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Abstract 

 

Foraging animals adopt decision-making strategies that successfully adapt to the dynamically 

changing availability of rewards in the environment, as well as account for the complexity of the 

sensory world around them. Understanding the neural principles that underlie these complex 

decision strategies has been an area of interest in neuroscience for a long time. While a lot of 

progress has been made on these fronts, a complete picture of these neural algorithms has 

eluded us for two reasons. In studies of larger vertebrates that have used tasks that account for 

richness of the natural world, the lack of manipulability of these complex brains has restricted our 

ability to map the underlying neural algorithms. On the other hand, studies in more accessible 

small brains have been limited to simple Pavlovian learning tasks for the most part. In this 

dissertation, my colleagues and I develop a novel foraging task for Drosophila melanogaster, the 

details of which are described in chapter 2, and leverage this task to provide insight into the neural 

algorithms underlying decision-making. 

 

In chapter 3, we deal with dynamic probabilistic environments, where several animals are known 

to distribute their choices in proportion to the rewards received from available options - 

Herrnstein’s operant matching law. Theoretical work suggests an elegant mechanistic explanation 

for this ubiquitous behavior, as operant matching follows automatically from simple expectation-

based synaptic plasticity rules acting within behaviorally relevant neural circuits. However, no past 

work has mapped operant matching onto plasticity mechanisms in the brain, leaving the biological 

relevance of the theory unclear. Here we discovered operant matching in Drosophila and using a 

combination of behavior, computational modeling and optogenetics showed that it requires reward  

expectation based synaptic plasticity that acts in the mushroom body. Our results reveal the first 

synapse-level mechanisms of operant matching in the fly brain. 



 iii 

 

In chapter 4, we provide the first biological test of Marr and Albus’ expansion layer theory about 

sensory discrimination. In particular, the ratio between sensory channels and expansion layer 

neurons and the number of sensory inputs that individual expansion layer neurons receive are 

theorized to be key parameters. Leveraging the development of tools that manipulate these 

parameters in the context of the fly mushroom body, we show that fly behavior agrees with many 

theoretical predictions. An increase in expansion layer neuron number improves discrimination of 

odors while an increase in input connectivity causes worsened discrimination. There are however 

some key differences, suggesting that theoretical models can learn from the experiments and be 

modified to better explain sensory discrimination. 

 

In chapter 5, we move beyond just sensory discrimination and tackle the question of flexible 

decision-making that must depend on the available options. We find that Drosopihla melanogaster 

can successfully learn to both distinguish between very similar stimuli and generalize across cues. 

Rather than forming memories that strike a balance between specificity and generality, we find 

that flies flexibly categorize a given stimulus into different groups by performing a side-by-side 

comparison over time of the available options. Together the work in this thesis combines multiple 

important avenues of neuroscience, providing insight into the neural principles underlying 

decision-making in dynamic and sensory rich environments.  
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Chapter 1. Introduction 

 

I remember first thinking about the core question that has guided this dissertation during my 

undergraduate studies. Sitting in a classroom late at night waiting for the quiz club’s trivia night to 

get started, I wondered to myself why I chose to attend this event rather than the music event that 

was happening across campus at the same time. Indeed, such questions regarding how and why 

humans, and other animals, choose one out of multiple options available to them has been of 

great interest to philosophers and scientists from as far back as the days of Aristotle and Plato 

(Ober 2022).  

 

More recently, these questions have fallen within the realm of study of neuroscientists, ecologists 

and ethologists (Hayden and Walton 2014; Hayden 2018; Stephens and Krebs 1986; El Hady, 

Davidson, and Gordon 2019; Juavinett, Erlich, and Churchland 2018; Doya and Shadlen 2012). 

Through the use of the modern scientific approaches utilized in these fields, we have begun to 

understand a great deal about the behavioral strategies used whilst making decisions and the 

computations that are being performed in our brains. The burgeoning field of neuroeconomics, in 

particular, has contributed significantly to how we think about the decision-making process 

(Glimcher and Fehr 2013). Researchers have identified neural signatures that correspond to 

economically important concepts such as value - the worth of an option (Platt and Glimcher 1999; 

Schoenbaum et al. 2003; Sugrue, Corrado, and Newsome 2004a; Padoa-Schioppa and Assad 

2006; Lau and Glimcher 2008; Bari et al. 2019; Hayden and Niv 2021) - amongst others, and 

have constructed models that use these representations to determine choice (Loewenstein and 

Seung 2006; Soltani and Wang 2006; Song, Yang, and Wang 2017; Rustichini and Padoa-

Schioppa 2015). Together the results from this field propose a framework in which decisions are 

https://paperpile.com/c/IHceXz/jHDH
https://paperpile.com/c/IHceXz/R7dz+6iiJ+W7HJ+XFNl+26nH+8RhE
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https://paperpile.com/c/IHceXz/CZwr
https://paperpile.com/c/IHceXz/azf4+80rx+SZ3x+a7j5+UzXg+GAw9+AT4v
https://paperpile.com/c/IHceXz/azf4+80rx+SZ3x+a7j5+UzXg+GAw9+AT4v
https://paperpile.com/c/IHceXz/azf4+80rx+SZ3x+a7j5+UzXg+GAw9+AT4v
https://paperpile.com/c/IHceXz/Wf2d+aKnF+Wlzh+cHth
https://paperpile.com/c/IHceXz/Wf2d+aKnF+Wlzh+cHth
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made by combining subjective value, risk etc. together for a given option and comparing these 

between options to determine a winner. 

 

Despite these detailed advances in understanding elements of the neural algorithms underlying 

decision-making, such as the value representations mentioned above, a complete mapping of the 

decision process to neural circuitry has not yet been arrived at in a single brain. A large reason 

for this is the complexity of the mammalian brains that have classically been used to study this 

process. Value signals for example have been found in many cortical and subcortical regions 

making it an incredibly painstaking task to understand how these signals are updated and used 

to eventually guide choices (Platt and Glimcher 1999; Schoenbaum et al. 2003; Sugrue, Corrado, 

and Newsome 2004a; Padoa-Schioppa and Assad 2006; Lau and Glimcher 2008; Bari et al. 2019; 

Hayden and Niv 2021). Second, the tasks that have classically been used to study decision-

making are often too simple (Krakauer et al. 2017; Juavinett, Erlich, and Churchland 2018; Dennis 

et al. 2021). As a result, the solutions we arrive at are under-constrained; multiple neural 

algorithms could serve as equally good explanations of the decision-making process in these 

tasks. Important aspects of the natural environment such as sensory overlap, reward uncertainty 

(where cues that predict reward may only do so probabilistically and not everytime a cue is 

responded to) and dynamic changes in cue-reward relationships must be added into the repertoire 

of tasks being used to study behavior to help us identify the actual computations and principles 

being used in our brains.  

 

In the work detailed in this dissertation, my colleagues and I use the “fruit fly”, Drosophila 

melanogaster, with its small, well-characterized brain as a means to bypass the roadblocks to the 

understanding of decision-making algorithms put in place by simplistic task structures and the 

complexity and lack of manipulability of traditionally studied brains. We develop a task for fruit 

flies (henceforth referred to as fly/flies) that allows us to study decision-making in a manner that 

https://paperpile.com/c/IHceXz/azf4+80rx+SZ3x+a7j5+UzXg+GAw9+AT4v
https://paperpile.com/c/IHceXz/azf4+80rx+SZ3x+a7j5+UzXg+GAw9+AT4v
https://paperpile.com/c/IHceXz/azf4+80rx+SZ3x+a7j5+UzXg+GAw9+AT4v
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is similar to mammalian tasks, while also incorporating complex features of natural environments 

such as sensory overlap and dynamic uncertain cue-reward associations. We use this task in 

conjunction with the well-mapped and genetically tractable neural architecture of the fly brain to 

understand the neural computations and principles that guide decision-making in flies. In this first 

chapter, I will provide an introductory overview of neuroscientists’ thinking on how brains make 

decisions, link these ideas to what is known about the Drosophila neural circuitry and motivate 

the work described in the later chapters. 

 

1.1 Decision-making: A bridge linking economics and neuroscience 

 

From as early as the 19th century, economists including William Stanley Jevons and Vilfredo 

Pareto proposed utility, or subjective value, of an option as the most important factor used by a 

rational individual to make a decision (Jevons 1879; Blaug 1997; Pareto 2014).  

Figure 1.1 Neural representations of value and their role in decision-making. (A) An 

illustration of choice behavior and correlated neural activity in a two-option task adapted from 

Padoa-Schioppa et al. 2006. Top Percentage of choices made towards option B as a function of 

ratio of volume of each option shows a monkey’s preference for the two options, with an inflection 

point suggesting that 3 units of juice A is equally valuable as 1 unit of juice B. Bottom Neural 

activity recording from the OFC during the behavior in Top shows two neurons, left responds as 

a function of the chosen option, right responds as a function of the value/amount of juice B. (B) A 

https://paperpile.com/c/IHceXz/gDuG+qdew+Mmbf
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schematic representing a simple winner-take-all computation in the context of the neural 

responses shown in (A). (C) A schematic of a generic drift diffusion model adapted from Krajbich 

et al. 2010, showing how a relative decision value can be estimated over time when the sensory 

information available to make a decision is noisy. 

 

Value in their minds was a measure of the satisfaction that the consumer obtained from a given 

good or option. Accordingly, this framework implied that a rational individual should make 

decisions so as to maximize value (Aleskerov, Bouyssou, and Monjardet 2007). This utility theory 

was then paired with the work of Samuelson who proposed that these highly subjective and 

intrinsic measures (values or utility functions) assigned by an individual to different options could 

be indicated via the readily observable choices made by that individual (Samuelson 1938, 1948). 

This “Revealed Preference” theory of choice allowed observers to estimate future choices of 

individuals based on their revealed values and allowed economists to make global predictions 

about choice behavior in a variety of settings.  

 

Such a behavioral approach to economic choices allowed neuroeconomists, beginning in the 

1990s, to treat decisions made by animals in the same way (Glimcher and Fehr 2013). In early 

experiments, researchers working with monkeys had their subjects choose between two options 

presented on a computer screen that were rewarded with different amounts or types of juice 

reward (Platt and Glimcher 1999; Padoa-Schioppa and Assad 2006). They found that the 

behavioral estimates of value from choices correlated with neural responses in both the lateral  

intra-parietal (LIP) (Platt and Glimcher 1999) and orbitofrontal (OFC) (Padoa-Schioppa and Assad 

2006) cortices, with the neural signatures indicating a variety of value-related signatures including 

chosen value and relative value (Fig. 1.1A). Inspired by these early results, experiments 

measuring human brain activity using fMRI identified signatures of values in regions including the 

OFC, medial prefrontal cortex (mPFC) and ventral striatum (VS), in tasks where the subject had 

to indicate how much they were willing to pay rather than choose between options (Plassmann, 

O’Doherty, and Rangel 2007; Grabenhorst et al. 2010). Similar work in a go/no-go task in rats has 

https://paperpile.com/c/IHceXz/d6PY
https://paperpile.com/c/IHceXz/qPXk+zsDO
https://paperpile.com/c/IHceXz/CZwr
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https://paperpile.com/c/IHceXz/azf4
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https://paperpile.com/c/IHceXz/hzHy+21Lu
https://paperpile.com/c/IHceXz/hzHy+21Lu
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implicated a role for the basolateral amygdala in the representation of value, particularly in the 

OFC (Schoenbaum et al. 2003). 

 

This ubiquity of value-related neural signatures across brain regions and species prompted 

several theorists to propose explanations for how these signals could be used to produce a 

decision when choosing between options. The most prominent set of proposed computations 

assume that the value comparison and action production step is independent from the value 

representation process, and is calculated in different downstream brain regions (Glimcher 2011a; 

Padoa-Schioppa and Conen 2017). This set includes ideas that range from simple winner-take-

all models, where competing output neurons representing each option’s values were compared 

and the higher one was chosen (Loewenstein and Seung 2006; Soltani and Wang 2006), to drift 

diffusions models (DDMs) where option-value information is accumulated over time till a choice 

threshold for either option is crossed (Gold and Shadlen 2007; Ratcliff and McKoon 2008) (Fig. 

1.1B-C). This second flavor of models, while performing the same winner-take-all comparison at 

its heart, better accounts for factors such as sensory noise and shifting attention(Krajbich, Armel, 

and Rangel 2010), and accurately captures reaction times (Milosavljevic et al. 2010). Based on 

these computations, biophysically realistic neural network models have been developed that 

accurately capture value representation and choices (Soltani and Wang 2006; Rustichini and 

Padoa-Schioppa 2015). While this idea of action and value being independent is predominant, 

another set of models suggest that action production and value representations are intertwined 

concepts, with value related neural signals directly guiding decisions and actions. This hypothesis 

was initially discounted due to a paucity of experimental evidence but has recently gained more 

support (Rushworth et al. 2012; Hunt and Hayden 2017; Hayden and Niv 2021). It is clear from 

these results and several others not cited here that the importance given to value in economic 

decisions has a basis in biological reality, linking together economics and neuroscience in an 

important and incredibly fruitful way. 

https://paperpile.com/c/IHceXz/80rx
https://paperpile.com/c/IHceXz/aMv9+ssX0
https://paperpile.com/c/IHceXz/aMv9+ssX0
https://paperpile.com/c/IHceXz/Wf2d+aKnF
https://paperpile.com/c/IHceXz/jGcP+zZwf
https://paperpile.com/c/IHceXz/Xukz
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https://paperpile.com/c/IHceXz/HolV
https://paperpile.com/c/IHceXz/aKnF+cHth
https://paperpile.com/c/IHceXz/aKnF+cHth
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Figure 1.2 Neural representation of other economic variables (A)  An illustration of reward 

prediction error signals observed in dopaminergic neurons present in the mammalian midbrain 

adapted from Schultz et al 1997. (B) Data illustrating that the spike rate of neurons in the OFC of 

rats (bottom) accurately reflect confidence of choice as predicted by a computation model of 

confidence (top), adapted from Kepecs et al 2008. (C). Data adapted from Raghuraman and 

Padoa-Schioppa 2014, indicating that firing rate of neurons in the OFC covary with the amount of 

risk associated with a given offer. 

 

1.2 Beyond simple value: The representation of other economic variables in the brain 

 

Importantly though, a simple value isn’t the only economic variable that has been shown to be 

critical for decision-making, nor is it the only one that is represented in the brain. Soon after 

identifying its usefulness, economists recognized a limitation to their theory of value. It does not 

appropriately deal with uncertain or probabilistic outcomes. To account for this von Neumann and 

Morgenstern turned to the mathematical idea of expected value, i.e. the mean value of an option 

(von Neumann and Morgenstern 2007). If such an expectation were calculated over several 

interactions with an option, an average value for that option could then be arrived at that accounts 

for both the presence and absence of a rewarding outcome. These expected values could then 

be compared to aid in making decisions. 

 

This economic idea of expected value has been widely adopted into neuroscience and is the most 

prominent way in which the brain has been shown to deal with probabilities. This is done implicitly 

https://paperpile.com/c/IHceXz/RoS5
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via the concept of reward prediction errors (RPE) that brings together the original concept of value 

with its expectation (Schultz, Dayan, and Montague 1997; Schultz 2004; Glimcher 2011b; Sutton 

and Barto 2018). First inspired by computational models of value learning (Bush and Mosteller 

1951a, [b] 1951; Rescorla and Wagner 1972; Sutton and Barto 2018), RPEs estimate the value 

of options over time by comparing the currently experienced value/outcome of a decision with the 

chosen option’s expected value. In seminal work, Wolfram Schultz and colleagues observed that 

the activity of midbrain dopaminergic neurons in the monkey represented such RPE signals 

(Schultz, Dayan, and Montague 1997) (Fig. 1.2A). This finding has since been replicated in a 

variety of species (Bayer and Glimcher 2005; Cohen et al. 2012; Hart et al. 2014) and has inspired 

a significant body of work aimed at understanding how RPE is calculated (Keiflin and Janak 2015) 

and utilized (Schultz 1997; Glimcher 2011b).  

 

RPE is however not the only way in which probabilities are represented in the brain. One more 

direct representation of probability that has been identified both in the context of uncertain rewards 

as well as uncertain stimulus categorization is confidence (Pouget, Drugowitsch, and Kepecs 

2016). Confidence is defined as the probability that the choice made is correct. If one considers 

a simple choice between two options that have the same expected value, where one provides a 

reliable small reward, while the other provides a reward that's twice as large but only half as often, 

the confidence in one’s choice is simply the probability that the second option provides a reward 

(here, 0.5). In more difficult tasks, confidence can take more complicated forms. A large body of 

work has shown that the OFC, PFC as well as visual regions such as the pulvinar nuclei of the 

thalamus have neurons whose activity correlates with the subjects confidence in their choices 

(Kepecs et al. 2008; De Martino et al. 2013; Komura et al. 2013), thus more directly representing 

a probability value in neural activity (Fig. 1.2B).  

 

https://paperpile.com/c/IHceXz/K7mI+QErd+FjvJ+8QMR
https://paperpile.com/c/IHceXz/K7mI+QErd+FjvJ+8QMR
https://paperpile.com/c/IHceXz/t0QS+qcvG+ihgO+8QMR
https://paperpile.com/c/IHceXz/t0QS+qcvG+ihgO+8QMR
https://paperpile.com/c/IHceXz/K7mI
https://paperpile.com/c/IHceXz/07eC+Q6lJ+qKxo
https://paperpile.com/c/IHceXz/E9KG
https://paperpile.com/c/IHceXz/tyuY+FjvJ
https://paperpile.com/c/IHceXz/qbmP
https://paperpile.com/c/IHceXz/qbmP
https://paperpile.com/c/IHceXz/1Ilc+DM51+MO41
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A third concept closely related to uncertainty in economics is that of risk and risk-appetite. 

Consider the same example with one safe and one risky alternative introduced above while 

defining confidence. The reason confidence is half in this case is related to the fact that comparing 

expected rewards to make a decision in this case is not useful as they are both the same. Animals 

that compare expected values to make decisions in this case should choose both options equally. 

However it has been observed in such scenarios that monkeys and humans do show biases 

(Kahneman and Tversky 1979; Stauffer et al. 2015), preferring the risky alternative when rewards 

are small on average (So and Stuphorn 2010; Raghuraman and Padoa-Schioppa 2014) and the 

safe alternative when rewards are large (H. Yamada et al. 2013; Stauffer, Lak, and Schultz 2014). 

In each case these behavior observations were supported by neural observations that showed 

that neural activity in regions including the Supplementary Eye Field, OFC and midbrain 

dopaminergic neurons reflect the risk-appetite of the animal (Fig. 1.2C). 

 

1.3 An incomplete picture of the decision-making process 

 

This rich history of neuroeconomics, primarily involving the identification of decision-variables, 

provides tremendous explanatory power when predicting decisions and behavioral variability. 

However, our knowledge falls short when attempting to put together a complete picture of the 

architecture of (and computations performed by) the neural circuitry underlying decision-making. 

This is particularly problematic when moving downstream of the decision-variable (eg. value) 

representations to understand the computations that govern their use (eg. value updating over 

time, decision-making). Existing models of decision-making that incorporate biophysical realities 

and appropriate cortical architectures to capture decision-variable representations make 

simplifying assumptions about the how these are used to eventually make the decision (Rustichini 

and Padoa-Schioppa 2015), while models that do make novel predictions about the computations 

https://paperpile.com/c/IHceXz/XPDG+FTX0
https://paperpile.com/c/IHceXz/x7sw+ZVms
https://paperpile.com/c/IHceXz/6dGt+kWaj
https://paperpile.com/c/IHceXz/cHth
https://paperpile.com/c/IHceXz/cHth
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that give rise to behavioral outputs are hard to test (Loewenstein and Seung 2006; Soltani and 

Wang 2006) 

 

There appear to be two primary reasons for this. First, a large number of hypothetical frameworks 

can accurately describe behavior in the kinds of simple decision-making tasks that have primarily 

been used in the literature cited earlier on in this introduction (for example read (Pereira-Obilinovic 

et al. 2022)). This is because the tasks that have been primarily used to study decision-making 

under-constrain the space of potential solutions (Krakauer et al. 2017). Animal brains and their 

underlying computational algorithms have evolved to deal with more complex environments, 

therefore more naturalistic and complex tasks that can distinguish between alternate 

computational hypotheses are essential for further understanding of the system. This approach 

has gained significant traction lately (Gomez-Marin et al. 2014; Krakauer et al. 2017; Juavinett, 

Erlich, and Churchland 2018; Dennis et al. 2021) and two approaches to introduce naturalistic 

complexity into decision-making tasks will be the primary focus of sections 1.4 and 1.5 of this 

introduction. Second, as referenced earlier in this introduction, a large variety of brain regions 

have been implicated in the production of choice behavior. Understanding how all these different 

players interact is a herculean task, particularly in large mammalian brains. Understanding how 

the different elements such as value, confidence, expected value etc come together in a simpler 

more genetically tractable brain might provide greater insight into how larger brains solve the 

problem. In section 1.6 of this introduction I will provide an overview of a particular brain-circuit 

my colleagues and I feel is well suited to answering questions about the neural underpinnings of 

decision-making, the Mushroom Body (MB) of the fruit fly Drosophila melanogaster. 

 

 

 

 

https://paperpile.com/c/IHceXz/Wf2d+aKnF
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1.4 Making decisions in dynamic environments. 

 

One approach for complex task-design that has produced significant insight into decision-making 

computations involves a dynamic foraging paradigm (Sugrue, Corrado, and Newsome 2004a). 

This paradigm expands on a simple two-option choice task in two ways. The first is to incorporate 

probabilistic rewards associated with the two options. This has already been discussed earlier in 

this introduction and doesn’t provide novel avenues of narrowing down the neural computations 

compared to the previously cited literature. The second change however is significant, the 

probabilities of reward associated with options change over time. By observing how animals adapt 

their behavior in the face of such a dynamic environment, we can distinguish between previously 

indistinguishable behavioral strategies and their neuronal basis. For example, a simple strategy 

that animals could use when faced with repeated choices between options is to stay with the 

same option if it was rewarding on the immediately previous trial or switch to another option if the 

previous choice was unrewarded. Such a strategy has the advantages of being computationally 

simple but is not as optimal at accumulating reward as say Herrenstein’s operant matching law, 

where choices between options are divided in proportion to the rewards received (income) (Fig. 

1.3A). These two strategies (amongst others) show significantly different choice dynamics when 

the reward probabilities in the world change and require a dynamic foraging paradigm to be 

distinguished between. 

 

Sugrue and colleagues, using a version of this task with visual cues, found that rhesus macaques 

follow Herrenstein’s operant matching law when faced with this task (Sugrue, Corrado, and 

Newsome 2004a). This is a strategy that equalizes the return on investment across options (Fig. 

1.3A). Richard Herrnstein first formulated this long-standing empirical law in 1961 based on 

observations made on pigeons in a simpler and non-probabilistic context (R. J. Herrnstein 1961; 

Richard J. Herrnstein 1997). Sugrue and colleagues simultaneously found neurons in the LIP 

https://paperpile.com/c/IHceXz/SZ3x
https://paperpile.com/c/IHceXz/SZ3x
https://paperpile.com/c/IHceXz/SZ3x
https://paperpile.com/c/IHceXz/Mbf9+peC3
https://paperpile.com/c/IHceXz/Mbf9+peC3
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whose activity tracked the local fractional income, suggesting that these value-like 

representations could be guiding behavior in agreement with the previously noted economic 

theories.  

 

 

Figure 1.3 Operant matching in dynamic foraging tasks and its proposed theoretical 

underpinnings. (A) Data adapted from Sugrue et al. 2004, showing that the choice behavior of 

monkeys in a dynamic foraging task follow Herrnstein’s operant matching law. The law states that 

choices between options are divided in proportion to the rewards received (income) and is defined 

on the top right. Choice ratio from blocks of monkey behavior where reward probabilities are held 

constant are plotted against reward rations from these blocks on the left. Both choice and reward 

ratios calculated overtime using a moving window average are plotted on the bottom right (B) An 

illustration summarizing the theoretical work of Loewenstein and Seung 2006, which shows 

mathematically that any network that stores and learns values of options available for choice as 

synaptic weights must update these weights using covariance-based rules to produce operant 

matching. 

 

 

However, the most important advance this approach contributed, was that it suggested that these 

value representations need to be updated over time and updated in a specific way that allows 

animals to follow the operant matching strategy rather than the economists rational value 

maximization strategy that had been observed in tasks with stationary environments (Padoa-

Schioppa and Assad 2006). Following this original finding multiple groups replicated this 

observation of operant matching, using similar tasks in both monkeys and mice (Lau and Glimcher 

2005, 2008; Tsutsui et al. 2016; Bari et al. 2019; Iigaya et al. 2019). This body of work made 

progress in identifying the local decision-making rules that could give rise to this global 

phenomenon of the matching-law. Based on the observed behavior a simple win-stay; lose-switch 

https://paperpile.com/c/IHceXz/a7j5
https://paperpile.com/c/IHceXz/a7j5
https://paperpile.com/c/IHceXz/PL2GQ+UzXg+lHzf4+GAw9+IqoEr
https://paperpile.com/c/IHceXz/PL2GQ+UzXg+lHzf4+GAw9+IqoEr
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strategy was ruled out in favor of a strategy in which an option’s value was updated in time by 

integrating over multiple past rewards and choices (Lau and Glimcher 2005; Bari et al. 2019; 

Beron et al. 2022). This was paired with the identification of neural signatures in a variety of brain 

regions including the PFC and the striatum, that tracked this change in value over time, either 

through putative changes in the strength of synapses onto the neurons of interest (Sugrue, 

Corrado, and Newsome 2004a; Tsutsui et al. 2016), or through work-memory-like persistent 

changes in neural activity (Bari et al. 2019). 

 

Together, this body of literature allowed theorists to propose specific hypotheses regarding the 

way in which value representation must change over time to allow for matching. One particularly 

elegant hypothesis put forward by Loewenstein and Seung (Loewenstein and Seung 2006), 

makes a very general claim regarding the learning rules that must be used to update values over 

time if values are stored as synaptic weights. They prove that operant matching is the inevitable 

outcome of plasticity rules that modify synaptic weights according to the covariation of neural 

activity signaling reward and sensory input (Fig. 1.3B). Mathematically, covariance is the product 

of two variables with at least one being subtracted by its expectation. Covariance in this form not 

only nicely aligns with the economic idea of expected value and the neuroscientific idea of RPE, 

it expands this to say that the expectation needs to be incorporated in a very specific mathematical 

form to give rise to matching. Importantly, only an animal that follows operant matching would 

receive rewards at a rate equal to the reward expectation for both options, which leads weights 

to stabilize. Loewenstein & Seung mathematically formalized this intuitive link between 

expectation and matching and showed that when synaptic plasticity is the basis for operant 

matching, only a covariance-based plasticity rule can account for matching. 

  

It is here unfortunately that we reach the limits of working with large mammalian brains. While 

Loewenstein and Seungs theory is specific, it is difficult to test experimentally in a mammal brain. 

https://paperpile.com/c/IHceXz/PL2GQ+GAw9+Wq3P
https://paperpile.com/c/IHceXz/PL2GQ+GAw9+Wq3P
https://paperpile.com/c/IHceXz/SZ3x+lHzf4
https://paperpile.com/c/IHceXz/SZ3x+lHzf4
https://paperpile.com/c/IHceXz/GAw9
https://paperpile.com/c/IHceXz/Wf2d
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There are too many potential locations where such a plasticity rule could be implemented and the 

specificity of the tools necessary to manipulate the nature of plasticity rules remain too broad. As 

a result, there has been no mapping of these rules onto particular synapses or plasticity 

mechanisms in any animal and a deep investigation of this hypothesis by manipulating and testing 

the nature of plasticity rules underlying operant matching has been intractable. In Chapter 3 of 

this thesis, I will describe the approach we have taken to test Loewenstein and Seung’s 

hypothesis in the MB of the fruit fly, using a combination of a novel dynamic foraging task for flies 

(described in Chapter 2), computational modeling approaches and optogenetic manipulation. 

 

1.5 Making decisions when faced with overlapping or nearly indistinguishable options. 

 

A second approach for adding complexity to decision-making tasks to better understand the 

underlying principles borrows from the rich field of sensory representation and categorization. 

Assigning values to options is not always as simple as in the previously described tasks where 

the alternatives provided to the subjects are clearly distinct. Distinct sensory stimuli can be very 

similar to one another leading values to be misassigned. As a result, neural circuits have evolved 

to appropriately discriminate between inputs, aiming to group multiple noisy experiences of the 

same stimulus together, while separating distinct yet similar stimuli. The neural computations that 

must be performed to correctly link options to rewards and value are upstream of the kinds of 

learning rules we discussed in the immediately preceding section. However, they still play an 

important role in the decision-making process and in the construction of value representations. A 

complete picture of the neural circuitry underlying decisions would be incomplete without an 

understanding of option discrimination. 

 

One seminal theory developed by Marr and Albus’ in the context of cerebellar-like networks 

suggests that such neural circuits are able to separate and uniquely represent different inputs 
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with the help of an “expansion layer” (Marr 1969; Albus 1971). An ‘‘expansion layer’’ is a large set 

of postsynaptic cells that contain a sparse representation of stimuli based upon combinatorial 

information received from multiple different sensory input channels. Theoretical models of 

expansion layer circuits (that include the insect mushroom-body  (Modi, Shuai, and Turner 2020)) 

have found that two important architectural parameters affect the circuit’s discrimination 

capabilities: 1) the number of cells in the expansion layer (Babadi and Sompolinsky 2014; Cayco-

Gajic and Silver 2019), and 2) the density of connection between the input and expansion layers 

(Jortner, Farivar, and Laurent 2007; Litwin-Kumar et al. 2017; Rajagopalan and Assisi 2020).  

 

      

Figure 1.4 Theoretically identified relationships between circuit architecture and 

discrimination in “expansion layer” networks. (A) A plot adapted from Babadi and 

Sompolinsky 2014, shows that the ability of a “expansion layer” network to discriminate between 

inputs increases as a function of expansion layer size. (B) A plot adapted from Litwin-Kumar et 

al. 2017, shows how the ability of a “expansion layer” network to discriminate between inputs 

varies as a function of input connectivity, with optimal discrimination obtained at an intermediate 

value of connectivity. 

 

As the number of cells in the expansion layer increase, the ability to separate similar inputs 

increases suggesting that more expansion layer neurons will allow circuits to more easily separate 

inputs and assign values appropriately to them (Babadi and Sompolinsky 2014; Cayco-Gajic and 

Silver 2019) (Fig. 1.4A). Energy and animal-size constraints likely limit the number of neurons 

https://paperpile.com/c/IHceXz/oiNP+jnT2
https://paperpile.com/c/IHceXz/lHlF
https://paperpile.com/c/IHceXz/fEFn+Jymc
https://paperpile.com/c/IHceXz/fEFn+Jymc
https://paperpile.com/c/IHceXz/2k4A+p5R7+ZaNk
https://paperpile.com/c/IHceXz/fEFn+Jymc
https://paperpile.com/c/IHceXz/fEFn+Jymc
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found in any given expansion layer circuit. The density of connection between the two layers on 

the other-hand seems to have arrived at an optimal value in both the cerebellum and the MB 

(Litwin-Kumar et al. 2017; Jortner 2013). Both increases and decreases in connectivity tend to 

make these circuits worse at discrimination (Fig. 1.4B). However here too, as was the case with 

Loewenstein and Seung’s theory, testing these hypotheses in the cerebellum has been 

impossible because of a lack of tools to manipulate cell number or connectivity. Ground-breaking 

work from our collaborators in Dr. E. Josephine Clowney’s lab at the University of Michigan has 

produced developmental tools in the fruit fly that allow for such circuit manipulations. In Chapter 

4 we combine this work with our novel behavioral assay described in Chapter 2 to test these 

theories of cell number and connectivity.  

 

While discrimination is an important step for appropriate value assignment, in many cases similar 

options do have similar values and so storing and updating values for every potential option 

separately would be computationally taxing (Seger and Miller 2010). Instead, it is beneficial for 

the brain to maintain slightly overlapping sensory representations, which would allow options to 

be grouped downstream into categories based on sensory similarity and assigned with common 

values (Seger 2008). Such a coding-scheme would allow animals to distinguish between options 

in different categories and choose the highest value stimulus, taking into account the values of 

available alternatives (Glimcher and Fehr 2013; Padoa-Schioppa and Conen 2017; Hayden 2018; 

Kudryavitskaya et al. 2021). However, this scheme would not readily allow for distinguishing 

between two options from the same category. It is therefore essential in such a coding-scheme 

that category boundaries be flexible. One prominent hypothesis suggests that animals perform a 

side-by-side comparison of the value representation activated by the available stimuli and make 

use of a relative value signal to guide flexible categorization (Itti and Koch 2001; Carello and 

Krauzlis 2004; Mysore and Knudsen 2011; Mysore, Asadollahi, and Knudsen 2011). In Chapter 

https://paperpile.com/c/IHceXz/p5R7+YCij
https://paperpile.com/c/IHceXz/bb1e
https://paperpile.com/c/IHceXz/oHsLr
https://paperpile.com/c/IHceXz/CZwr+ssX0+6iiJ+kODyU
https://paperpile.com/c/IHceXz/CZwr+ssX0+6iiJ+kODyU
https://paperpile.com/c/IHceXz/YjTCb+HR1Zc+2ixCS+gtLlp
https://paperpile.com/c/IHceXz/YjTCb+HR1Zc+2ixCS+gtLlp
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5, in collaboration with Dr. Mehrab Modi and colleagues, we ask how this flexible categorization 

arises and identify neural correlates of stimulus comparison in the Drosophila mushroom body. 

 

1.6 The form and function of the Drosophila Mushroom Body 

 

The mushroom body is a key center for learning and memory in the fly brain that serves as a 

junction where sensory representations are assigned value and converted into behavioral outputs 

(Martin Heisenberg 2003; Davis 2005; Modi, Shuai, and Turner 2020; Adel and Griffith 2021). In 

this final section of the introduction, I will describe the structure and function of the MB circuit.  

 

     

Figure 1.5 A schematic of the Drosophila MB circuit. Inputs to the primary cells of the MB 

(KCs) arrive via PNs. KC axons form compartments in the MB lobes. Each compartment is 

innervated by compartment specific MBONs and DANs. A subset of rewarding DANs receive 

input from reward sensory neurons including Gr64f sugar sensory neurons. 

 

Structurally, the MB consists of primary cells called Kenyon cells (KCs) whose cell bodies are 

located in a structure called the calyx that forms the head of the mushroom-shaped structure (Fig. 

1.5). These are third odor neurons along the olfactory sensory pathway (Caron et al. 2013; Wilson 

2014) and represent odors in a sparse spatiotemporal pattern of activity (Turner, Bazhenov, and 

Laurent 2008; Honegger, Campbell, and Turner 2011; Robert A. A. Campbell et al. 2013). KCs 

https://paperpile.com/c/IHceXz/lvd2+4m8m+lHlF+qDW2
https://paperpile.com/c/IHceXz/nazkr+JcQU
https://paperpile.com/c/IHceXz/nazkr+JcQU
https://paperpile.com/c/IHceXz/uyMvP+kdOTq+l8nVo
https://paperpile.com/c/IHceXz/uyMvP+kdOTq+l8nVo
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form the “expansion layer” in the MB circuit and receive their olfactory inputs from second order 

neurons called projection neurons (PNs) (Caron et al. 2013). KC axons project into a set of 

horizontal and vertical lobes that form the stalk of the mushroom and are made up of 15 distinct 

subdomains called compartments. The mushroom body output neurons (MBONs) that receive 

input from the KCs typically innervate only one of these compartments (Aso, Hattori, et al. 2014; 

Li et al. 2020). The activity of these MBONs serve as a signal that guides action selection (Aso, 

Sitaraman, et al. 2014; Owald et al. 2015). This conversion from the sensory representation of 

the KC to the action guiding activity of MBONs is mediated by the KC-MBON synapses that are 

thought to store the value of a given olfactory input (Villar et al. 2022). These synapses are plastic 

and modified by a rule that depends on the coincident activity of odor-representing KCs and 

release of dopamine by reward-signaling DANs (Séjourné et al. 2011; Hige et al. 2015; Cohn, 

Morantte, and Ruta 2015; Owald et al. 2015; Aso and Rubin 2016; Berry, Phan, and Davis 2018; 

Handler et al. 2019; Jiang and Litwin-Kumar 2021). Recent theoretical work has also attempted 

to link the features of learning rules identified with the help of these behavioral experiments to the 

plasticity mechanisms identified using imaging and electrophysiology (Jiang and Litwin-Kumar 

2021; Springer and Nawrot 2021; Bennett, Philippides, and Nowotny 2021; Adel and Griffith 2021; 

Gkanias et al. 2022). 

 

On the functional front, over the last half century, researchers have shown that flies can learn a 

wide variety of Pavlovian and operant associations between cues and rewards in an MB 

dependent manner(Quinn, Harris, and Benzer 1974; Tully and Quinn 1985; de Belle and 

Heisenberg 1994; M. Heisenberg et al. 1985; Brembs and Heisenberg 2000; Rohrsen et al. 2021). 

They exhibit features common in vertebrate memory, such as forgetting, re-evaluation, second-

order condition and consolidation, amongst others (Quinn, Harris, and Benzer 1974; Tully and 

Quinn 1985; Aso, Sitaraman, et al. 2014; Ichinose et al. 2015; Aso and Rubin 2016; Sayin et al. 

2019; König et al. 2019; Sabandal, Berry, and Davis 2021; D. Yamada et al. 2023). With the help 

https://paperpile.com/c/IHceXz/nazkr
https://paperpile.com/c/IHceXz/xe68B+xIzA5
https://paperpile.com/c/IHceXz/xe68B+xIzA5
https://paperpile.com/c/IHceXz/6UsSQ+bE9j8
https://paperpile.com/c/IHceXz/6UsSQ+bE9j8
https://paperpile.com/c/IHceXz/ZRHxV
https://paperpile.com/c/IHceXz/yx2yf+FMY9P+Qn4LA+bE9j8+9qoH8+yzvwV+udWCA+Fm1Zh
https://paperpile.com/c/IHceXz/yx2yf+FMY9P+Qn4LA+bE9j8+9qoH8+yzvwV+udWCA+Fm1Zh
https://paperpile.com/c/IHceXz/yx2yf+FMY9P+Qn4LA+bE9j8+9qoH8+yzvwV+udWCA+Fm1Zh
https://paperpile.com/c/IHceXz/Fm1Zh+O2xJ1+OIjG1+qDW2+zV7DG
https://paperpile.com/c/IHceXz/Fm1Zh+O2xJ1+OIjG1+qDW2+zV7DG
https://paperpile.com/c/IHceXz/Fm1Zh+O2xJ1+OIjG1+qDW2+zV7DG
https://paperpile.com/c/IHceXz/atM0O+WRaw+msEx+NiPaj+mkzri+xp2en
https://paperpile.com/c/IHceXz/atM0O+WRaw+msEx+NiPaj+mkzri+xp2en
https://paperpile.com/c/IHceXz/atM0O+WRaw+6UsSQ+Em3oi+9qoH8+GaxNh+75E4M+SVil+KcVM
https://paperpile.com/c/IHceXz/atM0O+WRaw+6UsSQ+Em3oi+9qoH8+GaxNh+75E4M+SVil+KcVM
https://paperpile.com/c/IHceXz/atM0O+WRaw+6UsSQ+Em3oi+9qoH8+GaxNh+75E4M+SVil+KcVM
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of advances in functional and anatomical tools(Barret D. Pfeiffer et al. 2010; Jenett et al. 2012; 

Klapoetke et al. 2014; Riabinina et al. 2015; Zheng et al. 2018; Li et al. 2020), specific features of 

learning have been linked to specific parts of the MB circuit. For example, learning can take place 

on multiple time-scales depending on the MB compartment in which synaptic plasticity takes place 

(Shuai et al. 2011; Aso and Rubin 2016).  

 

Despite this progress, there remains several unanswered questions regarding the extent of the 

decision-making capabilities of flies. There is a dearth of understanding about how flies learn in 

natural environments (but see (Seidenbecher et al. 2020)). For example, animals in naturalistic 

scenarios have to be able to form associations between multiple different options and rewards, 

yet evidence in flies suggests that some associations are labile and easily overwritten(Aso and 

Rubin 2016). Second, choice behavior has rarely been investigated at the individual fly 

level(Claridge-Chang et al. 2009; Seidenbecher et al. 2020; Honegger et al. 2020; Lesar et al. 

2021), and never in the context of flies making repeated choices between two probabilistically 

rewarding options. It is therefore unclear whether flies can learn associations between options 

and probabilistic rewards. It is also unknown whether they can integrate probabilistic reward 

events over multiple past experiences to form analog expectations. Even if such analog 

expectations can be formed, it is unclear if they lead to matching behavior through covariance-

based plasticity in the fly brain. Further, evidence has been mixed as to whether this learning rule 

makes use of value or reward expectation(Dylla et al. 2017; Riemensperger et al. 2005; 

Felsenberg et al. 2017, 2018; Eschbach et al. 2020).  

 

One factor that has contributed to this lack of knowledge is that the tasks predominantly used to 

study learning in flies focus on groups of 10s of flies making single choices. This is related to the 

ideas of more complex tasks mentioned in section 1.4 and 1.5. The adoption of the “dynamic 

foraging task” in mammalian research for example allowed for the deeper understanding of the 

https://paperpile.com/c/IHceXz/OM9ml+6kN98+1O3jw+a4Mhs+BOqLN+xIzA5
https://paperpile.com/c/IHceXz/OM9ml+6kN98+1O3jw+a4Mhs+BOqLN+xIzA5
https://paperpile.com/c/IHceXz/Z5Wa0+9qoH8
https://paperpile.com/c/IHceXz/5QKe6
https://paperpile.com/c/IHceXz/9qoH8
https://paperpile.com/c/IHceXz/9qoH8
https://paperpile.com/c/IHceXz/bcPFc+5QKe6+nuBHV+MqRDF
https://paperpile.com/c/IHceXz/bcPFc+5QKe6+nuBHV+MqRDF
https://paperpile.com/c/IHceXz/4Yg25+pcyR4+za1wA+DcSmj+RxvjP
https://paperpile.com/c/IHceXz/4Yg25+pcyR4+za1wA+DcSmj+RxvjP
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neural principles underlying learning and decision-making. We therefore designed a novel 

olfactory “dynamic foraging” two-alternative forced choice (2AFC) task for individual Drosophila 

inspired by earlier behavior assays for flies(Simonnet, Berthelot-Grosjean, and Grosjean 2014; 

Buchanan, Kain, and de Bivort 2015; Lewis et al. 2017; Mohandasan et al. 2021; Wiggin et al. 

2021) and foraging related 2AFC tasks in vertebrates(Sugrue, Corrado, and Newsome 2004b; 

Lau and Glimcher 2008; Tsutsui et al. 2016; Bari et al. 2019). The assay allows us to measure 

hundreds of sequential choices from individual flies as we vary the probability of reward 

associated with different odor cues.  

 

1.7 Combining a novel decision-making task, genetic tools and the Drosophila MB circuit 

to elucidate the neural principles underlying decision-making. 

 

We propose that the fruit fly and its mushroom body circuitry, in combination with our novel 

foraging inspired decision-making task can serve as a versatile testing ground for the hypotheses 

described in sections 1.3 to 1.5. The MB circuit contains architectural and functional elements 

necessary to implement the hypothesized computations and the Drosophila melanogaster model 

system has the genetic tools necessary to specifically manipulate circuit structure and function 

with unparalleled specificity (Barret D. Pfeiffer et al. 2010; Jenett et al. 2012; Klapoetke et al. 

2014; Riabinina et al. 2015; Zheng et al. 2018; Li et al. 2020). Over the course of the next four 

chapters I will describe the efforts taken to test these important hypotheses and map elements of 

the neural algorithms of decision-making onto biological realities in the MB circuitry.  

https://paperpile.com/c/IHceXz/iJymu+fLyLH+YtCiu+gwPks+HvAch
https://paperpile.com/c/IHceXz/iJymu+fLyLH+YtCiu+gwPks+HvAch
https://paperpile.com/c/IHceXz/iJymu+fLyLH+YtCiu+gwPks+HvAch
https://paperpile.com/c/IHceXz/q8sw+UzXg+lHzf4+GAw9
https://paperpile.com/c/IHceXz/q8sw+UzXg+lHzf4+GAw9
https://paperpile.com/c/IHceXz/OM9ml+6kN98+1O3jw+a4Mhs+BOqLN+xIzA5
https://paperpile.com/c/IHceXz/OM9ml+6kN98+1O3jw+a4Mhs+BOqLN+xIzA5
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Chapter 2. A novel olfactory dynamic foraging task for Drosophila 

Adapted from Rajagopalan et al. 2022, bioRxiv 2022.05.24.493252 

 

The one missing piece needed to address the challenges and test the hypotheses detailed in 

Chapter 1 is a behavioral task that allows us to assess decisions of individual flies in a more 

complex and natural context. For this purpose, we designed an olfactory 2AFC Y-arena (Fig. 

2.1A). The Y-arena plays an important role in Chapters 3 and 4 and the materials and methods 

are common for all uses of this arena. Therefore, the experimental procedures related to the 

design, testing and function of this arena are detailed first in this chapter. 

 

 

Figure 2.1 A schematic of the novel olfactory Y-arena. 

(A) Air flows from tips of each arm to an outlet in the 

center.  Reward zones are demarcated by lines at the tips 

of the arms. A choice is registered when a fly crosses into 

the reward zone of an odorized arm, triggering Gr64f 

sugar sensory neuron or PAM DAN optogenetic 

activation with a 500 ms pulse of red light. (B) An example 

of the trial structure of this task. Once the fly completes 

one trial, the next trial commences with the chosen arm 

switching to air. The two odors (green/orange) are 

randomly reassigned to the other two arms.  

 

In the Y-arena, a single fly begins a trial in an arm filled with clean air and can choose between 

two odor cues that are randomly assigned to the other two arms (Fig. 2.1A). The fly can freely 

move between arms, with a choice defined as the fly crossing into the reward zone at the end of 

the arm (Fig. 2.1A). Once a choice is made, we provide reward by optogenetically activating either 

sugar-sensing neurons using a Gr64f driver (Jiao et al. 2008; Haberkern et al. 2019) or the reward-

related protocerebral anterior medial dopaminergic neurons (PAM-DANs). The Y-arena then 

resets, with the arm chosen by the fly filled with clean air and the other two arms randomly filled 

https://paperpile.com/c/IHceXz/h7TWc+u8HOc
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with the two odors (Fig. 2.1B). This task design permits us to precisely control reward delivery 

without satiating the fly and enables us to monitor the choices of a single fly over hundreds of 

trials.  

 

A task such as this allows us to distinguish between different foraging strategies, such as the 

matching law versus a simpler win-stay, lose-switch strategy. Importantly, our assay breaks the 

hard dichotomy between Pavlovian and operant conditioning. Unlike purely Pavlovian tasks(Aso 

and Rubin 2016; Quinn, Harris, and Benzer 1974), flies in our task do not passively experience 

olfactory cues and rewards. Rather the choices made by the fly dictate the odors and rewards 

experienced, a hallmark of operant learning tasks. However, unlike purely operant tasks, where 

animals learn that specific actions lead to rewards or punishment(Brembs and Heisenberg 2000; 

Rohrsen et al. 2021), flies in our task have to learn to perform stimulus-dependent actions. This 

relationship between stimulus, action and reward is very similar to the dynamic foraging tasks 

where operant matching has been observed in other species(Sugrue, Corrado, and Newsome 

2004b; Iigaya et al. 2019; Bari et al. 2019; Tsutsui et al. 2016). The dynamic foraging task 

structure thereby allows us to readily translate past theoretical work into the context of the 

Drosophila brain to seek a mechanistic understanding of decision-making behaviors that could 

apply across animals.  

 

2.1 Apparatus design  

 

A detailed description of the material composition of the apparatus is provided in Figure 2.2. The 

Y chamber consists of two layers of white opaque plastic. The bottom is a single continuous 

circular layer and serves as the floor of the Y that flies navigate. The top is a circular layer with a 

Y shaped hole in the middle. The length of each arm from center to tip is 5 cm and the width of 

https://paperpile.com/c/IHceXz/9qoH8+atM0O
https://paperpile.com/c/IHceXz/9qoH8+atM0O
https://paperpile.com/c/IHceXz/mkzri+xp2en
https://paperpile.com/c/IHceXz/mkzri+xp2en
https://paperpile.com/c/IHceXz/q8sw+IqoEr+GAw9+lHzf4
https://paperpile.com/c/IHceXz/q8sw+IqoEr+GAw9+lHzf4
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each arm is 1 cm. These two layers are placed underneath an annulus of black aluminum. A 

transparent glass disk is located in the center of this annulus and acts as the ceiling of the Y - 

allowing for video recording of experiments. This transparent disk is rotatable and contains a small 

hole used to load flies. The black annulus houses three clamps that hold the circular disk in place. 

All three layers are held together and made airtight with the help of 12 screws that connect the 

layers.  

 

Figure 2.2 A detailed structural drawing of the novel olfactory Y-arena. This structural 

drawing of the Y-arena lists each of the parts used to build the arena including the part number 

and vendor from whom each part was purchased for ease of replication.  

 

The Y chamber is mounted above an LED board that provides infrared illumination to monitor the 

fly's movements, and red (617 nm) light for optogenetic activation. The LED board consists of a 
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square array of red (617 nm peak emission, Red-Orange LUXEON Rebel LED, 122 lm at 700mA, 

1.9mW/cm2) and infrared (IR) LEDs that shine through an acrylic diffuser to illuminate flies. 

Experiments were recorded at ~5Hz from above the Y using a single USB3 camera (Flea3, model: 

FL3-U3-13E4M-C: 1.3 MP, 60 FPS, e2v EV76C560, Mono; Teledyne FLIR, with longpass filter of 

800 nm). 

 

 

 

 

 

 

Figure 2.3 A measurement of odor boundaries in 

the Y-arena. Moist blue litmus paper was placed in 

the Y-arena while the arm at the bottom was filled with 

carbon dioxide. This caused the color of the litmus 

paper to change, providing an estimate of how odor 

boundaries are formed at the center of the Y. 

 

Each arm of the Y has a corresponding odor delivery system, capable of delivering up to 5 odors. 

For our experiments, olfactometers injected air/odor streams into each arm at a flow rate of 100 

ml/min. A crisp boundary between odors and air is formed at the center of the Y. This was 

measured by passing CO2 through one of the two arms and taping damp blue litmus paper on the 

glass disk that serves as the top of the arena to observe the associated color change (Fig. 2.3). 

Odors and concentrations used for each experiment are detailed in the behavioral task structure 

and design section of the methods. The center of the Y contains an exhaust port connected to a 

vacuum, which was set at 300 ml/min using a flow meter (Dwyer, Series VF Visi-Float® acrylic 

flowmeter) - matching total input flow in our experiments.  
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2.2 Fly tracking and operation  

 

We wrote custom MATLAB code (MATLAB 2018b, Mathworks) to control the Y-arena and run 

experiments. The data collected by the USB3 camera was loaded into MATLAB in real time and 

the fly’s location was identified using the MATLAB image processing toolbox as follows. A 

background image was calculated just before beginning the experiment by averaging multiple 

frames as the fly moved around in the Y. This background was subtracted from the frame being 

processed and the resulting image was thresholded, leaving the fly as a white shape on a black 

background. The location of the centroid of the fly was estimated using the MATLAB’s 

bwconncomp and regionprops functions and then assigned to 1 of 6 regions in the Y. If the fly 

was located in one of the reward zones, a trial was deemed complete, and rewards were provided 

by switching on the red LEDs as defined by the reward contingencies of the task. The arena was 

then reset with air being pumped into the chosen arm and odors randomly reassigned to the two 

other arms (Fig. 2.1B). The location of the fly along with other information, such as reward 

presence and odor-arm assignments, were saved as a .mat file for further analysis. All 

subsequent analysis was based on this saved information. 

 

2.3 Behavioral protocol structure and design 

 

A variety of protocols were used over the course of this project. They involved different odors, 

different ways of associating probability to cues etc. Each protocol is provided with a name and 

detailed below. These named protocols will be referenced in later chapters. For all protocols, two 

or three of the following odorants were used to form cue-reward relationships: 

 

1. 3-Octanol (OCT) [Sigma-Aldrich 218405] diluted in paraffin oil [Sigma-Aldrich 18512] at a 

1:500 concentration and then air-diluted to a fourth of this concentration in air.  
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2. 4-Methyl-cyclo-hexanol (MCH) [Sigma-Aldrich 153095] diluted in paraffin oil at a 1:500 

concentration and then air-diluted to a fourth of this concentration in air.  

 

3. Pentyl Acetate (PA) [Sigma-Aldrich 109584] diluted in paraffin oil at a 1:5000 

concentration and then air-diluted to a fourth of this concentration in air.  

 

The simplest protocol used was the 100:0 protocol. Here flies were inserted randomly into one of 

the three arms. This arm was injected with a clean airstream and OCT and MCH were randomly 

assigned to the other two arms. For a given fly, one of OCT or MCH was paired with reward on 

100% of the trials it was chosen and the other a 0% chance (hence 100:0). Once a fly reached 

the choice zone of either odor arm a choice was considered to have been made. If the rewarded 

odor was chosen, the fly was rewarded with a 500ms flash of red LED (617 nm, 1.9mW/cm2) to 

activate the appropriate reward-related neurons. The arena was then reset with the arm chosen 

by the fly injected with clean air and OCT and MCH randomly assigned to the other two arms. 

This was repeated for many trials. In different versions of this protocol different amounts of trials 

were used. In version A flies were allowed to choose between OCT and MCH for 30 minutes when 

neither option was rewarding and then for 30 minutes when one of the options was consistently 

rewarding. In version B flies made 60 naive choices where neither option was rewarding and 60 

training choices where one option was consistently rewarded. In version C flies made 60 rewarded 

choices where one option was consistently rewarded, and in version D flies made 120 rewarded 

choices where one option was consistently rewarded. 

 

In a probabilistic version of this protocol (named - 80:0, 40:0 or 80:20 protocols), rather than one 

of the options being consistently rewarded and the other not, on every trial none, one or both 

options were rewarded probabilistically. At the beginning of each trial, the code used to run the 
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experiment determined whether either or both odors would provide a reward upon being chosen 

in that trial. Whenever probabilistic rewards were included in our tasks, reward baiting was 

incorporated as follows. If an option was unbaited (as it always is on the first trial of an 

experiment), the baiting probability assigned to the odor (e.g.80% for the rewarded odor in an 

80:0 protocol) was comparing a uniform random number in the range [0,100] to determine if that 

option was baited on a given trial. If an option was baited on the previous trial (would have been 

rewarded on that trial) but was not chosen by the fly, the probability that that option produces a 

reward when chosen increases to 1 (a 100% certain reward) until the next trial on which that 

alternative was chosen. This means that the likelihood an odor cue holds a reward increases over 

time if it is unchosen for many trials. Importantly, the fly performing the task is never informed as 

to whether the unchosen option would have been rewarding on any given trial. The sum of baiting 

probabilities for both options for this version of the task was either 1 or 0.5 for the 80:20 protocol, 

if the sum of baiting probabilities of 0.5 then 80:20 could alternatively be called 40:10 thought we 

never refer to it this way.  

 

In a third version of this task aimed to test if flies can store multiple simultaneous cue-reward 

relationships, two different odors were rewarded - one with high probability (p=0.8) and one with 

low probability (p=0.4). For this task we used three different odors, OCT, MCH and PA.  On each 

trial, flies were presented with a choice of either OCT versus PA or MCH versus PA.  These 

choices were delivered in alternation for a total of 80 trials to assess naive odor preference.  We 

then assessed choices during an 80-trial reward pairing block in alternation, where one of OCT 

or MCH was paired with high probability of baiting reward (0.8) and the other with low probability 

of baiting reward (0.4), always keeping PA unrewarded. To give an example: a fly experiences 

alternating OCT vs. PA and MCH vs. PA choices to assess naive choice probability and then 

receives the same set of choices, but with OCT baited with 80% probability and MCH baited with 
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40% probability. For another fly the high/low baiting probability odor is swapped to balance out 

the dataset. A diagram describing this protocol is shown in Fig. 2.4.  

 

 

Figure 2.4 A description of the protocol 

used to show that flies can store multiple 

associations simultaneously. Two different 

odor choices are alternated throughout an 

unrewarded naive block and a reward block of 

80 trials each where options were rewarded 

with baiting probability of 0.4 or 0.8. 

 

Figure 2.5 An example of the dynamic 

foraging protocol. Schematics indicate the 

reward baiting probabilities for each odor in the 

three 80-trial blocks. 

 

Finally dynamic foraging protocol was adapted from monkey and mouse versions (Sugrue, 

Corrado, and Newsome 2004b; Lau and Glimcher 2008; Tsutsui et al. 2016; Bari et al. 2019) and 

incorporated the baiting and probabilistic reward features described earlier. OCT and MCH were 

the two odors used in this task. An example protocol of this task with details about the three-block 

structure and number of trials per block can be seen in Fig. 2.5. This example protocol is 

representative of all of the protocols experienced by flies performing this particular task except 

that the exact probabilities assigned to odors changed between individual examples. In this task 

flies experienced 3 blocks of 80 trials each. Within a block the baiting probabilities associated with 

the two odors were fixed (apart from baiting related changes) and changed across blocks. The 

relative reward ratios between the two odors for a given block were drawn from the following set 

[1:1, 1:2, 1:4, 1:8]. Similar to the probabilistic reward task detailed earlier, the code used to run 

the experiment determined at the beginning of a trial whether either or both of the odors would 

provide a reward upon being chosen.  Here again the sum of baiting probabilities for both options 

for this task was either 1 or 0.5.  

https://paperpile.com/c/IHceXz/q8sw+UzXg+lHzf4+GAw9
https://paperpile.com/c/IHceXz/q8sw+UzXg+lHzf4+GAw9
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2.4 Quantitative analysis of fly movement 

 

All analysis and modeling was performed using MATLAB 2020b (Mathworks). We used 

nonparametric statistical tests when quantifying statistical significance in our data in all cases as 

we could not definitively say that all data were from normal distributions. The Mann-Whitney test 

was used when testing hypotheses related to unpaired samples. The Wilcoxon signed-rank test 

was used when testing hypotheses related to paired samples. Specific descriptions of the 

hypotheses being tested are provided in the test describing the relevant results and figure legend 

in each case. 

 

The (x,y) coordinates of the fly were analyzed to calculate: i) the distance of the fly from the center 

of the Y; ii) when the fly entered and exited a given odor arm; and iii) the time taken per trial to 

enter into the reward zone at the end of an odorized arm. These quantities were then used to 

produce the plots.  

 

Distance from center was calculated by projecting the (x,y) location of the fly ( ) onto a skeleton 

of the Y and this metric was used when plotting location over time plots. Here the subscript 𝑡  

denotes the time point at which the (x,y) location was observed. The skeleton consisted of three 

lines running down the middle of each arm to the center of the Y ( ). Based on which arm the fly 

was located in, its (x,y) position was projected onto the appropriate ( ) skeleton line using the 

following equations for projecting a point onto a line, 

 

                           (1) 
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where  , , and  is the (x,y) coordinates of the end of the  arm. The 

entries/exits of a fly into/from a particular odorant or air were estimated by tracking the region that 

the fly was located in at every time point and comparing it to the known odor-arm identity map 

(stored in the experiment .mat file). A turn (reversal) was considered to have been made whenever 

a fly entered an odor and then exited this odor without reaching the reward zone. An approach 

was considered to have been made whenever a fly entered an odor arm and then traveled all the 

way into the reward zone of that same arm without ever exiting it. 

 

To calculate the time taken per trial, we made use of the timestamp vector that we saved along 

with the (x,y) vector. Time taken from the entire trial was calculated by subtracting the timestamp 

for the frame that the previous trial was completed by the timestamp of the frame when the current 

trial was completed. Time taken from first exit of the air arm was calculated by subtracting the 

timestamp of the frame that the fly first exited the air arm after a trial began by the timestamp of 

the frame when the current trial was completed. 

 

Choices themselves were determined by identifying the arm in which the fly crossed into the 

reward zone and mapping that arm to its assigned odor on that trial. Once choices were 

determined we could calculate two important metrics. Choice ratio, defined as the ratio between 

the number of choices made towards option A to the number of choices made towards option B, 

and reward ratio, defined as the ratio between the number of rewards received upon choosing 

option A to the number of rewards received upon choosing option B. These ratios were calculated 

on one of two time-scales, i) the ratio over an entire block of 80 trials where baiting probabilities 

were constant, or ii) the ratio in a ten-trial moving window over the entire 240 trials of the 

experiment. The undermatching index used in some cases is defined as the mean square error 

between the instantaneous choice ratio and reward ratio curves produced for each fly. 

 

https://www.codecogs.com/eqnedit.php?latex=a%20%3D%20v_%7Bi%7D%20-%20v%7B0%7D#0
https://www.codecogs.com/eqnedit.php?latex=a%20%3D%20v_%7Bi%7D%20-%20v%7B0%7D#0
https://www.codecogs.com/eqnedit.php?latex=a%20%3D%20v_%7Bi%7D%20-%20v%7B0%7D#0
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2.5 Conclusion 

 

Prior to the apparatus and decision-making paradigms described in this chapter, most existing 

associative learning tasks for flies relied on studying the place preference behavior of groups of 

flies, such as the commonly used T-maze (Tully and Quinn 1985) or circular arena (Aso, 

Sitaraman, et al. 2014). Such tasks limit the ability of the experimenter to provide reward 

contingent on the choices of any one fly, making it hard to study behavior in response to 

probabilistic reward or measure choice distributions over time (but see (Claridge-Chang et al. 

2009; Buchanan, Kain, and de Bivort 2015; Seidenbecher et al. 2020; Wiggin et al. 2021)). In the 

work described in this dissertation we develop a novel olfactory decision-making task for individual 

Drosophila melanogaster, inspired by tasks in vertebrates (Sugrue, Corrado, and Newsome 

2004a; Tsutsui et al. 2016; Bari et al. 2019; Iigaya et al. 2019). We leverage this apparatus to 

explore the behavior of flies in more complex environments. In Chapter 3, we study the decision-

making strategy that the fly brain uses to cope with reward uncertainty and test a theory underlying 

the nature of learning rules that could give rise to the observed behaviors. In Chapter 4, we 

combine this apparatus with novel developmental manipulations produced by our collaborators in 

Dr. E. Josephine Clowney’s lab to test theoretical hypothesis underlying decisions involving the 

discrimination of similar stimuli. 

  

https://paperpile.com/c/IHceXz/WRaw
https://paperpile.com/c/IHceXz/6UsSQ
https://paperpile.com/c/IHceXz/6UsSQ
https://paperpile.com/c/IHceXz/bcPFc+fLyLH+5QKe6+HvAch
https://paperpile.com/c/IHceXz/bcPFc+fLyLH+5QKe6+HvAch
https://paperpile.com/c/IHceXz/SZ3x+lHzf4+GAw9+IqoEr
https://paperpile.com/c/IHceXz/SZ3x+lHzf4+GAw9+IqoEr
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Chapter 3. Covariance-based learning rules that incorporate reward expectation 

direct learning and underlie operant matching in the Drosophila Mushroom body 

Adapted from Rajagopalan et al. 2023, PNAS (in press) 

 

3.1 Introduction  

 

An animal’s survival depends on its ability to adaptively forage between multiple potentially 

rewarding options(Stephens and Krebs 1986; Hayden and Walton 2014). To guide these foraging 

decisions appropriately, animals learn associations between options and rewards(Schultz 2004; 

Pearce 2008; Glimcher and Fehr 2013). Learning these associations in natural environments is 

complicated by the uncertainty of rewards that change dynamically over time. Both vertebrates 

and invertebrates employ decision-making strategies that account for this uncertainty (Beron et 

al. 2022; Pierce and Epling 1983; Greggers and Menzel 1993; Richard J. Herrnstein 1997; Lau 

and Glimcher 2008; Tsutsui et al. 2016; Bari et al. 2019; Iigaya et al. 2019; Sugrue, Corrado, and 

Newsome 2004b). A commonly observed strategy across the animal kingdom is to divide choices 

between options in proportion to the rewards received from each(Pierce and Epling 1983; 

Greggers and Menzel 1993; Richard J. Herrnstein 1997; Sugrue, Corrado, and Newsome 2004b; 

Lau and Glimcher 2005, 2008; Tsutsui et al. 2016; Bari et al. 2019; Iigaya et al. 2019). It has been 

hypothesized that animals that use this operant matching strategy make use of the expectation 

of reward – the recency-weighted rolling average over past rewards – to learn option-reward 

associations(Sugrue, Corrado, and Newsome 2004b; Lau and Glimcher 2005). Many studies 

further posit that this learning involves synaptic plasticity (Wickens, Reynolds, and Hyland 2003; 

Soltani and Wang 2006; Pereira-Obilinovic et al. 2022), and theoretical work has identified a 

characteristic relationship between operant matching and a specific form of expectation-based 

plasticity rule that incorporates the covariance between reward and neural activity(Loewenstein 

https://paperpile.com/c/IHceXz/W7HJ+R7dz
https://paperpile.com/c/IHceXz/QErd+GmaQk+CZwr
https://paperpile.com/c/IHceXz/QErd+GmaQk+CZwr
https://paperpile.com/c/IHceXz/Wq3P+XCUBf+JGOUk+peC3+UzXg+lHzf4+GAw9+IqoEr+q8sw
https://paperpile.com/c/IHceXz/Wq3P+XCUBf+JGOUk+peC3+UzXg+lHzf4+GAw9+IqoEr+q8sw
https://paperpile.com/c/IHceXz/Wq3P+XCUBf+JGOUk+peC3+UzXg+lHzf4+GAw9+IqoEr+q8sw
https://paperpile.com/c/IHceXz/Wq3P+XCUBf+JGOUk+peC3+UzXg+lHzf4+GAw9+IqoEr+q8sw
https://paperpile.com/c/IHceXz/XCUBf+JGOUk+peC3+q8sw+PL2GQ+UzXg+lHzf4+GAw9+IqoEr
https://paperpile.com/c/IHceXz/XCUBf+JGOUk+peC3+q8sw+PL2GQ+UzXg+lHzf4+GAw9+IqoEr
https://paperpile.com/c/IHceXz/XCUBf+JGOUk+peC3+q8sw+PL2GQ+UzXg+lHzf4+GAw9+IqoEr
https://paperpile.com/c/IHceXz/q8sw+PL2GQ
https://paperpile.com/c/IHceXz/VWc2E+aKnF+EE85
https://paperpile.com/c/IHceXz/VWc2E+aKnF+EE85
https://paperpile.com/c/IHceXz/Wf2d
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and Seung 2006). Despite this strong link between plasticity rules and the matching strategy, 

there has been no mapping of these rules onto particular synapses or plasticity mechanisms in 

any animal. As a result, deeply investigating these theories by manipulating and testing the nature 

of plasticity rules underlying operant matching has been intractable. By using our novel behavioral 

assay described in Chapter 2 and leveraging this foraging framework in flies we aim to provide 

an insightful framework for testing the neural computations underlying decision-making strategies, 

such as matching. 

 

3.2 Results  

 

3.2.1 Flies can learn multiple probabilistic cue-reward associations  

  

In our Y-arena, a single fly begins a trial in an arm filled with clean air and can choose between 

two odor cues that are randomly assigned to the other two arms (Fig. 3.1A; Chapter 2). The fly 

can freely move between arms, with a choice defined as the fly crossing into the reward zone at 

the end of the arm (Fig. 3.1A). Once a choice is made, we provide reward by optogenetically 

activating sugar-sensing neurons using a Gr64f driver(Jiao et al. 2008; Haberkern et al. 2019). 

The Y-arena then resets, with the arm chosen by the fly filled with clean air and the other two 

arms randomly filled with the two odors. This task design permits us to precisely control reward 

delivery without satiating the fly and enables us to monitor the choices of a single fly over 

hundreds of trials.   

 

 

 

 

 

 

https://paperpile.com/c/IHceXz/Wf2d
https://paperpile.com/c/IHceXz/h7TWc+u8HOc


 33 

 

 



 34 

Figure 3.1 Flies learn multiple probabilistic cue-reward associations (A) Schematic of Y-

arena (top).  Air flows from tips of each arm to an outlet in the center.  Reward zones are 

demarcated by lines. A choice is registered when a fly crosses into the reward zone of an odorized 

arm, triggering Gr64f sugar sensory neuron optogenetic activation with a 500 ms pulse of red 

light. The next trial commences as the chosen arm switches to air and the two odors 

(green/orange) are randomly reassigned to the other two arms (bottom). (B) Cumulative choices 

made towards each option are shown (n = 9 flies, mean + individual flies). No rewards are 

available for the first 60 trials (Naive - black) and become available for the green option from the 

61st trial onwards (Training - red). Inset: Percentage rewarded choices in naive and training 

blocks. Flies prefer the rewarded option in the training block compared to naive (Wilcoxon signed-

rank test: p = 0.0039, n = 9).(C) Example trajectory of a fly in the Y before (left) and after (right) 

green odor is paired with reward. Distance in air arm is represented as negative values (black), 

while distances in odorized arms are represented as positive values (green/orange). Choices are 

represented by colored rasters. At choice points the arena resets and that arm switches to air, so 

the fly’s position jumps to the tip of the air arm. (D) The probability of accept decisions are plotted 

as a function of time in the 100:0 protocol (n = 9 flies, mean - solid line, SE - shaded area). Flies 

show a high probability of accepting the rewarded odor (left). The probability of accepting the 

unrewarded odor drops over time (right). (E) Controls (left) show higher percentage of choice 

made towards the rewarded option than DopR1 K.O. (right) flies in one 100:0 block of 60 trials 

(mean + SE - red point + line; individual fly scores - black; Mann-Whitney rank-sum test: p = 

0.0022, control: n = 7, DopR1 -/- : n = 6). (F) Schematic describes the reward structure of the task 

(top). Cumulative rewarded and unrewarded choices plotted against each other, for three different 

protocols 100:0, 80:0, 40:0 (bottom). Slope of all curves indicate that flies show a preference for 

the rewarded odor in all cases compared to a naive preference indicated by the black line (Mann-

Whitney rank-sum test: 100:0, p = 4.4500*10-8, n = 18; 80:0, p = 5.8927*10-5, n = 10; 40:0, p = 

0.0014, n = 10). (G) Schematic of the protocol for training flies with two simultaneous probabilistic 

cue-reward contingencies (top). Two different odor choices are alternated throughout an 

unrewarded naive block and a reward block where options were rewarded with baiting probability 

of 0.4 or 0.8. Performance (percentage of choices in which potentially rewarding option was 

chosen) on the low and high reward choices (bottom), indicates that flies learn both associations. 

An increased preference for the rewarded odors over unrewarded is observed (compared to naive 

preference) (Mann-Whitney rank-sum test: p = 2.3059*10-4 for high rewarding odor; n = 10; p = 

0.01 for low rewarding odor, n = 10).  
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We first established that flies learn effectively in this apparatus by reliably rewarding flies only 

when they chose one of the odors - what we term a 100:0 protocol.  Each fly first experienced the 

two odors (3-octanol; OCT and 4-methylcyclohexanol; MCH) unrewarded for a block of 60 trials, 

and then reward delivery was activated for the following block of 60 trials.  As observed previously, 

although individual flies exhibited different odor biases in this naive phase(Claridge-Chang et al. 

2009; Honegger et al. 2020; Smith et al. 2022), those biases averaged out over the population 

(Fig. 3.1B + inset).  In this phase, flies spent a lot of time in the air arm and made variable choices, 

with little preference for either odor (Fig. 3.1C left, example fly).  Once reward was made available, 

flies rapidly shifted to choosing the rewarded odor (Fig. 3.1B).  This was accompanied by a faster 

interval between choices (Fig. 3.2A), and a decrease in meandering trajectories (Fig. 3.1C). 

 

To analyze this choice behavior at a more elemental level, we adopted the common framework 

of considering foraging choices as a series of accept-reject decisions, where the animal decides 

whether or not to pursue an option(Hayden 2018). We defined reject decisions as when a fly 

enters an odorized arm but turns around and exits the arm before reaching the reward zone, while 

accept decisions reflect cases where the fly reaches the reward zone (see 3.4 Methods).  

Associating options with rewards changed the probability of accept decisions gradually over the 

course of a block. Acceptance probability increased for the rewarded odor and decreased for the 

unrewarded odor (Fig. 3.1D, Fig. 3.2D). On average, flies were around four times more likely to 

reject the unrewarded odor and seven times more likely to accept the rewarded odor (Fig. 3.2C). 

Interestingly, flies tended to reject odors quite close to the tip of the arm (Fig. 3.2E), suggesting 

that flies might accumulate evidence over time to make and commit to their decision – an aspect 

of fly behavior that has previously been studied(Groschner et al. 2018). These results indicate 

that fly choice behavior in this task can be thought of as a series of accept-reject decisions.   

https://paperpile.com/c/IHceXz/bcPFc+nuBHV+Qa8Ke
https://paperpile.com/c/IHceXz/bcPFc+nuBHV+Qa8Ke
https://paperpile.com/c/IHceXz/6iiJ
https://paperpile.com/c/IHceXz/nixiM
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Figure 3.2 Quantification of learning in the novel Y-arena (A) The time taken to make a choice 

decreases once reward is made available to the fly (mean +/- SEM). Inset: Average trial time for 

the first 20 trials is longer than the average trial for the last 20 trials (Wilcoxon signed-rank test: p 

= 6.292*10-4, n=18 flies). (B) The average choice time across 80 trials, measured from first exit of 

the air arm till entry into the reward zone, for two different summed probabilities of receiving 

reward (0.5 or 1). Average choice time decreases as the summed probability increases (Mann-

Whitney rank-sum test: p = 4.7653*10-4, n = 18 for summed probability = 1; n = 20 for summed 

probability = 0.5). (C) Percentage of odor arm entries that lead to accept or reject in a 100:0 

protocol. Flies show increased rejection of the unrewarded odor (Mann-Whitney rank-sum test: p 

= 3.2278 * 10-7, n = 18), and decreased rejection of the rewarded odor (Mann-Whitney rank-sum 

test: p= 3.2166 * 10-7, n = 18). (D) Histogram showing the number of rejects over time for rewarded 

and unrewarded odor choices.  Rejects decrease over time for the rewarded odor (Wilcoxon 

signed rank test: p =0.0171, n = 18, comparing bins 15-65 with 66-115 minutes - to exclude large 

time values when many flies had already finished the task), but not the unrewarded one (Wilcoxon 

signed rank test: p = 0.1839, n = 18). (E) Histogram showing the number of reversals as a function 

of distance along the odorized arm. The demarcation of “End” on the x-axis represents entry into 

the reward zone. (F) The average percentages of accepting and rejecting each odor - high-

rewarding (green), low-rewarding (orange) and unrewarded (blue) are graphically represented in 

a schematic of the Y-arena (n=10 flies). Flies increasingly accepted the high-rewarding 

odor(Mann-Whitney rank-sum test: p= 1.8267*10-4, n = 10), and displayed an increased 

probability of rejecting both low-rewarding and unrewarded odors, as compared to naive trials 

(Mann-Whitney rank-sum test: unrewarded odor: p = 1.8165*10-4, n = 10; rewarded odor: p = 

7.6854*10-4, n = 10). 
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We found that the odor-reward associations learnt by flies in our assay were MB dependent. 

Learning-related plasticity in the MB circuit requires the activity of dopaminergic neurons (DANs) 

(Séjourné et al. 2011; Hige et al. 2015; Cohn, Morantte, and Ruta 2015; Owald et al. 2015; Aso 

and Rubin 2016; Berry, Phan, and Davis 2018; Handler et al. 2019). Dopamine is sensed by odor-

representing Kenyon cells (KCs) and induces synaptic plasticity between these KCs and 

downstream mushroom body output neurons (MBONs)(Hige et al. 2015; Cohn, Morantte, and 

Ruta 2015). To interfere with this plasticity, we used a tissue-specific CRISPR knock-out 

strategy(Gratz et al. 2014) to knock out DopR1 receptors selectively in the KCs (Chapter 3.4 

Methods), which are necessary for flies to associate odors with rewards in other 

paradigms(Handler et al. 2019). These flies showed no detectable learning in the 100:0 protocol, 

compared to control animals (Fig. 3.1E). These findings establish that odor-reward associations 

in our novel behavioral essay are mediated by MB plasticity. 

 

We then asked whether flies could link odor cues with probabilistic rewards and distinguish 

between different reward probabilities, a key aspect of natural foraging. Importantly, we 

incorporated reward baiting into our probabilistic reward tasks(Sugrue, Corrado, and Newsome 

2004b; Bari et al. 2019). This means that rewards probabilistically become available and then 

persist until the reward is collected (Chapter 3.4 Methods). Baiting is commonly used in 

mammalian 2AFC tasks, as it is thought to mimic the natural processes of resource depletion and 

replenishment over time. We began with experiments in which a single odor was rewarded with 

a range of baiting probabilities: 1 (100:0 task), 0.8 (80:0 task) or 0.4 (40:0 task). Flies showed a 

preference towards the rewarded odor in all cases compared to a naive lack of preference 

indicated by the black line (Fig. 3.1F). The extent of the preference varied with the probability of 

reward - a higher probability of reward led to a stronger preference. Interestingly, flies made faster 

choices when rewards were more probable (Fig. 3.2B). 

 

https://paperpile.com/c/IHceXz/yx2yf+FMY9P+Qn4LA+bE9j8+9qoH8+yzvwV+udWCA
https://paperpile.com/c/IHceXz/yx2yf+FMY9P+Qn4LA+bE9j8+9qoH8+yzvwV+udWCA
https://paperpile.com/c/IHceXz/FMY9P+Qn4LA
https://paperpile.com/c/IHceXz/FMY9P+Qn4LA
https://paperpile.com/c/IHceXz/S5tiN
https://paperpile.com/c/IHceXz/udWCA
https://paperpile.com/c/IHceXz/q8sw+GAw9
https://paperpile.com/c/IHceXz/q8sw+GAw9
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These results show that flies can learn from probabilistic rewards but do not determine if they can 

store two associations simultaneously - another necessity for foraging. To test this, we designed 

a paradigm with a third odor, pentyl acetate (PA) included. This served as the unrewarded cue 

while we tested memory formation with the other two odors (Fig. 3.1G top). Flies first made 80 

unrewarded choices consisting of 40 choices between OCT and PA and 40 choices between 

MCH and PA. In the next 80 (Training) trials, one of OCT or MCH was assigned a high baiting 

probability (0.8) and the other a low probability (0.4). We alternated the training trials for the two 

different odors to ensure both relationships would be learnt simultaneously (see Chapter 3.4 

Methods). After pairing, flies preferred both rewarded odors over PA compared to their naive 

preference (Fig. 3.1G bottom). This choice preference was also reflected in their accept/reject 

behavior, with flies exhibiting a clear preference for accepting the high-rewarding odor (Fig. 3.2F 

right). Interestingly, in trials with the low-reward cue presented, there was an increased probability 

of rejecting both rewarded and unrewarded odors, as compared to naive trials (Fig. 3.2F left). This 

suggests the possibility that flies keep track of all the odor options potentially available in the 

environment and actually increase their rejection rate in the absence of the high-reward odor.   

 

Overall, these experiments establish the fly as a capable animal model for studying foraging 

behaviors. Individual flies in the Y-arena can learn multiple odor-reward associations and can do 

so in the face of probabilistic reward. Importantly, these relationships are mediated by synaptic 

plasticity at the KC-MBON synapses in the MB. This establishes a foundation to test how these 

animals perform in dynamic foraging tasks and assess how they respond to reward baiting 

probabilities that change over time.    
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Figure 3.3. Flies follow Herrnstein’s operant matching law (A) Matching of instantaneous 

choice ratio (blue) and reward ratio (black) in an example fly.  Schematics indicate the reward 

baiting probabilities for each odor in the three 80-trial blocks (top).  Individual odor choices are 

denoted by rasters, tall rasters - rewarded choices, short rasters - unrewarded choices. Curves 

show 10-trial averaged choice ratio and reward ratio, and horizontal lines the corresponding 

averages over the 80-trial blocks (bottom). A description of how rewards are determined on any 

given trial in this task can be found in the 3.4 Methods section. (B) Cumulative choices of the 

same example fly. The slope of the black lines indicate the block-averaged reward ratio in the 

three successive blocks; the blue line indicates the cumulative choices with slope representing 

choice ratio. The parallel slopes of the two lines indicate matching. (C) Block-averaged choice 

ratio is approximately equal to reward ratio, following the matching law, but with some 

undermatching (n=54 blocks from n=18 flies). (D) A “win-stay; lose-switch” model does not 

accurately capture the trial-by-trial staying and switching probabilities of flies. A 2x2 probability 

table indicating the joint probability of the action predicted by the model and the action made by 

the fly (n=18 flies, 3.4 Methods). (E) Change in instantaneous choice ratio around block changes 

(n = 16 transitions with large changes in baiting probabilities between blocks). (F) Analysis of 

choices following particular histories of experience. Choices made by flies over three consecutive 

past trials are represented by boxes of different colors. Colors represent odors chosen, and 

rewarded choices are represented by filled boxes. Probabilities of choosing the green and orange 

odor on the current trial conditional on this history are illustrated with associated values. 6 out of 

64 possible sequences are illustrated here. (G) Coefficients from logistic regression performed on 

fly choice behavior to determine the influence of 15 past rewards (top) and choices (bottom) on a 

fly’s present choice (blue). These coefficients were compared to coefficients predicted on shuffled 

data (black) (Wilcoxon signed-rank test: *** - p < 0.001, ** - p < 0.01, * - p<0.05, n = 18 flies). (H) 

Model fit quality (percentage deviance explained) for 15-trial logistic regression, 7-trial logistic 

regression and 1-trial logistic regression models. Null model used to calculate the quality metric 

is a logistic regression with 0-trial history and only bias (Wilcoxon signed-rank test comparing the 

null model prediction with each test model prediction; shown here as test model prediction 

subtracted by null model: *** - p < 0.001, n = 18 flies). (I) 15-trial logistic regression fit (purple) on 

behavior (blue) from the example fly from panel A, plotted from the 15th trial onwards to avoid 

edge effects. (J) Exponential timescales (𝜏) for each fly shown in Supp Fig. 2, estimated from 

fitting the leaky-integrator model (see 3.4 Methods). 

 

3.2.2 Flies follow Herrnstein’s operant matching law 

 

Foraging tasks are cognitively complex, involving two cues paired with different baiting 

probabilities that change with time. This requires animals to keep track of choice and reward 

history and form expectations to make adaptive choices. We designed our own dynamic foraging 

protocol to investigate how flies behave in such a scenario. The protocol consisted of three 
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consecutive blocks of 80 trials each. Flies made choices between two odors (OCT & MCH) that 

were paired with different baiting probabilities (Chapter 3.4 Methods). These probabilities 

remained fixed within a block and changed across blocks (Fig. 3.3A, example).  

 

 

Figure 3.4 All example instantaneous choice ratio and reward ratio plots. Matching of 

instantaneous choice ratio (blue) and reward ratio (black) in all example flies.   
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We found that flies exhibit operant matching behavior, similar to observations in monkeys, mice 

and honeybees(Sugrue, Corrado, and Newsome 2004b; Tsutsui et al. 2016; Bari et al. 2019; 

Greggers and Menzel 1993). Individual flies exhibited a strong correlation between choice ratio 

(defined as the ratio between the number of choices made towards option A and option B), and 

reward ratio (defined as the ratio between the number of rewards received upon choosing option 

A and option B), either calculated over entire blocks or over a short (ten-trial) window to capture 

short-term dynamics/fluctuations (Fig. 3.3A,B - example fly; Fig. 3.4 - all 18 flies; Chapter 2). This 

holds true across flies, as seen in the relationship between block-averaged reward ratios and their 

choice ratios (Fig. 3.3C). In such a plot the matching law predicts that all points will fall along a 

line with slope equal to one (the unity line). Flies appear to approximately follow the matching law 

with a slight amount of undermatching, signified by a slope less than one. Undermatching is 

commonly observed across species(Sugrue, Corrado, and Newsome 2004b; Lau and Glimcher 

2005; Tsutsui et al. 2016; Bari et al. 2019; Iigaya et al. 2019), and several reasons have been 

suggested for this tendency(Iigaya et al. 2019; Loewenstein and Seung 2006) (see Discussion).  

 

Past work has suggested that animals form expectations of reward and use this to guide behavior 

in such dynamic foraging tasks(Sugrue, Corrado, and Newsome 2004b; Lau and Glimcher 2005; 

Loewenstein and Seung 2006; Iigaya et al. 2019). When rewards are delivered probabilistically, 

animals can only derive an expectation of reward by tallying information over multiple trials. 

However, such tallying could reflect a computation beyond the capabilities of flies. We wanted to 

explicitly address the alternative hypothesis that flies follow a simple win-stay/lose-switch 

strategy, which would suggest that their behavior is dictated by only the most recent 

reward/omission experience. Simulating choice sequences using this learning rule produced 

output that somewhat resembled that of the fly (example in Fig. 3.4A).  However, it poorly captured 

the stay/switch probabilities actually observed in fly behavior data (Fig. 3.3D). In particular, 

switching occurred much more frequently than predicted. As further evidence that multiple past 

https://paperpile.com/c/IHceXz/q8sw+lHzf4+GAw9+JGOUk
https://paperpile.com/c/IHceXz/q8sw+lHzf4+GAw9+JGOUk
https://paperpile.com/c/IHceXz/q8sw+PL2GQ+lHzf4+GAw9+IqoEr
https://paperpile.com/c/IHceXz/q8sw+PL2GQ+lHzf4+GAw9+IqoEr
https://paperpile.com/c/IHceXz/IqoEr+Wf2d
https://paperpile.com/c/IHceXz/q8sw+PL2GQ+Wf2d+IqoEr
https://paperpile.com/c/IHceXz/q8sw+PL2GQ+Wf2d+IqoEr
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outcomes affected behavior, choices of an individual fly at block transitions showed a lag between 

the choice ratio curve and the updated reward ratio at transition points (Fig. 3.3B), suggesting 

that the fly takes a few trials to adjust its behavior. Quantifying this across multiple transitions for 

all flies in the task showed flies require 15-20 trials to reach a new steady state choice behavior 

following block switches (Fig. 3.3E).  

 

 

Figure 3.5 Analysis of the “win-stay lose-switch” and “leaky-integrator” models. (A) 

Example choice data generated by the “win-stay; lose-switch” model showing instantaneous 

choice ratio (blue) and reward ratio (black). (B) Schematic representing how the past trial history 

is weighted to calculate value in the “leaky-integrator” model. (C) Estimated inverse temperatures 

for each fly shown in Fig. 3.4. (D) Relationship between exponential timescale and inverse 

temperature. (E) Leaky-integrator model fit (purple) on behavior (blue) from the example fly in Fig. 

3.3A, plotted from the 15th trial onwards to avoid edge effects.  

 

It is possible that this lag could arise from averaging across multiple flies that switch at different 

trials after the transition. This could occur even if flies use just one past trial’s worth of information 

to learn about the change in reward, consistent with observations in larvae(Lesar et al. 2021). To 

qualitatively illustrate that flies learn using multiple trials worth of past information, we first looked 

at the decisions made by flies following example triplets of choices and outcomes (Fig. 3.3F), 

https://paperpile.com/c/IHceXz/MqRDF
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inspired by recent work in mice(Beron et al. 2022). For example, following three unrewarded 

choices of one particular odor, flies’ next choice was roughly random (Fig. 3.3F top left). However, 

when an odor was rewarded on the most recent trial or more distant trials, choices were biased 

towards that option (Fig. 3.3F middle and bottom left). In another comparison, flies’ tendency to 

switch back to an earlier choice (i.e. choose the green odor after an unrewarded choice of the 

orange odor) increased if that odor was rewarded in the recent past (Fig. 3.3F right).   

 

To measure the relationship between current choice and past outcomes more systematically, we 

used logistic regression to determine how a fly’s decisions depended on choice and reward 

history. Like other animals(Bari et al. 2019; Beron et al. 2022), flies showed a small amount of 

habitualness by choosing options that had been recently chosen more often; regression 

coefficients for a short history of recent choices were significantly positive compared to 

coefficients fit to shuffled data (Fig. 3.3G bottom). This approach also showed that the reward 

history was important for predicting choice, with many recent rewards weighted significantly (Fig. 

3.3G top). We compared regression models that predicted behavior based on different lengths of 

outcome histories (15, 7 and 1 trial) and found that the percentage of deviance explained over a 

null model with a 0-trial history was greater for models that used longer outcome histories (Fig. 

3.3H). An example fit from a regression model with a 15-trial history is shown in Fig. 3.3I. In 

alignment with the results of the regression model (Fig. 3.3G), we found that when fitting a leaky 

integrator model(Sugrue, Corrado, and Newsome 2004b), which assigns value to options using 

exponentially weighted reward histories (Fig. 3.4B-E), to the behavior of individual flies, an 

exponential timescale of 7 trials on average best predicted behavior (Fig. 3.3J). Together, these 

results show that flies’ choices follow operant matching, with choices depending on the history of 

many past choices and outcomes. 

https://paperpile.com/c/IHceXz/Wq3P
https://paperpile.com/c/IHceXz/GAw9+Wq3P
https://paperpile.com/c/IHceXz/q8sw
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Figure 3.6 Covariance-based learning rules are necessary for operant matching (A) 

Description of the model developed by Loewenstein and Seung to study the requirements of 

matching behavior. The neural network consists of sensory neurons S1 and S2 that respond to 

one of the two simultaneously provided stimuli and synapse onto motor neurons A1 and A2 via 

synapses with weights W1 and W2. Choices are determined via a winner-take-all computation 

downstream of motor neurons. Upon choice, weights are updated according to one of the shown 

plasticity rules (boxes-right). Here, Si is the activity of the ith sensory neuron; R represents the 

presence or absence of reward; E(Si) is the mean or expectation of the activity of Si and E(R) is 

the expectation of reward. (B) Left: Block-averaged choice ratio produced by the Si*[R-E(R)] 

covariances-based rule (box) plotted against reward ratio. The model exhibits matching behavior 

(slope is 1). Right: An example simulation showing the performance in a 3-block task of a model 

incorporating a covariance-based rule Si*[R-E(R)]. Task reward contingencies are the same as 

shown for the example fly in Fig. 2A. (C) Same as (B), but simulated with a [Si-E(Si)]*R rule. Left: 

The model exhibits matching behavior (slope is 1). Right: performance in a 3 block task where 

reward contingencies are the same as shown for the example fly in Fig. 2A. (D) Same as (B), but 

simulated with a [Si-E(Si)]*[R-E(R)] rule. Left: The model exhibits matching behavior (slope is 1). 

Right: performance in a 3-block task where reward contingencies are the same as shown for the 

example fly in Fig. 2A. (E) Same as (B), but simulated with a non-covariance (Si*R) learning rule 

using the task and circuit structure of the Loewenstein and Seung model shown in Supp. Fig. 4. 

Left: The model produces behavior that does not show matching (slope < 1). Right: performance 

in a 3-block task does not accurately replicate fly behavior. 

 

 

3.2.3 Covariance-based learning is required for matching behavior in a model of the MB 

 

Theoretical work has placed strong, testable constraints on the nature of learning rules that could 

underlie operant matching. An elegant theory put forward by Loewenstein and 

Seung(Loewenstein and Seung 2006) proves that operant matching is the inevitable outcome of 

plasticity rules that modify synaptic weights according to the covariation of neural activity signaling 

reward and sensory input (3.4 Methods).  Mathematically, covariance is the product of two 

variables with at least one being subtracted by its mean. The mean is simply the average reward 

and/or sensory input the animal experiences - an average that can also be expressed as the 

animal’s expectation. Comparing the current value to its expectation ensures that weights can be 

adjusted up or down. Importantly, only an animal that follows operant matching would receive 

rewards at a rate equal to the reward expectation for both options, which leads weights to stabilize. 

https://paperpile.com/c/IHceXz/Wf2d


 47 

Loewenstein & Seung mathematically formalized this intuitive link between expectation and 

matching and showed that when synaptic plasticity is the basis for operant matching, only a 

covariance-based plasticity rule can account for matching. 

 

They used a simple neural circuit model to illustrate their theory, with two different sensory inputs 

controlling different motor outputs and a decision determined by a winner-take-all interaction 

between those outputs (Fig. 3.6A). Interestingly, the structure of this model maps nicely onto the 

circuitry of the fly MB (Fig. 3.7A left). Sensory inputs are represented by the KCs, each odor 

activating a sparse subset of the KC population(Turner, Bazhenov, and Laurent 2008; Robert A. 

A. Campbell et al. 2013; Caron et al. 2013). KCs synapse onto MBONs, which guide motor output 

by signaling the valence of an odor i.e. its attractive/repulsive quality, rather than a specific 

action(Aso, Sitaraman, et al. 2014; Owald et al. 2015; Villar et al. 2022). KC-MBON synapses are 

modified by a plasticity rule that depends on the coincident activity of odor-representing KCs and 

release of dopamine by reward-signaling DANs (Séjourné et al. 2011; Hige et al. 2015; Cohn, 

Morantte, and Ruta 2015; Owald et al. 2015; Aso and Rubin 2016; Berry, Phan, and Davis 2018; 

Handler et al. 2019; Jiang and Litwin-Kumar 2021) (Fig. 3.7A - center, box). Current evidence 

indicates that postsynaptic activity of the MBON does not play a role in the plasticity (Modi, Shuai, 

and Turner 2020), so only the sensory and reward activity needs to be considered. Either or both 

of these terms could incorporate an expectation resulting in a covariance-based rule (Fig. 3.7A - 

center, box). DANs could incorporate reward expectation ([R - E(R)]) by subtracting a running 

average of reward activity (E(R)) from the current reward-related activity (R). Similarly, KCs could 

incorporate sensory expectation ([Si - E(Si)]) by calculating an average sensory experience, 

possibly by a mechanism that involves meta-plasticity and synaptic eligibility traces.  

 

 

 

https://paperpile.com/c/IHceXz/uyMvP+l8nVo+nazkr
https://paperpile.com/c/IHceXz/uyMvP+l8nVo+nazkr
https://paperpile.com/c/IHceXz/6UsSQ+bE9j8+ZRHxV
https://paperpile.com/c/IHceXz/yx2yf+FMY9P+Qn4LA+bE9j8+9qoH8+yzvwV+udWCA+Fm1Zh
https://paperpile.com/c/IHceXz/yx2yf+FMY9P+Qn4LA+bE9j8+9qoH8+yzvwV+udWCA+Fm1Zh
https://paperpile.com/c/IHceXz/yx2yf+FMY9P+Qn4LA+bE9j8+9qoH8+yzvwV+udWCA+Fm1Zh
https://paperpile.com/c/IHceXz/lHlF
https://paperpile.com/c/IHceXz/lHlF
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Figure 3.7 Covariance -

based learning is 

required for matching 

behavior in a model of the 

MB. (A) Left: Schematic 

representing the MB with all 

relevant neurons shown in 

different colors (key). 

Center: Box containing 

candidate reward 

dependent synaptic 

plasticity rules at the KC-

MBON synapse. Right: 

Schematic of our MB model 

developed by adapting 

Loewenstein & Seung’s 

model to more closely 

resemble the MB and the 

features of our olfactory 

task. In the modified task, 

agents only experience one 

odor at a time. Reward 

information is provided to 

this circuit via DAN activity 

which either represents 

simply reward (R) or reward 

minus reward expectation 

(R-E[R]). Weights between 

inputs and MBON are 

modified according to 

plasticity rules shown in 

Center. MBON output 

determines probability of 

rejecting an odor and is passed through a sigmoidal nonlinearity to determine action. (B) Left: 

Block-averaged choice ratio produced by the [Si-E(Si)]*[R-E(R)] covariances-based rule (box) 

plotted against reward ratio. The model exhibits matching behavior (slope is 1). Right: An example 

simulation showing the performance in a 3 block task of a model incorporating a covariance-

based rule [Si-E(Si)]*[R-E(R)]. Task reward contingencies are the same as shown for the example 

fly in Fig. 3.3A. (C) Same as (B) but simulated with a non-covariance learning rule. Left: The 

model produces behavior that does not show matching (slope < 1). Right: performance in a 3-

block task does not show matching of choice and reward ratio. 
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Figure 3.8 Models using covariance-based learning rules produce behavior more similar 

to real fly behavior (A) Left: Block-averaged choice ratio produced by the Si*[R-E(R)] 

covariances-based rule (box) plotted against reward ratio. The model exhibits matching behavior 

(slope is 1). Right: An example simulation showing the performance in a 3-block task of a model 

incorporating a covariance-based rule Si*[R-E(R)]. Task reward contingencies are the same as 

shown for the example fly in Fig. 3.3A. (B) Same as (A), but simulated with a [Si-E(Si)]*R rule. 

Left: The model exhibits matching behavior (slope is 1). Right: performance in a 3 block task 

where reward contingencies are the same as shown for the example fly in Fig. 3.3A. (C) Same 

as (A), but simulated with a [Si-E(Si)]*[R-E(R)] rule. Left: The model exhibits matching behavior 

(slope is 1). Right: performance in a 3-block task where reward contingencies are the same as 

shown for the example fly in Fig. 3.3A. (D) Same as (A) but simulated with a non-covariance 

(Si*R) learning rule. Left: The model produces behavior that does not show matching (slope < 1). 

Right: performance in a 3-block task does not show matching of choice and reward ratio. 

 

 

To fully adapt the theoretical framework of Loewenstein & Seung to the biological network in the 

MB, we had to make a few changes (Fig. 3.7A right, 3.4 Methods). First, odors are represented 

by noisy populations of KCs (Turner, Bazhenov, and Laurent 2008; Caron et al. 2013; Robert A. 

A. Campbell et al. 2013). We thus parameterized input representations in the model to incorporate 

noise and overlap of KC subsets between options. Second, in our task flies only experience one 

odor at a time, so only one set of KCs is updated on a given trial. Although Loewenstein & Seung’s 

original theory does not account for this possibility in its proof, we extended it to this case and 

found that a covariance-based plasticity rule is still necessary and sufficient to produce matching 

(3.4 Methods). Third, plasticity between MBONs and KCs are modified by a synaptic depression 

rule(Hige et al. 2015; Owald et al. 2015). We thus flipped the sign of the synaptic weight update 

rule. Finally, MBON activity determines whether flies accept or reject an odor rather than a winner-

take-all decision mechanism (Aso, Sitaraman, et al. 2014; Owald et al. 2015) (Fig. 3.7A). We 

incorporated this into our model by having MBON activity encode the probability of rejecting an 

odor, with higher activity representing a greater probability to reject. This MBON activity was then 

passed through a sigmoidal nonlinearity to determine behavioral output.  

 

https://paperpile.com/c/IHceXz/uyMvP+nazkr+l8nVo
https://paperpile.com/c/IHceXz/uyMvP+nazkr+l8nVo
https://paperpile.com/c/IHceXz/FMY9P+bE9j8
https://paperpile.com/c/IHceXz/6UsSQ+bE9j8
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We then evaluated whether these changes affect the relationship between covariance-based 

rules and matching. We used this MB-aligned model to simulate behavior arising from covariance 

rules that incorporated stimulus-expectation, reward-expectation or both (Fig. 3.7, Fig. 3.8). 

Consistent with the theory, all three covariance-based rules gave rise to a choice-ratio versus 

reward-ratio relationship that followed the matching law (Fig. 3.7B left, Fig. 3.8A,B,C left). In 

contrast, a rule that did not incorporate either reward or stimulus expectation did not follow the 

matching law and instead yielded a flat slope (Fig. 3.7 left, Fig. 3.8D left).  For comparison, we 

also examined the behavior produced by the original model in a distinctly different task and 

observed similar results (Fig. 3.6A-E). Note that in the Loewenstein & Seung task, both options 

are always present when reward is delivered, which leads to a slope in between flat and unity 

when a non-covariance rule is used (Fig. 3.6E left). However, if only one option is present when 

an animal is rewarded, as in the fly task, synapses saturate and a non-covariance rule leads to a 

flat choice-ratio versus reward-ratio relationship (Fig. 3.7C left).   

 

To get a more refined view of model performance, we examined the trial-by-trial behavior each 

plasticity rule generates. Models that incorporate covariance-based plasticity rules nicely replicate 

the trial-by-trial behavior of flies, tracking changes in the reward contingencies across blocks, with 

the resulting instantaneous choice ratio biased towards the more rewarded option in each block 

(Fig. 3.7B right; Fig. 3.6B-D; Fig. 3.8A-C right). On the other hand, both the MB-inspired model 

and Loewenstein & Seung’s model do not capture trial-by-trial behavior well when a non-

covariance rule is incorporated, with choices made roughly equally to both options throughout 

(Fig. 3.7C right, Fig. 3.6E right, Fig. 3.8D right).  This reflects the fact that when value updates 

only depend on sensory input and reward, plasticity is unidirectional. Consequently, synapses 

representing the two options will both be driven to low levels, although at slightly different rates, 

so that ultimately both options are chosen roughly equally. Overall, these results show that a 
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model constrained by the network architecture of the MB more closely reproduces fly behavior 

when it operates according to a covariance-based plasticity rule.  

 

Figure 3.9 Identifying 

learning rules underlying 

dynamic foraging in the MB. 

(A) Schematic detailing the 

logic of the MB-inspired 

regression model. This model 

was used to predict the 

behavior of and learning rules 

used by each individual fly that 

experienced the task described 

in Fig. 3.3. (B) Example fly data 

(blue) showing the probability of 

accepting odor 1 (top) and odor 

2 (bottom) calculated over a 6-

trial window as a function of the 

number of times the fly 

experienced the given odor. 

This data was fit using an MB-

inspired regression model (A) 

that incorporates either a 

covariance-based rule with 

sensory and reward 

expectations (brown), just sensory expectations (black), just reward expectation (grey), or a non-

covariance rule (red). © Change in percentage deviance explained, computed by subtracting the 

percentage deviance explained of the non-covariance-based model from a covariance-based rule 

that incorporates reward expectation (n = 18 flies). On average, fly behavior was better predicted 

by the covariance-based model (Wilcoxon signed-rank test: p = 0.0018). Individual flies that were 

better fit by the covariance-based model have a positive value on this plot (gray region) while flies 

better fit by the non-covariance-based model have a negative value (red region). (D) Regression 

coefficients assigned to each term of the plasticity rule when the MB-inspired regression model 

using a covariance-based rule with reward-expectation was fit to the flies’ behavior. As in C, the 

model was fit to each fly resulting in 18 different values for the coefficients. Largest coefficients 

were observed to have been assigned to the product term. (E) Change in percentage deviance 

explained (shown in C), plotted against a measure of undermatching (mean square error between 

instantaneous choice ratio and reward ratio lines) for each fly (n = 18). The best fit line of the 

scatter, calculated by a linear regression is shown in orange. (F) Coefficient value assigned to the 

product term (shown in D), plotted against a measure of undermatching for each fly (n = 18). The 

best fit line of the scatter, calculated by a linear regression is shown in orange.  
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3.2.4 Identifying learning rules underlying dynamic foraging in the MB  

 

To test if our theoretical prediction of a covariance-based rule is supported by the observed 

behavior, we developed an approach that estimated the form of the plasticity rule being used in 

the fly MB. Our goal was to break the plasticity rule into components that span a space of possible 

rules and use optimization approaches to predict trial-by-trial behavior of each individual fly to 

assign coefficients to each of these components. In this way we would identify the form of the 

plasticity rule that best explained observed behavior and be able to conclude if this rule was a 

covariance-based rule. 

 

We used the structure of the MB-inspired generative model (Fig. 3.7A) to build a predictive model 

and test how it fits the accept/rejection decisions made by the fly on each odor encounter.  

However, rather than utilizing a pre-defined plasticity rule, the predictive model used a rule 

composed of four terms that were candidate components of the MB learning rule (Fig. 3.9A).  We 

then used logistic regression to assess which of these terms contributed the most when fitting fly 

behavioral data (3.4 Methods). The four terms were: a constant term governing overall learning 

rate, a KC term reflecting sensory input, a DAN term representing reward, and finally the product 

of KC and DAN activity. By definition, this product term becomes a covariance calculation when 

either of its elements are subtracted by their mean values, i.e., when either reward and/or sensory 

expectation are incorporated (Fig. 3.7A center box). We considered four model variants, a non-

covariance one that lacked any expectation term and three different covariance-based rules 

where either KC or DAN or both were subtracted by their expectation. At every iteration of the 

logistic regression, the model prediction was compared to experimentally observed fly behavior, 

and regression coefficients were updated. Once the fit was optimized, we evaluated which term 

contributed the most to the fit by examining the weights of each coefficient.   
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Figure 3.10 Extent of sensory overlap does not affect the behavior of our model. (A) 

Example simulated data in an experiment that consisted of 3 blocks of 80 trials each with baiting 

probabilities changing between blocks, showing the probability of accepting odor 1 (left) and odor 

2 (right) (blue), simulated using a covariance-based rule with reward expectation, and fit using an 

MB-inspired regression model (A) that incorporates either the same rule (gray), or a non-

covariance rule (red). The predictions resulting from the model using the covariance-based rule 

is a better fit for the simulated data. Note: While the number of trials is 240, what we are plotting 

is the probability of accepting an odor upon experiencing it. Flies reject odors a lot and so the 

number of odor experiences is much more than 1 per trial leading to the x-axis of these plots 

having more than 1000 experiences. (B) Change in the percentage deviance explained between 

non-covariance and a covariance-based model. Both models are used to predict behavior 

simulated using a covariance-based rule (as in A). The change in goodness of fit is computed by 

subtracting the percentage deviance explained of the non-covariance-based regression models 

predictions from the predictions of the model with covariance-based rule. This is plotted for each 

simulation (n = 50). The covariance-based rule better fits the simulated behavior than the non-

covariance-based rule (Wilcoxon signed-rank test: p = 6.7595 * 10-9). (C) Regression coefficients 

assigned to each term of the learning rule when the MB-inspired regression model using a 

covariance-based rule with reward expectation was fit to the simulated behavior. Note the non-

zero weight of the c and d terms. (D) Block-averaged choice ratios versus reward ratios (n = 300 

simulations) from data simulated using a covariance-based rule with reward expectation are 

plotted against each other. Sensory overlap 𝛼 = 0. (E) Block-averaged choice ratios versus reward 

ratios (n = 300 simulations) from data simulated using a covariance-based rule with reward 

expectation are plotted against each other. Sensory overlap 𝛼 = 0.05. (F) Block-averaged choice 

ratios versus reward ratios (n = 300 simulations) from data simulated using a covariance-based 

rule with reward expectation are plotted against each other. Sensory overlap 𝛼 = 0.15. (G) Block-

averaged choice ratios versus reward ratios (n = 300 simulations) from data simulated using a 

covariance-based rule with reward expectation are plotted against each other. Sensory overlap 𝛼 

= 0.2. (H) Change in percentage deviance explained, computed by subtracting the percentage 

deviance explained of the covariance-based regression model with overlap = 0.1, from that of 

regression models with covariance-based rules and different amounts of overlap 

(0,0.05,0.15,0.2). Points are plotted for each simulation (n = 50). Simulations were run with 

overlap 𝛼 = 0.1. (I) Change in percentage deviance explained, computed by subtracting the 

percentage deviance explained of the covariance-based regression model with exponential 

timescale (𝜏)= 3.4, from that of regression models with covariance-based rules and different 

exponential timescales. Points are plotted for each simulation (n = 50). Simulations were run with 

exponential timescale (𝜏)= 3.4. 

 

Before applying this approach to fly data, we validated it by determining whether it correctly 

identifies the relevant term when tested with choice sequences that were simulated using a 

covariance-based learning rule that only incorporates reward expectation. Indeed, the fit quality 

was clearly better with a model that incorporated reward expectation (Fig. 3.10A,B). Moreover, 
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the largest weights were correctly assigned to the KC-DAN product term, the term that calculates 

the covariance between these two elements (Fig. 3.10C). Additionally, our simulations suggested 

that the extent of matching and the accuracy of learning rule fits were largely unaffected by either 

the degree of overlap in KC activity patterns or the timescale over which rewards were integrated 

(Fig. 3.10D-I). Consequently, for simplicity we then used overlap of zero and an exponential 

timescale of 3.4 trials in all future analysis.  

 

We then applied our approach directly to the behavioral data from individual flies performing the 

dynamic foraging task. A representative example showing fly behavior and model predictions can 

be seen in Fig. 3.9B. This example suggests that models with covariance-based rules may better 

resemble the flies’ behavior. To quantitatively compare fit quality of the different models, we 

calculated the percentage deviance explained for every individual fly. This metric showed that 

regressions that utilized rules with sensory expectation, reward expectation, or both were 

objectively better fits for fly behavior (Fig. 3.9C, Fig. 3.11A).  

 

Overall, we found that learning rules that incorporated sensory and/or reward expectation yielded 

better fits to fly behavior than non-covariance rules. To distinguish between these different 

expectation-based learning rules, we examined the regression coefficients. When we fit a rule 

with only reward expectation, the regression assigned the KC-DAN product, i.e. the covariance 

term, the largest weight (Fig. 3.9D, Fig. 3.11B). On the other hand, fitting using either of the two 

covariance rules that incorporated sensory expectations yielded large coefficients to the non-

covariance terms containing either KC or DAN activity alone (Fig. 3.11B). We observed a similar 

result when we fit simulated data from an agent using a reward expectation-based learning rule 

(Fig. 3.11C). However, when the behavior was simulated and fit using the same sensory 

expectation rule, the covariance term was given the most weight (Fig. 3.11E). These results 

suggest that flies use a reward-expectation based covariance rule to guide behavior.   
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Figure 3.11 Covariance-based learning rules are better predictors on individual choice 

behavior. (A) Change in percentage deviance explained, computed by subtracting the 

percentage deviance explained of the non-covariance-based model from three models with 

covariance-based rules when fit to fly behavior (left: incorporating both stimulus and reward 

expectations; center: incorporating just stimulus expectation, right: incorporating just reward 

expectation - same as Fig. 3.9C) plotted for each fly (n = 18). Covariance-based rules were more 

predictive of fly behavior on average (Wilcoxon signed-rank test: left, p=0.0074; center, p = 

0.0168, right, p = 0.0018). (B) Regression coefficients assigned to each term of the learning rule 

when the MB-inspired regression model was fit to the flies’ behavior. All four flavors of model were 

fit and are indicated on the left. (C) Regression coefficients assigned to each term of the learning 

rule when the MB-inspired regression model was fit to data simulated with a reward-expectation-

based covariance rule. All four flavors of model were fit and are indicated to the left of B. (D) 

Correlation between regression coefficients resulting from MB-inspired regression models fit to 

flies’ behavior. All four flavors of model were fit and are indicated to the left of B. (E) Regression 

coefficients assigned to each term of a covariance-based learning rule with only stimulus 

expectation, when the MB-inspired regression model was fit to data simulated with the same rule. 

 

Interestingly, we found that in some flies the simple expectation-free non-covariance rule was a 

better fit. One possible explanation for this result is that these flies showed operant matching to a 

lesser extent. We thus quantified matching by calculating the mean squared error between 

instantaneous choice and reward ratios and found that different strengths of matching across flies 

were correlated with how well an expectation-free plasticity rule fit the behavior data (3.4 

Methods). Flies that were better fit by the expectation-free rule tended to show more 

undermatching, in line with our predictions (Fig. 3.9E). Consistent with this, the weight of the 

covariance term coefficient was greater in flies that exhibited stronger matching behavior (Fig. 

3.9F). To examine whether some flies were better fit by a non-covariance rule because our 

approach might inaccurately assign weights to a combination of correlated terms in the learning 

rule, we examined the correlations between pairs of coefficients. However, we found no consistent 

statistical relationship (Fig. 3.11D; 3.4 Methods). Overall, this general approach allowed us to 

estimate the learning rule the fly uses directly from behavioral data, providing clear evidence that 

a reward-expectation-based covariance rule is important in the MB. 
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Figure 3.12 Behavioral evidence of reward expectation in DANs. (A) Instantaneous choice 

ratio over trial number, for a simulated agent using a covariance-based rule with reward 

expectation in 80:20 (orange) and 100:0 (red) tasks. (B) As (A) except it shows fly behavior when 

providing sugar sensory optogenetic reward instead of simulation (100:0, n=8 flies; 80:20, n = 6). 

(C) Average choice ratios of individual flies from C showing significant learning in both 100:0 and 

80:20 protocols (Wilcoxon signed-rank test: 100:0, p = 0.0039; 80:20, p = 0.0312). (D) As (A), 

except for an agent using a non-covariance rule. (E) As (B) except reward provided via the PAM 

DANs using R58E02-Gal4 to drive UAS-CSChrimson (n=8 flies in both 80:20 and 100:0). Dashed 
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line in (D) and (E) indicates the maximum possible performance of agent in B in the 100:0 protocol. 

(F) Average choice ratios of individual flies from D. Flies showed a significant preference towards 

the rewarded odor in 100:0 but not 80:20 (100:0, p = 0.0391; 80:20, p = 0.1875). (G) The 

instantaneous choice ratio of an example fly receiving DAN optogenetic reward performing the 

dynamic foraging protocol plotted against trial number plotted as in Fig. 3.3A. (H) Block-averaged 

choice ratios against reward ratios for flies with DAN reward (n = 26 flies, 3 blocks each). Best fit 

lines: red - DAN reward, blue - Gr64f sugar sensory reward (Fig. 3.6C). (I) Block-averaged choice 

ratios against reward ratios (n = 50) from data simulated using a non-covariance-based rule. Best 

fit lines: black - simulated data, red - DAN reward. (J) Instantaneous choice ratio around block 

changes. Flies trained with Gr64f activation in blue, DAN activation in red. (K) As (J) but with 

simulated agents using either a covariance-based rule in blue or non-covariance rule in red. (L) 

Example fly data showing probability of accepting odors against experience number(blue) with 

DANs activated as reward. Fit using a model (see Fig. 3.9) that incorporates either a covariance-

based rule (gray), or a non-covariance rule (red). (M) Change in percentage deviance explained, 

computed by subtracting the percentage deviance explained of the non-covariance-based model 

from a covariance-based rule, plotted for each fly (n = 26). On average, fly behavior was better 

predicted by the non-covariance-based model (Wilcoxon signed-rank test: p = 0.0164).  

 

3.2.5 Behavioral evidence of reward expectation in DANs 

 

We next wanted to experimentally verify that a reward-expectation-based covariance rule in 

particular guided learning and choice behavior in the fly MB. The mathematical differences 

between the three different covariance rules suggested a way forward (3.4 Methods). In particular, 

the rules differ in which terms - sensory input or reward - incorporate an expectation. Thus, to 

distinguish between the possible different covariance-based rules in the MB, we designed an 

experiment to manipulate the calculations of reward expectation using genetic tools that override 

the natural activity of the DANs. Specifically, we provided reward via optogenetic activation of the 

reward-related protocerebral anterior medial (PAM) DANs. This would bypass any upstream 

computation of reward expectation and simply provide a reward presence signal on every trial. 

Such a manipulation would change the learning rule from a covariance-based rule to a non-

covariance rule if the following conditions were met: i) the animal’s learning rule depended on the 

product of DAN and KC activities; ii) DAN activity incorporated reward expectation; iii) KC activity 

did not incorporate sensory expectation. This would in turn result in modified behavior. For this 
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test we initially focused on a task consisting of two blocks (naive and training) of 60 trials each, 

with a reward ratio of either 100:0 (one odor has a baiting probability of 100% and the other is 

never rewarded) or 80:20 (one odor has a baiting probability of 80% and the other 20%) in the 

second block (3.4 Methods).  

 

We first predicted how behavior in these protocols would differ between covariance-based and 

non-covariance rules using simulations. As expected, covariance-based models learnt to choose 

the more rewarded option more often, with choice ratios reflecting reward ratios (Fig. 3.12A, Fig. 

3.13A,B). The behavior of the model with any covariance-based rule was similar to the fly behavior 

when it was rewarded using the sugar neurons (Fig. 3.12B,C). On the other hand, non-covariance 

rules led to preferences saturated around 75% in 100:0 and 50% with the 80:20 reward ratio (Fig. 

3.12D). These theoretically predicted preferences very closely match our observations of fly 

behavior in the DAN activation experiments (Fig. 3.12E,F). We observed low plateau performance 

in both tasks (Fig. 3.12E,F), with values strikingly similar to that predicted by the non-covariance 

rule (Fig. 3.12D).  

 

Figure 3.13 Covariance-based 

learning rules produce similar 

behavior in 100:0 and 80:20 

tasks. (A)Simulated instantaneous 

performance plotted as a function 

of trial number (defined as the 

percentage of choices towards the 

option with higher pre-defined 

baiting probability in a 10-trial 

window) of an agent using a 

covariance-based rule with sensory 

and reward expectations in 80:20 (orange) and 100:0 (red) reward conditions. (B) Simulated 

instantaneous performance plotted as a function of trial number (defined as the percentage of 

choices towards the option with higher pre-defined baiting probability in a 10-trial window) of an 

agent using a covariance-based rule with sensory expectation. 
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Figure 3.14 Circular arena experiments to control for rewarding red LED intensity. (A) 

Schematic of the experimental paradigm used to train flies in the circular arena. LED intensity 

chosen to be 2.3 mW/cm2 to match intensity in the Y-arena. (B) Time averaged performance index 

(see 3.4 Methods) plotted for DAN trained and Gr64f trained flies show that both learn to prefer 

the reward-paired odor (Wilcoxon signed-rank test: Gr64f - n = 6 groups of ~20 flies each, p = 

0.0312; DAN - n = 8 groups of ~20 flies each, p = 0.0078). (C) Performance index (mean in black, 

standard error in grey) plotted over timecourse of testing period for DAN trained flies. The black 

horizontal line represents the period during which odors were present in the arena. (D) 

Performance index (mean in black, standard error in grey) plotted over timecourse of testing 

period for Gr64f trained flies. The black horizontal line represents the period during which odors 

were present in the arena. 

 

One potential concern with these experiments is that differences in the efficacy of optogenetic 

activation of the DANs deep in the central brain versus the peripherally located Gr64f neurons 

could contribute to these behavioral differences. However, when flies were instead made to 

choose between reward-associated or unrewarded odors in a circular arena previously used to 

assess learning in flies (Aso and Rubin 2016) we found that both PAM DAN and Gr64f sugar 

neuron activation drove similar learning (Fig. 3.14A-D). Since the LED intensity in the circular 

arena (2.3 mW/cm2) was closely matched to that in the Y-arena (1.9 mW/cm2), differences in 

https://paperpile.com/c/IHceXz/9qoH8
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optogenetic efficacy cannot explain the range of behavioral patterns seen in the circular and Y 

arenas. All data are consistent with the interpretation that PAM activation bypasses the 

computation of reward expectation and converts a covariance rule into a non-covariance rule. In 

particular, learning via the non-covariance plasticity rule only modifies weights from Kenyon cells 

that respond to the rewarded odor, which increases the acceptance probability of the rewarded 

odor without changing behavior to the unrewarded odor. According to this model, performance 

saturates in the Y-arena because the fly repeatedly encounters the unrewarded odor by chance, 

and their initial tendencies for accepting the odor option never change; performance does not 

saturate in the circular arena because a fly that that has learned to accept the rewarded odor will 

stop exploring and cease to encounter the unrewarded option.  

 

We next examined how bypassing reward expectation affects matching behavior. When tested 

with the same three-block matching design as earlier, but now providing a consistent reward 

signal via direct DAN stimulation, flies exhibited strongly diminished matching behavior (Fig. 

3.12G,H). The slope of the choice-ratio versus reward-ratio plot was lower than that observed 

with Gr64f-driven reward and approached the flat line predicted by simulations of behavior with a 

non-covariance-based learning rule (Fig. 3.12I). The instantaneous choice ratio and reward ratio 

of an example fly (Fig. 3.12G) suggested that this flattening arises because choice ratios are 

never strongly biased to either odor. This is again explained by the uni-directional non-covariance 

rule. In agreement with this, changes in choice ratio at block transitions were much flatter with 

DAN reward than with Gr64f, as expected by the differences between the covariance-based and 

non-covariance models (Fig. 3.12J,K). To quantitatively evaluate whether providing reward with 

DAN activation changed the learning rule from covariance-based to a non-covariance rule, we fit 

our MB-inspired regression models (Fig. 3.9A) to fly data produced with DAN reward. We found 

that the non-covariance rule was the better fit (Fig. 3.12L,M). We found through these experiments 

that bypassing the computation of reward expectation changes fly choices from resembling 
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behavior produced by a covariance-based learning rule to behavior expected from a non-

covariance rule. In particular, the results suggest this covariance-based rule is located in the fly 

MB and incorporates reward expectation but not sensory expectation.  

 

Altogether, our results support the theory that covariance-based learning rules that incorporate 

reward expectation are necessary for operant matching. It suggests that reward expectation 

signal is calculated in the DANs of the fly MB and provides the first mapping of learning rules 

underlying operant matching onto plasticity mechanisms at specific synapses.  

 

3.3 Discussion 

 

The foraging strategies used by animals play a key role in their survival. Operant matching is one 

simple and ubiquitous behavioral strategy, utilized in dynamically changing and probabilistic 

environments. Despite the ubiquity of this strategy and its strong theoretical foundation, little is 

known about the underlying biological mechanisms. We leveraged the growing body of knowledge 

regarding learning in the fruit fly, and the plethora of available anatomical tools, to identify these 

mechanisms. We developed a foraging task that allowed us to monitor choices of individual 

fruitflies and showed, for the first time, that flies follow Herrnstein’s operant matching law. 

Combining experimental results with computational modeling, we found that this behavior requires 

synaptic plasticity and uses a rule that incorporates expectation of reward via the rewarding PAM 

DANs. Our results provide the first mapping of the learning rule underlying operant matching onto 

the plasticity of specific synapses – the KC-MBON synapses in the MB. 
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3.3.1 Does the ubiquity of operant matching imply a common mechanistic framework? 

 

When choosing between options that predict reward with different probabilities, mammals, birds 

and insects all follow Herrnstein’s matching law(Greggers and Menzel 1993; Richard J. Herrnstein 

1997; Sugrue, Corrado, and Newsome 2004b; Lau and Glimcher 2005; Tsutsui et al. 2016; Bari 

et al. 2019; Iigaya et al. 2019). This is clear at the global, trial-averaged level, where choice ratios 

are roughly equal to reward ratios, but is also true at the trial-by-trial level (Fig. 3.3A). In fact, we 

found that individual choices made by flies depended on choice and reward information received 

over multiple past trials (Fig. 3.3G-H). This is in agreement with what has been observed in mice 

and monkeys(Lau and Glimcher 2005; Bari et al. 2019) and suggests that these animals all make 

use of similar kinds of information to guide their behavior. Flies also show an increase in speed 

of choice when rewarded, another common signature of learnt behavior in mice and 

monkeys(Tsutsui et al. 2016; Bari et al. 2019) (Fig. 3.2B,C).  

 

It is unclear whether these behavioral similarities result from underlying mechanisms that are 

shared across species. At its surface, mechanistic similarities seem likely. For example, neural 

signals that subtract reward expectation from reward – a key component of the plasticity rules 

underlying matching shown here –  can be found in the form of a reward prediction error in many 

different animals(Schultz, Dayan, and Montague 1997; Berns et al. 2001). Nevertheless, such a 

signal on its own is not sufficient to produce matching; it needs to be incorporated into a 

covariance-based plasticity rule in a behaviorally relevant circuit. On the other hand, while 

learning values of options via synaptic plasticity is the traditional mechanistic framework thought 

to underlie such foraging decisions(Wickens, Reynolds, and Hyland 2003; Soltani and Wang 

2006), recent work has found signatures of graded neural responses proportional to value during 

inter-trial-intervals, suggesting a persistent-activity-based mechanism for foraging decisions that 

may not require synaptic plasticity(Bari et al. 2019; Hattori et al. 2019). Associated modeling 

https://paperpile.com/c/IHceXz/JGOUk+peC3+q8sw+PL2GQ+lHzf4+GAw9+IqoEr
https://paperpile.com/c/IHceXz/JGOUk+peC3+q8sw+PL2GQ+lHzf4+GAw9+IqoEr
https://paperpile.com/c/IHceXz/JGOUk+peC3+q8sw+PL2GQ+lHzf4+GAw9+IqoEr
https://paperpile.com/c/IHceXz/PL2GQ+GAw9
https://paperpile.com/c/IHceXz/lHzf4+GAw9
https://paperpile.com/c/IHceXz/K7mI+ZaC5e
https://paperpile.com/c/IHceXz/VWc2E+aKnF
https://paperpile.com/c/IHceXz/VWc2E+aKnF
https://paperpile.com/c/IHceXz/GAw9+eXR1T
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efforts suggest matching can arise from models that don’t incorporate synaptic learning(J. X. 

Wang et al. 2018; Loewenstein and Seung 2006).  

 

While both synaptic plasticity and non-plasticity mechanisms can explain the observed behaviors, 

each makes different testable assumptions about the underlying neural architecture(Pereira-

Obilinovic et al. 2022) and the effect of changing environmental conditions on the behavior. For 

example, if one eliminated reward baiting in our experiment, a circuit using a covariance-based 

plasticity rule would still give rise to behavior that follows Herrnstein’s matching law. In this case, 

following such a law would lead the animal to always choose the option with higher reward 

probability. On the other hand, if matching behavior was produced using a different mechanism, 

the lack of reward-baiting might give rise to different strategies, such as the probability matching 

strategy commonly observed in mice under these conditions(Beron et al. 2022). Experiments to 

identify which mechanisms are used by different brains, and theoretical work to understand why, 

would therefore provide important insight into circuit function and the neural basis of operant 

matching. 

 

3.3.2 Beyond covariance-based synaptic plasticity 

 

Our behavioral evidence suggests that synaptic plasticity in the mushroom body depends on 

reward expectations through a simple covariance-based plasticity rule. We identified this plasticity 

rule by the process of elimination. First, we narrowed our focus to the three minimal covariance-

based plasticity rules inspired by architecture of the MB. Importantly, Loewenstein and Seung 

showed that these rules produce matching. We then showed that only one of the three rules also 

explains the results of the DAN-activation experiment. It’s important to recognize that more 

complex plasticity rules may be consistent with our data and necessary to explain future 

mechanistic and behavioral data. For instance, the plasticity rule could be augmented by adding 

https://paperpile.com/c/IHceXz/iR9Uw+Wf2d
https://paperpile.com/c/IHceXz/iR9Uw+Wf2d
https://paperpile.com/c/IHceXz/EE85
https://paperpile.com/c/IHceXz/EE85
https://paperpile.com/c/IHceXz/Wq3P
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any term that averages to zero in the matching task. The plasticity rule could also be changed to 

involve a nonlinear function of the current synaptic weight, presynaptic KC activity, and 

postsynaptic MBON activity. The fundamental requirement of Loewenstein and Seung’s theory is 

merely that the plasticity rule ultimately drives the covariance between neural activity and reward 

to zero.  

 

Loewenstein and Seung’s theory provides an impressively general link between operant matching 

and covariance-based plasticity, but it does make several assumptions that may be violated in 

the fly. For instance, the theory assumes that plasticity only occurs when the animal makes a 

choice, with weights fixed between decisions (3.4 Methods). In our current paradigm, this means 

that no plasticity occurs when the fly rejects an odor or otherwise explores and navigates through 

its environment. In contrast, DANs encode a variety of motor variables and are not locked to 

choice or reward (Cohn, Morantte, and Ruta 2015; Zolin et al. 2021). These motor-related DAN 

signals would presumably modify synaptic connections in the MB, and such off-task plasticity 

could generate important variability in synaptic weights and choice behavior. Interestingly, recent 

work has also found that these same DANs do not have a consistent effect on action-reward 

learning in a purely operant task (Rohrsen et al. 2021). This suggests that motor-related DAN 

signals are not the substrate for operant learning, and MB plasticity may specifically act to link 

sensory cues to rewarding actions. Further, the theory assumes that neural activity and reward 

are conditionally independent given choice. The MB represents reward via DAN activity, so this 

assumption could be violated if KC and DAN activity have correlated variability across trials that 

is not related to choice. Such correlations are feasible given indirect connections from KCs to 

DANs and the complexity of DAN activity(Zheng et al. 2018; Li et al. 2020; Zolin et al. 2021). 

Finally, the theory pertains to tasks where the animal decides between two options. Some animals 

have also been found to exhibit operant matching behavior when choosing between three or more 

options(Greggers and Menzel 1993; Harris and Carpenter 2011). In this setting, operant matching 

https://paperpile.com/c/IHceXz/Qn4LA+55x2f
https://paperpile.com/c/IHceXz/xp2en
https://paperpile.com/c/IHceXz/BOqLN+xIzA5+55x2f
https://paperpile.com/c/IHceXz/JGOUk+bPRiP
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still implies that the covariance between neural activity and reward vanishes, so there is hope that 

covariance-based plasticity rules would generate matching. However, other behavioral strategies 

can also lead to vanishing covariance (see 3.4 Methods - Vanishing covariance does not imply 

matching between more than two alternatives). It would be interesting to investigate whether 

modified learning rules can more reliably produce matching in naturalistic foraging scenarios or 

multi-option choice tasks. 

 

3.3.3 Plasticity in multiple MB compartments could explain deviations from matching  

 

One complication to the framework of expectation-based learning rules and matching is that flies, 

like several other animals, don’t perfectly follow the matching law: rather they undermatch. Two 

hypotheses have been proposed to account for this deviation. The first proposes that animals that 

undermatch make use of a learning rule that deviates from a strictly covariance-based 

rule(Loewenstein and Seung 2006). Synaptic saturation and representation of motor variables in 

DAN response, as discussed in the previous section, offer particularly simple possibilities.  

Another important possibility for how this could occur is to have plasticity at multiple sites 

contributing to the overall learning, with different plasticity rules at each site. Indeed, the MB is 

divided into multiple compartments that contribute to behavior but exhibit important differences in 

learning(Aso and Rubin 2016; Aso, Sitaraman, et al. 2014). It is possible that some compartments 

make use of reward expectation in a covariance-based learning rule, while others do not. 

Alternatively, undermatching can also result if reward expectations are estimated over long 

timescales(Iigaya et al. 2019), even if all compartments made use of a covariance-based rule. 

This idea suggests that in a dynamic environment where baiting probabilities change quickly, the 

memory of past experiences acts as a bias that prevents the animal from correctly estimating the 

present cue-reward relationships. This is possible in the MB, as different compartments form and 

decay over different time scales(Aso and Rubin 2016). Whether either or both of these 

https://paperpile.com/c/IHceXz/Wf2d
https://paperpile.com/c/IHceXz/9qoH8+6UsSQ
https://paperpile.com/c/IHceXz/IqoEr
https://paperpile.com/c/IHceXz/9qoH8
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hypotheses explain undermatching in flies can be studied in future experiments by manipulating 

different compartments of the MB circuitry and analyzing the effect of such a manipulation on 

undermatching. Relatedly, it would be interesting to check if animals could adapt the timescales 

used to estimate reward expectations to the dynamics of the behavior task.  

 

3.3.4 An approach for inferring learning rules from behavior 

 

Here we introduced a statistical method that uses logistic regression to infer learning rules from 

behavioral data. While we specifically applied our approach to infer learning rules for the fly 

mushroom body, the inference of learning rules is of importance to many areas of 

neuroscience(Lim et al. 2015; Ashwood et al. 2020; Confavreux et al. 2020). In fact, this method 

could be similarly applied to model other learnt behaviors in the fly and other animals. In the 

current work, we considered learning rules that only depended on the current sensory stimulus 

(KC response) and reward (DAN response), but our methodology would also generalize to the 

inference of learning rules that incorporated a longer time-scale history of sensory input and 

reward. For example, the framework would be able to estimate rules that incorporated the 

weighted average of recent sensory experience. The framework would also apply to the fitting of 

rules that depend on alternate nonlinear combinations of sensory input and reward. 

 

However, it’s important to realize that the logistic regression formalization would break down 

entirely for learning rules that depend on the magnitudes of synaptic weights or postsynaptic 

activity. Such terms would induce different nonlinear dependencies between the choice sequence 

and learning rule parameters, preventing us from converting these choice and reward histories 

into logistic regression inputs related to each component of the learning rule (see 3.4 Methods). 

Our approach was appropriate here because the plasticity rule in the mushroom body is not 

thought to involve these terms. However, many biological learning rules do depend on 

https://paperpile.com/c/IHceXz/ojCwD+a3dii+NVpTS
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postsynaptic activity and current synaptic weights, and future work should explore more flexible 

methodologies from modern machine learning to develop generally applicable 

approaches(Confavreux et al. 2020).  

 

3.3.5 Circuit mechanisms for matching and reward expectation in Drosophila 

 

We have shown that operant matching is mediated by synaptic plasticity in the fly mushroom body 

and involves the calculation of a reward expectation. However, the mechanisms underlying this 

calculation remain unclear. 

 

The proposed mechanism underlying the calculation of reward prediction error (RPE) in mammals 

provides a hint at one option(Schultz, Dayan, and Montague 1997). Here dopaminergic neurons 

implicitly represent expectation by calculating the difference between the received reward and the 

reward expectation. This has been found to involve the summation of positive ‘reward’ inputs and 

negative GABA-ergic ‘expected reward’ inputs to the dopaminergic neurons(Keiflin and Janak 

2015). MB DANs could represent reward expectation in a similar way. In fact, the recently 

released hemi-brain connectome(Li et al. 2020) has found many direct and indirect feedback 

connections from MBONs to DANs that theoretical work has shown could support such a 

computation(Bennett, Philippides, and Nowotny 2021; Jiang and Litwin-Kumar 2021). In the MB 

circuit, MBON activity is related to the expectation of reward associated with a given odor(Aso, 

Sitaraman, et al. 2014; Owald et al. 2015). An inhibitory feedback loop, via GABA-ergic 

interneuron(s) for example, could potentially carry reward expectation related information from 

MBONs to DANs. The negative expected reward signal from this interneuron could be combined 

in the DANs with a positive reward signal from sensory neurons, allowing DAN activity to represent 

the type of reward expectation signal needed by a covariance-based rule.  

 

https://paperpile.com/c/IHceXz/NVpTS
https://paperpile.com/c/IHceXz/K7mI
https://paperpile.com/c/IHceXz/E9KG
https://paperpile.com/c/IHceXz/E9KG
https://paperpile.com/c/IHceXz/xIzA5
https://paperpile.com/c/IHceXz/OIjG1+Fm1Zh
https://paperpile.com/c/IHceXz/6UsSQ+bE9j8
https://paperpile.com/c/IHceXz/6UsSQ+bE9j8


 71 

It is important to note that such a mechanism would have a major difference from mammalian 

RPEs. Since MBON activity is linked to the presence of odor, the reward expectation signal would 

vary across stimuli and only be present when the stimulus was too. Thus, this signal would not 

have the temporal features of mammalian RPEs. This difference in temporal structure of the 

reward expectation signal could explain the mixed observations from past studies aimed at 

identifying reward expectation in flies. For instance, a study that used temporally distinct cues and 

reinforcements suggested that DANs do not incorporate reward expectation(Dylla et al. 2017), 

while studies that used temporally overlapping cues and reinforcements did find signatures of 

reward expectation(Riemensperger et al. 2005; Eschbach et al. 2020), albeit with different 

temporal properties than the typical mammalian RPE. 

 

It’s also possible that reward expectations are incorporated into mushroom body plasticity by 

adjusting the levels of reward and punishment needed to achieve a given dopamine signal. In this 

scheme reward-related dopamine neurons could represent how much a reward exceeds 

expectations, and punishment-related dopamine neurons could respond when expectations are 

not met. This is reminiscent of the idea from Felsenberg and colleagues that interactions between 

reward and punishment-related compartments in the MB can guide bi-directional 

learning(Felsenberg et al. 2018; König et al. 2019; Adel and Griffith 2021; Gkanias et al. 2022). 

However, here we extend the idea by proposing that reward would not only modify KC-MBON 

synapses, but also modulate the baseline dopamine release or firing threshold of reward-related 

dopaminergic neurons. Similarly, upon missing an expected reward, learning would do the same 

for MBONs and DANs in punishment-related compartments. The resulting behavior would depend 

on balance between the activity of both reward and punishment compartments, and if the reward 

and punishment baselines were updated correctly, such a mechanism could produce a 

covariance-based rule and support operant matching. This mechanism would also tie into the 

https://paperpile.com/c/IHceXz/4Yg25
https://paperpile.com/c/IHceXz/pcyR4+RxvjP
https://paperpile.com/c/IHceXz/DcSmj+75E4M+qDW2+zV7DG
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notion that phasic dopamine release (i.e. the difference of dopamine from its baseline level) 

mediates the RPE signal in mammals. 

 

Future experiments can distinguish between these hypotheses. For instance, neural recordings 

can probe how DAN activity changes over the course of the task, and connectomics can identify 

other neurons in the system that may be important for the computing of reward expectation. These 

types of experiments are easily doable in the Drosophila melanogaster model. Paired with further 

modeling efforts and the foraging framework we developed; the fly MB promises to be a system 

in which we can understand decision making at a level of detail that is presently unparalleled in 

systems neuroscience. 

 

3.4 Methods 

 

3.4.1 Fly strains and rearing 

 

Drosophila melanogaster used for behavior experiments were raised on standard cornmeal food 

supplemented with 0.2 mM all-trans-retinal at 25 C̊ [for Gr64f-Gal4 lines - see table] or 21 ̊C [for 

other lines - see following table] with 60% relative humidity and kept in dark throughout. The 

details of all flies used for experiments in this manuscript can be found in Table 3.1. Cross progeny 

(2-5 days old) were sorted on a cold plate at around 4 C̊ and females of the appropriate genotype 

were transferred to starvation vials. Starvation vials contained nutrient-free 1% agarose to prevent 

desiccation. Flies were starved between 28 - 42 hrs before being aspirated into the Y-arena for 

experiments.  
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Table 3.1 Fly genetic lines  

Genotype 
Expression target/reporter 

description 
Bloomington stock number 

/Reference (if applicable) 

w; Gr64f-Gal4/CyO; Gr64f-

Gal4/TM3  X 

20XUAS-CsChrimson-

mVenus attp18 

Optogenetic activation of 
Gr64f expressing sugar 

sensory neurons in behavior 
experiments 

(Dahanukar et. al. 2007; 

Haberkern et. al. 2019) 

(Dahanukar et al. 2007; 

Haberkern et al. 2019)                

X  

BDSC:55134(Klapoetke et. 

al. 2014) (Klapoetke et al. 

2014)  

      w; +; 58E02-Gal4 

X 

20XUAS-CsChrimson-

mVenus attp18 

Optogenetic activation of 
PAM cluster DAN in behavior 

experiments 

BDSC:41347(Jenett et. al. 

2012) (Jenett et al. 2012) 

X 

BDSC:55134(Klapoetke et. 

al. 2014) (Klapoetke et al. 

2014)  

w; 10XUAS-opCas9wt in 

ZH51C; DopR1-4gRNA 

JK65C/CyO::TM6B 

X 

w; +; 13F02-Gal4 attP2, 

Gr64LexAp65 JK73A, 

13XLexAop-IVS-Syn 21-

Chrimson88::tdT/TM3 

Optogenetic activation of 
Gr64f expressing sugar 
sensory neurons and 

CRISPR mediated knockout 
of DopR1 receptors in KCs 
for behavior experiments 

New Stocks - see Cloning 

sub-section below 

w; 10XUAS-opCas9wt in 

ZH51C; DopR1-4gRNA 

JK65C/CyO::TM6B 

X 

w; +; Gr64LexAp65 JK73A, 

13XLexAop-IVS-Syn 21-

Chrimson88::tdT/TM3 

Optogenetic activation of 
Gr64f expressing sugar 
sensory neurons without 

expression of cas9 protein 
needed for knockout of 

DopR1 in behavior 
experiments 

New Stocks - see Cloning 

sub-section below 

 

 

 

 

https://paperpile.com/c/IHceXz/MnA1q+u8HOc
https://paperpile.com/c/IHceXz/MnA1q+u8HOc
https://paperpile.com/c/IHceXz/1O3jw
https://paperpile.com/c/IHceXz/1O3jw
https://paperpile.com/c/IHceXz/6kN98
https://paperpile.com/c/IHceXz/1O3jw
https://paperpile.com/c/IHceXz/1O3jw
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3.4.2 Cloning 

The Gr64f promoter was PCR amplified using Q5 High-Fidelity 2× Master Mix (New England 

Biolabs) from the Gr64f-GAL4 (Dahanukar et al. 2007) and cloned into the FseI/ EcoRI digested 

backbone of pBPLexAp65 (Barret D. Pfeiffer et al. 2010) using NEBuilder HiFi DNA Assembly 

(New England Biolabs). Primer sequences were: 

Table 3.2 Primer sequences for Gr64f 

NEB_GR64f_fwd GAGGCCCTTTCGTCTTCAAGAATTCCAGCGATTGTCTCTTAGCTGTTAAAAT

C 

NEB_GR64f_rev CCCCGGGCGAGCTCGGCCGGCCCCTAGGACCTGCTGGGGTAAAC 

 

Four gRNA for the gene Dop1R1 were designed using https://flycrispr.org/target-finder/ (Gratz et 

al. 2014). The gRNA were then cloned into pCFD5_5 following the protocol published in Port and 

Bullock, 2016(Port and Bullock 2016) . Dop1R1 gRNA target sites (5’-3’) were: 

Table 3.3 Dop1R1 gRNA target sites 

Dop1R1 gRNA 1 GACATCCAACTGCTGACAAA 

Dop1R1 gRNA 2 GCTGCAGCTCACGACCGCCA 

Dop1R1 gRNA 3 CGTGGAATTCGTGGAGAATC 

Dop1R1 gRNA 4 ACTGGTGTGATTCCCGCCGA 

  

Primer sequences were as in Table 3.4. Transgenic injections were performed by Genetivision 

using fC31 integrase mediated integration into attP dock sites. Gr64f-LexAp65 was integrated into 

P{CaryP}JK73A and Dop1R1 was integrated into P{CaryP}JK65C. 

https://paperpile.com/c/IHceXz/MnA1q
https://paperpile.com/c/IHceXz/OM9ml
https://flycrispr.org/target-finder/
https://paperpile.com/c/IHceXz/S5tiN
https://paperpile.com/c/IHceXz/S5tiN
https://paperpile.com/c/IHceXz/nkanP
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Table 3.4 Primer sequences for Dop1R1 4gRNA 

f.PCR1-4gRNA-Dop1R1 
GCGGCCCGGGTTCGATTCCCGGCCGATGCGACATCCAACTGCTG

ACAAA GTTTTAGAGCTAGAAATAGCAAG 

r.PCR1-4gRNA-Dop1R1 TGGCGGTCGTGAGCTGCAGCTGCACCAGCCGGGAATCGAACCC 

f.PCR2-4gRNA-Dop1R1 GCTGCAGCTCACGACCGCCAGTTTTAGAGCTAGAAATAGCAAG 

r.PCR2-4gRNA-Dop1R1 GATTCTCCACGAATTCCACGTGCACCAGCCGGGAATCGAACCC 

f.PCR3-4gRNA-Dop1R1 CGTGGAATTCGTGGAGAATCGTTTTAGAGCTAGAAATAGCAAG 

r.PCR3-4gRNA-Dop1R1 
ATTTTAACTTGCTATTTCTAGCTCTAAAACTCGGCGGGAATCACAC

CAGTTGCACCAGCCGGGAATCGAACCC 

 

 

3.4.3 Circular olfactory arena 

 

Group learning experiments in Fig. 3.14 were performed in a previously described circular 

olfactory arena(Aso, Sitaraman, et al. 2014). A schematic of the task performed in the circular 

arena is shown in Fig. 3.14A. OCT and MCH were used as odors for these experiments. Odors 

were presented sequentially (and separated in time) for one minute each, with one of the odors 

paired with reward. To mimic the relationship between odor time and reward time experienced by 

the fly in the Y-arena, 1 sec of reward (red light, 617nm, 2.3mW/cm2), was provided after every 3 

seconds of odor experience. Flies were finally tested by dividing the circular arena into four 

quadrants with two opposite quadrants receiving one odor and the other two quadrants receiving 

the other. Videos of a fly’s movements in the circular arena were read into MATLAB frame by 

frame and the location of the fly’s centroid was identified using the MATLAB image processing 

toolbox. Once identified, the number of flies in each quadrant was used to calculate the preference 

https://paperpile.com/c/IHceXz/6UsSQ
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index (PI) metric on a per frame basis. PI is defined as the difference between the number of flies 

in each pair of odor-matched quadrants divided by the total number of flies. Time-averaged PIs 

could then be calculated by taking the average of the PIs from each individual frame. 

 

3.4.4 Logistic regression to estimate influence of past rewards and choices on behavior 

 

To estimate the role of choice and reward histories in determining fly choices in the dynamic 

foraging task, we fit the following logistic regression for each fly as  

 

              (2) 

 

where  is the present trial and  is the variable used to iterate over the past  trials.  if 

the chosen odor was OCT and -1 if the chosen odor was MCH.  = 1 if chosen OCT option 

produced reward, -1 if chosen MCH option produced reward, and 0 otherwise.  represents the 

weight assigned to the bias term,  represents the weight assigned to the  past choice and 

 represents the weight assigned to the  past reward. We chose to look at the past  = 15 

trials to align with previous studies (Lau and Glimcher 2005; Bari et al. 2019). The regression 

coefficients generated were 10-fold cross-validated, and the regression model included an elastic 

net regularization (MATLAB function - lassoglm). The weight of lasso versus ridge optimization 

was set to 0.1 as this value provided best behavioral fits. These fly-specific regression coefficients 

could be combined with the flies reward and choice histories to predict trial choice probability and 

estimate the log-likelihood ( ) and  percent deviance explained( ): 

 

https://paperpile.com/c/IHceXz/PL2GQ+GAw9
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                                                               (3) 

 

           (4) 

 

where  is the total number of trials in the data being fit,  indexes trials,  indexes possible 

options,  is the probability with which the model predicts that choice  occurs on trial ,  and 

 is the choice that actually took place on trial . 

 

3.4.5 Leaky-integrator model 

 

We also developed a leaky-integrator model to predict behavior in the dynamic foraging task 

inspired by earlier work (Sugrue, Corrado, and Newsome 2004b). This model determines choices 

on a given trial by comparing values assigned to each option the agent has to choose between 

based on choice and reward history.  

 

The values ( )were calculated for a given trial  using the following equations. If OCT is chosen 

by the model, values are updated according to  

 

                                            (5)                                           

                                                     (6) 

 

where  is a constant related to the learning rate. Similarly, if MCH is chosen by the model, values 

are updated according to  

 

https://paperpile.com/c/IHceXz/q8sw
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                                                                     (7) 

                                        (8) 

 

These values are then compared and passed through a sigmoidal nonlinearity to determine the 

probability of each choice, 

 

                                                                             (9)                                                                                             

 

The probability of choosing MCH was one minus that of OCT. The probability generated by this 

operation is compared with a value drawn from a uniform distribution over the [0,1] interval to 

determine whether the resulting choice is  OCT or MCH. These predicted choices could be 

compared to fly behavior to compute the model’s fraction deviance explained. The parameters  

and  are fit for each fly so as to maximize the percentage deviance explained (values of these 

parameters can be seen in Fig. 3.3G and Fig. 3.4C,D). 

 

3.4.6 Win - stay, Lose - switch model 

 

A third model to predict behavior incorporated information only about the most recent choice made 

by the fly unlike the logistic regression and leaky-integrator alternatives. In this “win-stay, lose-

switch” model the agent chooses randomly on the first trial. If the chosen option produces a reward 

the agent picks the option again on the next trial (stays). If it doesn’t produce a reward the agent 

picks the other option on the next trial (switches). This procedure repeats to generate a sequence 

of choices. The accuracy of this model was calculated by observing correctly predicted switches 

and stays as well as incorrectly predicted switches as stays, shown in Fig. 3.3D as a probability 

matrix. To calculate this matrix the model was made to predict the behavior of flies on every trial 
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of the dynamic foraging task. For each individual fly four values were calculated, i) the probability 

that the model would predict that the fly would stay given the past outcome and the fly stayed, ii) 

the probability that model predicts a stay and the fly switched, iii) the probability the model predicts 

a switch and the fly stayed, and iv) the probability the model predicts a switch and the fly switched. 

The average values across 18 flies run in the dynamic foraging task is presented in the matrix in 

Fig. 3.3D 

 

3.4.7 Neural circuit model of dynamic foraging 

 

We designed a neural circuit model, inspired by work from Loewenstein and Seung (Loewenstein 

and Seung 2006), that was used to simulate behavior in a dynamic foraging task. Two versions 

of this model were used.  

 

Replicating Loewenstein and Seung’s Model 

 

The first version aimed to directly replicate the model used by Loewenstein and Seung (Fig. 3.6A). 

It generated behavior on a trial-by-trial basis in the dynamic foraging task. The number of trials to 

simulate were input by the user prior to simulation (typically 60, 240 or 2000 trials). The model 

consisted of two sensory neurons (  and ) whose activity was drawn at the beginning of each 

trial from a normal distribution with mean 1 and standard deviation 0.1. These neurons synapse 

with weights (  and ) onto two motor neurons (  and ) ,whose activity was given by the 

weighted sum of sensory neuron activity. The activity of   and   were compared and the 

choice was driven by whichever neuron had the larger activity. 

 

https://paperpile.com/c/IHceXz/Wf2d
https://paperpile.com/c/IHceXz/Wf2d
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Once the choice was made, rewards were provided as determined by the reward contingencies 

of the task. These were input by the user prior to running the simulation. The weights between  

and  were updated after each choice and followed the following rules  

 

                                                    (10)     

                                                                          (11) 

 

where  or  and  or  based on the learning rule, and 

 iterates over odors. Note that  and  depended on time and were calculated in one of 

two ways: i) by calculating the mean over the last 10 trials, ii) by filtering the entire history with an 

exponential filter with exponential timescale ( ) of 3.4 trials. The various covariance and non-

covariance rules were achieved by selecting the appropriate combinations of  and  . 

 

Task and mushroom body inspired version 

 

The second version incorporated modifications to the model that made it more appropriate for the 

task we designed for fruitflies (Fig. 3.6B). This model consisted of two sensory inputs that 

represented activity of populations of Kenyon cells (KCs). However, this version of the model 

looped through odor experiences, rather than looping through trials determined by two-alternative 

forced choices. Therefore the activity of the sensory neurons was drawn differently. Rather than 

both values being drawn from normal distribution with mean 1 and standard deviation  =  0.1, 

this was only true for the odor that was deemed to have been “experienced” by the model on a 

given odor experience. The activity of the other neuron was drawn from a normal distribution with 

mean =  0.1 (Fig. 3.7, 3.8, 3.9, 3.10) and standard deviation  = 0.1. Here,  represents the 

similarity, or overlap, between the two inputs.  This was included because the KC representations 
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of the two different odors used in our task are thought to have some amount of overlap (Robert 

A. A. Campbell et al. 2013). However, we found that modulating this term did not affect the 

resulting matching behavior (Fig. 3.10D-G) and so for Fig. 3.12, we chose =  0 . We also 

explored incorporating noise covariance between the two sensory inputs (with correlation 

coefficient c = 0.1), but this correlation was empirically unimportant and we usually set c = 0. 

 

Another difference is that an odor experience could lead to either an approach (choice) or a turn 

away. The behavior chosen by the model on any given odor experience depended on the 

response of the single output neuron incorporated into this model. The activity of this output 

neuron (𝑀) was the weighted sum of the two inputs. This was then passed through a sigmoidal 

nonlinearity 

 

                                                  (12) 

 

where , (this value was chosen to encourage exploration at the beginning of learning) 

and  is the action produced by the model. When  the odor is accepted and when  

the odor is rejected. A random number from the interval [0,1] was drawn and compared to Y to 

determine whether an approach/choice or turn was made. If a turn was made, no reward was 

provided, and the weights remained unchanged. The model then experienced a new odor and 

the process repeated. If a choice was made then a reward was provided based on the choice 

contingencies and weights were updated according to the rules in eqs. 10 and 11. The only 

difference here from eq. 10 and 11 is that the weights change following a depression rule instead 

of a potentiation rule and have a lower bound of 0.  

 

 

https://paperpile.com/c/IHceXz/l8nVo
https://paperpile.com/c/IHceXz/l8nVo
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3.4.8 Plasticity requirements of operant matching in the MB model 

 

Relating operant matching to the covariance of neural activity and reward 

 

We begin by reproducing the key theoretical argument provided by Loewenstein and Seung. 

Consider a sequence of trials where an animal chooses between two options and receives 

feedback via reward. Specifying an element in this trial sequence requires three random variables, 

the choice ( ), the reward ( ), and the underlying neural activity ( ). Note that  is very general 

in this argument; it can be any quantification of neural activity whose mean depends on choice. 

We further assume that both options are sometimes chosen and that neural activity and reward 

are conditionally independent on choice. Under these assumptions, Loewenstein and Seung 

show that Herrnstein’s operant matching law is satisfied if and only if the covariance between  

and  vanishes over the trial sequence.  

 

The proof begins by recalling the definition of covariance,  

 

                                                                              (13) 

 

where 𝐸 denotes the expectation over the trial sequence (i.e.,  and ) and . By 

the product rule of probability, , so we can rewrite this expectation as  

                                     (14) 

 

where the subscripts on  denote the probability distributions over which the expectations are 

computed, and we used the conditional independence assumption, , in 
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the second step. Writing out the expectation over choice explicitly, the expression for the 

covariance becomes 

 

       (15) 

 

To simplify this expression, note that  

  

                                     (16) 

 

where we again used the product rule of probability, and the  notation means that the lefthand 

equation implies the righthand one. It follows that 

 

                   (17) 

 

From this expression, we can conclude that  

 

                                                                          (18) 

 

The lefthand equation is the matching law, as it says that the expected reward is independent of 

choice, so the matching law implies a vanishing covariance between neural activity and reward. 

Moreover, it follows that  from the assumption that the average neural 

activity has a choice dependence (i.e., ). Consequently, neither  

nor   is equal to zero, and  

 

                                       (19) 
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This equation says that the matching law follows from the vanishing covariance of choice-related 

neural activity and reward. This completes the proof. 

 

Casting the mushroom body model in the framework of Loewenstein and Seung 

 

Our mushroom body model consists of a sequence of odor presentations and accept/reject 

decisions. Specifying an element in this decision sequence requires four random variables, the 

odor option experienced ( ), the odor-induced neural activity in the KCs ( ), the accept-reject 

decision provided by the MBON ( ), and the reward received from this action ( ). Reward delivery 

and plasticity only occur when an odor option is accepted, and we refer to the accepted odor 

option as the choice ( ). Note that  is undefined when the odor is rejected. Therefore, specifying 

an element in the choice sequence only requires three random variables, , , and . Setting 

, this choice sequence satisfies the assumptions of Loewenstein and Seung’s theory. We 

therefore expect flies to obey Herrnstein’s operant matching law if and only if the covariance 

between KC activity and reward is equal to zero over the choice sequence.  

 

It is important to recognize that the matching law is generally inconsistent with vanishing 

covariance between KC activity and reward over the decision sequence (rather than the choice 

sequence). Our assumption that plasticity only occurs following the decision to accept (i.e., the 

choice) is thus critical for obtaining matching behavior from covariance-based plasticity rules.   

 

Vanishing covariance does not imply matching between more than two alternatives 
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The preceding analyses assumed binary choices between two options. However, Herrnstein’s 

operant matching law can also be satisfied with more than two options, and the general form of 

the matching law is   

 

                                        (20) 

 

where   is the number of options. We can write this condition more succinctly as 

 

                                                                       (21) 

 

Here we show that this more general form of the matching law implies that the covariance between 

neural activity and reward vanishes. However, the converse is not true, as it’s possible for the 

covariance to vanish without behavior that produces the matching law. The biologically important 

consequence of this result is that covariance-based plasticity rules may not lead to matching when 

the animal is deciding between more than two options.  

 

In this more general decision making task, we express the covariance between the neural activity 

and reward over the choice sequence as  

 

   (22) 

 

where we’ve made the same conditional independence assumption as in the binary analysis. If 

the matching law is satisfied, then we can take  out of the sum and we find 
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  (23) 

 

Therefore, the matching law implies that the covariance between neural activity and reward is 

zero. To see that the converse need not be true, we construct a specific counter example. 

Consider the  case where , , , 

, , and . These numbers were constructed to ensure that 

the covariance between neural activity and reward vanishes,  

 

                                (24) 

 

Nevertheless, the matching law is not satisfied because the expected reward depends on the 

choice. 

 

3.4.9 Logistic regression model for estimating learning rules 

 

To determine the learning rules that best predict fly behavior, we designed a logistic regression 

model that made use of the known relationship between MBON activity and behavior. This model 

predicted behavior between input and weights that give rise to MBON activity following the 

relationships 

                                                        (25) 

                                                     (26) 



 87 

 

where  is the predicted action on odor experience ,  indicates all past odor 

experiences where the fly chose to accept the odor, and  represents the synaptic weights 

associated with neurons representing odor  at time . Now the change in synaptic weights  

depends on the learning rule that is used by the circuit. It was here that we wanted to have the 

regression model identify the rule that provided the best fit to actual data. To do this we allowed 

the model to use a learning rule with 4 different terms whose coefficients could be modified, 

 

                     (27) 

 

Here, , , , and  are the coefficients assigned to each component of the learning rule. The 

regression model takes the sensory stimuli and synaptic weights at a given time as inputs to 

predict the output action. However, when fitting this model to behavior we have only sensory 

stimulus and reward information readily available.  We therefore used eq. 26 and 27 to convert 

synaptic weights and sensory stimuli to inputs that consisted of sensory stimuli and rewards and 

a constant input that serves as a bias term. The resulting inputs could be represented as  

 

                                                                                     (28) 

                                                               (29) 

                                                                           (30) 

                                                                           (31) 
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                                                             (32) 

 

The coefficients assigned to each of the five inputs (Bias, a,b,c,d) could then be used to identify 

the learning rule that the model predicted as the best estimate for producing the behavior that 

was tested. Of course the values of these coefficients varied from fly to fly.  To examine if pairs 

of coefficients changed in a correlated manner across flies we estimated the correlations between 

the terms by using the Matlab function corrcoef, that produces a matrix of correlation coefficients.  
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Chapter 4. Input density and cell number of the Kenyon cell “expansion layer” 

modulates olfactory discrimination capabilities of Drosophila 

Adapted from Ahmed, Rajagopalan et al. 2023, Current Biology 33, 1–19 

 

Dr. Maria Ahmed and Dr. Josephine E. Clowney conceptualized the study. Dr. Maria Ahmed led 

a team of several co-authors in characterizing developmental manipulations and conducted 

calcium imaging to understand manipulations’ effects on KC activity. This work is summarized in 

the Introduction (section 4.1) and constitutes a key part of the cited paper. Following up on these 

findings, Adithya Rajagopalan conceptualized the behavioral experiments used to test the effect 

of developmental manipulations along with Dr. Maria Ahmed, Dr. Josephine E. Clowney and Dr. 

Glenn C. Turner, and conducted behavioral experiments, additionally leading a team including 

Dr. Maria Ahmed, Dr. Kari C. Close and Dr. Christina P. Christoforou in analyzing behavioral data 

presented in the Results below. Dr. Maria Ahmed, Dr. Josephine E. Clowney Adithya 

Rajagopalan, Yijie Pan and Dr. Glenn C. Turner contributed to writing the paper listed above. 

 

4.1 Introduction 

 

As we introduced in section 1.5 of this thesis, the richness of the sensory world must be 

considered when attempting to understand the neural circuitry involved in decision-making. One 

important aspect of the sensory stimuli is that they very often share some similarity. The ability to 

discriminate sensory stimuli with overlapping features in several brain regions is thought to arise 

in structures called expansion layers, where neurons carrying information about sensory features 

make combinatorial connections onto a much larger set of cells (Marr 1969; Albus 1971; Babadi 

and Sompolinsky 2014; Litwin-Kumar et al. 2017). An increase in the number of expansion layer 

neurons is theorized to improve discrimination (Babadi and Sompolinsky 2014; Cayco-Gajic and 

https://paperpile.com/c/IHceXz/oiNP+jnT2+fEFn+p5R7
https://paperpile.com/c/IHceXz/oiNP+jnT2+fEFn+p5R7
https://paperpile.com/c/IHceXz/fEFn+Jymc
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Silver 2019), while the number of sensory inputs is thought to have an optimal intermediate value 

(Jortner, Farivar, and Laurent 2007; Litwin-Kumar et al. 2017; Rajagopalan and Assisi 2020). 

However, the perceptual and behavioral effects of these theories have not been experimentally 

tested as tools for altering hard-wired circuit parameters have not been available. 

 

To do so, our collaborators Dr. Maria Ahmed and Dr. E. Josephine Clowney’s at the University of 

Michigan initiated a project of developmental circuit hacking. In the mushroom body calyx, 

individual KCs, from a population of roughly 2000, receive a median of 5–6 discrete inputs from 

among 52 types of olfactory PNs (Gruntman and Turner 2013; Caron et al. 2013). PN-KC 

connections consist of multisynaptic ‘‘microglomerular’’ structures formed by presynaptic 

‘‘boutons’’ from PNs and dendritic ‘‘claws’’ from KCs (Caron et al. 2013; Zheng et al. 2018; 

Scheffer et al. 2020). As KCs fire only when multiple inputs are active, they act as coincidence 

detectors, allowing individual KCs to respond to diverse odors with the potential to expand the 

animal’s perception from single channels to combinations. Leveraging their knowledge of MB 

structure and development, changes were made to the quantitative relationships between 

presynaptic PNs and postsynaptic KCs in vivo (Elkahlah et al. 2020; Puñal et al. 2021; Ahmed et 

al. 2023).  

 

To reduce KC number, flies were treated with the mitotic poison hydroxyurea (HU) 8 hours after 

larval hatching. This time window was chosen because KC neuroblasts continue to divide in this 

period while most other neuroblasts have halted division (lateral PNs continue to divide and could 

be affected, so appropriate controls are considered, see section 4.2.1) allowing KCs to be 

specifically ablated (de Belle and Heisenberg 1994). As KCs derive from 4 neuroblasts, this 

approach led to flies with either 0, 500, 1000, 1500 or 2000 KC. As KC number reduced PNs 

reduced the number of boutons they produced leading to the PN-KC connectivity to be retained 

to similar levels as in the wild type. This manipulation therefore only led to a decrease in expansion 

https://paperpile.com/c/IHceXz/fEFn+Jymc
https://paperpile.com/c/IHceXz/2k4A+p5R7+ZaNk
https://paperpile.com/c/IHceXz/rgwX+nazkr
https://paperpile.com/c/IHceXz/nazkr+BOqLN+RfgF
https://paperpile.com/c/IHceXz/nazkr+BOqLN+RfgF
https://paperpile.com/c/IHceXz/uCmj+dAEQ+zabi
https://paperpile.com/c/IHceXz/uCmj+dAEQ+zabi
https://paperpile.com/c/IHceXz/msEx
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layer cell number without changing input connection density. When KC responses to odors were 

imaged with Ca2+ sensors in the ablated flies that had at least 1 surviving neuroblast, no 

statistically significant changes in population response to odors could be observed (Elkahlah et 

al. 2020), suggesting that the PN-KC connectivity adjusts when KC populations are reduced so 

as to maintain sparse and discriminable representations of odors. 

 

To increase KC number the spindle orientation protein mud (mushroom body defect) was knocked 

down in mutant flies using RNA interference (RNAi) in KCs specifically. This leads some 

neuroblasts to divide symmetrically giving rise to two neuroblasts rather than the usual 

asymmetric division that produces one neuroblast and a differentiated neuron. This leads to a 

robust increase in KC number, sometimes more than doubling the number of KC in the mutant 

flies (Elkahlah et al. 2020). Again, PN-KC connections adjusted to ensure that the increased 

expansion layer cell number did not affect the input density. When responses to odors were 

observed the population showed a trend towards more sparse and discriminable representations 

(though this was not statistically significant) (Ahmed et al. 2023). 

 

Next, to increase the density of inputs from PNs to KCs, tao a protein that regulates microtubule 

dynamics and dendritic branching was knocked out using RNAi in the KCs specifically. This led 

to a 50% increase in KC claws suggesting a large increase in input density. It must be noted that 

25% decreases in KC number was also observed along with this manipulation, but given the fact 

that no odor representational changes were observed upon reducing KC numbers with the HU 

ablation this likely does not contribute to any affects observed with tao RNAi. Significant changes 

were observed when the activity of KCs were imaged. Twice as many KCs responded to odors 

compared to controls, with 40% of cells responding to all 4 odors that were tested. This would 

suggest that these flies likely cannot use the KC representation to discriminate odors and would 

perform poorly at a behavioral discrimination task. 

https://paperpile.com/c/IHceXz/uCmj
https://paperpile.com/c/IHceXz/uCmj
https://paperpile.com/c/IHceXz/uCmj
https://paperpile.com/c/IHceXz/zabi


 92 

 

Finally, to reduce the density of inputs to the KCs, DScam a protein previously shown to change 

calyx morphology was over-expressed in the KCs (J. Wang et al. 2004), and was found to reduce 

KC claw number by more than 75% with the median number of claws per KC reduced to 1.  When 

these flies were imaged, KCs showed a significantly reduced response profile with 60% of cells 

responding to none of the odors tested. 

 

These living animals, produced with hypothesis-driven variations on natural expansion layer 

wiring parameters show KC responses that are in line with the theoretical work that predict 

increased discrimination (equivalent to sparser coding at the KC level, with more cells responding 

to only single odors) with increased KC number, a reduced discrimination with changes in PN-KC 

connectivity. But do these KC level changes transfer to behavioral changes?  

 

In this chapter, we described work that leverages the novel Y-arena described in chapter 2 as 

well as commonly used group learning circular olfactory arena to ask exactly this question. One 

of the advantages of using the Y-arena in this case is that it is a single fly assay. The KC cell 

number manipulation manipulations described above, particularly mud RNAi, cause variable 

changes to the KC circuit and so correlating behavior to the extent of change in KC number is 

important to quantify the behavioral effect of the change. The input density manipulations on the 

other hand produce more reliable changes and their behavioral effect is more easily tested in a 

high throughput group learning assay (4.4 Methods). 

 

https://paperpile.com/c/IHceXz/kt9X
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Figure 4.1 Associative learning and feed-forward functional responses in flies with 

reduced Kenyon cell numbers. (A) Schematic of Y-arena and 2AFC task. Entering the reward 

zone is considered a choice, then the two odors are randomly re-assigned to the arms for the 

next trial. During rewarded trials, entering reward zone for a specific odor triggers a 500 ms pulse 

of red light (optogenetic reward). (B) Maximum intensity Z-projections of calyces from sham- and 

HU-treated animals. 58F02 labels αβ core KCs (green). Mz19 labels a subset of ~16 PNs 

(magenta). Brp (blue) marks synapses. White outline: calyx. Numbers count 58F02+ neurite 

bundles (i.e. KC clones) innervating the pedunculus when traced through the stack. (C) Single 

slice of the antennal lobes from a HU-treated brain with 1 KC clone in the left hemisphere, and no 

clones in the right hemisphere. Dotted line: midline of the central brain. Mz19 labels the DA1 

glomerulus (circled), allowing scoring of the lNB/BAlc PN neuroblast; it is ablated in the right 

hemisphere and DA1 glomerulus is lost. (D) Proportion of correct odor choices in naïve and 

rewarded trials. Each data point is one fly. Sham-treated and unaffected HU-treated animals are 

displayed in gray, intermediate HU-treated clone numbers in black, and fully ablated “[0,0]” HU-

treated animals in red. Jitter added in this plot and (E) to display all the data points. Significance: 

paired t-test. See also Fig. 4.2B. (E) Relationship between Δ correct choices between rewarded 

vs naïve trails, and sum of KC clones from both hemispheres (0-8). No correlation was observed. 

See Fig. 4.2C-D for relation with lNB/BAlc ablation. 
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4.2 Results 

 

4.2.1 Animals with reduced KC numbers learn equally well as controls 

 

We tested individual HU-treated flies in the Y-maze two alternative forced-choice task (2AFC) 

described in chapter 2,  assaying preference for 3-octanol versus 4-methylcyclohexanol in the 

100:0 protocol, before and after one odor was randomly paired with optogenetic reward via 

stimulation of protocerebral anterior medial (PAM)-DANs (Fig. 4.1A). Animals performed 40/60 

choices for the naive and rewarded trials respectively. Each fly was dissected post-hoc and 

immunostained (Fig. 4.1B). This allowed us to take advantage of the range of phenotypes 

produced by our manipulations, instead of merging animals with heterogeneous circuit anatomy 

in a group assay. We labeled the latest born ‘‘ab core’’ KCs, allowing us to score KC clone number 

by counting the groups of labeled soma or axon tracts. As HU ablation sometimes affects the 

neuroblast that gives rise to lateral PNs, we included the Mz19 marker to track the lateral DA1 

glomerulus (Fig. 4.1C) (Stocker et al. 1997; Lai et al. 2008). Almost all animals retained the lateral 

PN neuroblast in at least one hemisphere (Fig. 4.2C, D), whereas the number of KC clonal units 

varied (Fig. 4.2E).  

 

 

With PAM-DAN reinforcement, sham-treated control animals chose the rewarded odor in 59% of 

trials on average, compared with 51% prior to training (Fig. 4.1D, Fig. 4.2B; the reasoning for this 

low performance with PAM-DAN reinforcement is detailed in section 3.2.5). HU-treated but 

unaffected animals (‘‘[4,4]’’ set) learned similarly to controls, whereas animals with all 8 clones 

lost (‘‘[0,0]’’) failed to learn (Fig. 4.1D, Fig. 4.2B). Flies with at least one remaining KC clone 

(‘‘[1,0]’’) were still able to increase their preference for the odor paired with PAM-DAN reward. As 

a result, learning performance did not correlate with number of KC clones (Fig. 4.1E). This is  

https://paperpile.com/c/IHceXz/l95x+WseM
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Figure 4.2 Learning as a function of PN and KC clone variability in flies with reduced KC 

number. (A) Left: Schematic of the mushroom body lobe anatomy with KCs in green and β’2γ5 

PAM-DANs in magenta. Axons of β’2γ5 DANs in the lobe compartment are shown. Right: Single 

confocal slices of the MB lobe (identified by location and Brp staining shown in blue). Mz19 driver 

labels β’2γ5 DANs (red). Representative images shown of sham-treated and HU-treated 

hemispheres with 3, 1, or 0 KC clones. (B) Δ correct choices of sham-treated and HU-treated 

animals shown in Fig. 4.1D. Black bars indicate the medians. In B-D, each data point is an 

individual fly. (C) Relation of Δ correct choices, sum of KC clone number from both hemispheres 

and lNB/BAlc ablation status. DA1 present in both hemispheres is indicated as “DA1 [1,1]”, 

presence in one hemisphere is indicated as “DA1 [1,0]”, and absent in both hemispheres is 

indicated as “DA1 [0,0]”. (D) Relation of Δ correct choices to sum of DA1 score 

(presence/absence). The data shown excludes fully KC ablated animals. Jitter added in (C-E) to 

display all the data points. (E) Relation of normalized Brp density in the mushroom body calyx to 

Kenyon cell clone number in sham-treated and HU-treated animals, excluding fully ablated 

animals as there is no calyx present. 

 

consistent with previous results that indicate that as few as 25 KCs can be adequate for 

computationally distinguishing different odors (Robert A. A. Campbell et al. 2013) as well as 

https://paperpile.com/c/IHceXz/l8nVo
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behavioral effects of partial mushroom body loss in honeybees (Malun et al. 2002). This supports 

our previous findings that population-level odor responses in these animals are similar to controls 

(Elkahlah et al. 2020). We note that the odor choices we used for this task were very distinct. 

Because PAM-DAN optogenetic reinforcement produced relatively weak learning scores in 

control animals, we did not attempt to subject KC-ablated animals to more difficult discrimination 

tasks. 

 

4.2.2 Animals with increased KC numbers learn better than controls 

 

We next tested the learning capabilities of individual OK107>mud RNAi flies, with expanded KC 

repertoire. As with HU-ablated flies, mushroom body anatomy was evaluated by post-hoc 

staining. In this set of experiments, we provided optogenetic reward using Gr64f+, sugar-sensing 

gustatory neurons, which improved learning in controls (Fig. 4.3A; discussed in section 3.2.5). 

Both controls and mudRNAi flies showed robust, odor-specific learning (Fig. 4.3B,C). In 

agreement with the trends observed when KC populations of mud RNAi flies were imaged, 

learning improved with increasing calyx size in the mud RNAi animals, suggesting that increasing 

the size of the KC repertoire gives animals more power to discriminate odors, form learned 

associations, or use learned associations to guide decisions (Fig. 4.3D).  

 

4.2.3 Fine odor discrimination of highly similar odors is reduced in flies with increased 

input connection density 

 

When we tested the ability of the tao RNAi mutant flies with increased input connection density, 

we observed robust and selective odor-reward associations (Fig. 4.3B,C). This is surprising, as 

the weakened KC odor selectivity in these animals should make odor discrimination more difficult. 

One possibility is that these two odors are still sufficiently different at the level of KCs to be 

decodable. 

 

https://paperpile.com/c/IHceXz/WORs
https://paperpile.com/c/IHceXz/uCmj
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Figure 4.3 Effect of increased Kenyon cell number or claw number on associative learning 

and feedforward functional responses. (A) Example learning curves of individual flies from 

control, KC>mud RNAi, and KC>Tao RNAi are plotted to show cumulative correct and incorrect 

odor choices across all trials. Grey and pink lines indicate naïve and rewarded trials respectively 

(40 or 60 trials each). Dotted line (y=x) displays equal preference. (B) Proportion of correct odor 

choices made in naïve and rewarded trials, in control (gray), KC>mud RNAi (red), and KC>Tao 

RNAi (purple) animals. Each data point is an individual fly. Jitter added in this plot and (C) to 

display all the data points. Significance: paired t-test. (C) Difference (Δ) in correct choices made 

in rewarded vs naïve trials in control (gray), KC>mud RNAi (red), and KC>Tao RNAi (purple) 

animals. Significance: unpaired t-test. (D) Δ correct choices plotted against inter-hemisphere 

mean calyx area for each animal in control and KC>mud RNAi conditions. Black line: linear fit. 

Dotted line: largest control calyx. (E) Left: Schematic of circular arena and hard discrimination 

task. In training, one of the odors (PA: pentyl acetate or BA: butyl acetate) is paired with an 

optogenetic reward. Right: Change in performance index is calculated by comparing distribution 

of animals in rewarded-odor quadrants to their distribution before odor onset (4.4 Methods). Each 

dot is a group assay. Behavior traces over time provided in Fig. 4.4.  
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As Tao RNAi animals have relatively consistent calyx anatomy, we used a group learning assay, 

the circular arena (Aso and Rubin 2016). We chose two chemically similar odors that activate 

overlapping sets of KCs, pentyl acetate and butyl acetate. During the learning phase, one odor 

was paired with optogenetic reward via Gr64f neuron stimulation (Fig. 4.3E, top). In test trials, the 

distribution of animals in the quadrants of the arena was measured before and after the odors 

were presented (Fig. 4.3E, bottom). Upon odor onset, control animals redistributed into quadrants 

containing the rewarded odor, demonstrating that they can discriminate it from the similar odor in 

the other quadrants, as observed previously. Animals with excess claws per KC were distributed 

randomly among odor quadrants (Fig. 4.3E). The chance-level performance of excess-claw, tao 

RNAi animals is consistent with the expectation that increased representation overlap will degrade 

discrimination behavior and with the theoretical work that shows that increasing connectivity 

beyond an optimal value worsens discrimination (Jortner 2013; Litwin-Kumar et al. 2017). 

 

 

Figure 4.4 Time-course of behavior in animals with excess Kenyon cells or altered Kenyon 

cell dendrites. (A) Mean and standard error of group performance indices over time in the circular 

arena “hard discrimination” assay. Positions of all animals were monitored for the 30 seconds 

prior to odor onset (blue), at t=30s. Odor was presented for one minute (red bar, t=30-90s). 

Performance index at each time point is calculated as ((animals in quadrants assigned to paired 

odor)-(animals in quadrants assigned to unpaired odor))/total animals. In Fig. 4.3E we subtract 

the animals’ time-averaged PI before odor onset (blue shading) from the time-averaged PI during 

odor test (t=60-90s, pink shading). n=5-6 groups per genotype of 15-20 animals each. 

 

 

 

 

https://paperpile.com/c/IHceXz/9qoH8
https://paperpile.com/c/IHceXz/YCij+p5R7
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4.2.4 Fine odor discrimination of highly similar odors is similar to controls but requires 

more time in flies with decreased input connection density 

 

Animals with fewer claws per KC, via DScam over-expression were also tested in the group choice 

assay described above for tao RNAi flies. These animals moved into quadrants containing the 

rewarded odor in proportions similar to controls (Fig. 4.3E). However, they showed delayed choice 

kinetics (Fig. 4.4). The slow responses of these animals with diminished claws suggest these 

animals may have dampened odor detection. This could be explained by the fact that very few 

KCs respond in these animals. However, the cells that do respond typically respond to a limited 

number of odors and could be sufficient for discrimination. If these features are thought of in the 

context of a drift diffusion like model of decision making introduced in chapter 1. The amount of 

sensory information coming in is small as very few cells are responding but the information is still 

appropriately biased towards the rewarding odor. So, the DDM still leads to correct decisions but 

requires more time to reach the decision threshold. 

 

4.3 Discussion  

 

Here, we have initiated a new method, developmental hacking of circuit wiring, to test how specific 

circuit parameters of the arthropod expansion layer influence cognitive computations. Using 

chemical and genetic approaches, we increase and decrease KC number and KC input density. 

We find that changing KC number, and thus expansion ratio, improved two- choice odor learning 

of animals with larger numbers of KCs, and did not affect the learning of animals with diminished 

KC repertoires. These findings suggest that the developmental algorithms we identified allow 

nervous  systems  to  be  computationally robust. Second, we confirm the Marr-Albus theory in 

vivo.  We find that flies with lowered input connectivity to the expansion layer remain adept at two-

choice odor learning if the stimuli are very distinct. However, these animals fail at discriminating 
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chemically similar odors, whereas animals with fewer claws per KC were able to achieve this 

discrimination. This highlights the significance of having a low overlap of odor representations in 

KCs in order to allow odor discrimination at the behavioral level. Future behavioral analyses of 

animals with these diverse mushroom body architectures will allow us to assess in detail the 

effects on sensory sensitivity, discrimination, generalization, and memory storage. 

 

4.4 Methods 

 

4.4.1 Circular arena behavioral task structure and design 

Groups of approximately 15-20 females, aged 4-10 day post-eclosion were anesthetized on a 

cold plate and collected two days prior to experiments. They were transferred to starvation vials 

containing nutrient-free agarose. Starved females were trained and tested at 25 C at 50% relative 

humidity in a dark circular arena described in (Aso and Rubin 2016). The arena consisted of a 

circular chamber surrounded by four odor delivery ports that divide the chamber into quadrants. 

The input flow rate through each port was 100 mL/min, which was actively vented out a central 

exhaust at 400 mL/min. Odors were pentyl acetate (PA), butyl acetate (BA) (Sigma-Aldrich 

product numbers 109584 and 287725, respectively). These odors were diluted by an odor delivery 

system which utilizes air dilution of saturated odorant vapor and delivered odors at a 1:16 dilution 

of saturated vapor. Flies were aspirated into the arena via a small port and allowed 60s to 

acclimatize before training commenced. Training consisted of exposing the flies to either PA or 

BA while providing optogenetic stimulation via a square array of red LEDs (617 nm peak emission, 

Red-Orange LUXEON Rebel LED, 122 lm at 700mA) which shone through an acrylic diffuser to 

illuminate flies from below. LED activation consisted of 30 pulses of 1s duration with a 1s inter-

flash interval, commencing 5s after switching on the odor valves and terminating 5s after valve 

shut-off. The other odor was then provided for 60s without LED activation. Three training repeats, 

separated by 60 seconds, were used. Following training, testing was carried out with PA and BA. 

https://paperpile.com/c/IHceXz/9qoH8
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In the test configuration, the two different odor choices are presented in opposing quadrants for 

60s. Videos of fly behavior were captured at 30 fps using BIAS 

(http://archive.iorodeo.com/content/basic-image-acquisition-software-bias.html) and analyzed 

using custom-written code in MATLAB. 

 

4.4.2 Behavior analysis 

 

Y-arena analysis is described in chapter 2. 

 

Circular arena videos recorded during the test phase were analyzed using custom-written 

MATLAB code. The centroid of each fly was identified and the number of centroids in each 

quadrant computed for every frame of the experiment. For discrimination experiments, a 

Performance Index (PI) was calculated as the number of flies in the quadrants containing the 

paired odor minus the number in the quadrants with the unpaired odor, divided by the total number 

of flies.83 This value was calculated for every frame of the movie, and the change in average PI 

values over the final 30 s of the test period. 

 

4.4.3 Image analysis 

 

We analyzed males for immunohistochemistry in our manipulations. For functional imaging 

experiments, we used mixed-sex populations, and did not observe any correlation with sex (not 

shown). The Y-arena and circular arena behavior used females due to the size of the arena not 

being optimal for males. Therefore, the flies dissected post-behavior and used for calyx area 

quantification in those animals and Brp staining were also females. Sex differences in the fly are 

well-documented, and anatomic and physiologic sex differences have not been observed in the 

mushroom body (Brovkina et al. 2021; Clowney et al. 2015). Any brains that appeared damaged 

https://paperpile.com/c/IHceXz/e2RC+OCPq
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from dissections, or those with the mushroom body region obscured due to insufficient tracheal 

removal, were not included in the analysis. Researchers performing quantification could not 

generally be blinded to experimental condition due to the overt changes in neuron numbers and 

brain structures induced by our manipulations. However, analysis was performed blind to the 

goals of the experiment when possible, and quantitation of features on the anterior and posterior 

sides of the brain were recorded independent of one another and merged after all quantifications 

were completed. Moreover, many of our analyses make use of variation within an experimental 

condition or genotype, providing an additional bulwark against observational bias. 

 

Calyx area 

To measure the size of the mushroom body calyx, we used genetically encoded fluorescence 

driven in Kenyon cells by OK107-Gal4. In cases where the fluorescent marker was not added, we 

used markers such as ChAT to visualize the structure. We then identified its largest extent in Z 

(i.e. along the A-P axis), outlined it in FIJI and calculated the cross-sectional area 

using the ‘Measure’ command. We have previously shown the calyx area to positively correlate 

with KC number and hence, serve as a readout for KC number in the hydroxyurea-treated, KC-

reduced and mud RNAi-driven, KC-increased conditions (Elkahlah et al. 2020). 

 

Kenyon cell numbers 

To count Kenyon cells, we again used genetically encoded fluorescence driven by OK107-Gal4. 

We counted labeled somata in every third slice in the stack (every third micron along the A-P 

axis), with reference to DAPI to distinguish individual cells from one another. We initially 

determined that somata in slice 0 could also be seen in slices 2, –1, +1, and +2 but not in slice  3 

or +3. To avoid doublecounting, we therefore counted every third micron. For Fig. 4, Kenyon cells 

were counted using a cellular segmentation tool called Cellpose (Stringer et al. 2021). The 

confocal stack for each hemisphere was split into single planes every third micron, and those 

https://paperpile.com/c/IHceXz/uCmj
https://paperpile.com/c/IHceXz/9eUZ
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slices were cropped to where the KC somata are present and given as input image into Cellpose. 

The count from each slice was then summed up to get the total count. The software used the 

Kenyon cell fluorescence, nuclear signal (DAPI) in the Kenyon cells, and an automatically 

calibratedcell diameter to identify individual cells. We verified that the counts obtained matched 

manual counts. 

 

Kenyon cell and projection neuron neuroblast state 

For quantifying Kenyon cell neuroblast state,as was done previously (Elkahlah et al. 2020), we 

used 58F02 to fluorescently label late-born Kenyon cells and counted clumps of labeled somata 

surrounding the calyx as well as groups of labeled neurites leaving the calyx and entering the 

pedunculus. These estimates usually matched; in the few cases where they did not, we used the 

number of axon clumps, as somata are closer to the surface of the brain and more susceptible to 

mechanical disruption during dissection. This resulted in numbers between 0-4 for each 

hemisphere. Any additional labeling of neurons by 58F02 was easy to discriminate from KCs as 

those neurons did not enter the calyx or pedunculus. For scoring presence of the PN neuroblast 

(PN lNB/BAlc) in sham-treated and hydroxyurea-treated animals, we included Mz19 driving a 

fluorescent reporter in PNs from this lineage.128,129 In the absence of lNB/BAlc, 12 glomeruli 

lose their typical PN partners; 40 glomeruli are innervated by the anterodorsal PN neuroblast, 

which is not affected by HU ablation.130,131 Mz19 labels PNs that innervate DA1 and VA1d 

glomeruli on the anterior side, and DC3 on the posterior side of the antennal lobe; DA1 is 

innervated by lNB/BAlc PNs.128 We quantified the presence or absence of the most distinctly 

labeled glomerulus – DA1, as a way to score the PN lNB/BAlc getting ablated. In some cases, we 

observed mislocalization of DA1. For simplification, we scored this in the ‘‘absence’’ Category. 

 

 

 

https://paperpile.com/c/IHceXz/uCmj
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Bruchpilot density 

We measured Bruchpilot intensity in the calyx as a readout of synaptic density. First, we identified 

the Z plane with the largest extent of the calyx in the A-P axis, and then took three measurements 

of the average fluorescence signal in the Brp channel in a defined ROI measuring 40 mm2. The 

three measurements were taken randomly in different locations in the calyx to account for any 

variability in intensity. For normalization, the calyx Brp signal was divided by Brp signal measured 

in an unmanipulated brain region, the protocerebral bridge. We chose this brain region as it was 

the closest to the calyx and was in the field of view in all calyx images taken. These quantifications 

were done in the ‘‘63X hi-res-1" and ‘‘63X hi-res-2’’ sets of images (defined in the 

‘‘Immunostainings’’ section above).  
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Chapter 5. Flexible discrimination or generalization between similar odors in 

Drosophila depends on the presented alternative 

Adapted from Modi, Rajagopalan et al. 2023, eLife 12:e80923 

 

The study described in the publication referenced above involved a cohesive program of 

behavioral and neural imaging experiments that fed back on each other, directing how the project 

was conceptualized. Dr. Mehrab Modi, Adithya Rajagopalan, Dr. Yoshi Aso and Dr. Glenn C. 

Turner conceptualized and Adithya Rajagopalan conducted the initial behavioral experiments 

(described in Results section 5.2.1) Dr. Modi and Dr. Turner conceptualized and Dr. Modi 

performed the imaging experiments that followed up on these behavioral results (described briefly 

in section 5.3). Adithya Rajagopalan then conducted follow up behavioral experiments to test 

hypotheses formed from imaging data (described in Results section 5.2.2). Adithya Rajagopalan 

and Dr. Mehrab Modi conducted the analysis of the behavioral data. 

 

5.1 Introduction 

 

In chapter 4 we discussed one aspect of the complexities that arise when animals must make 

decision in natural settings that involve sensory stimuli with overlapping representations, i.e. the 

neural principles that allow these stimuli to be represented distinctly. But as we mentioned in the 

Introduction section 1.5, animals do not always want to discriminate between similar sensory 

stimuli. It is often beneficial for the brain to maintain overlapping sensory representations and 

associated values, flexibly categorizing options into the same or different groups based on the 

available options and tailoring decision-making processes as a result of the categorization. 
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This flexibility can be studied by examining how animals use an associative memory in two 

different tasks: discrimination and generalization (Mackintosh 1974). In a discrimination task, the 

animal has to choose between a cue associated with reward and a second cue that could either 

be similar to (hard discrimination) or distinct (easy discrimination) from the original cue. In the 

generalization task, the flies have to choose between a cue that is perceptually similar to the 

trained cue and a cue that is very different. The correct choice in this task depends on the animal 

generalizing its learned response to the similar cue. So, the response to the perceptually similar 

cue differs between the two tasks - the animal chooses it when generalizing and chooses against 

it when discriminating. Despite the need to switch choices, performance can be extremely high 

on both these types of tasks (Xu and Südhof 2013), suggesting that comparisons between 

available alternatives have a strong impact on animals’ behavioral responses.  

 

We asked if Drosophila can incorporate such choice dependent flexibility into their decision-

making process, employing these paradigms using aversive olfactory conditioning. If flies can 

perform these behaviors, the well-studied MB circuit could provide a strong framework to 

understand the neural basis of flexible categorization. 

 

5.2 Results 

 

5.2.1 Flies perform flexible discrimination and generalization depending on the available 

options in a MB compartment dependent manner 

 

Previous work has shown that flies are capable of high levels of performance on both hard 

discrimination and generalization tasks (R. A. A. Campbell et al. 2013). This study identified a trio 

of odors to use for experiments on the specificity of memory, based on the degree of overlap of 

KC response patterns: pentyl acetate (PA) butyl acetate (BA) and ethyl lactate (EL) (Fig. 5.1A, 

https://paperpile.com/c/IHceXz/dyX0o
https://paperpile.com/c/IHceXz/ijq1
https://paperpile.com/c/IHceXz/Q9ON
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left). PA and BA are chemically similar and elicit highly overlapping response patterns in the KC 

population (R. A. A. Campbell et al. 2013).  EL is distinct, both chemically and in terms of KC 

response patterns.  Choices between different combinations of these cues can be used to test 

flies’ ability to flexibly classify odors and measure memory specificity. Take, for example, an 

experiment where flies are trained to form an association with PA.  We can present flies with a 

difficult discrimination task by giving them a choice between the similar odors (PA and BA), or an 

easy discrimination with a choice between the paired odor (PA) and the dissimilar odor (EL) (Fig. 

5.1A, right). We can also test whether the association with PA generalizes to the similar odor BA, 

by giving flies a choice between BA and EL. Since we use these odors in many different 

combinations for different task structures, with and without reciprocal design, here we will use A 

to refer to the paired odor (PA or BA) and A’ to refer to the other similar odor, which is unpaired, 

while B always refers to the dissimilar odor, EL.  With this nomenclature, hard discrimination 

involves an A versus A’ choice, easy discrimination is A versus B and generalization is A’ versus 

B (Fig. 5.1A).   

 

Although previous work showed flies can flexibly categorize odors and learn both generalization 

and discrimination tasks using these odors, electric shock was used as the reinforcement (R. A. 

A. Campbell et al. 2013).  Consequently, the synaptic changes responsible were likely distributed 

across many areas of the mushroom body, and possibly elsewhere.  To confine plasticity to a 

more restricted region of the brain, we used optogenetic reinforcement, pairing the activation of 

specific DANs with odor presentation (Fig. 5.1B)(Schroll et al. 2006; Claridge-Chang et al. 2009). 

We used drivers to express CSChrimson in specific DANs from the PPL1 cluster that target 

different compartments involved in aversion learning: α3 (MB630B) and γ2α’1 (MB296B)(Aso, 

Hattori, et al. 2014; Aso and Rubin 2016).  Since compartments have different time courses for 

memory acquisition and recall (Aso and Rubin 2016), the number of repetitions of odor-

https://paperpile.com/c/IHceXz/Q9ON
https://paperpile.com/c/IHceXz/Q9ON
https://paperpile.com/c/IHceXz/Q9ON
https://paperpile.com/c/IHceXz/AK40j+bcPFc
https://paperpile.com/c/IHceXz/xe68B+9qoH8
https://paperpile.com/c/IHceXz/xe68B+9qoH8
https://paperpile.com/c/IHceXz/9qoH8
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reinforcement pairing and the time between training and testing differed depending on the 

compartment tested (see 5.4 Methods). 

 

 

Figure 5.1 A single set of synapses can result in generalization or discrimination. (A) Left: 

Chemical structures of the three odors used in the study, the similar odors butyl acetate (BA) and 

pentyl acetate (PA) and the dissimilar odor ethyl lactate (EL). Middle: During training the similar 

odors are interchangeably used as the odors that are paired (A) or unpaired (A’) with optogenetic 

reinforcement (LED). Right: Trained flies are then given one of three different choices between 

odors in opposing arena quadrants. These choices represent the three kinds of tasks used here 
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to study memory specificity. Performance index measures the bias in the distribution of flies 

across the different quadrants (see Methods). The circles depict fly population behavior in our 

arenas and the vertical bars depict stimulus choices. The dashed, red line depicts the 

discrimination boundary in each choice. This boundary shifts relative to the light-green stimulus, 

depending on the options. (B) Mushroom body learning schematic. KCs activated by an odor 

(blue) form synapses on MBONs in two compartments (red and gray shading).  Reinforcement 

stimulates the DAN projecting to one compartment (red) leading to synaptic depression. (C) 

Behavior protocols for discrimination tasks at two levels of difficulty. Colored bars represent odor 

delivery periods, red dashes indicate LED stimulation for optogenetic reinforcement. A represents 

the paired odor, A’ the similar odor and B the dissimilar odor.  (D) Significantly lower performance 

on the hard discrimination task with reinforcement to α3 (p = 0.007, n = 12).  Flies received 10 

cycles of training and were tested for memory 24 hours later. CsChrimson-mVenus driven in DAN 

PPL1-α3 by MB630B-Gal4. (E) No significant difference in performance on easy versus hard 

discrimination with reinforcement to γ2α’1 (p=0.08, n = 12 reciprocal experiments). Flies received 

3 cycles of training and were tested for memory immediately after. CsChrimson-mVenus driven 

in DAN PPL1 γ2α’1 by MB296B-Gal4. (F) Behavior protocol for generalization. Scores here are 

compared to a control protocol where light stimulation is not paired with odor presentation in time. 

(G) No significant difference in performance on generalization and easy discrimination with 

reinforcement to α3 (p = 0.84, n = 12). Flies received 10 cycles of training and were tested 24 

hours later. (H) No significant difference in performance on generalization and easy discrimination 

with reinforcement to γ2α’1 (p = 0.89, n = 12 unpaired control performance scores). Flies received 

3 cycles of training and were tested immediately after. (I) Rescue of the dopamine biosynthesis 

pathway in DAN PPL1-γ2α’1 is sufficient for performance on the hard discrimination task (p = 

0.04, n = 8). Black circles and error bars are mean and SEM.  Statistical comparisons made with 

an independent sample Wilcoxon rank sum test. 

  

We found that these two compartments exhibited contrasting properties in the easy and hard 

discrimination tasks (Fig. 5.1C). Flies that received reinforcement from DAN PPL1-α3 were poor 

at the hard discrimination although they performed significantly better on the easy task (Fig. 5.1D, 

p = 0.007, n = 12). On the other hand, flies that received optogenetic reinforcement via DAN 

PPL1-γ2α’1 performed the hard discrimination as effectively as the easy discrimination (Fig. 5.1E, 

p = 0.08, n = 12). Empty driver controls performed no better than chance at either easy or hard 

discrimination (5.2A, p = 0.052, p = 0.38, n= 12). These results show that these two compartments 

have different capacities for discrimination, with α3 weakly discriminating and γ2α’1 stronger. 
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Figure 5.2 Control behavior experiments. (A) and (B) Flies with Chrimson driven by an empty 

split-Gal4 driver, ie. with no Chrimson expression did not learn any of the tasks. Performance 

indices not significantly different from 0 (n = 12, p = 0.052, 0.38 and 0.91 and for easy, hard 

discrimination and generalization; single-sample, Wilcoxon signed rank test). (C) Flies with no 

expression of dopamine in their nervous systems (knockout) are capable of performing the easy 

discrimination task as well as flies with dopamine rescued in DAN PPL1-γ2α’1 (rescue n = 6, 

knockout n = 12, p = 0.22, Wilcoxon rank sum test). (D) Flies with dopamine expression rescued 

in DAN PPL1-γ2α’1 alone are capable of generalization, while flies with dopamine knockout are 

not (n = 6 for rescue and knockout, p = 0.041, Wilcoxon rank sum test). 

 

The difference in ability to support fine discrimination between these two compartments raises 

the question of whether and how they differ in  a generalization task.  In a simple model where 

performance reflects overlap between the test stimulus and the trained odor, the harder the 

discrimination, the easier the generalization.  Does the weakly discriminating α3 compartment 

support strong performance on generalization, while the strongly discriminating γ2α’1 

compartment does not?  Or, does the γ2α’1 compartment somehow have the flexibility to support 

strong performance on both tasks?   

 

We tested this by examining relative performance on generalization and easy discrimination tasks 

in these two compartments.  We kept a parallel structure between the two types of tasks by 
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quantifying performance against control experiments where optogenetic stimulation was delivered 

unpaired to odor delivery (Fig. 5.1F; see 5.4 Methods; note that since these experiments did not 

have reciprocal controls the performance scores in Fig. 5.1G-H are computed differently than in 

Fig. 5.1D-E). As expected, training flies using DAN PPL1-α3 yielded similarly high performance 

on both generalization and easy discrimination tasks (Fig. 5.1G, p = 0.84, n = 12), while empty 

driver controls performed no better than chance (Fig. 5.2A,B, p = 0.052, p = 0.91, n = 12). 

However, performance on the generalization task was also high in the strongly discriminating 

compartment γ2α’1., with a performance level indistinguishable from that in the easy 

discrimination task (Fig. 5.1H p = 0.89, n = 12).  

 

Although the experiments above target optogenetic punishment to specific sites within the MB, 

there is the possibility that there are secondary sites of plasticity that contribute to the behavioral 

performance we observe, via indirect connections between MB compartments. To more rigorously 

confine plasticity to γ2α’1, we performed an experiment where dopamine production is restricted 

solely to DAN PPL1-γ2α’1 within the fly.  Dopamine is necessary for flies to show any measurable 

aversive learning (Kim, Lee, and Han 2007; Qin et al. 2012; Aso et al. 2019), and its production 

requires the Drosophila tyrosine hydroxylase enzyme, DTH (Neckameyer and White 1993; 

Riemensperger et al. 2011; Cichewicz et al. 2016).  So we examined performance of flies lacking 

DTH throughout the nervous system (Cichewicz et al. 2016), but with production rescued 

specifically in PPL1-γ2α’1 by driving expression of UAS-DTH using the split hemidrivers TH-DBD 

and 73F07-AD (Aso et al. 2019). Performance was significantly higher for the DTH-rescue flies 

than for the mutants in hard discrimination (Fig. 5.1I, p = 0.038 , n = 8) and generalization tasks 

(Fig. 5.2D, p = 0.041 , n = 6), indicating that plasticity in this set of synapses is sufficient for both 

behaviors (For control experiments with easy discrimination, see Fig. 5.2C).   

 

https://paperpile.com/c/IHceXz/moGDH+VR0cZ+ywCH3
https://paperpile.com/c/IHceXz/UlUSa+wmVLk+9OHkJ
https://paperpile.com/c/IHceXz/UlUSa+wmVLk+9OHkJ
https://paperpile.com/c/IHceXz/9OHkJ
https://paperpile.com/c/IHceXz/ywCH3
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These results show that a single memory trace formed via plasticity confined to γ2α’1 supports 

strong performance on the hard discrimination and generalization tasks. We note that the choice 

outcomes of these paradigms are opposite: in the generalization experiments flies distribute away 

from odor A’, while in the hard discrimination task, flies accumulate in the A’ quadrant.  
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Figure 5.3 Flies are attracted to the unpaired odor only in transitions. (A) Experimental 

strategy for measuring behavioral responses to odor transitions.  Flies were trained by pairing 

one of the similar odors with optogenetic activation of DAN PPL1-γ2α’1.  They were then tested 

with 30s odor pulses presented either as direct transitions (left) or interrupted by a 25s air period 

(right).  Schematics illustrate A-A’ transitions but both sequences were tested, as indicated by the 

bars on top of panels (B-E). (B) Upwind displacement during the first and second pulses of an A-

A’ odor transition, as indicated by the green bars up top. This was computed as the increase in 

each fly’s distance from the arena center over the odor delivery period, then averaged across all 

flies in an arena (approximately 15 flies per arena). Traces in dark and light green are responses 

to A and A’ respectively. Plots are mean +/- SEM (n = 12 arena runs for all stimulus types). (C) 

Upwind displacement for the reverse odor transition i.e. A’-A. (D) Upwind displacement for A-gap-

A’ interrupted transition. (E) Upwind displacement for the reverse A’-gap-A interrupted transition. 

(F) Upwind displacement in response to the first odor pulse, averaged across flies in each arena 

experiment. Mean displacement was not significantly different between unpaired and paired odors 

for experiments with no gap (n = 12, 12 experiments for paired and unpaired odors, p = 0.70) and 

a 25 s gap (n = 12, 13, p = 0.40). (G) As in (F) except for responses to the second odor pulse. 

Displacement was significantly different for transitions with no gap between pulses (n = 12, 12 

experiments for paired and unpaired odors, p = 0.004) but not different when transitions were 

interrupted by a 25s gap (n = 12, 13, p = 0.85). Statistical comparisons in (F) and (G) were made 

with the independent-sample Wilcoxon rank sum test with a Bonferroni-Holm correction for 

multiple comparisons. 

 

5.2.2 Odor sequences show that a temporal comparison contributes to flexible 

discrimination.   

 

Based on results obtained from experiments imaging KCs and MBONs led by Dr. Mehrab Modi 

(Detailed in section 5.3 Discussion and further experiments), we predicted that flies’ behavioral 

response to similar odors should also be indistinguishable, unless they are encountered as 

transitions. Suggesting that the flexible behavior we observed is due to the presence of options 

that flies experience sequentially in time. Further, since MBON-γ2α’1 signals positive valence 

(Aso, Sitaraman, et al. 2014), our activity measurements predict that flies might be attracted to A’ 

if they encounter an A to A’ transition. 

 

To test these predictions, we examined behavioral responses to temporal sequences of odor, 

converting the spatial odor border flies encountered in our earlier behavioral experiments, into an 

https://paperpile.com/c/IHceXz/6UsSQ
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odor transition in time.  Flies were trained in the circular arena, and then tested by flooding the 

entire arena with a sequence of odor pulses.  We then compared their behavioral response to 

direct odor transitions to their response when we interrupted the transition with 25s of clean air. 

We determined the timing of odor pulse transitions using photo-ionization detector measurements 

at arena exhaust (Fig. 5.4A) and analyzed behavior around these times. 

 

Attraction to an odor was quantified by how much the flies move upwind; in the arena odors flow 

inwards from the periphery so we measured displacement away from the center of the arena.  We 

examined the time course of upwind displacement for direct and interrupted transitions (Fig. 5.3A-

E).  We observed strong upwind displacement during the second pulse of an A-A’ transition, which 

was significantly larger than during the reverse A’-A sequence (Fig. 5.3 B,C,F, p = 0.004, n = 12).  

This contrasted with results observed with a 25s gap in between the two odor pulses.  In these 

interrupted transitions, responses to the second pulse were not significantly different depending 

on transition order (Fig. 5.3D,E,G p = 0.85, n = 12 for A-gap-A’, n = 13 for A’-gap-A,), and showed 

a similar degree of upwind displacement to that evoked during the first pulse, as expected.  Note 

that starting locations at the onset of the second odor pulse were not significantly different in any 

condition, ruling out the possibility that flies go more upwind with the A-A’ transition because they 

start from further downwind in the arena (Fig. 5.4B, n = 12 for A-A’, n = 12 for A’-A, p = 0.08 for 

direct; n = 12 for A-gap-A’, n = 13 for A’-gap-A, p = 0.39 for interrupted).  Additionally, we ruled 

out the possibility that the increased upwind displacement during such a transition comes from a 

linear combination of the response to the end of the first odor pulse and the beginning of the 

second (Fig. 5.4C-G). Similar results were not observed in control flies where no learning takes 

place suggesting that the behaviors, we observe following odor transitions were induced by the 

learning of association between odors and reward (Fig. 5.5). Together, these results show that 

behavioral responses to A’ are distinct only when it immediately follows the paired odor A.  
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Figure 5.4 Transition dependent attraction is not a result of linearly summed, single-pulse 

responses. (A) PID measurements of odor time courses in the behavioral arena, measured at 

the central exhaust port. The black trace depicts odor pulses delivered with no gap and the gray 

trace depicts pulses interrupted by a 25s air period. The vertical red line indicates the time point 

identified as the onset of the second odor pulse. (B) Mean distances of flies from the arena center 

at the onset of the second odor pulse in each experiment. Distances from the center were not 
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significantly different between experiments with the unpaired and paired odor, with a 0s gap (n = 

12, 12 resp. p = 0.08) or with a 25s gap (n = 12, 13, p = 0.39). Statistical comparisons made with 

the independent samples; Wilcoxon’s rank sum test followed by a Bonferroni-Holm correction for 

multiple comparisons. (C) The off-response trace after the first odor pulse for A-A’ transitions 

without an air gap (top) and A’-A transitions with an air gap (bottom). (D) The response at the 

onset of the second odor pulse for A-A’ transitions without an air-gap (top) and A’-A transitions 

with an air gap (bottom). (E) The linear sum of upwind displacement traces in (C) and (D). This is 

the null model to compare with responses to an odor transition. (F) Actual displacement during 

the second odor pulse in unpaired to paired transition stimuli with no air-gap. Traces in C-F are 

mean +/- SEM. (G) Mean upwind displacement over the duration of the second odor pulse for the 

two transitions (dark green: A’ to A, light green; A to A’). In gray is the mean and bootstrapped 

SEM of the linear sum of component responses in (C).  The measured displacements are 

significantly greater than the sum when odor A’ is second (n=12, p = 0.001) but not when odor A 

is second (n=12, p = 0.09).  Displacements were compared with the Wilcoxon’s signed rank test 

followed by a Bonferroni-Holm correction for multiple comparisons. 

 

The upwind displacement during the A-A’ transition is consistent with our observation that MBON-

γ2α’1, a positive valence MBON that drives upwind behavior, is highly active during these 

transitions.  In fact, the mean upwind displacement after an A-A’ transition was similar to that 

caused by optogenetic activation of MBON-γ2α’1 in the arena (unpublished communication - Y. 

Aso).  Overall, these results show that flies compare available alternatives "side-by-side" in time 

and that stimulus history is important for flexible categorization and behavior.  

 

5.3 Discussions  

 

The behavior experiments described in the section above were performed in combination with 

neural imaging experiments led by Dr. Mehrab Modi and in the context of a scientific line of 

thinking initiated by Mehrab in collaboration with Dr. Yoshi Aso and Dr. Herve Roualt. A complete 

picture of the insight gained from the experiments detailed above can only be ascertained within 

the context of these imaging and modeling results. I will therefore briefly summarize in this 

upcoming section these additional results that make up the remainder of the paper Modi, 
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Rajagopalan et al. published in  eLife, drawing heavily from and adapting the text in that 

publication (Modi et al. 2023). 

 

Upon observing that flies could achieve high levels of performance for both discrimination and 

generalization tasks and identifying a single MB compartment capable of supporting both (Fig. 

5.1 and 5.2), we sought to understand how plasticity in this one compartment can result in the 

flexible categorization of an odor depending on its context. Surprisingly, MBON responses in this 

compartment showed no measurable stimulus-specificity to simple pulses of the two similar odors 

we used, despite being able to distinguish them behaviorally. However, when we presented odors 

in sequence, one transitioning immediately into the other, similar to what flies experience in the 

behavioral task, we found that MBON responses to these odors were clearly distinct. These 

findings show that MBON activity is modulated by a temporal comparison of the alternatives 

presented to the fly, allowing for switches in the categorization of odor stimuli. Importantly, KC 

representations did not show categorization switching to either simple stimuli or transitions 

suggesting the involvement of downstream mechanisms. 

 

Both imaging and behavior provide complementary evidence that comparing available 

alternatives "side-by-side" in time is important for flexible categorization. These results show that 

the MB circuit implements a comparison, augmenting small differences between overlapping 

sensory representations to guide flexible stimulus categorization and choice behavior. 

 

 

https://paperpile.com/c/IHceXz/MzMF
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Figure 5.5 Flies reinforced via DAN PPL1-α3 do not respond to transitions between A and 

A’. Flies were trained by pairing one of the similar odors with optogenetic activation of DAN PPL1-

α3.  They were then tested with 30s odor pulses presented either as direct transitions (A,B) or 

interrupted by a 25s air period (C,D), as in Fig. 5.3.  Transition order indicated by the bars on top 

of panels (A-D). (A) Upwind displacement in the first and second pulses of an A-A’ odor transition.  

Traces in dark and light green are responses to A and A’ respectively. Plots are mean +/- SEM (n 

= 8 arena runs for all stimulus types). (B) Upwind displacement for the reverse odor transition i.e. 

A’-A. (C) Upwind displacement for A-gap-A’ interrupted transition. (D) Upwind displacement for 

the reversed, A’-gap-A interrupted transition. (E) Upwind displacement in response to the first 

odor pulse, averaged across flies in each arena experiment. Mean displacement was not 

significantly different between unpaired and paired odors for experiments with no gap (n = 8 

experiments each for paired and unpaired odors, p = 0.28) and a 25 s gap (n = 8, p = 0.69). (F) 

As in (E) except for responses to the second odor pulse. Unlike with DAN PPL1-γ2α’1, 

displacement was not significantly different for transitions with no gap between pulses (n = 8, p = 

0.78) or when transitions were interrupted by a 25s gap (n = 8, p = 0.57). Statistical comparisons 

in (E) and (F) were made with the independent-sample Wilcoxon rank sum test with a Bonferroni-

Holm correction for multiple comparisons. 
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5.4 Methods 

 

5.4.1 Fly strains and rearing  

 

Drosophila melanogaster were raised on standard cornmeal food at 21 C̊ at 60% relative humidity 

on standard cornmeal food on a 12-12h light-dark cycle.  For optogenetics behavior experiments, 

crosses were set on food supplemented with 0.2mM all-trans-retinal and moved to 0.4mM after 

eclosion and kept in the dark throughout.  

 

 

Table 5.1 Fly genetic lines 

 

Transgene Expression 
target/reporter 
description 

Bloomington stock number, 

reference 

MB296B split Gal4 DAN PPL1-γ2α’1 BDSC:68253(Aso and Rubin 2016) 

MB630B split Gal4 DAN PPL1-α3 BDSC:68290(Aso and Rubin 2016) 

R82C10-LexA  DANs PPL1-γ2α’1, α2, α3 BDSC:54981(B. D. Pfeiffer et al. 2013) 

20XUAS-

CsChrimson-

mVenus attp18 

Optogenetic activation for 
behavior 

BDSC:55134(Klapoetke et al. 2014)  

 

 

Expression patterns of split-GAL4 lines produced by Janelia FlyLight(Jenett et al. 2012) can be 

viewed online (http://splitgal4.janelia.org/cgi-bin/splitgal4.cgi).  DAN driver split Gal4 in the table 

above was crossed with 20XUAS-CsChrimson-mVenus attp18 

 

TH-rescue experiments (genetic strategy as in (Aso et al. 2019)) 

 

Knockout 

 

w, 20XUAS-CSChrimson-mVenus attP18; +; ple2, DTHFS± BAC attP2, TH-ZpGAL4DBD 

VK00027/ TM6B 

crossed with  

https://paperpile.com/c/IHceXz/9qoH8
https://paperpile.com/c/IHceXz/9qoH8
https://paperpile.com/c/IHceXz/cm0ZF
https://paperpile.com/c/IHceXz/1O3jw
https://paperpile.com/c/IHceXz/6kN98
https://paperpile.com/c/IHceXz/ywCH3
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w; R73F07-p65ADZp attP40/ CyO; ple2, DTHFS± BAC attP2/ TM6B 

 

Knockout and rescue in DAN PPL1-γ2α’1 

 

w, 20XUAS-CSChrimson-mVenus attP18; UAS-DTH1m; ple2, DTHFS± BAC attP2, TH-

ZpGAL4DBD VK00027/ TM6B 

crossed with  

 

w; R73F07-p65ADZp attP40/ CyO; ple2, DTHFS± BAC attP2/ TM6B 

 

 

5.4.2 Behavior Experiments 

 

Odor quadrant choice assay: Groups of approximately 20 females, aged 4-10 d post-eclosion 

were anaesthetized on a cold plate and collected at least two days prior to experiments. After a 

day of recovery on 0.4 mM all-trans-retinal food, they were transferred to starvation vials 

containing nutrient-free agarose. Starved females were trained and tested at 25 C̊ at 50% relative 

humidity in a dark circular arena described in(Aso and Rubin 2016). The arena consisted of a 

circular chamber surrounded by four odor delivery ports that divide the chamber into quadrants.  

The input flow rate through each port was 100 mL/min, which was actively vented out a central 

exhaust at 400 mL/min.  Odors were pentyl acetate, butyl acetate and ethyl lactate (Sigma-Aldrich 

product numbers 109584, 287725, and W244015 respectively).  Except for the TH-rescue 

experiments shown in Fig. 5.1I, these odors were diluted 1:10000 in paraffin oil (Sigma-Aldrich 

product number 18512).  For the experiments in Fig. 5.1I, we used a different odor delivery system 

which utilizes air dilution of saturated odorant vapor and delivered odors at a 1:16 dilution of 

saturated vapor.   

 

https://paperpile.com/c/IHceXz/9qoH8
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Flies were aspirated into the arena via a small port and allowed 60 s to acclimatize before training 

commenced.  Training consisted of exposing the flies to one of the odors while providing 

optogenetic stimulation via a square array of red LEDs (617 nm peak emission, Red-Orange 

LUXEON Rebel LED, 122 lm at 700mA) which shone through an acrylic diffuser to illuminate flies 

from below. LED activation consisted of 30 pulses of 1s duration with a 1s inter-flash interval, 

commencing 5s after switching on the odor valves and terminating 5s after valve shut-off.  

 

To optimize learning scores, we used different training regimes depending on the compartments 

receiving optogenetic reinforcement, according to(Aso and Rubin 2016).  A single training session 

was used for MB296B, TH-mutant, TH-rescue, while 3 training sessions, separated by 60 

seconds, were used for some MB296B experiments, as indicated in the text.  For MB630B we 

used 10 training sessions separated by 15 minutes.   

 

Following training, testing was carried out with the appropriate odors for each task.  In the test 

configuration, the two different odor choices are presented in opposing quadrants for 60 s.  Videos 

of fly behavior were captured at 30 frames per second using MATLAB (Mathworks, USA) and 

BIAS (http://archive.iorodeo.com/content/basic-image-acquisition-software-bias.html) and 

analyzed using custom-written code in MATLAB. 

 

Odor attraction assay: For the odor attraction assay, the outputs of odor machines were re-

configured to inject the output of a single odor machine into all four quadrants. We switched output 

from one machine to the other to deliver rapid odor transitions in time. About 15 flies were 

introduced into the arena for each experiment. The rest of the behavioral procedures were 

identical to those used in the quadrant choice assay.   

 

https://paperpile.com/c/IHceXz/9qoH8
http://archive.iorodeo.com/content/basic-image-acquisition-software-bias.html
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Optogenetic MBON-activation assay: For this assay, a clean air stream was delivered into all four 

arena quadrants throughout the experiment. Flies expressed CSChrimson in MBON γ2α’1. Flies 

received six 10 s long LED flashes, separated by 60s of darkness. The rest of the behavioral 

procedures were identical to those used in the quadrant choice assay.   

 

5.4.3 Behavior Analysis 

 

 

Videos recorded during the test phase were analyzed using custom-written MATLAB code.  The 

centroid of each fly was identified and the number of centroids in each quadrant computed for 

every frame of the experiment. 

 

For discrimination experiments, a Performance Index (PI) was calculated as the number of flies 

in the quadrants containing the paired odor minus the number in the quadrants with the unpaired 

odor, divided by the total number of flies(Tully and Quinn 1985).  This value was calculated for 

every frame of the movie, and the values over the final 30 s of the test period averaged to compute 

a single PI.  Discrimination experiments employed a reciprocal design where the identity of the 

paired and unpaired odors was swapped, and a single data point represents the averaged PI from 

two reciprocally trained groups of flies.   

 

Generalization experiments could not employ a reciprocal design, so instead we compared scores 

against control experiments where flies were exposed to LED stimulation that was not paired with 

odor delivery; instead, stimulation preceded odor by 2 min.  In this case the PI score reported as 

a single data point is the PI observed from the generalization experiment minus the PI observed 

in the unpaired control, after both PIs were corrected for biases in initial quadrant occupancies by 

subtracting away the pre-odor baseline.   

 

https://paperpile.com/c/IHceXz/WRaw
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Statistical testing was done as described in figure legends. We used the non-parametric, 

independent sample, Wilcoxon rank sum test to compare performance indices across treatment 

groups. Statistical testing was performed with custom code written in Matlab (Mathworks, USA). 

The appropriate sample size was estimated based on the standard deviation of performance 

indices in previous studies using the same assay(Aso and Rubin 2016). 

 

For the odor attraction and the MBON-activation assays, computing upwind displacement 

required us to track each fly’s trajectory in time. We used the Caltech Fly Tracker (Eyjolfsdottir et 

al. 2014) to automatically extract fly trajectories from videos. Odor stimulus onset time in the arena 

was determined from PID measurements of odor concentration at the arena exhaust port. For the 

MBON-activation assay, stimulus onset was set as the moment the LED turned on. Upwind 

displacement was computed as the increase in the distance from the center for each fly, relative 

to its location at stimulus onset, for each time-point over the entire stimulus window. The 

displacement for all flies in an arena experiment were then averaged before plotting and statistical 

testing. 

 

  

https://paperpile.com/c/IHceXz/9qoH8
https://paperpile.com/c/IHceXz/YR0ZI
https://paperpile.com/c/IHceXz/YR0ZI
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Chapter 6. Discussion and future outlook 

 

6.1 Summary of results 

 

The decision-making strategies used by animals play a key role in their survival. As mentioned in 

the introduction a large body of work has focussed on understanding the computations underlying 

decision making in a variety of animal brains and have identified key implementational elements 

such value and RPE signals represented in neural activity. However, despite this progress, a 

complete head-to-toe understanding of decision-making algorithms has been hard to arrive at. 

This has been due to the complexity of the brains commonly studied to understand decision-

making and when simple brains are used the behavioral tasks have remained too simple to 

differentiate between different hypothetical algorithms. In the work described in this thesis we 

address this two-fold problem by detailing a novel dynamic-foraging task for fruit flies. This task 

combined with the well-mapped Drosophila brain allows us to test and prove general theories 

regarding the neural algorithms underlying decision making in i) dynamic and probabilistic 

environments and ii) in the face of sensorily-overlapping options. 

Operant matching is one simple and ubiquitous behavioral strategy, utilized in dynamically 

changing and probabilistic environments. Despite the ubiquity of this strategy and strong 

theoretical background, little was known about the underlying biological mechanisms. We 

leveraged the growing body of knowledge regarding learning in the fruit fly and the plethora of 

available anatomical tools to tackle this knowledge gap. We developed a foraging task that 

allowed us to monitor choices of individual fruit flies and showed, for the first time, that flies follow 

Herrnstein’s operant matching law. Combining experimental results with computational modeling, 

we found that this behavior requires synaptic plasticity and uses a rule that incorporates 

expectation of reward. Follow-up experiments manipulating neural circuitry found that reward 
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expectation signals were incorporated via the rewarding PAM DANs. Our results provide the first 

mapping of the learning rule underlying operant matching onto the plasticity of specific synapses 

– the KC-MBON synapses in the MB. 

The MB utilizes an ‘expansion-layer’ architecture first put forward by Marr and Albus in the context 

of the cerebellum. Such a structure allows for accurate discrimination between sensorily-

overlapping options for appropriate decision-making by tuning input connectivity and expansion 

cell number. Using developmental and chemical manipulations we modified these elements of 

the MB circuit to prove the theoretical predictions about ‘expansion-layer’ circuits, showing that 

increasing KC number improves discrimination, but changing PN-KC connectivity (thought to be 

optimal) reduces discrimination capabilities. In addition to this ‘expansion-layer’ architecture, we 

find that MBONs downstream of the KC ‘expansion-layer’ further aid flexible decision-making by 

modifying neuronal activity, as well as behavior, on the order and identity of the options perceived 

by the animal. 

 

6.2 Future experiments 

 

These findings provide answers to some important questions that have existed in the field but 

more importantly open the door to answering even more questions and more thoroughly 

understanding the neural algorithms underlying decision-making. 

 

6.2.1 Future experiments related to Chapter 3 

 

The most prominent unexplored direction in the work described in Chapter 3 is that the obvious 

predictions made by the behavior and modeling regarding neural activity have not been tested. 
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6.2.1.1 MBON imaging experiments 

 

The first direction to explore would be to observe MBON activity in the context of this task. This 

can be done in one of two ways.  

 

The most direct measurements would involve translating the behavioral paradigms described in 

Chapter 2 and 3, into a virtual reality setup where head-fixed flies walk on a revolving spherical 

treadmill. This would allow us to observe neural activity as the fly is performing the task. In such 

a setup, one could use a fluorescent calcium sensor such as GCaMP to record from specific 

MBONs of interest. Of particular interest is the MBON that innervates the gamma 5 compartment.  

Preliminary data collected in the lab shows that optogenetic reward via the Gr64f sugar neurons 

activates the PAM DANs that innervate this compartment. Our covariance-based learning rule 

model for operant matching makes clear predictions regarding how MBON activity will change 

following rewarded and unrewarded trials contingent on the reward expectation. If the expectation 

for reward following a given odor cue is high and a reward is provided, then on the next experience 

of that odor cue, the MBON response should be slightly lower or show no change compared to 

the previous experience. On the other hand, if the reward predicting odor is followed by no reward, 

then on the next experience of that cue, the MBON activity should be higher compared to the 

previous experience. This can be compared to the traditional R⋅ S non-covariance product rule 

previously assumed to exist in the MB. Such a rule would never predict increases in MBON 

response to an odor, even after a missed reward.  

 

Such a test of the covariance rule is complicated for multiple reasons. First, the fly on the ball 

version of the Y-arena task will need to be designed and tested. Second, the dynamic foraging 

paradigm leads to multiple different expectation values that change from trial to trial given the 
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probabilistic nature of the reward. Getting a sufficient number of responses where flies have 

experienced the same history of choices to account for noisiness in the data will be difficult. 

 

A simpler option that offers a more direct way to test the prediction of the covariance-based 

learning rule. Here flies can be imaged in a traditional head-fixed setup previously described for 

recording from MB related neurons (Murthy and Turner 2013; Robert A. A. Campbell et al. 2013). 

In this non-behavioral set-up, flies would experience odors in a fixed order independent of its own 

behavior allowing us to replicate this experience across flies. A fixed sequence of odor 

presentation followed by reward or not would allow us to test if MBON activity can show both 

depression and potentiation as predicted by the covariance rule hypothesis.  This option, 

however, suffers from the fact that the fly in this case is not performing the complete task. If any 

part of our observations in Chapter 3 depends on feedback from the fly’s own movement and 

control over its world we may not obtain interpretable imaging data. 

 

6.2.1.2 DAN imaging experiments 

 

A similar and equally important experiment involves the imaging of DA release. If DANs do in fact 

represent a reward minus expected reward signal, then the amount of DA released following a 

reward that is expected (preceded by a reward predictive odor) should be less than the DA 

released following an unpredicted reward or a reward that is less expected (preceded by an odor 

with low expectation of reward). 

 

This experiment could be performed in the same two ways as described for the MBON 

experiments in the previous section. Again, the ease of replicability and stimulus control offered 

by the non-behavioral head-fixed set-up offers advantages while still allowing the experimenter to 

test important theoretical predictions, while suffering from the same disadvantages. An important 

https://paperpile.com/c/IHceXz/q4wd+l8nVo
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difference between this experiment and the MBON that I would suggest would be  to use a DA 

sensor, such as GRABDA (Sun et al. 2018) expressed in the axons of KCs rather than a calcium 

sensor expressed in the DANs as the DA released is a more proximal effector of changes at the 

KC-MBON synapse than DAN activity itself. 

 

6.2.1.3 Calculation of reward expectation 

 

There are many possible hypotheses by which reward expectation can be calculated in this circuit, 

see Chapter 3.3.5. One of these ideas, inspired by work in the mammalian midbrain (Keiflin and 

Janak 2015), suggests that reward expectation can arrive at the DANs through a GABAergic 

interneuron. The activity of MBONs upon experiencing an odor represent the value of that odor, 

this is highly correlated with the reward expectation. If a GABAergic interneuron can transfer this 

signal to the DANs with a sign opposite to that of the incoming reward signal from the sugar 

sensory neurons, that would provide the necessary mechanisms to carry out the reward minus 

expected reward computation required by the covariance rule theory. Such a GABAergic neuron 

has in fact been identified in the connectome that received input form the gamma 5 MBON and 

feeds back to the PAM DANs. Preliminary data using the same tissue specific CRISPR approach 

used to K.O. DA receptors in KCs in Chapter 3 to K.O. GABA receptors in the PAM DANS has 

suggested that this model may indeed be correct but follow up and control experiments are 

required to test this idea.  

 

This mechanism differs in another important way from the models used in Chapter 3. Here reward 

expectation will be odor dependent as the MBON activity to two different odors is different. 

However, the model in Chapter 3 and Loewenstein and Seung’s original work makes use of a 

reward expectation averaged over both options. If the GABA interneuron mechanism holds up, 

new modeling efforts will need to be undertaken to understand the effect of this difference on the 

https://paperpile.com/c/IHceXz/dqhQ
https://paperpile.com/c/IHceXz/E9KG
https://paperpile.com/c/IHceXz/E9KG
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theory. It is possible that the undermatching we observe could be explained when models 

incorporate such option specific reward expectations. 

 

6.2.1.4 Experiments to study risky-choice 

 

The experiments described in Chapter 3 have focussed on theories about two key economic 

variables necessary for decision making, value and reward prediction error. However, factors 

such as confidence and risk-attitude play equally important roles in decision-making behaviors in 

probabilistic environments. Future work should explore if flies can be a useful organism for the 

study of such behaviors. For example, a simple change to the dynamic foraging paradigm 

described in Chapter 3 can convert the task into one that studies risk attitude. Let’s say odor 1 is 

rewarded every time it is chosen, odor 2 on the other hand is rewarded on 50% of trials but flies 

are provided with a reward that is twice as long or twice as intense on those trials. Does this affect 

choice behavior like it does in mammals? Such early experiments are crucial to identify which 

theories about risk-attitude and decision-making can be tested in the fly, if any can at all. 

 

6.2.1.5 Explaining undermatching 

 

Future modelling and experimental efforts should also focus on explaining undermatching. The 

models we provide in this dissertation are 0th order models that explain a large trend in the 

behavioral strategies observed in flies and other animals, however they do not explain all the 

nuances. Undermatching is one such nuance that has been observed across animals. There are 

two dominant ideas for why undermatching could exist (see Chapter 3.3.3). They suggest that 

either reward expectation is calculated incorrectly or that learning over multiple time-scales leads 

to hysteresis that causes undermatching. Both of these options could be implemented in the fly. 

Different MB compartments could be estimating reward expectation differently or to different 
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extents in agreement with the first option. Alternatively, these compartments are known to learn 

at different timescales. Behavioral experiments should focus on inducing learning only in one 

compartment at a time. This can be done by pairing Gr64f reward with DA rescue only in specific 

compartment in DA deficient flies (like the ones used in Chapter 5). Model efforts should expand 

on the models in Chapter 3 by incorporating different timescales of learning similar to the work of 

IIgaya and colleagues (Iigaya et al. 2019). 

 

6.2.2 Future experiments related to Chapter 4 

 

The behavioral experiments described in Chapter 4 test hypotheses regarding the role of input 

connectivity and cell number of ‘expansion layers’ in stimulus discrimination. However, the 

circuitry of the MB that allows for learning and decision-making consists of MBONs and other 

neurons downstream of the MB as well as PNs and neurons upstream. Future experiments should 

apply the developmental manipulations described in Ahmed et al. (Ahmed et al. 2023) to PNs and 

relevant MBONs to understand the effect of cell number and connectivity related changes on 

these cells to decision-making processes. MBONs for example are likely locations of information 

integration and changing the number of inputs could allow for faster/slower decisions. Further, it 

would be interesting to assess how the changes in cell number at these regions affect the 

architecture of neural circuits downstream, does having more than one MBON for a given MB 

compartment affect the number of cells downstream? Finally, changing the number of PNs is a 

final test of the Marr-Albus expansion layer idea. Theoretical work suggests that increased 

connectivity between PNs and KCs could lead to worsened discrimination (as our results show). 

Does increasing PN number lead to increased connectivity and hence worse discrimination? 

These are all questions that are worth delving into and I believe that this approach of combining 

developmental and systems neuroscience could be of significant importance to our understanding 

of brain structure and function in the years to come. 

https://paperpile.com/c/IHceXz/IqoEr
https://paperpile.com/c/IHceXz/zabi
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6.2.3 Future experiments related to Chapter 5 

 

The experiments detailed in Chapter 5 and the accompanying research paper (Modi et al. 2023), 

expand on our understanding of the mechanisms by which the MB circuit implements stimulus 

discrimination for flexible decision-making. While this work characterizes a clear behavioral reality 

and connects with a neural basis, the mechanisms that could give rise the flexible neural 

responses observed in the g2a’1 MBON remains unclear. Our work has identified that this neural 

flexibility involves a mechanism at or downstream of the KC- MBON synapses modified during 

learning.  

 

One mechanism that could satisfy these criteria, would involve an explicit comparison of MBON 

activities in  time, much like the delay-lines in the auditory pathways of owls and crickets  (Sullivan 

and Konishi 1986; Schöneich, Kostarakos, and Hedwig 2015).  This could be implemented via a 

downstream neuron that receives a real-time and a delayed copy of MBON-γ2α’1 activity, which 

then provides a positive feed- back signal to the MBON to amplify small increases in activity. Both 

of these motifs have been observed in the EM connectome (Li et al. 2020). As the extent of 

depression of KC >MBON synapses is inevitably slightly weaker for any odor that overlaps 

imperfectly with the learned odor, this mechanism would sensitize the circuit to small differences 

in MBON activity that arise around an odor transition. Another class of mechanisms centers on 

the observation that the KC population exhibits a distinct pattern of responses to odor offset 

(Tanaka, Tanimoto, and Ito 2008; Lüdke et al. 2018). Offset responses in other MBONs  can  be  

potentiated (Vrontou et al. 2021),  presumably  due  to  the  timing  of  reinforcement  (Cohn, 

Morantte, and Ruta 2015; Handler et al. 2019), suggesting a similar mechanism might operate in 

MBON-γ2α’1  to augment responses to the second odor in a transition. An additional candidate 

mechanism is plas- ticity of inhibitory input to KCs from the APL neuron. Activity of this inhibitory 

neuron is reduced by  training (Liu and Davis 2009; Zhou et al. 2019), so when a non- overlapping 

https://paperpile.com/c/IHceXz/MzMF
https://paperpile.com/c/IHceXz/501I+oaw7
https://paperpile.com/c/IHceXz/501I+oaw7
https://paperpile.com/c/IHceXz/xIzA5
https://paperpile.com/c/IHceXz/ws5P+BU5Z
https://paperpile.com/c/IHceXz/8Wl6
https://paperpile.com/c/IHceXz/Qn4LA+udWCA
https://paperpile.com/c/IHceXz/Qn4LA+udWCA
https://paperpile.com/c/IHceXz/Fgv5+yge4
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set of KCs is activated  at an odor transition, that excitation may more effectively drive the 

downstream MBON. Inhibition at  odor offset is a particularly prominent feature of the α’/β’ KCs 

that are input to MBON-γ2α’1 (Inada, Tsuchimoto, and Kazama 2017), so this effect could act in 

combination with potentiation of KC offset responses to create  pronounced changes in KC output 

at an odor transition. Future work will be needed to resolve these different possibilities. 

 

6.3 Concluding remarks 

 

David Marr, in his most famous work (Marr 2010), put forward a framework of understanding 

information processing systems that has been widely adopted to explain how the brain functions. 

In this work he proposed that a system like the brain must be understood at three layers. First, 

we must understand the computational problem that our brain region(s) of interest is solving. 

Second, we must identify the algorithm that the system uses to solve the problem and finally, we 

can investigate the specific instantiation of the algorithm in a given brain.  

 

Now multiple algorithms could solve a potential problem and each algorithm can be instantiated 

in a variety of ways. However, this would only be true if each solution we observe in the animals 

we study were created in isolation.  Animal brains have in fact evolved from common ancestors 

and share structure and functions to extent that most scientists agree that there are likely common 

algorithms underlying the solution of a given cognitive problem even if the specific instantiations 

may be different (see (Pereira-Obilinovic et al. 2022) for an example).  

 

A large body of theoretical work has identified important algorithmic steps or computations that 

must be performed to give rise to a particular behavior. I provide examples of such theories in the 

earlier chapters. Loewenstein and Seung’s covariance-based learning and operant matching 

(Loewenstein and Seung 2006), and the efforts of multiple scientists including David Marr, 

https://paperpile.com/c/IHceXz/KYNB
https://paperpile.com/c/IHceXz/7l1o
https://paperpile.com/c/IHceXz/EE85
https://paperpile.com/c/IHceXz/Wf2d
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himself, on the theory of expansion layers (Marr 1969; Albus 1971; Jortner, Farivar, and Laurent 

2007; Babadi and Sompolinsky 2014; Litwin-Kumar et al. 2017; Rajagopalan and Assisi 2020). 

However, a roadblock in front of these important theories that provide strong and general bounds 

on our understanding of neural computations has been the difficulty in testing them. Mapping 

these theories onto neural circuits and manipulating these circuits to test whether they agree with 

the theory has not been possible (for reasons explained in Chapter 1). Recent work in the central 

complex of the fly has shown that Drosophila melanogaster can serve as a tool to jump this hurdle 

(Hulse et al. 2021; Turner-Evans et al. 2020; Noorman et al. 2022). 

 

In the work described in this thesis my colleagues and I have used the fruit fly to get past this 

roadblock in the context of the cognition underlying decision-making. By demonstrating that flies 

can perform complex cognitive behaviors previously observed primarily in mammals, we have 

brought the powerful genetic tools available in this model organism into the frame as a way to test 

theories developed based on interesting behaviors and neural responses observed in mammals. 

In yet unpublished work developing on this project, others in Dr. Glenn Turner’s lab have begun 

to explore even more complex behaviors such as risky decision-making with gambling (introduced 

in Chapter 1) as well as attempting to explain behavior in a reinforcement learning framework.  

 

In addition to setting up a novel framework in which complex decision-making behaviors and their 

underlying neural computations can be understood, the work detailed in Chapter 3 has contributed 

a novel approach, to a growing body of work (Lim et al. 2015; Ashwood et al. 2020; Confavreux 

et al. 2020), aimed at estimating plasticity rules at particular synapses based on behavior. Given 

the growing impact of naturalistic behavior and tools to analyze behavior(Mathis et al. 2018; 

Pereira et al. 2019, 2022) in neuroscience, such theoretical tools will be important for 

understanding how our brains function. 

 

https://paperpile.com/c/IHceXz/oiNP+jnT2+2k4A+fEFn+p5R7+ZaNk
https://paperpile.com/c/IHceXz/oiNP+jnT2+2k4A+fEFn+p5R7+ZaNk
https://paperpile.com/c/IHceXz/Bydw+WwnW+eu01
https://paperpile.com/c/IHceXz/ojCwD+a3dii+NVpTS
https://paperpile.com/c/IHceXz/ojCwD+a3dii+NVpTS
https://paperpile.com/c/IHceXz/n1ob+aPLy+Oref
https://paperpile.com/c/IHceXz/n1ob+aPLy+Oref
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Together the work in this thesis has combined multiple important avenues of neuroscience, from 

complex cognitive behavior and novel theoretical approaches to optogenetic and developmental 

manipulations to validate important theories regarding the neural principles underlying decision-

making and map algorithmic elements of these theories onto circuit structures in the fruit fly. 

Providing an important demonstration of the linking of Marr’s second and third levels. 
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which focuses on questions designed to promote deep thought and investigation 

• Contacted sponsors and interacted with outreach arms of multiple scientific companies; 

secured funding for event from two sponsors 

• Organized and scheduled 17 prominent research scientists to serve as judges for two-day 

final event; four finalists competed 

• Coordinated team of 200+ students to conduct preliminary written quiz with 400+ 

participating teams at 10 centers across India; led smaller team of 20 students to produce 

innovative biology related questions for both rounds of the event 

  

Co-Organizer / Johns Hopkins Dept. of Neuroscience Retreat July 2019 —Sep 2019 

HHMI Janelia Research Campus Ashburn, VA 

  

• Member of 7-person organizing committee for annual Johns Hopkins Department of 

Neuroscience retreat, with 250+ participants 

• Invited 18 students and faculty in Department of Neuroscience to speak at two-day event 

held at HHMI Janelia Research Campus 

• Scheduled talks during two-day event and organized local leisure activities for attendees 

between sessions. 

• Moderated one of six event sessions, introducing speakers and coordinating Q&A sessions 
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TEACHING/MENTORING EXPERIENCE: 

  
Teaching Assistant / Biol 341 Animal Physiology  Sept  2022—Dec 2022 

Howard University, Washington DC 

  
• Served as a laboratory instructor for students performing behavioral experiments with 

fruit flies 

• Instructed students on the use of MATLAB for analysis of behavioral videos 

  
Laboratory Mentor / Master’s Student Jan 2022—Jan 2023 

HHMI Janelia Research Campus Ashburn, VA 

  

• Involved in multiple meetings focused on planning structure of thesis project and research 

direction 

• Instructed student on use of existing behavioral equipment in lab and advised student on 

design of novel experimental setup 

  

Teaching Assistant / Math Methods for Neuro & ML Jun 2019—Aug 2019 

HHMI Janelia Research Campus Ashburn, VA 

  

• Served on 11-person organizing group, planned course structure, topics, tutorials and 

office hours 

• Prepared lecture notes and problem sets for week 1 of course, introducing calculus 

• Led tutorials and office hours to discuss problem sets and field student questions 

  

Laboratory Mentor / Summer Undergraduate Intern May 2018 —Aug 2018 

HHMI Janelia Research Campus Ashburn, VA 

  

• Served as mentor for summer undergraduate intern in lab, enrolled through the Janelia 

Undergradaute Scholars program 

• Instructed student on use of olfactory-learning apparatus in lab to study the role of 

extended experience on memory 

• Evaluated code written by student to analyze data from behavioral experiments 

• Advised on structure and design of poster presented at internship conclusion 
 

 
  


