.80 MWh of stored energy in the

DAM and a day-ahead dispatch schedule of 115 MW. However, the day-ahead

dispatch schedule was infeasible because it did not consider the SoC. The SF

real-time operational strategy requires that ESR continue to dispatch 115 MW

in real-time. However, due to the SoC limits of energy storage in real-time

markets, only 52.19 MWh of stored energy was left in the battery at hour 39

based on the dispatch from prior intervals. As a result, the stored energy level

could only allow for a maximum dispatch or discharge of 52.19 MW in real time

due to insufficient SoC, which violated the SF real-time operational strategy.

4. Maxed out SoC or no available storage: In this case, the hybrid energy resource

cannot follow its real-time operational strategy due to the maximum SoC limit
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of the constituent energy storage. Due to the forecast errors from the VER

component or the infeasibility of day-ahead schedules, the ESR component may

have no available capacity to store energy. In such a case, ESR cannot increase

its consumption and balance out the VER variation (under HB) or continue

charging and follow its day-ahead storage schedule (under SF), which leads to a

violation of the real-time operational strategy.

For instance, consider the ESR component of a hybrid resource in Area E

(modeled using the 1R option) shown in Figure 4-9 panel (d). At hour 3 in

July, it had 416.85 MWh of stored energy and a day-ahead dispatch schedule of

-104.58 MW, which increased the stored energy level to 505.74 MWh with 85%

charging efficiency. The day-ahead dispatch schedule is infeasible to begin with,

given that the maximum SoC limit is 460 MWh. However, it is not imposed

as a constraint under this participation option. Now, the real-time operational

strategy under SF requires that the ESR component continues to charge -104.58

MW in real-time. However, due to the SoC constraints in real-time, only 43.15

MWh of stored energy is left in the battery at hour 3. Hence, ESR could only

charge -50.76 MW in real-time, accounting for charging efficiency and max SoC

limit. This results in a violation of the SF real-time operational strategy.

Figure 4-10 summarizes the simulation results that illustrate the ability of hybrid

resources to follow the SF or the HB real-time operation strategies. Although the

physical parameters of the constituent energy storage, such as the minimum and

maximum SoC and the hybrid resource’s interconnection limit, were not violated in

the results described below, enforcing these parameters may result in a real-time plan

that does not align with the desired operational strategy.

For instance, there may be situations where the ESR component has an infeasible

day-ahead schedule in real-time under the SF operation plan due to a combination of the
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Figure 4-10. Interval count for hybrid energy resource capability to follow real-time
operation plan

forecast error in the VER component and the hybrid energy resource interconnection

limit. If the ESR component were to strictly follow its day-ahead storage schedule, the

interconnection constraint would be violated. In this study, the established violation

sequence in the market clearing software prioritizes violating the storage real-time

operational plan over the interconnection constraint to ensure that the constraint is

always satisfied.

Moreover, the temporal coupling of the stored energy in the ESR component may

further exacerbate the number of instances with violation of real-time operational

plans. For instance, the 1RS option that does not consider SoC and instead uses offer

curves may result in a day-ahead schedule that consistently dispatches the hybrid

resource to charge in the early morning hours. However, as mentioned in the example

above, in real-time, upon reaching the maximum stored energy limit in hour 3 in July,

the ESR component of the hybrid facility in Area E was no longer able to charge,

resulting in a violation of the SF real-time operational strategy in subsequent real-time

intervals.
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Also, the intervals constrained by insufficient discharge capacity may overlap with

those constrained by insufficient SoC, or the intervals constrained by insufficient charge

capacity may overlap with those constrained by maximum SoC limits. For example,

during hour 6 in July, Area E’s hybrid resource has a day-ahead dispatch schedule

of -16.48 MW, which means it will generate 98.52 MW from the VER component

and charge 115 MW from the ESR component. However, this created an issue when

the realized VER component generation increased to 117.48 MW, forcing the storage

component to increase its consumption to -133.96 MW in the real-time market to

adhere to the hybrid energy resources’s day-ahead schedule. As the ESR component’s

maximum charge limit was -115 MW, it couldn’t decrease its power output any further.

It indicates an instance of insufficient charge capacity. Moreover, during hour 6

in real-time, the ESR component had a stored energy level of 431.72 MWh and a

maximum limit of 460 MWh, which imposed additional restrictions on the ESR’s

power consumption, limiting it to -33.27 MW, indicating an instance of maxed out

SoC. The results presented in Figure 4-10 avoid double counting by including such

occurrences either in the count of the intervals limited by insufficient charge capacity

or in the count of the intervals limited by maximum SoC, but not both.

During April and July, under scenarios with both low and high VER penetration,

the real-time operational strategy in SF did not result in any instances of insufficient

discharge or charge capacity. This applies to all participation models. The maximum

discharge and charge limits are explicitly taken into consideration for both the ESR

component and the hybrid resource, which effectively eliminates any violations for

2RC or 2RL options. The 1RS option, while not considering SoC restrictions for the

day ahead, relies on bidding strategies that are limited by the maximum discharge

and charge limits. As the ESR component follows its day-ahead schedule, it does not

result in any violations.

Second, in both April and July, with low and high VER penetration scenarios,
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the 2RC and the 2RL options performed significantly better than the 1RS option for

the SF real-time operational strategy. The number of insufficient or maxed-out SoC

intervals was consistently lower in the 2RC or 2RL options than in the 1RS option.

For example, in April, for the low VER penetration and no grid charging operation

sensitivity, the 2RL option registered only 39 intervals with insufficient SoC compared

to the 1RS option’s 865 insufficient SoC intervals in the SF real-time operational plan.

Intuitively, explicit consideration of the SoC constraints in the day-ahead market for

the 2RC or 2RL options helps them perform better.

Figure 4-11. Illustration of the inability of a hybrid resource in Area E to adhere to the
SF real-time operation plan under the 2RC option: (a) Hybrid energy resource dispatch,
(b) VER dispatch, (c) ESR dispatch, (d) ESR SoC level.

In some intervals of the real-time market, the VER forecast error can cause

deviations from the day-ahead ESR schedule for the 2RC or 2RL options. This

deviation impacts the ability to adhere to the SF real-time operational strategy in

subsequent intervals due to the temporal coupling of the stored energy. For instance,

in hour 421 in July, as shown in Figure 4-11 panel (b), the VER component of a hybrid

facility in Area E had an increase in its real-time realization to 145.87 MW from its

135



day-ahead forecast of 115.66 MW. This increase restricted the ESR component from

following its day-ahead dispatch schedule of 115 MW in real time, and instead, it

only allowed for a discharge of 85.13 MW (see Figure 4-11 panel (c)) to respect the

hybrid inverter limit of 231 MW (as shown in Figure 4-11 panel (a)). This deviation

in the ESR real-time schedule implies that its stored energy levels differ between the

day-ahead and real-time scheduling stages, which resulted in a subsequent interval

limited by maximum SoC. For the same hybrid resource, in hour 438 in July, the

storage component had a dispatch of -115 MW in the day ahead but was only able to

dispatch -23.94 MW in real-time (as shown in Figure 4-11 panel (c)) due to maximum

SoC limits (see Figure 4-11 panel (d)).

On the other hand, the 1RS option lacks the ability to adapt the charge or discharge

schedule of the storage component based on SoC considerations. This is because the

1R option does not account for SoC limitations explicitly and instead establishes the

day-ahead dispatch schedules based on the developed bidding strategies, which results

in an infeasible real-time dispatch schedule. Therefore, the 1RS participation option

registers an increased count of insufficient SoC or maximum SoC intervals in the SF

real-time operation strategy.

In the low VER penetration scenario, the 2RC option appears to perform better

than the 2RL option under the SF real-time operation strategy, with a lower count

of insufficient SoC intervals in both April and July, as depicted in Figure 4-10.

Specifically, the 2RC option had 73 insufficient SoC intervals, while the 2RL option

had 235 intervals. If the ESR component charges from the VER component only,

prediction errors may lead to deviations in the storage component’s energy levels.

This mismatch in stored energy levels between the day-ahead and real-time scheduling

phases results in a higher count of intervals limited by insufficient SoC. For example,

in Area E, the low VER realizations in several real-time intervals between hours 45

and 78 in July compared to the day-ahead forecasts along with the restriction of
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no grid charging, resulted in reduced stored energy levels in the storage component

during the corresponding hours in real-time. The ESR component could not follow its

day-ahead dispatch schedule of 115 MW in hour 86 in real-time and dispatched 62.5

MW due to insufficient SoC.

On the other hand, the 1RS option showed a higher count of intervals limited by

insufficient SoC for the unconstrained grid charging compared to the no grid charging

case for the low VER penetration scenario in April and July for the SF real-time

operation strategy. When the ESR component has the flexibility to charge from the

grid (i.e., the unconstrained grid charging), it often schedules more aggressively in

the day-ahead market, meaning frequent intervals cleared at maximum charging or

discharging limits compared to the no grid charging option. This results in excessive

replenishment or depletion of the stored energy in the storage component at the

day-ahead stage, which becomes infeasible to follow in real-time with physical SoC

limitations. Alternatively, when the storage component does not have the flexibility

to charge from the grid (i.e., the no grid charging option), it is not dispatched at

maximum charge or maximum discharge dispatch limits as often due to its complete

dependence on renewable generation.

The HB real-time operation strategy produces non-zero insufficient discharge

capacity or charge capacity intervals for all participation models in April and July, in

contrast to the SF real-time operation strategy. It applies to both low and high VER

penetration scenarios, as demonstrated in Figure 4-10. The HB real-time operational

strategy can result in forecast errors from the VER component of the hybrid resource,

which can cause an infeasible real-time deviation for the ESR component from its

day-ahead dispatch schedule. This occurs due to the maximum discharge or charge

capacity restrictions if it were to comply with the hybrid resource day-ahead schedule.

Furthermore, in the HB real-time operation strategy, there are instances where

the intervals are limited by both insufficient charge capacity and maximum SoC
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simultaneously. However, to prevent double-counting, the results in this subsection

only include such occurrences in either the count of the intervals limited by insufficient

charge capacity or in the count of the intervals limited by maxed out SoC, but not

both.

Figure 4-12 provides a cumulative perspective on the ability of hybrid resources to

follow the SF or the HB real-time operation strategies.

1. Insufficient discharge capacity with insufficient SoC: This metric counts the

number of intervals (also referred to as total discharge intervals) in which storage

is unable to follow its real-time operation strategy due to the maximum discharge

limit or its minimum SoC limit.

2. Insufficient charge capacity with max SoC: This metric counts the total number

of intervals (also referred to as total charge intervals) in which storage is unable

to follow its real-time operational strategy due to maximum charge limit or its

maximum SoC limit

The cumulative count of intervals limited by insufficient discharge capacity, insuffi-

cient charge capacity, insufficient SoC capacity, and maximum SoC, shows that, under

the HB real-time operational plan, the 2RC and 2RL options generally outperform

the 1RS option in both low and high VER penetration scenarios for both April and

July, except for one instance. In the high VER penetration scenario for July, the 1RS

option performed better than the 2RC option for HB.

It is difficult to predict which participation option will perform better under the

HB real-time operational plan when individual metrics are compared against each

other across the different participation options. This is mainly due to the design of

the plan and the temporal nature of the SoC constraint. An action in one real-time

interval can have a ripple effect and impact subsequent real-time intervals. Overall,

the HB real-time operational strategy faces a higher occurrence of limitations related
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Figure 4-12. Illustration of the inability of a hybrid resource in Area E to adhere to the
real-time operation plan on a cumulative basis

to insufficient discharge capacity, insufficient charge capacity, insufficient SoC capacity,

and maximum SoC on a cumulative basis compared to the SF real-time operation

strategy.

4.4.5 Computational Complexity

In this subsection, we discuss the computational complexity, i.e., a sum of solve time for

all the optimization horizons in the simulation period for the day-ahead and real-time

market across different scenarios. With the rapid growth in the adoption of emerging

technologies, the grid is becoming complex and computationally demanding, accounting

for the operational constraints of diverse resources. This metric quantitatively assesses

the solution time in clearing the market while ensuring grid reliability and stability.

As expected, with a granular model including all the resource operational con-

straints, the 2RC and 2RL options result in a higher solution time than the 1RS option

for most scenarios involving VER penetration levels, real-time operation plans, and

simulation periods. However, the 1RS option has a higher solve time for the specific

139



Figure 4-13. Computational complexity for all case scenarios

scenario involving HB real-time operation plan and high VER penetration levels in

July, i.e., cases 13 and 14. Interestingly, the associated base case, i.e., case 10 in July,

also has the highest solve time across different scenarios. The rest of the base case

scenarios has the lowest computational complexity due to fewer constraints and no

hybrids.

Also, the simulation period of July with a higher peak load has a higher solution

time than April. With an additional linking constraint that limits the charging from

the grid, the no grid charging operation sensitivity has a higher solve time than the

unconstrained grid charging scenarios for all participation models. Finally, due to the

similar modeling structure of the real-time market, i.e., using a set of linear constraints

for hybrid participation, the total solution time for this stage is comparable across all

scenarios.
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4.5 Chapter Summary

This chapter has considered different participation models for emerging technologies,

i.e., hybrid energy resources, in the electricity markets and conducted simulations for

scenarios, including current and future resource mix, low and high peak load conditions,

ability to charge from the grid, etc. Key metrics from the market perspective, e.g.,

economic efficiency, system reliability, and computational complexity, and operator

perspective, e.g., profits and SoC feasibility, were used to analyze the economics of

hybrid energy resource participation in markets. In particular, we considered three

participation models, i.e., 2R ISO-Managed Co-located (2RC), 2R Linked Co-located

(2RL), and 1R Self-Managed Hybrid (1RS), and two real-time operation strategies,

i.e., Storage Follow (SF) and Hybrid Balance (HB), to analyze their performance of

hybrid energy resources.

The granular participation model, i.e., the 2RC or 2RL option, resulted in lower

operating cost and efficient scheduling of constituent resources than the 1RS option with

limited use of expensive quick-start generation resources. The implicit management

of SoC in the 1RS option based on the offer curves results in infeasible dispatch

and instances of real-time operation plan violations, meaning that typically hybrid

energy resources made higher revenue in the day ahead followed by adjustments in

the real-time market, often at a higher market clearing price, resulting in negative

adjusted real-time market revenue and lower two-stage settlement profits. Despite

the expensive buybacks for the 2RC or 2RL due to forecast error in the renewable

component, the explicit consideration of SoC limits in two stages leads to higher

two-stage settlement profits and fewer real-time operation plan violation instances

than the 1RS option. Even though the granularity of 2RC or 2RL models provides

theoretical efficiency gains, they add to the complexity of the system and may not be

desirable from the operator’s perspective.
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Chapter 5

Conclusions and general discussion

Market efficiency has been studied extensively in the literature, with seminar results

resulting in robust market mechanism designs - a set of resource participation and

market clearing rules. However, with unprecedented technological advances, the field

is undergoing significant changes highlighting a disconnect between analytical results

that informs the existing design and modern system requirements.

In this thesis, we focus on the electricity markets and cover several aspects of

market power and efficiency. Using the closed-form analysis of participant behavior

in existing markets, we propose necessary market modifications for the participation

of new technologies and analyze their impact on the system. We consider simple

settings for a zero-order analysis of different market mechanisms, with the belief that

if a market mechanism does not yield desirable properties at the equilibrium in a

simplified setting, it is unlikely to perform well in a more general system. Aside from

detailed conclusions at the end of each chapter, we have outlined a few key takeaways

about the electricity markets to remind the reader of the results of this thesis. The

remainder of the chapter is as follows. In section 5.1 we discuss key takeaways of this

thesis. Section 5.2 provides a summary of future directions and extensions of general

interest.
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5.1 Summary of Findings

An MPM policy implemented in day-ahead markets performs well

ISOs believe the real-time market is more susceptible to market power relative to

the day ahead, which incorporates additional mechanisms, e.g., virtual bidding, for

a competitive market. In chapter 2, we have analyzed the impact of the stage-wise

MPM policy on participant behavior. We proved that a real-time MPM policy results

in undesirable market outcomes, and ISOs are better off implementing a day-ahead

MPM policy.

Cost Overestimation and Heterogeneity limit the market power of loads

Several works have analyzed supply function equilibrium under simplifying as-

sumptions, e.g., homogeneous participants or symmetric participation. Despite these

assumptions, a guarantee of stable market outcome may not always exists. To overcome

this, we propose an alternative market mechanism, i.e., intercept function bidding.

We show that cost overestimation and heterogeneity benefit generators.

Using an existing market mechanism for emerging technologies may not be enough

The use of energy storage across the electric grid to provide essential services is

increasing rapidly. The operating characteristics of these resources do not align with

the conventional resources, resulting in inefficient resource allocation. In chapter 3,

we show that under some conditions power based existing mechanisms align with the

social planner problem. However, this is not always the case.

Paying attention to marginal operation cost for a market mechanism

In this thesis, we show that accounting for the operational cost of storage allows

storage to dispatch efficiently without the need for uplift payments or out-of-market

settlements. The operation cost of storage is mainly due to its degradation over time

and depends on charge-discharge cycles. Leveraging the marginal cost of operation, we

propose an alternative energy-cycling function where storage is paid on a per-cycle basis
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instead of power dispatch. A market mechanism based on the energy-cycling function

incentivizes storage to reveal their operation cost at the competitive equilibrium.

There is no universal mechanism for market participation

In chapter 4, we discuss two different participation options for hybrid resources

and provide qualitative simulations to illustrate their impact on the market. The use

of these participation options depends on the markets for which it is considered. A

granular participation model with complete transparency to the ISO increases the

computational complexity of market operators while resulting in higher cost savings.

A less transparent participation option, i.e., storage SoC is managed internally by the

resource owner, increases the cost of operation due to penalties associated with SoC

violations and use of expensive quick-generation resources, but it is not computationally

intensive.

5.2 Future Directions

The work in this thesis provides a discussion on market modifications for efficient

resource allocation. However, this is one part of the problem, and much work remains

in market design. The electricity market is undergoing a revolution to meet ambitious

targets on clean energy and grid decarbonization. One of the ways to sustain this

rapid yet thorough transformation requires interdisciplinary efforts that bridge the gap

between physical laws governing the system and individuals, firms, or organizations’

behavior in the market. We summarize a few of the key open questions that are of

general interest.

Incomplete Information and System Dynamics

In this thesis, we concentrate on the static equilibrium concepts- competitive

equilibrium, which analyzes participants’ behavior for the existing market prices,

and Nash equilibrium, which assumes complete knowledge of other players’ bids - to
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analyze the performance of a market mechanism and resulting equilibrium properties.

This approach raises a few key questions: whether the assumptions of competitive and

Nash equilibria satisfied in existing markets? How do markets reach the equilibrium

states? In reality, participants may form a coalition and collude with each other, have

incomplete information about other players, be subject to preferential market rules in

the form of subsidies or penalties, etc. The next step is to expand our framework and

include a more general setting for a nuanced analysis of participation behavior and

system dynamics.

Co-optimizing System of Markets

In electricity markets, the same resource competes for allocation in multiple sub-

markets simultaneously, e.g., reserve and capacity markets, making the design of

a market mechanism challenging. Most current studies, including my work, either

consider a single sub-market or assume truthful participation of resources in other

markets without the flexibility of co-optimizing best interests. Understanding partici-

pant behavior and preference in a broader scheme of systems, the role of information

flow between markets, etc., could change our approach toward market design and

prevent undesired events.

Market Mechanisms for a Concoction of Technologies

In chapters 2 and 3, we have focused only on the market mechanism for individual

technologies. However, with an increase in decentralization of the electric grid and

the emergence of diverse technologies, resource owners are using a combination of

technology as a flexible resource to participate in the market. Such concoctions

leverage the strengths of constituent technologies to counterbalance their dependencies

for a consistent and reliable power supply. Chapter 4 provides an illustrative case

study on the combination of VER and ESR, i.e., hybrid energy resource, in the

electric grid. These hybrid resources are compensated for the combined power dispatch

while incurring operation costs mainly due to storage degradation, which makes it
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challenging to design a market mechanism and provide theoretical guarantees for the

efficient dispatch of these resources.

Learning Real-time Decisions

The penetration of emerging technologies like energy storage, growth in uncon-

trollable renewable generation, and increased participation of smart systems like

prosumers, microgrids, EVs, etc., are making the grid uncertain, especially in the

real-time market. Dispatching a resource in real-time often requires a trade-off be-

tween accounting for longer nonlinear time-coupled operational characteristics and

immediate revenue potential at the risk of uncertainties. However, with the size of

the system, this becomes analytically challenging and computationally intractable.

Leveraging advanced data-driven methods, we could learn approximate models, extract

essential features, analyze the interplay between strategic participants, and make

faster decisions to ensure system reliability and individual incentive compatibility.
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Appendix I

A. Proof of Theorem 2.3
Under price-taking behavior, the individual problem for loads (2.28) is a linear program with the
closed-form solution given by:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dd
l = ∞, dr

l = −∞, dd
l + dr

l = dl, if λd < d∑︁
k∈G

(ck+ϵk)−1

dd
l = −∞, dr

l = ∞, dd
l + dr

l = dl, if λd > d∑︁
k∈G

(ck+ϵk)−1

dd
l + dr

l = dl, if λd = d∑︁
k∈G

(ck+ϵk)−1

( I.1)

where loads prefer the lower price in the market. The individual problem for generators (2.26)
requires: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θd
j = −∞, if 0 ≤ λd < d∑︁

k∈G

(ck+ϵk)−1

θd
j = ∞, if λd < d∑︁

k∈G

(ck+ϵk)−1 , and λd < 0

θd
j = ∞, if λd > d∑︁

k∈G

(ck+ϵk)−1

θd
j ∈ R≥0, if λd = d∑︁

k∈G

(ck+ϵk)−1

( I.2)

where generators prefer higher prices in the market and seek to maximize profit. At the competitive
equilibrium the day-ahead supply function (2.16), real-time true dispatch condition (2.23), real-time
clearing prices (2.24), and the individual optimal solution ( I.1), and ( I.2) holds simultaneously and
this is only possible if the market price is equal in the two-stages, i.e.,

λd = λr = d∑︁
k∈G

(ck + ϵk)−1 , s.t dl = dd
l + dr

l

From real-time true dispatch conditions we have

gr
j + gd

j = (cj + ϵj)−1d∑︁
k∈G

(ck + ϵk)−1

Thus a set of competitive equilibria exists.
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B. Proof of Theorem 2.4
From the day-ahead market clearing we have∑︂

j∈G
θd

j λd = dd =⇒ λd = 1∑︁
j∈G

θd
j

dd ( I.3)

where we assume that
∑︁

j∈G θd
j ̸= 0. Substituting ( I.3) in generator individual profit optimiza-

tion (2.30), we get the individual problem of strategic generator j as (we assume that dd ̸= 0 and
leave the discussion of dd = 0 for later):

max
θd

j

⎛⎜⎝ dd∑︁
k∈G

θd
k

− d∑︁
k∈G

(ck + ϵk)−1

⎞⎟⎠ θd
j dd∑︁

k∈G
θd

k

+
cj

2 + ϵj

(cj + ϵj)2

⎛⎜⎝ d∑︁
k∈G

(ck + ϵk)−1

⎞⎟⎠
2

( I.4)

Though the individual problem is not necessarily concave in the domain, we can analyze the optimal
bidding behavior from the first-order and second-order conditions. Writing the first-order condition,
we have

dπj

dθd
j

=

⎡⎢⎢⎢⎣ θd
j∑︁

k∈G
θd

k

⎛⎜⎜⎝ d∑︁
k∈G

(ck + ϵk)−1 − 2dd∑︁
k∈G

θd
k

⎞⎟⎟⎠+

⎛⎜⎜⎝ dd∑︁
k∈G

θd
k

− d∑︁
k∈G

(ck + ϵk)−1

⎞⎟⎟⎠
⎤⎥⎥⎥⎦ dd∑︁

k∈G
θd

k

( I.5)

Now summing over j ∈ G to attain the turning point of ( I.5), we have

=⇒ (G − 2)(dd)2 − (G − 1)
∑︁

j∈G θd
j∑︁

k∈G(ck + ϵk)−1 ddd = 0 ( I.6)

where we assume that G ≥ 2. For the assumption dd ̸= 0, the potential turning point is given by

θd
j = 1

G

⎛⎝∑︂
k∈G

(ck + ϵk)−1

⎞⎠ G − 2
G − 1

dd

d
( I.7)

Similarly, substituting ( I.3) in load individual payment optimization (2.31), we get the individual
problem of load l as -

min
dd

l

dd∑︁
j∈G θd

j

dd
l + d∑︁

j∈G(cj + ϵj)−1 (dl − dd
l ) ( I.8)

The unique optimal solution to the quadratic program ( I.8) is given by

dd
l = 1

L + 1

∑︁
j∈G θd

j∑︁
k∈G(ck + ϵk)−1 d, dr

l = dl − dd
l ( I.9)

At equilibrium ( I.3),( I.7), and ( I.9) must hold simultaneously. This implies that

dd = 0, θd
j = 0 =⇒ λd = λr = 1∑︁

j∈G (cj + ϵj)−1 d

where we use Rule 2.1 to define prices in the day-ahead market. However, this is in contradiction to
our assumption and can be rejected.

In the case of dd = 0,

155



• If
∑︁

j∈G θd ≠ 0, then solving ( I.3) and ( I.9) simultaneously implies that
∑︁

j∈G θd = 0, which
contradicts our assumption.

• If
∑︁

j∈G θd = 0, then we define prices using the Rule 2.1 in the day-ahead market. However, in
this case, loads have the incentive to deviate from the equilibrium by allocating some demand
in the day-ahead market since λd = 0, meaning loads make zero payment in the market, using
Rule 2.2.

Therefore the equilibrium does not exist. Similarly, in the case of only one generator, equilibrium
does not exist. Though the generator bids arbitrary small values in the day ahead to earn increasing
revenue, the load will also bid small quantities to decrease its payment. Since the generator operates
truthfully in real-time, we attain the same equilibrium with all the demand allocated to the real-time
market. Again, loads have the incentive to deviate and allocate demand in the day ahead where
prices are zero. This completes the proof of Theorem 2.4.

C. Proof of Theorem 2.5
Under price-taking behavior, the individual problem for loads (2.14) is a linear program with the
closed-form solution given by:⎧⎪⎨⎪⎩

dd
l = ∞, dr

l = −∞, dd
l + dr

l = dl, if λd < λr

dd
l = −∞, dr

l = ∞, dd
l + dr

l = dl, if λd > λr

dd
l + dr

l = dl, if λd = λr
( I.10)

where loads prefer the lower price in the market. Similarly, solving concave individual problem of
each generator (2.36) by taking the derivative, we have

λr
(︂
(1 − cjθr

j )λr − cjωjdd
)︂

= 0 =⇒ θr
j λr = c−1

j λr − wjdd ( I.11)

where we assume λr ̸= 0. Summing ( I.11) over j ∈ G and using real-time market clearing (2.7),
we get

dr =
∑︂
j∈G

c−1
j λr − dd =⇒ λr = d∑︁

j∈G c−1
j

( I.12)

At equilibrium (2.34), ( I.10), ( I.11), and ( I.12) must hold simultaneously. This implies that

λd = λr = d∑︁
j∈G c−1

j

, dd =
∑︁

j∈G(cj + ϵj)−1∑︁
j∈G c−1

j

d ( I.13)

gd
j = ωjdd, θr

j = ϵj

cj(cj + ϵj) , gr
j = ϵj

cj(cj + ϵj)λr ( I.14)

Hence the equilibrium exists, and this completes the proof of Theorem 2.5.

D. Proof of Theorem 2.6
Using the real-time clearing (2.7), we have

λr = dr∑︁
j∈G θr

j

( I.15)

156



where we assume that
∑︁

j∈G θr
j ̸= 0. Substituting ( I.15) in generator individual problem (2.38),

the individual problem of price-anticipating generator j is given by:

max
θr

j

(cj + ϵj)(ωjdd)2 +
θr

j dr2

(
∑︁

k∈G
θr

k)2 − cj

2

⎛⎜⎝ωjdd +
θr

j dr∑︁
k∈G

θr
k

⎞⎟⎠
2

( I.16)

We again use first-order and second-order conditions to analyze the optimal bidding behavior since
the individual problem may not be concave in the domain. Writing the first-order condition, we have

dπj

dθr
j

= dr

(
∑︁

k∈G
θr

k)3

[︂
mr

j − nr
jθr

j

]︂
( I.17)

where
mr

j := dr
∑︂

k,k ̸=j

θr
k − cj

cj + ϵj

dd∑︁
k∈G

(ck + ϵk)−1 (
∑︂

k,k ̸=j

θr
k)2

and
nr

j := dr + cj

cj + ϵj

dd∑︁
k∈G

(ck + ϵk)−1

∑︂
k,k ̸=j

θr
k + cjdr

∑︂
k,k ̸=j

θr
k

Assuming generators are homogeneous and bid symmetrically, we can rewrite ( I.17) as

dπj

dθr
j

= dr

G3θr2
[︁
dr(G − 2) − cd(G − 1)θr

]︁
( I.18)

then the turning point is given by

θr
p = G − 2

G − 1
dr

cd
( I.19)

Writing the second-order condition and evaluating for homogeneous generators that bid symmetrically,
i.e., the turning point ( I.19), we have

d2πj

dθr
j

2

⃓⃓⃓⃓
θr

j
=θr

p(dr)
= dr

(
∑︁

j θr
j )3

[︂
m̃r

j + ñr
jθr

j

]︂ ⃓⃓⃓⃓
θr

j
=θr

p(dr)
( I.20)

= −c3(G − 1)4d2

G4(G − 2)3
d

dr

(︃
2 + (G − 2)dr

d

)︃
( I.21)

where
m̃r

j := −
4dr

∑︁
k,k ̸=j θr

k∑︁m
k=1 θr

k

+ 2cjωjdd
∑︂

k,k ̸=j

θr
k −

cjdr(
∑︁

k,k ̸=j θr
k)2∑︁m

k=1 θr
k

and
ñr

j := 2dr∑︁m
k=1 θr

k

+
2cjdr

∑︁
k,k ̸=j θr

k∑︁m
k=1 θr

k

Now, loads acting as leaders anticipate the clearing prices and optimal bids of generators in the
real-time subgame equilibrium, such that

λr = G − 1
G − 2

cd

G
( I.22)

where we substitute ( I.19) in ( I.15). Substituting ( I.22) in load individual problem (2.39), we have

min
dd

l

dd∑︁
j∈G(cj + ϵj)−1 dd

l + G − 1
G − 2

cd

G
(dl − dd

l ) ( I.23)
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The unique optimal solution to the quadratic program ( I.23) is given by

dd
l = c

c + ϵ

1
L + 1

G − 1
G − 2d, dr

l =
(︃

dl − c

c + ϵ

1
L + 1

G − 1
G − 2d

)︃
( I.24)

where we assume that generators are homogeneous and estimation error is the same, i.e. i.e.,
cj := c, ϵj := ϵ ∀j ∈ G Assuming 1

L > c−ϵ(G−2)
(c+ϵ)(G−2) ,

dr > 0 =⇒ d2πj

dθr
j

2

⃓⃓⃓⃓
θr

j
=θr

p

< 0

Thus the obtained equilibrium maximizes generators’ profit and minimizes loads’ payment while the
supply-demand balance is satisfied. However, if 1

L < c−ϵ(G−2)
(c+ϵ)(G−2) , then

dr < 0 =⇒ θr
p < 0 =⇒ d2πj

dθr
j

2

⃓⃓⃓⃓
θr

j
=θr

p

> 0

The obtained equilibrium minimizes generators’ profit, and generators’ have the incentive to deviate
from this equilibrium. Therefore, symmetric equilibrium does not exist in this case. Moreover, in the
case of G < 3, generators have the incentive to bid arbitrarily small values and earn arbitrarily large
profits in the market.

In the case of 1
L = c−ϵ(G−2)

(c+ϵ)(G−2) , at equilibrium dr = 0 which contradicts our initial assumption.
We analyze the case dr = 0 separately,

1. If
∑︁

j∈G θr
j ̸= 0 =⇒ λr = 0 and λd = c+ϵ

G dd = c+ϵ
G d. WLOG, we can assume that

dr
l = 0, ∀l ∈ L, otherwise load l with non-zero demand has the incentive to deviate and

participate in the real-time market to minimize its payment. The payment of individual load l
is then given by

λddd
l + λrdr

l = c + ϵ

G
ddd

l

However, if load l unilaterally decides to deviate by allocating demand in real-time, i.e., dr
l = γ

then the payment is given by

λddd
l + λrdr

l = c + ϵ

G
(dl − γ)d + γ2∑︁

j∈G θj

which is smaller for small enough γ. Therefore the equilibrium does not exist.

2. If
∑︁

j∈G θr
j = 0, using Rule 2.1 we have λr = λd and λd = c+ϵ

G dd = c+ϵ
G d. However, if load

l unilaterally decides to deviate by allocating demand in real-time i.e., dr
l = γ then using

Rule 2.2 λr = 0. Therefore load has the incentive to deviate and allocate demand in the
real-time market with zero clearing price. Hence equilibrium does not exist.

This completes the proof of the Theorem 2.6.

E. Proof of Theorem 2.7
Under price-taking behavior, the individual problem for loads (2.14) is a linear program with the
closed-form solution given by:⎧⎪⎨⎪⎩

dd
l = ∞, dr

l = −∞, dd
l + dr

l = dl, if λd < λr

dd
l = −∞, dr

l = ∞, dd
l + dr

l = dl, if λd > λr

dd
l + dr

l = dl, if λd = λr
( I.25)
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where loads prefer the lower price in the market. The individual problem for generators (2.44)
requires: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θd
j = ∞, θr

j = −∞, θd
j + θr

j = bd+br−c−1
j∑︁

j∈G

c−1
j

d, if λd < λr

θd
j = −∞, θr

j = ∞, θd
j + θr

j = bd+br−c−1
j∑︁

j∈G

c−1
j

d, if λd > λr

θd
j + θr

j = bd+br−c−1
j∑︁

j∈G

c−1
j

d, if λd = λr

( I.26)

where generators prefer higher prices in the market and seek to maximize profit. At the competitive
equilibrium the intercept function (2.42) and individual optimal solution ( I.25) and ( I.26) holds
simultaneously and this is only possible if the market price is equal in the two-stages, i.e.,

λd = λr = 1∑︁m
k=1 c−1

k

d, dl = dd
l + dr

l , θd
j + θr

j =
bd + br − c−1

j∑︁
j∈G

c−1
j

d

From the intercept function bid, we have

gr
j + gd

j =
c−1

j∑︁m
k=1 c−1

k

d

Thus a set of competitive equilibria exists.

F. Proof of Theorem 2.8
Given the parameter (θd

j , gd
j , d − dd) from market-clearing in the day-ahead market, each generator

j maximizes their profit (2.11) for the optimal decision θr
j with complete knowledge of the market

clearing in the real-time stage as characterized below:∑︂
j∈G

gr
j = dr =⇒

∑︂
j∈G

(brλr − θr
j ) = dr =⇒ λr = dr + θr,G

brG
( I.27)

where θr,G =
∑︁

j∈G θr
j . Given the parameter (θd

j , gd
j , d − dd), substituting ( I.27) in the individual

problem (2.10) gives the concave strategic individual problem of generators, i.e., the real-time subgame
problem:

max
θr

j

(︄
dr + θr,G

brG

)︄(︄
br dr + θr,G

brG
− θr

j

)︄
+ λdgd

j − cj

2

⎛⎝gd
j + br

(︄
dr + θr,G

brG

)︄
− θr

j

⎞⎠2

( I.28)

Hence, taking the derivative of ( I.28) with respect to bid θr
j we get:

∂πj

∂br
j

= 0

=⇒ 1
brG

(︄
dr + θr,G

G
− θr

j

)︄
− G − 1

G

(︄
dr + θr,G

brG

)︄
+ cj

(︄
gd

j + dr + θr,G

G
− θr

j

)︄
G − 1

G
= 0

=⇒ 1
brG

(︂
gr

j

)︂
− G − 1

G
(λr) + cj

(︂
gd

j + gr
j

)︂ G − 1
G

= 0

=⇒ 1
b(G − 1)gr

j − λr + cj

(︂
gd

j + gr
j

)︂
= 0 ( I.29)

where we substitute (2.42) and ( I.27). The equation ( I.29) is the required KKT condition of the
convex dispatch problem (2.46), with λr as the dual variable of the constraint (2.46b).
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G. Proof of Theorem 2.9
Using the market-price in the real-time stage λr as given by the KKT conditions ( I.29) we get,

gr
j =

λr − cjgd
j(︂

1
br(G−1) + cj

)︂ =⇒
∑︂
j∈G

gr
j =

∑︂
j∈G

λr − cjgd
j(︂

1
br(G−1) + cj

)︂

=⇒ dr =
∑︂
j∈G

λr − cjgd
j(︂

1
br(G−1) + cj

)︂ =⇒ λr =
dr +

∑︁
j∈G

cjgd
j(︁

1
br(G−1) +cj

)︁
∑︁

j∈G

(︂
1

br(G−1) + cj

)︂−1 ( I.30)

where
(︂

1
br(G−1) + cj

)︂
= 1

br(G−1) + cj and we use (2.7) in the second equality equation. Substitut-
ing ( I.30) in ( I.29) we get

gr
j =

dr +
∑︁

k∈G
ckgd

k

Ck(︂
1

br(G−1) + cj

)︂∑︁
k∈G C−1

k

−
cjgd

j(︂
1

br(G−1) + cj

)︂ ( I.31)

From the market-clearing in the day-ahead stage (2.5), we have the following relation

=⇒
∑︂
j∈G

(︂
bdλd − θd

j

)︂
=
∑︂
l∈L

dd
l ( I.32a)

=⇒ λd = dd + θd,G

bdG
, gd

j = bd dd + θd,G

bdG
− θd

j ( I.32b)

where θd,G =
∑︁

j∈G θd
j . Substituting ( I.30),( I.31), and ( I.32b) in the individual profit (2.11), we

get,

max
θd

j

dd + θd,G

bdG

(︄
dd + θd,G

G
− θd

j

)︄
+

⎛⎜⎜⎜⎝
dr + ∑︁

m∈G

cm
Cm

(︂
dd+θd,G

G − θd
m

)︂
(︂

1
br(G−1) + cj

)︂ ∑︁
k∈G

C−1
k

⎞⎟⎟⎟⎠
2

− cj(︂
1

br(G−1) + cj

)︂ dr + ∑︁
m∈G

cm
Cm

(︂
dd+θd,G

G − θd
m

)︂
∑︁

k∈G
C−1

k

(︄
dd + θd,G

G
− bd

j

)︄

− cj

2

⎛⎜⎜⎜⎝
⎛⎜⎝1 − cj(︂

1
br(G−1) + cj

)︂
⎞⎟⎠(︄dd + θd,G

G
− θd

j

)︄
+

dr + ∑︁
m∈G

cm
Cm

(︂
dd+θd,G

G − θd
m

)︂
(︂

1
br(G−1) + cj

)︂ ∑︁
k∈G

C−1
k

⎞⎟⎟⎟⎠
2

( I.33)

Writing the first order condition and taking the derivative of ( I.33) wrt θd
j we have

=⇒ 1
bdG

(︄
dd + θd,G

G
− θd

j

)︄
+ dd + θd,G

bdG

(︃ 1
G

− 1
)︃

+ 2(︂
1

br(G−1) + cj

)︂
⎛⎜⎜⎜⎝

dr + ∑︁
m∈G

cm
Cm

(︂
dd+θd,G

G − θd
m

)︂
∑︁

k∈G C−1
k

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
∑︁

m∈G

cm
Cm

1
G − cj(︂

1
br(G−1) +cj

)︂
∑︁

k∈G C−1
k

⎞⎟⎟⎟⎠
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− cj(︂
1

br(G−1) + cj

)︂
⎛⎜⎜⎜⎝
∑︁

m∈G

cm
Cm

1
G − cj(︂

1
br(G−1) +cj

)︂
∑︁

k∈G C−1
k

⎞⎟⎟⎟⎠
(︄

dd + θd,G

G
− θd

j

)︄

− cj(︂
1

br(G−1) + cj

)︂ dr + ∑︁
m∈G

cm
Cm

(︂
dd+θd,G

G − θd
m

)︂
∑︁

k∈G C−1
k

(︃ 1
G

− 1
)︃

− cj

⎛⎜⎜⎜⎝
⎛⎜⎝1 − cj(︂

1
br(G−1) + cj

)︂
⎞⎟⎠(︄dd + θd,G

G
− bd

j

)︄
+

dr + ∑︁
m∈G

cm
Cm

(︂
dd+θd,G

G − bd
m

)︂
(︂

1
br(G−1) + cj

)︂ ∑︁
k∈G

C−1
k

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
⎛⎜⎝1 − cj(︂

1
br(G−1) + cj

)︂
⎞⎟⎠(︃ 1

G
− 1

)︃
+ 1(︂

1
br(G−1) + cj

)︂
∑︁

m∈G

cm
Cm

1
G − cj(︂

1
br(G−1) +cj

)︂
∑︁

k∈G
C−1

k

⎞⎟⎟⎟⎠ = 0

( I.34)

Assuming generators are homogeneous, i.e. cj := c, ∀j ∈ G and we solve for symmetric equilibrium
in the market, i.e., θd

j := θd, ∀j ∈ G, the equation ( I.34) can be rewritten as :

=⇒ θd = bdc
d

G
+ bdc

dr

G

(︃
1 − c

C

)︃
− dd

G

G − 2
G − 1 ( I.35)

where C := 1
br(G−1) + c.

Similarly, substituting ( I.30),( I.31), and ( I.32b) in the individual payment problem (2.15), we
get a convex optimization problem,

min
dd

l

dd + θd,G

bdG
dd

l +
d − dd +

∑︁
m∈G

cm

Cm

(︂
dd+θd,G

G − θd
m

)︂
∑︁

k∈G
C−1

k

(dl − dd
l ) ( I.36)

Taking the derivative of ( I.36) we have

=⇒ dd
l

bdG
+ dd + θd,G

bdG
+

−1 +
∑︁

m∈G

cm

Cm

1
G∑︁

k∈G C−1
k

(dl − dd
l )

−
d − dd +

∑︁
m∈G

cm

Cm

(︂
dd+θd,G

G − θd
m

)︂
∑︁

k∈G C−1
k

= 0 ( I.37)

Assume generators are homogeneous, i.e. cj := c, ∀j ∈ G. We first sum over l ∈ L and solve for
the case of symmetric bid participation of generators by rewriting the equation ( I.37) as,

=⇒ dd = − G

L + 1
Lθd

j + bdC
−(L+1)+ c

C
G d

1 + bd

br(G−1)
( I.38)
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Solving the equations (2.42),( I.30),( I.31),( I.32b),( I.35), and ( I.38) simultaneously for the
equilibrium, we get the unique Nash equilibrium as

θd
j = bdc

G
d +

brc − G−2
G−1

brc + L+1
G−1

L + 1
G(G − 1)dd, ∀j ∈ G ( I.39a)

θr
j = brc

G
d − G − 2

G(G − 1)dr, ∀j ∈ G ( I.39b)

dd =
bd
(︂

brc + L+1
G−1

)︂
bd
(︂

brc + L+1
G−1

)︂
+ br

(︂
brc + 1

G−1

)︂
(G + L − 1)

d ( I.39c)

dd
l = bddl

bd + br(G − 1) +
bd

1+brc(G−1)

bd + br(G − 1)dr − br

bd + br(G − 1)dd ( I.39d)

λd = brc(G − 1) + 2
brc(G − 1) + 1

c

G
d +

(︂
br

bd − 1
)︂

c + 1
bd(G−1)

brc(G − 1) + 1
dd

G
, ( I.39e)

λr = λd +
1

G(G−1)

(︂
G−2
G−1 − brc

)︂
d

bd
(︂

brc + L+1
G−1

)︂
+ br

(︂
brc + 1

G−1

)︂
(G + L − 1)

( I.39f)

Thus the symmetric Nash equilibrium exists uniquely.

H. Proof of the Theorem 2.10
Under price-taking behavior, the individual problem for loads (2.50) is a linear program with the
closed-form solution given by:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dd
l = ∞, dr

l = −∞, dd
l + dr

l = dl, if λd < d∑︁
k∈G

(ck+ϵk)−1

dd
l = −∞, dr

l = ∞, dd
l + dr

l = dl, if λd > d∑︁
k∈G

(ck+ϵk)−1

dd
l + dr

l = dl, if λd = d∑︁
k∈G

(ck+ϵk)−1

( I.40)

where loads prefer the lower price in the market. The individual problem for generators (2.49)
requires: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

θd
j = ∞, if λd < d∑︁

k∈G

(ck+ϵk)−1

θd
j = −∞, if λd > d∑︁

k∈G

(ck+ϵk)−1

θd
j ∈ R, if λd = d∑︁

k∈G

(ck+ϵk)−1

( I.41)

where generators prefer higher prices in the market and seek to maximize profit. At the competitive
equilibrium the day-ahead intercept function (2.42), real-time true dispatch condition (2.23), real-time
clearing prices (2.24), and the individual optimal solution ( I.40) and ( I.41) holds simultaneously.
This is only possible if the market price is equal in the two-stages, i.e.,

λd = λr = 1∑︁
k∈G

(ck + ϵk)−1 d, s.t dl = dd
l + dr

l , θd
j ∈ R

and
gr

j + gd
j = (cj + ϵj)−1∑︁

k∈G(ck + ϵk)−1 d
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Thus a set of competitive equilibria exists.

I. Proof of the Theorem 2.11
Substituting the real-time true dispatch condition (2.23), real-time clearing prices (2.24), day-ahead
dispatch and day-ahead prices ( I.32b) in the individual problem of generator (2.52a), we get

max
θd

j

⎛⎜⎜⎝dd + θd,G

bdG
− d∑︁

k∈G
(ck + ϵk)−1

⎞⎟⎟⎠
(︄

dd + θd,G

G
− θd

j

)︄
( I.42)

where θd,G =
∑︁

j∈G θd
j . Taking the derivative of ( I.42) wrt θd

j and writing the first-order condition,
we have

1
bdG

(︄
dd + θd,G

G
− θd

j

)︄
+

⎛⎜⎜⎝dd + θd,G

bdG
− d∑︁

k∈G
(ck + ϵk)−1

⎞⎟⎟⎠(︃ 1
G

− 1
)︃

= 0 ( I.43)

Summing the equation ( I.43) over the set of generators, i.e., j ∈ G we get

=⇒ 1
bdG

dd −

⎛⎜⎜⎝dd + θd,G

bdG
− d∑︁

k∈G
(ck + ϵk)−1

⎞⎟⎟⎠ (G − 1) = 0 ( I.44a)

=⇒ θd,G = bdG∑︁
k∈G

(ck + ϵk)−1 d − (G − 2)
(G − 1)dd ( I.44b)

=⇒ θj = bd d∑︁
k∈G

(ck + ϵk)−1 − G − 2
G

1
(G − 1)dd ( I.44c)

Similarly, substituting the real-time clearing prices (2.24) and day-ahead prices ( I.32b) in the
individual problem of generator (2.53), we get

min
dd

l

(︄
dd + θd,G

bdG

)︄
dd

l +

⎛⎜⎜⎝ d∑︁
k∈G

(ck + ϵk)−1

⎞⎟⎟⎠ (dl − dd
l ) ( I.45)

Taking the derivative of ( I.45) and writing the first order condition of the convex optimization
problem, we get

dd
l + dd + θd,G

bdG
− d∑︁

k∈G
(ck + ϵk)−1 = 0 ( I.46)

Summing the equation ( I.46) over l ∈ L, we get

=⇒ dd = L

L + 1
bdG∑︁

k∈G
(ck + ϵk)−1 d − L

L + 1θd,G ( I.47)
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At the equilibrium the equations (2.3),(2.24),( I.32b),( I.44c), and ( I.47) must hold simultane-
ously. Solving for equilibrium we get,

dd
l = 0, dr

l = dl, ∀l ∈ L ( I.48a)

λd = λr = 1∑︁
j∈G

(cj + ϵj)−1 d ( I.48b)

gd
j = 0, gr

j = (cj + ϵj)−1∑︁
k∈G

(ck + ϵk)−1 d, θd
j = bd∑︁

k∈G
(ck + ϵk)−1 d, ∀j ∈ G ( I.48c)

This completes the proof.

J. Proof of Theorem 2.12
Under price-taking behaviour, the closed-form solution of the individual problem for loads (2.14) is
given by ( I.25). Solving the individual bidding problem for generators in real-time market (2.55) by
taking the derivative of the concave profit function, we get

− λr + cj

⎛⎜⎝ (cj + ϵj)−1dd∑︁
k∈G

(ck + ϵk)−1 + brλr − θr
j

⎞⎟⎠ = 0 ( I.49)

Substituting (2.33),(2.34) and (2.42) in ( I.49), we get

=⇒ − λr + cj(gd
j + gr

j ) = 0 =⇒
∑︂
j∈G

1
cj

λr =
∑︂
j∈G

gj = d

=⇒ λr = d∑︁
j∈G

c−1
j

( I.50)

At the competitive equilibrium the conditions ( I.25),( I.49),(2.33),(2.34), and ( I.50) holds simulta-
neously and this is only possible if the market price are equal in the two-stages, i.e.,

λr = λd = d∑︁
j∈G c−1

j

This implies
dd

l + dr
l = dl, ∀l ∈ L; dd = 1

1 + ϵ
d; dr =

(︃
1 − 1

1 + ϵ

)︃
d

and
gd

j = 1
cj

1
1 + ϵ

d∑︁
jinG c−1

j

, gr
j = 1

cj

(︃
1 − 1

1 + ϵ

)︃
d∑︁G

j=1 c−1
j

Thus the competitive equilibrium exists.

K. Proof of Theorem 2.13
Using ( I.29) and (2.7), we have the generator dispatch and prices in the real-time market as

gr
j =

dr +
∑︁

j∈G
cjgd

j(︁
1

br(G−1) +cj

)︁
∑︁

k∈G

(︂
1

br(G−1) + ck

)︂−1 (︂
1

br(G−1) + cj

)︂ −
cjgd

j(︂
1

br(G−1) + cj

)︂ ( I.51a)
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λr =
dr +

∑︁
j∈G

cjgd
j(︁

1
br(G−1) +cj

)︁
∑︁

j∈G

(︂
1

br(G−1) + cj

)︂−1 ( I.51b)

Substituting ( I.51) in (2.33) and (2.34), we have,

λr = dr∑︁
j∈G

(︂
1

br(G−1) + cj

)︂−1 + dd∑︁G
j=1 c−1

j

, gr
j = 1(︂

1
br(G−1) + cj

)︂ dr∑︁
j∈G

(︂
1

br(G−1) + cj

)︂−1 ( I.52)

Substituting (2.33),(2.34), and ( I.52) in the individual problem of load l (2.15) we get

min
dd

l

(1 + ϵ)dd∑︁
j∈G c−1

j

dd
l +

⎛⎜⎜⎝ d − dd∑︁
j∈G

(︂
1

br(G−1) + cj

)︂−1 + dd∑︁G
j=1 c−1

j

⎞⎟⎟⎠ (dl − dd
l ) ( I.53)

Therefore taking the derivative of the convex individual problem ( I.53) w.r.t dd
l we get,

ϵ
dd + dd

l∑︁
j∈G

c−1
j

− d − dd∑︁
j∈G

(︂
1

br(G−1) + cj

)︂−1 + dl∑︁
j∈G

c−1
j

− dl∑︁
j∈G

(︂
1

br(G−1) + cj

)︂−1 + dd
l∑︁

j∈G

(︂
1

br(G−1) + cj

)︂−1 = 0

Summing over l ∈ L we get

dd =

∑︁
j∈G

c−1
j − 1

L+1
∑︁
j∈G

(︂
1

br(G−1) + cj

)︂−1

∑︁
j∈G

c−1
j + ϵ

∑︁
j∈G

(︂
1

br(G−1) + cj

)︂−1 d

Therefore we get a unique Nash equilibrium.

L. Proof of Theorem 3.1
We present four lemmas and one proposition first. For brevity and ease of understanding we ignore
the index s associated with the energy storage.

We define two vectors dc ∈ RT and dd ∈ RT based on depth vector d, such that dc contains
charging half-cycle depths in decreasing order and dd contains discharging half-cycle depths in
decreasing order. We append zeros in the tail to fill in the vectors as necessary. Accordingly, we can
define digraphs Gc and Gd for charging and discharging half-cycles, respectively, based on G, and the
associated incidence matrices Mc(x) ∈ R(T +1)×T and Md(x) ∈ R(T +1)×T based on M(x), attached
with zero columns as necessary, such that Mc(x)T x = dc and Md(x)T x = dd. Furthermore, we
rearrange elements (rows) of depth vector d (incidence matrix M(x)) in decreasing order to maintain
M(x)T x = d. As an illustrative example, the incidence matrices Mc(x) and Md(x) for the SoC profile
in Fig. 3-2 is

Mc(x) =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 1 0 0
0 −1 0 0 0
1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ , Md(x) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0
1 0 0 0 0
0 −1 0 0 0
0 1 0 0 0

−1 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
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We will focus our analysis on charging half-cycles, including residual half-cycles and those
originated by full cycles. The analysis for discharging half-cycles is analogous. Recall the full cycle
set Sf of time index pairs and the residue set Sr of time indices that Algorithm 1 outputs. Also,
for any edge (u, v) of a digraph, node u is at the tail of the edge, and node v is at the head of the
edge. A source (sink) is defined as a node of a digraph, which is at the tail (head) of all the edges
associated with that node [110]. Each time node t ∈ {0, 1, ..., T} is a source, or a sink, of at most one
charging half-cycle. Therefore, [Mc1]i ∈ {−1, 0, +1} holds for ∀i ∈ {1, 2, ..., T + 1}.

Definition I.1. A directed edge between nodes t1 and t4 is said to envelop another edge between
nodes t2 and t3, if t1 < t2 < t3 < t4 holds, where ti ∈ {0, 1, ..., T} ∀i ∈ {1, 2, 3, 4} are four nodes of
the digraph.

Remark 2. Given (∆j−1, ∆j , ∆j+1) = diff(x, Sr, j), assume that a full cycle exists, i.e., ∆j−1 ≥ ∆j ,
and ∆j+1 ≥ ∆j holds. During the extraction of the full cycle, if the corresponding full cycle represented
by the time indices {Sr[j], Sr[j + 1]} follows xSr

(j) > xSr
(j + 1), then the remaining profile denoted

by the time indices {Sr[j − 1], Sr[j + 2]} satisfies xSr (j − 1) < xSr (j + 2), and vice versa. To see
this, notice

xSr (j) > xSr (j + 1) =⇒ ∆j = −(xSr (j + 1) − xSr (j)), ( I.55)
∆j−1 = xSr (j) − xSr (j − 1) > 0, and ( I.56)
∆j+1 = xSr (j + 2) − xSr (j + 1) > 0 ( I.57)

Thus, by using the fact that ∆j was extracted we have

xSr
(j) − xSr

(j − 1) ≥ −(xSr
(j + 1) − xSr

(j))
xSr

(j + 2) − xSr
(j + 1) ≥ −(xSr

(j + 1) − xSr
(j))

The first one leads to xSr
(j − 1) ≤ xSr

(j + 1) and the second one xSr
(j + 2) ≥ xSr

(j). Thus,

xSr
(j − 1) ≤ xSr

(j + 1) < xSr
(j) ≤ xSr

(j + 2),

where the strict inequality is by assumption.
In other words, the half-cycle edge of the remaining profile envelop the associated full cycle edges

in the opposite direction with respect to full cycle edges.

Remark 3. Any SoC profile x can be written in terms of step functions, i.e. x =
∑︁T

t=0 pt1t where,
pt ∈ R is the amplitude and 1t ∈ R(T +1) is defined as

[1t]i =
{︃

0 if i < t
1 if i ≥ t

Lemma I.1. For any matrix Mc(x) ∈ R(T +1)×T , the following holds,⃓⃓⃓
(Mc(x)1)T 1t

⃓⃓⃓
≤ 1, t ∈ {0, 1, ..., T} ( I.58)

Proof. For any charging half-cycle edge between two time nodes ts and te, where the directed edge
is either (ts, te), or (te, ts), assume w.l.o.g. te > ts. Now, consider two such consecutive charging
half-cycles edges between time nodes ts,1, te,1, and ts,2, te,2 respectively, then there are three possible
cases,

• Case 1: ts,1 < te,1 < ts,2 < te,2, i.e. charging half-cycle edges are sequential to each other.
In this case, both edges should have same direction, as opposite direction is possible only
when one charging half-cycle envelop another charging half-cycle. Therefore, sgn([Mc1]i) =
−sgn([Mc1]i+1), i ∈ {ts,1, te,1, ts,2, te,2}, so

⃓⃓
(Mc(x)1)T 1t

⃓⃓
≤ 1, t ∈ {ts,1, te,1, ts,2, te,2}.
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• Case 2: ts,1 < ts,2 < te,1 < te,2, i.e. charging half-cycle edges cross each other. Charging
half-cycle edges should have same direction, as the half-cycle doesn’t envelop each other.
Furthermore, by contradiction, if both have same direction, then

(︁
x(ts,1), x(ts,2), x(te,1)

)︁
is

monotonic, and ts,2 cannot be part of any half-cycle edge, as in step 1-5 in Algorithm 1,
which is contradictory to the fact that {ts,2, te,2} is a charging-half cycle. Hence, this case is
infeasible.

• Case 3: ts,1 < ts,2 < te,2 < te,1, i.e. one charging half-cycle envelop another charging
half-cycle. By contradiction, if both have same direction, then

(︁
x(ts,1), x(ts,2), x(te,2)

)︁
is

monotonic, and ts,2 cannot be part of any half-cycle edge, as in step 1-5 in Algorithm 1,
which is contradictory to the fact that {ts,2, te,2} is a charging-half cycle. Therefore both
edges have opposite direction, and, sgn([Mc1]i) = −sgn([Mc1]i+1), i ∈ {ts,1, te,1, ts,2, te,2},
so
⃓⃓
(Mc(x)1)T 1t

⃓⃓
≤ 1, t ∈ {ts,1, te,1, ts,2, te,2}.

From above, any two consecutive charging half-cycles cannot intercept and the result could generalize
with both cases 1 and 3 for any possible combination of charging half-cycles.

Definition I.2. A SoC profile x is a boundary profile, if ∄ ϵ > 0 such that, ∀|qt| ≤ ϵ, t ∈ {0, 1, ..., T},
the relation M(x + qt1t) = M(x) holds.

Remark 4. For any arbitrary non-boundary profile x, ∃ ϵ > 0, such that ∀ |qt| < ϵ, t ∈ {0, 1, ..., T},
the relation M(x + qt1t) = M(x) holds .

Lemma I.2. Given a boundary profile x, ∃ ϵ > 0 small enough, such that ∀ |qt| ≤ ϵ, t ∈ {0, 1, ..., T},
the following relation holds,

M(x + qt1t)T x = M(x)T x ( I.59)

Proof. A boundary profile seamlessly transitions between forming and not forming a full cycle.
This transition is characterized by either of the following conditions. Given (∆j−1, ∆j , ∆j+1) =
diff(x, Sr, j),

• ∆j = ∆j−1, or ∆j = ∆j+1 =⇒ xSr
(j − 1) = xSr

(j + 1), or, xSr
(j) = xSr

(j + 2). WLOG,
assume ∆j = ∆j−1, then any infinitesimally small change qt, |qt| ≤ ϵ, can alter ∆j , such
that, either ∆j < ∆j−1, and this cycle of depth ∆j can still be extracted as in steps 10-15 in
Algorithm 1, or ∆j > ∆j−1, and this cycle cannot be extracted anymore. Even though, the
depth vector will be different for ∆j < ∆j−1 as in step 13 in Algorithm 1, and for ∆j > ∆j−1
as in step 19 in Algorithm 1. In the boundary case of ∆j = ∆j−1, as xSr (j − 1) = xSr (j + 1),
the depth vector can be written in any of the two forms as in step 13, or step 19 in Algorithm 1,
by substituting xSr

(j − 1) with xSr
(j + 1) and vice versa.

• ∆j = 0 =⇒ xSr
(j) = xSr

(j + 1). In this case, any infinitesimally small change qt, |qt| ≤ ϵ,
can alter ∆j , such that, either ∆j > 0, and the cycle of depth ∆j can be extracted as in steps
10-15 in Algorithm 1, or (xSr (j − 1), xSr (j), xSr (j + 1)) is monotonic, and this cycle cannot
be extracted anymore. In the boundary case of ∆j = 0, since (xSr

(j − 1), xSr
(j), xSr

(j + 1))
is monotonic, no cycle is extracted, which is equivalent to extracted cycle of depth 0, as
xSr

(j) = xSr
(j + 1) holds at the boundary.

Despite M(x + qt1t) ̸= M(x) in the limit qt → 0, M(x + qt1t)T x = M(x)T x holds for the boundary
profile x due to the exactly same depth vectors.

Lemma I.3. Consider two SoC profiles x and y such that Mc(y) = Mc(x) and y = x + qt1t, where
qt is nonzero, t ∈ {0, ..., T}. The following relations always hold,⃓⃓

∆dc,i

⃓⃓
≤|qt| , ∀i ∈ {1, ..., T} ( I.60)⃓⃓⃓∑︁T

i=1 ∆dc,i

⃓⃓⃓
≤|qt| ( I.61)

with dc,i(x) := [Mc(x)T x]i and ∆dc,i(y, x) := dc,i(y) − dc,i(x) = [Mc(y)T y]i − [Mc(x)T x]i.
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Proof. : For the first result,

∆dc = Mc(y)T y − Mc(x)T x

=⇒ ∆dc = Mc(x)T (y − x), from assumption

=⇒ ∆dc = Mc(x)T (qt1t) =⇒ ∆dc = qt(Mc(x)T 1t) =⇒ ∆dc,i = qt

T +1∑︂
j=1

Mc(x)T
ij1t,j

=⇒ ∆dc,i = qt

T +1∑︂
j=t

Mc(x)ji =⇒
⃓⃓
∆dc,i

⃓⃓
=

⃓⃓⃓⃓
⃓⃓qt

T +1∑︂
j=t

Mc(x)ji

⃓⃓⃓⃓
⃓⃓

=⇒
⃓⃓
∆dc,i

⃓⃓
≤|qt| , ∀i ∈ {1, ..., T}

where the last inequality holds due the fact (Mc(x)T 1t)i ∈ {−1, 0, +1}. Further, the second result
holds as follows⃓⃓⃓⃓

⃓⃓ T∑︂
i=1

∆dc,i

⃓⃓⃓⃓
⃓⃓ =

⃓⃓⃓
1T ∆dc

⃓⃓⃓
=
⃓⃓⃓
1T Mc(x)T (y − x)

⃓⃓⃓
=
⃓⃓⃓
(Mc(x)1)T (qt1t)

⃓⃓⃓
= |qt|

⃓⃓⃓
(Mc(x)1)T 1t

⃓⃓⃓

=⇒

⃓⃓⃓⃓
⃓⃓ T∑︂

i=1
∆dc,i

⃓⃓⃓⃓
⃓⃓ ≤|qt| , using Lemma I.1

This completes the proof.

Now, we will provide bounds on the change in the depth vector dc = Mc(x)T x of SoC profile x,
for an arbitrary step change perturbation denoted by qt1t, t ∈ {0, 1, ..., T}.

Proposition I.1. Consider a step change qt1t added to SoC profile x, s.t. y = x + qt1t, where qt

is nonzero and t ∈ {0, ..., T}. The Rainflow incidence matrix (only considering charging half-cycle
depths) for x and y are given by Mc(x) and Mc(y), respectively. Then the following holds,⃓⃓

∆dc,i

⃓⃓
≤|qt| , ∀i ∈ {1, ..., T} ( I.62)⃓⃓⃓∑︁T
i=1 ∆dc,i

⃓⃓⃓
≤|qt| ( I.63)

Proof. : The step change is split into parts, i.e.,
∑︁n

i=1 ∆qi,t = qt and
∑︁n

i=1 |∆qi,t| = |qt| with n

being the number of all possible boundary profiles that the convex combination between x and y

intersects. We define xk+1 = xk + ∆qk,t1t, k ∈ {1, ..., n}, with x1 = x, and xn+1 = y, such that each
xi+1 i ∈ {1, ..., n−1} is a boundary profile, and therefore, M(xi+1 +ϵ1t)T xi+1 = M(xi+1 −ϵ1t)T xi+1,
holds from the definition of a boundary profile, where ϵ ∈ R is sufficiently small.

|∆dc| =
⃓⃓⃓
Mc(y)T y − Mc(x)T x

⃓⃓⃓
=

⃓⃓⃓⃓
⃓⃓Mc(y)T y −

n∑︂
i=2

(︁
Mc(xi + ϵ1t) − Mc(xi − ϵ1t)

)︁T
xi − Mc(x)T x

⃓⃓⃓⃓
⃓⃓

=

⃓⃓⃓⃓
⃓⃓Mc(y)T y −

n∑︂
i=2

(︁
Mc(xi + ϵ1t) − Mc(xi−1 + ϵ1t)

)︁T
xi − Mc(x)T x

⃓⃓⃓⃓
⃓⃓

≤
⃓⃓⃓
Mc(y)T y − Mc(xn + ϵ1t)T xn

⃓⃓⃓
+

n−1∑︂
i=2

⃓⃓⃓
Mc(xi + ϵ1t)T (xi+1 − xi)

⃓⃓⃓
+
⃓⃓⃓
Mc(x1 + ∆1t)T x2 − Mc(x)T x

⃓⃓⃓
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≤
n∑︂

i=1

⃓⃓
∆qi,t

⃓⃓
1 = |qt| 1

=⇒
⃓⃓
∆dc,i

⃓⃓
≤|qt| , ∀i ∈ {1, ..., T}

where the third equality holds, as incidence matrix Mc remains same, i.e., Mc(xi+1 − ϵ1t) =
Mc(xi + (δqi, t − ϵ)1t) = Mc(xi + ϵ1t), and the fourth inequality follows from the triangle inequality
property. Similarly, the second result holds as a consequence of⃓⃓⃓⃓

⃓⃓ T∑︂
i=1

∆dc,i

⃓⃓⃓⃓
⃓⃓ =
⃓⃓⃓
1T ∆dc

⃓⃓⃓
=
⃓⃓⃓⃓
1T
(︂
Mc(y)T y − Mc(x)T x

)︂⃓⃓⃓⃓

=

⃓⃓⃓⃓
⃓⃓1T

(︂
Mc(y)T y −

n∑︂
i=2

(︁
Mc(xi + ϵ1t) − Mc(xi − ϵ1t)

)︁T
xi − Mc(x)T x

)︂⃓⃓⃓⃓⃓⃓
=

⃓⃓⃓⃓
⃓⃓1T

(︂
Mc(y)T y −

n∑︂
i=2

(︁
Mc(xi + ϵ1t) − Mc(xi−1 + ϵ1t)

)︁T
xi − Mc(x)T x

)︂⃓⃓⃓⃓⃓⃓
≤
⃓⃓⃓⃓
1T
(︂
Mc(y)T y − Mc(xn + ϵ1t)T xn

)︂⃓⃓⃓⃓
+

n−1∑︂
i=2

⃓⃓⃓⃓
⃓1T Mc(xi + ϵ1t)T (xi+1 − xi)

⃓⃓⃓⃓
⃓

+
⃓⃓⃓⃓
1T
(︂
Mc(x1 + ϵ1t)T x2 − Mc(x)T x

)︂⃓⃓⃓⃓
≤

n∑︂
i=1

⃓⃓
∆qi,t

⃓⃓
, using Lemma I.3

=|qt|

This completes the proof.

For any SoC profile x, the cost calculated from the cycle stress function using Rainflow cycle
counting method, i.e., Cs(x), is larger or equal than the cost calculated from cycle stress function
using naive enumeration of the profile x based on every switch between charging and discharging
half-cycles, as summarized in the lemma below. Recall the set Sr of switching time indices from
steps 1-5 in Algorithm 1.

Lemma I.4. Given a SoC profile x, using the step decomposition of the profile, i.e. x =
T∑︁

t=0
pt1t as

defined in Remark 3, the following holds,

Cs(x) ≥
|Sr|−1∑︂

i=1
Φ

⎛⎜⎝
⃓⃓⃓⃓
⃓⃓ Sr[i+1]∑︂
t=Sr[i]+1

pt

⃓⃓⃓⃓
⃓⃓
⎞⎟⎠ , ( I.64)

where terms in the R.H.S represents consecutive half-cycles under naive enumeration of the SoC
profile x. The set Sr contains the time indices where the profile x changes direction, steps 1-5 in
Algorithm 1.

Proof. : WLOG, we assume that SoC profile x has at most one cycle, and the proof is divided into
sub cases.

• Case 1: There is no cycle in the SoC profile x, i.e., set Sr = {0, T}. In this case equality holds,
as the Rainflow algorithm simply returns the same vector of charging/discharging half-cycle
depths as in the case of naive enumeration of profile x based on every switch between charging
and discharging half-cycles.
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• Case 2: There is a cycle, i.e., set Sr = {0, t1, t2, T} with 0 < t1 < t2 < T and ∆1 = |x0 −xt1 | =
|p1...+pt1 |, ∆2 = |xt1 −xt2 | = |pt1+1+pt1+2...+pt2 | and ∆3 = |xt2 −xT | = |pt2+1+pt2+2...+pT |,
such that ∆1 ≥ ∆2, and ∆3 ≥ ∆2 hold. The cost of storage degradation from cycle stress
function by naively enumerating profile x is given by

g(x) =
|Sr|−1∑︂

i=1
Φ

⎛⎜⎜⎝
⃓⃓⃓⃓
⃓⃓⃓ Sr[i+1]∑︂
t=Sr[i]+1

pt

⃓⃓⃓⃓
⃓⃓⃓
⎞⎟⎟⎠

=

⎛⎜⎜⎝Φ

⎛⎜⎝
⃓⃓⃓⃓
⃓⃓ t1∑︂
t=1

pt

⃓⃓⃓⃓
⃓⃓
⎞⎟⎠+ Φ

⎛⎜⎝
⃓⃓⃓⃓
⃓⃓ t2∑︂
t=t1+1

pt

⃓⃓⃓⃓
⃓⃓
⎞⎟⎠+ Φ

⎛⎜⎝
⃓⃓⃓⃓
⃓⃓ T∑︂
t=t2+1

pt

⃓⃓⃓⃓
⃓⃓
⎞⎟⎠
⎞⎟⎟⎠

=ϕ(∆1) + ϕ(∆2) + ϕ(∆3)

However, using Rainflow algorithm, a full cycle of depth ∆2 is extracted and the depth vector
d = [∆2, ∆2, |xT − x0|]T = [∆2, ∆2, ∆3 + ∆2 − ∆1]T . Therefore, the cost from cycle stress
fucntion using Rainflow algorithm is as follows,

Cs(x) =ϕ(∆2) + ϕ(∆2) + ϕ(∆1 + ∆3 − ∆2)
where, ∆1 + ∆3 − ∆2 ≥ 0, using [98, Proposition 4]

≥ϕ(∆2) + ϕ(∆2) + ϕ(∆1) + ϕ(∆3) − ϕ(∆2)
=ϕ(∆2) + ϕ(∆1) + ϕ(∆3) = g(x)

The result could generalize for any number of cycles. To see this, notice that during extraction of
full cycles as per Rainflow algorithm, for every cycle extracted, the intermediate cost of storage
degradation increase as shown in the proof.

Now we provide the proof of Theorem 1 as below. Again, we only prove the result for charging
half-cycle depths, which can generalize to discharging half-cycle depths.

Consider an arbitrary SoC profile x with T time steps, and let yk, k ∈ {0, 1, ..., T}, represent
the profile which is calculated by taking convex combination of x and an arbitrary profile qk, k ∈
{0, 1, ..., T}, qk =

∑︁T
t=0 qt1t, such that the SoC profile qk includes at most k nonzero step changes

or k nonzero amplitudes,

yk = λx + (1 − λ)qk, and
yk = yk−1 + (1 − λ)q1

In the proof, we evaluate the change in profile x due to qk by evaluating the change in depth
vector due to one step change perturbation at a time.

Now, considering only charging half-cycle depths (it can be proved similarly for the discharging
half-cycle depths), the Rainflow cycle algorithm gives charging half-cycle depths for x and y1 as,

x : dc,1(x), dc,2(x), ..., dc,m(x), ..., dc,M (x), 0, 0...

y1 : dc,1(y1), dc,2(y1), ..., dc,n(y1), ..., dc,N (y1), 0, 0, 0...

where dc,i(x) and dc,i(y1) represent the charging half-cycle depth obtained from Mc(x)T x and
Mc(y1)T y1, respectively. Further, define ∆dc,i(y1) to satisfy

dc,i(y1) = λdc,i(x) + (1 − λ)∆dc,i(y1), ∀i = 1, 2, ..., T.
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Re-iterating the process for k steps, we get

dc,i(yk) =dc,i(yk−1) + (1 − λ)∆dc,i(yk)

dc,i(yk) =λdc,i(x) + (1 − λ)
k∑︂

j=1
∆dc,i(yj)

=⇒ dc,i(yk) =λdc,i(x) + (1 − λ)∆d′
c,i, ∀i = 1, 2, ..., T

s.t.

⎛⎜⎜⎜⎜⎜⎝
∆d′

c,1
∆d′

c,2
...

∆d′
c,T

⎞⎟⎟⎟⎟⎟⎠ :=

⎛⎜⎜⎜⎜⎜⎝
∆dc,1(y1) ∆dc,1(y2) . . . ∆dc,1(yk)
∆dc,2(y1) ∆dc,2(y2) . . . ∆dc,2(yk)

...
... . . . ...

∆dc,T (y1) ∆dc,T (y2) . . . ∆dc,T (yk)

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1
1
...
1

⎞⎟⎟⎟⎟⎟⎠
Then the change in depth vector dc can be written as

T∑︂
i=1

∆d′
c,i =

T∑︂
i=1

⎛⎝ k∑︂
j=1

∆dc,i(yj)

⎞⎠ =
k∑︂

j=1

⎛⎝ T∑︂
i=1

∆dc,i(yj)

⎞⎠
=⇒

T∑︂
i=1

∆d′
c,i ≤

⃓⃓⃓⃓
⃓⃓ T∑︂
i=1

∆d′
c,i

⃓⃓⃓⃓
⃓⃓ ≤

k∑︂
j=1

⃓⃓⃓⃓
⃓⃓ T∑︂
i=1

∆dc,i(yj)

⃓⃓⃓⃓
⃓⃓ ≤

T∑︂
t=0

|qt|

where the second last term denotes the change in the depth vector due to each step change perturbation,
and the last inequality holds from Proposition I.1 for each step change perturbation.

Assume for now qi, ∀i ∈ {0, 1, ..., T} is non-negative. The case where qi is arbitrary is discussed
later. We can write the above inequality as

T∑︂
i=1

∆d′
c,i ≤

T∑︂
t=0

qt

The degradation cost for profile yk = λx + (1 − λ)qk, due to charging half-cycle depths only (the
result holds similarly for discharging half-cycle depths) is as follows,

Cs(λx + (1 − λ)qk)

=
T∑︂

i=1
Φ
(︂
λdc,i(x) + (1 − λ)∆d′

c,i

)︂

=
T +∑︂
i=1

Φ
(︂
λdc,i(x) + (1 − λ)∆d′

c,i

)︂
+

T −∑︂
i=1

Φ
(︂
λdc,i(x) + (1 − λ)∆d′

c,i

)︂
where the set of ∆d′

c,i is divided into parts based on its sign. Using convexity of Φ
and [98, Proposition 3], we have

Cs(λx + (1 − λ)qk)

≤
T∑︂

i=1
λΦ

(︁
dc,i(x)

)︁
+ (1 − λ)

⎧⎨⎩
T +∑︂
i=1

Φ
(︂
∆d′

c,i

)︂
−

T −∑︂
i=1

Φ
(︃

∆d′
c,i

⃓⃓⃓)︃⎫⎬⎭
There are two sub cases.

• Case 1:
∑︁T

i=1 ∆d′
c,i =

∑︁T
t=0 qt, then,
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T∑︂
i=1

λΦ
(︁
dc,i(x)

)︁
+ (1 − λ)

⎧⎨⎩
T +∑︂
i=1

Φ
(︂
∆d′

c,i

)︂
−

T −∑︂
i=1

Φ
(︃

∆d′
c,i

⃓⃓⃓)︃⎫⎬⎭
using [98, Proposition 5]

≤
T∑︂

i=1
λΦ

(︁
dc,i(x)

)︁
+ (1 − λ) Φ

⎛⎝ T∑︂
i=1

∆d′
c,i

⎞⎠
=

T∑︂
i=1

λΦ
(︁
dc,i(x)

)︁
+ (1 − λ) Φ

⎛⎝ T∑︂
t=0

qt

⎞⎠
= λCs(x) + (1 − λ)Cs

⎛⎝ T∑︂
t=0

qt1t

⎞⎠ = λCs(x) + (1 − λ)Cs(qk)

• Case 2:
∑︁T

i=1 ∆d′
c,i <

∑︁T
t=0 qt, then,

T∑︂
i=1

λΦ
(︁
dc,i(x)

)︁
+ (1 − λ)

⎧⎨⎩
T +∑︂
i=1

Φ
(︂
∆d′

c,i

)︂
−

T −∑︂
i=1

Φ
(︃

∆d′
c,i

⃓⃓⃓)︃⎫⎬⎭
≤

T∑︂
i=1

λΦ
(︁
dc,i(x)

)︁
+ (1 − λ)

{︄
T +∑︂
i=1

Φ
(︂
∆d′

c,i

)︂
−

T −∑︂
i=1

Φ
(︃

∆d′
c,i

⃓⃓⃓)︃

+
T +m∑︂

i=T +1
Φ
(︃

∆d′
c,i

⃓⃓⃓)︃}︄
, s.t.,

T +m∑︂
i=1

∆d′
c,i =

T∑︂
t=0

qt

≤
T∑︂

i=1
λΦ

(︁
dc,i(x)

)︁
+ (1 − λ) Φ

⎛⎝T +m∑︂
i=1

∆d′
c,i

⎞⎠ , [98, Proposition 5]

=
T∑︂

i=1
λΦ

(︁
dc,i(x)

)︁
+ (1 − λ) Φ

⎛⎝ T∑︂
t=0

qt

⎞⎠
= λCs(x) + (1 − λ) Cs

⎛⎝ T∑︂
t=0

qt1t

⎞⎠ = λCs(x) + (1 − λ)Cs(qk)

Hence, the cost is convex. Now, we verify this result when qt ∈ R, ∀t ∈ {0, 1, ..., T}. Let us assume
qt < 0 for t = h. Also, WLOG, we assume equality, as we can always use positive compensators if
necessary, to make L.H.S = R.H.S, i.e.,

T∑︂
i=1

∆d′
c,i =

T∑︂
t=0, t ̸=h

qt +|qh| .

Now, the sum can be partitioned into three parts, by taking relevant combination of ∆d′
c,i (with

positive compensators if necessary) such that there are three sets of ∆d′
c,i, i.e.,

∑︁h1

j=1 ∆d′
c,j =

∑︁h−1
t=0 qt,∑︁h2

j=1 ∆d′
c,j=|qh|, and,

∑︁h3

j=1 ∆d′
c,j=

∑︁T
t=h+1 qt. Essentially, the sum is partitioned in three parts

based on switching between charging and discharging half-cycles, which is smaller or equal than
the cost calculated from cycle stress function using Rainflow cycle counting method as shown in
Lemma I.4. Then, it follows that

Cs(λx + (1 − λ)qk)
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≤
T∑︂

i=1
λΦ

(︁
dc,i(x)

)︁
+ (1 − λ)

⎧⎨⎩
T +∑︂
i=1

Φ
(︂
∆d′

c,i

)︂
−

T −∑︂
i=1

Φ
(︃

∆d′
c,i

⃓⃓⃓)︃⎫⎬⎭
=

T∑︂
i=1

λΦ
(︁
dc,i(x)

)︁
+ (1 − λ)

3∑︂
n=1

⎧⎨⎩
hn+∑︂
j=1

Φ
(︂
∆d′

c,j

)︂
−

hn−∑︂
j=1

Φ
(︃

∆d′
c,j

⃓⃓⃓)︃⎫⎬⎭
using [98, Proposition 5],

≤
T∑︂

i=1
λΦ

(︁
dc,i(x)

)︁
+ (1 − λ)

3∑︂
n=1

⎧⎨⎩Φ

⎛⎝ hn∑︂
j=1

∆d′
c,j

⎞⎠⎫⎬⎭
=λCs(x) + (1 − λ)

⎛⎜⎝Cs

⎛⎝h−1∑︂
t=0

qt1t

⎞⎠+ Cs
(︁
(qh)1h

)︁
+ Cs

⎛⎝ T∑︂
t=h+1

qt1t

⎞⎠
⎞⎟⎠

using Lemma I.4

≤

⎡⎢⎣λCs(x) + (1 − λ) Cs

⎛⎝ T∑︂
t=0

qt1t

⎞⎠
⎤⎥⎦ = λCs(x) + (1 − λ)Cs(qk)

It is observed that this can be done similarly for any number of negative qi, i ∈ {0, 1, .., T}.
Note that the result holds for both charging half-cycle depths and discharging half-cycle depths

independently. Given that the general degradation cost that accounts for both charging and
discharging half-cycle depths is simply the sum of all individual depth degradation, the convexity
still holds. In summary, the cost of degradation Cs(x) is convex with respect to SoC profile x.

M. Proof of Theorem 3.2
Using Lemma 3.1 N(λ, βŝ) = N(λ) and for ease of notation we denote N := N(λ). Now we
solve (3.29b) for optimal decision βŝ as

∂πus

∂βŝ

= λT λ − bsβŝλT NT Nλ − bsβŝ
∂

∂βŝ

(λT NT Nλ) = 0

=⇒ βŝ = 1
bs

λT λ

λT NT Nλ
, ∀s ∈ S. ( I.65)

since N is independent of parameter β̂s. Similarly for the individual generator’s decision parameter
solving (3.28b)

∂πgj

∂αj
= λT λ − αjcjλT λ = 0 =⇒ αj = 1

cj
, ∀j ∈ G ( I.66)

For market-clearing prices λ, given the linear supply function bid (3.23) and (3.24), the power
balance constraint in (3.9b) implies

d =
∑︂
j∈G

gj +
∑︂
s∈S

us =
∑︂
j∈G

αjλ +
∑︂
s∈S

βŝλ ( I.67a)

=⇒ λ =

⎛⎝∑︂
s∈S

βŝ +
∑︂
j∈G

αj

⎞⎠−1

d ( I.67b)
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Since λ is proportional to d, let’s assume ∃ δ ∈ R such that λ = δd. Using ( I.66) and ( I.65) we have
a unique δ as

δ−1 =

⎛⎝∑︂
s∈S

βŝ +
∑︂
j∈G

αj

⎞⎠ =

⎛⎝∑︂
s∈S

1
bs

dT d

dT NT Nd
+
∑︂
j∈G

1
cj

⎞⎠
Hence, under price-taking assumption the tuple (βŝ, s ∈ S, αj , j ∈ G, λ) uniquely exists.

N. Proof of Theorem 3.3
Since the social planner problem (3.9) is convex and all the constraints are affine, linear constraint
qualification is satisfied and the associated KKT conditions are both sufficient and necessary. Given
that (g∗

j , j ∈ G, u∗
s, i ∈ S, λ∗) also solves the social planner problem, the set of the solution must

satisfy the KKT conditions given by:

cjg∗
j = λ∗, ∀j ∈ G ( I.68a)

m∑︂
k=1

δkbsNk(u∗
s)T Nk(u∗

s)u∗
s = λ∗, ∀i ∈ S. ( I.68b)

along with the primal feasibility constraints given by (3.9b). Here δk, k ∈ {1, 2, ..., m} are the
convex coefficient such that ( I.68b) also holds at the non-differentiable optimal solution u∗

s. Since
u∗

s = βŝλ∗, ∀s ∈ S we rewrite ( I.68b) as

λ∗ =
m∑︂

k=1
δkbsNk(λ∗)T Nk(λ∗)u∗

s, ∀s ∈ S. ( I.69)

Also from the competitive equilibrium in Theorem 3.2 we have

λ∗ = 1
β̂s

u∗
s = bs

λ∗T

N(λ∗)T N(λ∗)λ∗

λ∗T λ∗ u∗
s, ∀s ∈ S ( I.70)

Here N(λ∗)u∗
s = Nk(λ∗)u∗

s for any k ∈ {1, 2, ..., m}, recall Remark 1. Now combining equations ( I.69)
and ( I.70) we have the following relation ∀s ∈ S

m∑︂
k=1

δkbsNk(λ∗)T Nk(λ∗)u∗
s = bs

λ∗T

N(λ∗)T N(λ∗)λ∗

λ∗T λ∗ u∗
s

⇐⇒
m∑︂

k=1
δkNk(λ∗)T Nk(λ∗)λ∗ = λ∗T

N(λ∗)T N(λ∗)λ∗

λ∗T λ∗ λ∗

⇐⇒
m∑︂

k=1
δkNk(d)T Nk(d)d = dT N(d)T N(d)d

dT d
d,

where the second last equality holds due to u∗
s = β̂sλ∗ and the last equality holds due to the

relation λ∗ = δd from (3.30).

O. Proof of Proposition 3.2
For the dispatch problem (3.36) denote the dual variable associated with the constraint (3.6),(3.9b),
and (3.36b) as δs, s ∈ S, λ, and θs, s ∈ S respectively. Further define (η

j
, ηj), j ∈ G, (µs, µ

s
), i ∈
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S, and (νs, νs), s ∈ S to be the non-negative dual variables associated with the inequality con-
straints (3.1), (3.2), and (3.8), respectively. The necessary KKT conditions require the stationarity
condition:

λ∗ =
g∗

j

αj
+ η∗

j − η∗
j
, ∀j ∈ G ( I.71a)

θ∗
s = ν∗

s

βs
, ∀s ∈ S ( I.71b)

λ∗ =
m∑︂

k=1
δk̂Nk(u∗

s)T θ∗
s + δ∗

s 1 + Ã
T (µ∗

s − µ∗
s
) + ν∗

s − ν∗
s, ∀s ∈ S ( I.71c)

Here δk̂ ≥ 0,
∑︁m

k=1 δk̂ = 1 denote the convex coefficients associated with m possible N matrices.
The complimentary slackness require ∀j ∈ G:

η∗
j

T (g∗
j − gj1) = 0 η∗

j

T (g
j
1 − g∗

j ) = 0 ( I.72)

and ∀s ∈ S:

µ∗
s

T (Ãu∗
s − xo1) = 0 µ∗

s

T ((xo − 1)1 − Ãu∗
s) = 0 ( I.73a)

ν∗
s

T (u∗
s − us1) = 0 ν∗

s
T (us1 − u∗

s) = 0 ( I.73b)

Furthermore the primal feasibility are given by the constraints (3.1),(3.2),(3.6),(3.8),(3.9b), and
(3.36b) while the dual feasibility requires non-negativity of the dual variables associated with the
inequality constraints (3.1),(3.2), and (3.8). Now we rewrite the dispatch problem (3.36) and then
use method of contradiction to prove the statement. The dispatch problem (3.36) can be rewritten
as below:

min
us,s∈S,gj ,j∈G

∑︂
j∈G

1
2αj

gT
j gj +

∑︂
s∈S

1
2βs

uT
s N(us)T N(us)us ( I.74)

s.t. (3.1), (3.2), (3.6), (3.8), (3.9b)

where we substitute the rainflow constraint (3.36b) in the objective (3.36a). Note that ( I.74) is
convex [56, 98]. Here we abuse the notation and denote the dual variable associated with the
constraint (3.6), (3.9b), and (3.36b) as δs, s ∈ S, and λ respectively. Also define (η

j
, ηj), j ∈ G,

(µs, µ
s
), s ∈ S, and (νs, νs), s ∈ S to be the non-negative dual variables associated with the inequality

constraints (3.1),(3.2), and (3.8), respectively. The necessary and sufficient KKT conditions require
the stationarity:

λ∗ =
g∗

j

αj
+ η∗

j − η∗
j
, ∀j ∈ G ( I.75a)

θ∗
s = ν∗

s

βs
, ∀s ∈ S ( I.75b)

λ∗ = 1
βs

m∑︂
k=1

δkNk(u∗
s)T Nk(u∗

s)u∗
s + δ∗

s 1 + Ã
T (µ∗

s − µ∗
s
) + ν∗

s − ν∗
s, ∀s ∈ S ( I.75c)

where δk ≥ 0,
∑︁m

k=1 δk = 1 denote the convex coefficients associated with m possible N matrices.
Similarly the complimentary slackness is given by ( I.72),( I.73) while the primal feasibility are
given by the constraints (3.1),(3.2),(3.6),(3.8),(3.9b), and (3.36b). And the dual feasibility requires
non-negativity of the dual variables associated with the inequality constraints (3.1),(3.2) and (3.8).

For any optimal solution of ( I.74) given by (g∗
j , j ∈ G, u∗

s, s ∈ S), ∃ solution (g∗
j , j ∈ G, u∗

s, s ∈
S, ν∗

s , s ∈ S) that also satisfies the KKT conditions ( I.71) where ν∗
s = N(u∗

s)u∗
s, ∀s ∈ S. Therefore it

is locally optimal solution of the disptach problem (3.36). WLOG assume any optimal solution given
by (ĝj , j ∈ G, ûs, s ∈ S, ν̂s, s ∈ S) with strictly smaller cost to the dispatch problem (3.36). Since
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(ĝj , j ∈ G, ûs, s ∈ S) also satisfies the KKT condition of the convex problem ( I.74), therefore it is
also an optimal solution with strictly smaller cost which is a contradiction. Therefore any locally
optimal solution given by (g∗

j , j ∈ G, u∗
s, s ∈ S, ν∗

s , s ∈ S, λ∗, θ∗
s , s ∈ S) is also a globally optimal

solution.

P. Proof of Theorem 3.5
Substituting the uniform bid (3.43) in (3.28a), the individual problem of price-taking generator is
given by:

max
αj

λT (ajλ − αj1) − cj

2 (ajλ − αj1)T (ajλ − αj1) ( I.76)

Writing the necessary and sufficient condition of the convex optimization problem ( I.76), we have

αj = ajcj − 1
cjT

λT 1 ( I.77)

Similarly, substituting the uniform bid (3.44) in (3.33), the individual problem of price-taking storage
is given by:

max
βs

θs
T (hsθs − βs1) − bs

2 (hsθs − βs1)T (hsθs − βs1) ( I.78)

Again, writing the necessary and sufficient condition of the convex optimization problem ( I.78), we
have

βs = hsbs − 1
bs1

T1
θT

s 1 = hsbs − 1
bs1

T1
θT

s 1 ( I.79)

From ( I.77),

∑︂
j∈G

αj = 1
T

⎛⎝∑︂
j∈G

aj −
∑︂
j∈G

c−1
j

⎞⎠λT 1 ( I.80)

From the KKT condition of the economic dispatch problem (3.42), we have

ajλ − αj1 = gj , νs = hsθs − βs1 ( I.81a)
1
γs

11T us +
∑︂

k

δs,kNT
s,kθs = λ ( I.81b)∑︂

j∈G
gj +

∑︂
s∈S

us = d, ν = N(u)u ( I.81c)

Using Remark [30, §1], we have a piece-wise linear map and we define convex coefficients δs,k for all
the possible associated matrices Ns,k(us) in ( I.81b). Substituting ( I.79) in ( I.81a) we have

θs = 1
hs

N(us)us + 1
hs

β1 = 1
hs

N(us)us + 1
hsbs

hsbs − 1
1T1

θT
s 11

=⇒ θs = 1
hs

(︄
I + hsbs − 1

1T1
11

T

)︄
N(us)us ( I.82a)

Using the power balance constraint (3.9b), we get

d −
∑︂
s∈S

us =
∑︂
j∈G

gj =
∑︂
j∈G

(︁
ajλ − αj1

)︁
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=⇒ 1∑︁
j∈G

aj
(d −

∑︂
s∈S

us) =

⎡⎢⎢⎣I − 1
T

11T + 1
T

∑︁
j∈G

c−1
j∑︁

j∈G
aj

11T

⎤⎥⎥⎦λ

=⇒ λ = 1∑︁
j∈G

aj

⎡⎢⎢⎢⎣I + 1
T

⎛⎜⎜⎝
∑︁

j∈G
aj∑︁

j∈G
c−1

j

− 1

⎞⎟⎟⎠11T

⎤⎥⎥⎥⎦ (d − |S|u) ( I.83a)

where we assume storage units are homogeneous and participate symmetrically, and use Sherman-
Morrison matrix inverse lemma [111] in the last step. Substituting ( I.82a) and ( I.83a) in ( I.81b),
we get

1
γ

11T u +
∑︂

k

δkNT
k

1
h

(︄
I + hb − 1

1T1
11

T

)︄
N(u)u = 1∑︁

j∈G
aj

⎡⎢⎢⎢⎣I + 1
T

⎛⎜⎜⎝
∑︁

j∈G
aj∑︁

j∈G
c−1

j

− 1

⎞⎟⎟⎠11T

⎤⎥⎥⎥⎦ (d − |S|u)

( I.84a)
=⇒

(︁
|S|Z + W

)︁
u = Zd ( I.84b)

where

Z := 1∑︁
j∈G

aj

⎡⎢⎢⎢⎣I + 1
T

⎛⎜⎜⎝
∑︁
j∈G

aj∑︁
j∈G

c−1
j

− 1

⎞⎟⎟⎠11T

⎤⎥⎥⎥⎦ ( I.85)

and

Y := 1
γ

11T + 1
h

∑︂
k

δkNk
T

(︃
I + hb − 1

1T1
11

T

)︃ m∑︂
k=1

δkNk(u). ( I.86)

Here we use Remark [30, §1] to write N(u)u =
∑︁m

k=1 δkNk(u). Since Z is symmetric and invertible,
and Y is p.s.d, we have

u = (|S|Z + Y )−1Zd, gj = c−1
j

(︄
aj

c−1
j

I − ajcj − 1
T

11T

)︄
λ, ( I.87)

and

λ = Z(|S|Z + Y )−1Y d ( I.88)

Thus there exists a unique competitive equilibrium. Moreover, assuming ajcj = 1 and hb = 1 we
have,

αj = 0, β = 0
and

gj = ajλ = c−1
j λ, ( I.89a)

νs = ν = hθ − β = b−1θ ( I.89b)

The equations ( I.89a) along with the equations ( I.81) forms the KKT condition of the convex
social planner problem (3.39). Hence, the resulting competitive equilibrium aligns with the optimal
solution to the social planner problem.
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Q. Proof of Theorem 3.6
From the KKT conditions ( I.81c) and ( I.81a) of the economic dispatch problem (3.42) we have:

d −
∑︂
s∈S

us =
∑︂
j∈G

gj =
∑︂
j∈G

ajλ −
∑︂
j∈G

αj1 =⇒ λ =
d −

∑︁
s∈S

us + ∑︁
j∈G

αj1∑︁
j∈G

aj
. ( I.90)

Substituting ( I.81a), ( I.81c) and ( I.90) in ( I.81b) we have,

1
γs

11T us +
∑︂

k

δk,sNT
k (us)

(︄
1
hs

N(us)us + βs

hs
1

)︄
=

d −
∑︁

s∈S
us + ∑︁

j∈G
αj1∑︁

j∈G
aj

( I.91)

Using Assumption I.2, we can rewrite ( I.91) as,

1
γs

11T us + N(us)T (us)
(︄

1
hs

N(us)us + βs

hs
1

)︄
=

d −
∑︁

s∈S
us + ∑︁

j∈G
αj1∑︁

j∈G
aj

( I.92)

The individual problem of a strategic generator, assuming ajcj = 1, is given by:

max
αj

λT (ajλ − αj1) − cj

2 (ajλ − αj1)T (ajλ − αj1) ( I.93a)

max
αj

1
2cj

λT λ −
cjα2

j

2 1T 1 ( I.93b)

where λ is given by ( I.90) and us is solution of the equation ( I.92). Writing the first-order condition
of the optimization problem ( I.93b) we have

1
cj

⎛⎜⎜⎝λ(αj , βs)T 1∑︁
j∈G

c−1
j

⎛⎝1 −
∑︂
s∈S

∇αj us

⎞⎠
⎞⎟⎟⎠− cjαjT = 0 ( I.94)

Similarly, the individual problem of storage s, assuming hsbs = 1, is given by:

max
βs

θT
s (hsθs − βs1) − bs

2 (hsθs − βs1)T (hsθs − βs1) ( I.95a)

max
βs

1
2bs

θT
s θs − bsβ2

s

2 1
T
1 ( I.95b)

where θs = bsN(us)us + bsβs1 and us is given by ( I.92). Writing the first-order condition of the
optimization problem ( I.95b) we have

1
bs

(︃
θs(αj , βs)T

(︂
bs1 + ∇usθs∇βsus

)︂)︃
− bsβs1

T
1 = 0 ( I.96)

Assuming storage units are homogeneous and participate symmetrically, solving for us using
equation ( I.92) we get:

=⇒ Hu = d̂ =⇒ u = H−1d̂ ( I.97a)
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=⇒ λ =
d − |S|H−1d̂ + ∑︁

j∈G
αj1∑︁

j∈G
c−1

j

( I.97b)

=⇒ θ = bN(u)H−1d̂ + bβ1, ∀s ∈ S ( I.97c)

where H is p.d., as given by,

H := |S|I +

∑︁
j∈G

c−1
j

γ
11T +

∑︁
j∈G

c−1
j

b−1 N(u)T N(u) ( I.98)

d̂ := d +
∑︂
j∈G

αj1 −

∑︁
j∈G

c−1
j β

h
N(u)T

1. ( I.99)

Evaluating the gradient of ( I.92) with respect to αj and βs we have,

∇αj u = H−11, ∇βsu = −

∑︁
j∈G

c−1
j

b−1
s

H−1N(u)T
1 ( I.100)

Substituting ( I.97a),( I.97b), and ( I.100) in ( I.94), we get

c−1
j

(∑︁
j∈G

c−1
j )2 1T (I − |S|H−1)

⎛⎝d − |S|H−1d̂ +
∑︂
j∈G

αj1

⎞⎠− Tcjαj = 0

=⇒ αj =
c−2

j

T (∑︁
j∈G

c−1
j )2 1T (I − |S|H−1)

⎛⎝d − |S|H−1d̂ +
∑︂
j∈G

αj1

⎞⎠

=⇒
∑︂
j∈G

αj =

∑︁
j∈G

c−2
j

T (∑︁
j∈G

c−1
j )2 1T (I − |S|H−1)

⎛⎝d − |S|H−1d̂ +
∑︂
j∈G

αj1

⎞⎠

=⇒
∑︂
j∈G

αj =

∑︁
j∈G

c−2
j

(∑︁
j∈G

c−1
j )2

(︄
r1
q

+ β
r2
q

)︄
( I.101a)

=⇒ αj =
c−2

j

(∑︁
j∈G

c−1
j )2

(︄
r1
q

+ β
r2
q

)︄
( I.101b)

where

r1 := 1T (I − |S|H−1)2d, ( I.102a)

r2 :=
|S|

∑︁
j∈G

c−1
j

b−1 1T (I − |S|H−1)H−1N(u)T
1 ( I.102b)

q := T −

∑︁
j∈G

c−2
j

(∑︁
j∈G

c−1
j )2 1T (I − |S|H−1)21. ( I.102c)
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Similarly, substituting equation ( I.97a), ( I.97c), and ( I.100) in ( I.96) we get:∑︁
j∈G

c−1
j

b−1 (β1 + N(u)H−1d̂)T
(︂
N(u)H−1N(u)T

1

)︂
= (N(u)H−1d̂)T

1

=⇒ β = m1
w

+
∑︂
j∈G

αj
m2
w

( I.103)

m1 := dT H−1

⎡⎢⎢⎣I +

∑︁
j∈G

c−1
j

γs
11T

⎤⎥⎥⎦H−1N(u)T
1 ( I.104a)

m2 := 1T H−1

⎡⎢⎢⎣I +

∑︁
j∈G

c−1
j

γs
11T

⎤⎥⎥⎦H−1N(u)T
1 ( I.104b)

w :=

∑︁
j∈G

c−1
j

b−1 1
T N(u)H−1

⎡⎢⎢⎣H + I +

∑︁
j∈G

c−1
j

γs
11T

⎤⎥⎥⎦H−1N(u)T
1 ( I.104c)

Solving the optimal bid equations ( I.101a) and ( I.103) simultaneously, we get

αj =
c−2

j∑︁
j∈G

c−2
j

r1
q + m1r2

wq

(
∑︁
j∈G

c−1
j

)2∑︁
j∈G

c−2
j

− m2r2
wq

( I.105a)

β = m1

w
+

r1
q + m1r2

wq

(
∑︁
j∈G

c−1
j

)2∑︁
j∈G

c−2
j

− m2r2
wq

m2

w
( I.105b)

Hence the Nash equilibrium exists uniquely.

R. Proof of Lemma 3.2
Recall from [30] we have

Nk(u) = − 1
E

MT
k (x)A† ( I.106)

where Nk(u), k ∈ {1, 2, ..., m} are possible associated matrices for a given storage profile u due
to non-differentiable map. Here A† denotes the Moore–Penrose generalized inverse [103] of A in
equation (3.4) and matrix Mk(x) is the incidence matrix associated with the respective storage state
of charge profile x [56]. We first show that ∃ zl ∈ R|T | such that

zT
l

m∑︂
k=1

δkMT
k = zr

where zr := [−1 0 0 . . . 1], zr ∈ R|T | to obtain the desired result. From the Rainflow algorithm, we
know that the first node (x0) and the last node (xT ) can not be part of extracted full-cycle depths
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(if any in the associated digraph) and there always exists an edge either starting from or ending at
the first and last node. Therefore, we can choose the elements of zl such that zr,1 = −1 and zr,T = 1.
However, finding a common vector zl for all possible matrices Mk is challenging and we rearrange
rows of possible matrices Mk to get the desired result. We first discuss the rearrangement in two
steps and then present a unified method.

Assume a set of nodes τ ⊂ T such that ∀t ∈ τ we have ut = 0 which leads to non-differentiable
map and possible matrices associated with it.

1. Case 1: 0 /∈ τ and |T | /∈ τ . We rearrange the rows of the matrix MT
k such that the edges

corresponding to the residual profile appear first. Then we choose the required zl using the
following method

Initialize zl = 0⃗; for i = 1 : |T |
do {zl,i = (−Mk(1, 1))i1} for any k.

Observe that zT
l MT

k = zT
r , since by construction we have zT

l (MT
k e1) = −1 zT

l (MT
k eT ) = 1 ∀ k,

where e1, eT are standard basis vectors of vector space R|T |. Since, the elements of zl appear
in pairs of ±1 we have yT (MT

k et) = 0, ∀t ∈ {2, ..., T − 1}. This is true since extracted full
cycles appear in pairs and residual profile connects with each other with one edge entering
and another leaving the node resulting in the same sign [56].
For the sake of contradiction, we assume ∃ k such that zT

l Mk ≠ zT
r . Then it must be the case

that the residual profile has an extra element due to the non-differentiable storage profile x.
However, this is a contradiction since an extra element in the residual profile implies that the
condition for extracting the cycle is not satisfied. Then, if there exists a residual half-cycle of
infinitesimal depth it must be larger than the terminal residual half-cycles, otherwise, we can
extract a full-cycle. This is not possible.

2. Case 2: 0 ∈ τ or |T | ∈ τ . WLOG, assume that 0 ∈ τ , the other case follows similarly.
We rearrange the rows of the matrix MT

k such that the edges corresponding to the residual
profile appear first and nonzero full cycles appear last. Choose any matrix Mk such that the
associated residual profile has maximum cardinality. Now we choose the required zl using the
following method

Initialize y = 0⃗; for i = 1 : |T | ( I.107)
do {zl,i = (−Mk(1, 1))i1} ( I.108)

Now we rearrange the rest of the possible matrices such that half-cycles corresponding to
residual profile appear first.

In summary, we can combine the two modules and come up with zl with elements ±1 occurring
sequentially, where we decide the sign of the first element based on the history of the storage state of
charge or using case 2 otherwise.

Now we use the structure of the matrix A and the definition of the matrix Nk to get the desired
result. Observe that finding y ∈ R|T | for matrix Nδ(u) ∈ R|T |×|T | s.t.

Nδ(u)T Nδ(u)y = 1

is equivalent to finding ŷ s.t.
Nδ(u)T ŷ = 1.

The forward direction is trivial. For the reverse direction, Let’s assume ∃ ŷ s.t. Nδ(u)T ŷ = 1 =⇒
ŷ ⊥ Ker(Nδ(u)T ) =⇒ ŷ ∈ Range(Q). Now using the definition of Nk(u) we have

ŷT Nδ(u) = − 1
E

ŷT
m∑︂

k=1
δkMT

k A†
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= − 1
E

ŷT
m∑︂

k=1
δkMT

k AT (AAT )−1

Therefore,

Nδ(u)T ŷ = 1 ⇔ − 1
E

ŷT
m∑︂

k=1
δkMT

k AT = 1T AAT = yT
r

where yT
r := [1 0 . . . 0 1]T . Using the structure of matrix A, we have

zT
r AT = yT

r .

Therefore, we can choose ŷ = −Ezl to get

Nδ(u)T ŷ = 1.

This completes the proof.

S. Proof of Theorem 3.7
Using the singular value decomposition [103],

N(u) = V ΣW T =
[︁
v⊥ v

]︁ [︄0 0
0 Λ1/2

]︄ [︁
w⊥ w

]︁T ( I.109)

where V ∈ R|T |×|T |, Σ ∈ R|T |×|T |, W ∈ R|T |×|T | and V, W are unitary matrices. Here Λ1/2 is full
rank (say r) such that v⊥ ∈ R|T |×(|T |−r), v ∈ R|T |×r, w⊥ ∈ R|T |×(|T |−r) and w ∈ R|T |×r. Then we
have,

N(u)T N(u) = WΣ2W T =
[︁
w⊥ w

]︁ [︃0 0
0 Λ

]︃ [︁
w⊥ w

]︁T = wΛwT

where, rank(Σ) ≤ |T | and Λ is full rank (say r). From Lemma 3.2 we have,

1 = wΛwT y =
[︁
w⊥ w

]︁ [︃0
z

]︃
,

for some y ∈ R|T |×1 and z := ΛwT y, z ∈ Rr×1. This implies that

11T = W

[︃
0
z

]︃ [︃
0
z

]︃T

W T = wzzT wT ( I.110)

Then the matrix H in ( I.98) can be written as

H =
[︁
w⊥ w

]︁ [︃|S|IT −r 0
0 Q

]︃ [︁
w⊥ w

]︁T ( I.111)

where Q := |S|Ir +
∑︁

j∈G
c−1

j

γ zzT + (b
∑︁

j∈G c−1
j )Λ is an invertible matrix. Moreover, we can rewrite

the terms in ( I.102) as

r1 = zT (Ir − |S|Q−1)2wT d ( I.112a)

r2 =

∑︁
j∈G

c−1
j

b−1 zT (Ir − |S|Q−1)|S|Q−1Λ1/2vT
1 ( I.112b)
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q = zT z −

∑︁
j∈G

c−2
j

(∑︁
j∈G

c−1
j )2 zT (Ir − |S|Q−1)2z ( I.112c)

and the terms in ( I.104) as

m1 = dT wQ−1

⎛⎜⎜⎝Ir +

∑︁
j∈G

c−1
j

γs
zzT

⎞⎟⎟⎠Q−1Λ1/2vT
1 ( I.113a)

m2 = zT Q−1

⎛⎜⎜⎝Ir +

∑︁
j∈G

c−1
j

γs
zzT

⎞⎟⎟⎠Q−1Λ1/2vT
1 ( I.113b)

w =

∑︁
j∈G

c−1
j

b−1 1
T vΛ1/2Q−1

⎛⎜⎜⎝Q + Ir +

∑︁
j∈G

c−1
j

γs
zzT

⎞⎟⎟⎠Q−1Λ1/2vT
1 ( I.113c)

Now we can observe the asymptotic behavior of the optimal bid at Nash equilibrium. This
completes the proof.

T. Proof of Theorem 3.8
Given prices λ, the individual problem of generator j is:

max
gj

πj(gj ; λ) = max
gj

λT gj − cj

2 ||gj ||22 ( I.114a)

= max
αjαjαj

λT (ajλ − αjαjαj) − cj

2 ||(ajλ − αjαjαj)||22 ( I.114b)

where we substitute (3.49) in (3.28a). Similarly, given the per-cycle prices θs, s ∈ S, the individual
problem for storage s is given by:

max
νs

πs(νs; θs) = max
νs

θs
T νs − bs

2 ||νs||22 ( I.115a)

= max
βsβsβs

θs
T (hsθs − βsβsβs) − bs

2 ||(hsθs − βsβsβs)||22 ( I.115b)

where we substitute (3.50) in (3.33). Writing the necessary and sufficient condition of the convex
optimization problem ( I.114b), we have

αjαjαj = ajcj − 1
cj

λ ( I.116)

Similarly, by writing the necessary and sufficient condition of the convex optimization prob-
lem ( I.115b), we get

βsβsβs = hsbs − 1
bs

θs ( I.117)

Substituting ( I.117) in ( I.81a) we have

θs = 1
hs

N(us)us + 1
hs

βsβsβs1 = 1
hs

N(us)us + hsbs − 1
hsbs

θs
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=⇒ θs = bsN(us)us ( I.118a)

Substituting (3.49) and ( I.116) in the power balance constraint (3.9b), we get

d −
∑︂
s∈S

us =
∑︂
j∈G

gj =
∑︂
j∈G

(︁
ajλ − αjαjαj

)︁
=
∑︂
j∈G

c−1
j λ ( I.119a)

=⇒ λ = 1∑︁
j∈G

c−1
j

(d −
∑︂
s∈S

us) ( I.119b)

Substituting ( I.118a) and ( I.119b) in ( I.81b), we get

1
γs

11T us + bsNδ(us)T Nδ(us) = 1∑︁
j∈G

c−1
j

(d −
∑︂
s∈S

us) ( I.120)

where Nδ(us) :=
∑︁m

k=1 δk,sNk,s, where δk,s ≥ 0,
∑︁

k δk,s = 1 are convex coefficients.
Moreover substituting ( I.116) and ( I.117) in (3.49) and (3.50), respectively, we have:

gj = ajλ − αjαjαj = c−1
j λ ( I.121a)

νs = hsθs − βsβsβs = b−1
s θs ( I.121b)

The equations ( I.121), ( I.119b), ( I.118a), and ( I.120) solves the social planner problem (3.39).
Thus the resulting competitive equilibrium aligns with the optimal social planner solution.

For the closed-form solution, we assume storage units are homogeneous and participate symmet-
rically. Solving ( I.120) for u we get,

1
γ

11T u + bNT
δ (u)Nδ(u))u = d − |S|u∑︁

j c−1
j

( I.122a)

=⇒ d =

⎛⎜⎜⎝|S|I +

∑︁
j∈G

c−1
j

γ
11T +

∑︁
j∈G

c−1
j

b−1 NT
δ (u)Nδ(u)

⎞⎟⎟⎠u ( I.122b)

=⇒ u = H−1d =⇒ θ = bN(u)H−1d ( I.122c)

=⇒ λ = 1∑︁
j∈G

c−1
j

(︂
I − |S|H−1

)︂
d =⇒ gj =

c−1
j∑︁

j∈G
c−1

j

(︂
I − |S|H−1

)︂
d ( I.122d)

where H := |S|I +

∑︁
j∈G

c−1
j

γ 11T +

∑︁
j∈G

c−1
j

b−1 NT
δ (u)Nδ(u). This completes the proof.

U. Proof of Theorem 3.9
The KKT condition of the economic dispatch problem (3.42) for the case of non-uniform bidding
based market mechanism, we have

ajλ − αjαjαj = gj , νs = hsθs − βsβsβs ( I.123a)
1
γs

11T us +
∑︂

k

δs,kNT
s,kθs = λ ( I.123b)
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∑︂
j∈G

gj +
∑︂
s∈S

us = d, νs = N(us)us ( I.123c)

Substituting the generators intercept bid function (3.49) in the the KKT conditions ( I.123c) of the
economic dispatch problem (3.42) we have:

d −
∑︂
s∈S

us =
∑︂
j∈G

gj =
∑︂
j∈G

ajλ −
∑︂
j∈G

αjαjαj

=⇒ λ =
d −

∑︁
s∈S

us + ∑︁
j∈G

αjαjαj∑︁
j∈G

aj
. ( I.124)

Suppose Assumption 3.2 holds. Substituting (3.49), (3.50), ( I.123a), ( I.123c) and ( I.124) in
( I.123b) we have,

1
γs

11T us + N(us)T
(︃ 1

hs
N(us)us + 1

hs
βsβsβs

)︃
=

d −
∑︁

s∈S
us + ∑︁

j∈G
αjαjαj∑︁

j∈G
aj

( I.125)

Similar to the individual problem for uniform bidding mechanism ( I.93b), the individual problem
of a strategic generator in the case of the non-uniform bidding mechanism, assuming ajcj = 1, is
given by:

max
αjαjαj

1
2cj

λT λ − cj

2 αjαjαj
Tαjαjαj ( I.126a)

s.t. ( I.124) ( I.126b)

where λ is given by ( I.124) and us is solution of the equation ( I.125). Writing the first-order
condition of the optimization problem ( I.126) we have

1
cj

⎛⎜⎜⎝λ(αjαjαj ,βsβsβs)T 1∑︁
j∈G

c−1
j

⎛⎝I −
∑︂
s∈S

∇αjαjαj us

⎞⎠
⎞⎟⎟⎠

T

− cjαjαjαj = 0 ( I.127)

Similarly, the individual problem of storage s in the case of non-uniform bidding mechanism,
assuming hsbs = 1, is given by:

max
βsβsβs

1
2bs

θT
s θs − bsβsβsβs

2

2 1
T
1 ( I.128a)

s.t. θs = bsN(us)us + bsβsβsβs ( I.128b)

where us is given by ( I.125). Writing the first-order condition of the optimization problem ( I.128)
we have

1
bs

(︃
θs(αjαjαj ,βsβsβs)T

(︂
bsI + ∇usθs∇βsβsβs

us

)︂)︃T

− bsβsβsβs = 0 ( I.129)

Assuming storage units are homogeneous and participate symmetrically, solving for us using
equation ( I.125) we get:

=⇒ Hu = d̃ =⇒ u = H−1d̃ ( I.130a)
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=⇒ λ =
d − |S|H−1d̃ + ∑︁

j∈G
αjαjαj∑︁

j∈G
c−1

j

( I.130b)

=⇒ θ = bN(u)H−1d̃ + bβββ, ∀s ∈ S ( I.130c)

where H is p.d., as given by,

H = |S|I +

∑︁
j∈G

c−1
j

γ
11T +

∑︁
j∈G

c−1
j

b−1 N(u)T N(u) ( I.131)

and

d̃ := d +
∑︂
j∈G

αjαjαj −

∑︁
j∈G

c−1
j

h
N(u)Tβββ. ( I.132)

Evaluating the gradient of ( I.125) with respect to αjαjαj and βsβsβs we have,

∇αjαjαj u = H−1, ∇βsβsβs
u = −

∑︁
j∈G

c−1
j

b−1
s

H−1Nδ(u)T ( I.133)

Using SVD decomposition ( I.109),( I.110), and ( I.111), and substituting ( I.133) in ( I.127), we
have

αααj =
c−2

j

(∑︁
j∈G

cj
−1)2 w

⎛⎝Q̃wT (d +
∑︂
j∈G

αj) +
(︂
Ir − |S|Q−1

)︂
Pβββ

⎞⎠ ( I.134a)

=⇒
∑︂
j∈G

αααj =

∑︁
j∈G

c−2
j

(∑︁
j∈G

c−1
j )2 w

⎛⎜⎜⎝Ir −

∑︁
j∈G

c−2
j

(∑︁
j∈G

c−1
j )2 Q̃

⎞⎟⎟⎠
−1 (︂

Q̃wT d + (Ir − |S|Q−1)Pβββ
)︂

( I.134b)

where

P :=
|S|

∑︁
j∈G

c−1
j

b−1 Q−1Λ1/2vT , Q̃ := (Ir − |S|Q−1)2

Similarly, using SVD decomposition ( I.109),( I.110), and ( I.111), and substituting ( I.133),( I.130c),
and ( I.134b) in ( I.129), we have

wT d = 1
|S|

⎡⎢⎢⎣Ir −

∑︁
j∈G

c−2
j

(∑︁
j∈G

cj
−1)2 (Ir − |S|Q−1)

+

⎛⎜⎜⎝Q −

∑︁
j∈G

c−2
j

(∑︁
j∈G

cj
−1)2 Q̃Q

⎞⎟⎟⎠
⎛⎜⎜⎝Ir +

∑︁
j∈G

c−1
j

γ
zzT

⎞⎟⎟⎠
−1
⎤⎥⎥⎥⎦QPβββ ( I.135)

At equilibrium ( I.123), ( I.134a), and ( I.135) must hold simultaneously.
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V. Proof of Theorem 3.10
For |G| >> |S| > 1, we have

1∑︁
j∈G c−1

j

→ 0,

∑︁
j∈G c−2

j

(
∑︁

j∈G c−1
j )2 → 0

Now, the matrix Q in (3.54a) can be rewritten as

1∑︁
j∈G

c−1
j

Q =

⎛⎜⎜⎝ |S|∑︁
j∈G

c−1
j

Ir + 1
γ

zzT + bΛ

⎞⎟⎟⎠ =⇒ lim
|G|→∞

Q−1 → 0r×r

Using the fact that (
∑︁

j∈G c−1
j Q−1 is some finite matrix in the asymptotic case, we can claim that the

matrix P in (3.54b) also tends towards some finite matrix. Taking the limit on both sides in ( I.135),
we get vT β → 0, i.e. β is in the null space of the matrix NT

δ . Furthermore, taking the limit on both
sides in ( I.134a) and ( I.134b), we get ∑︂

j∈G
αj → 0, αj → 0

Therefore, the Nash equilibrium tends towards the competitive equilibrium asymptotically. Similarly,
we can show the convergence of Nash equilibrium to competitive equilibrium for other two cases, i.e.
|S| >> |G|, or |S| >> 1 and |G| >> 1 s.t. |S|∑︁

j∈G

c−1
j

→ constant. This completes the proof.
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