
ONLINE DECISION MAKING FOR DYNAMICAL SYSTEMS:

MODEL-BASED AND DATA-DRIVEN APPROACHES

by

Tianqi Zheng

A dissertation submitted to Johns Hopkins University in conformity

with the requirements for the degree of Doctor of Philosophy

Baltimore, Maryland

September, 2023

© 2023 Tianqi Zheng

All rights reserved



Abstract

The widespread availability of data sources and their increased speed compared to

the past decade have created both new opportunities and challenges for developing

decision-making algorithms for data streams. The ability to process data streams

and make real-time decisions that align with system dynamics is a crucial aspect

in the development of online decision-making algorithms. This thesis leverages

tools from control theory, optimization, and learning to address the problem of

online decision-making for dynamical systems, considering streaming data and

dynamically changing information.

Two online decision-making frameworks are presented in this thesis, depending

on the availability of system dynamic information. In the first scenario, where

the system can be represented by ordinary differential equations using a state-

space model, a time-varying convex optimization framework is introduced. This

framework combines motion planning and control to design control signals that

lead the dynamical system to asymptotically track optimal trajectories implicitly

defined through constrained time-varying optimization problems. Consequently,

the nonlinear dynamical system is effectively transformed into an optimization

algorithm that seeks the optimal solution to the optimization problem. Global

asymptotic convergence of the optimization dynamics to the minimizer of the time-

varying optimization problem is proven under sufficient regularity assumptions.

In the second scenario, when system dynamics are not available, a data-driven

approach called constrained reinforcement learning is adopted. Constrained re-
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inforcement learning deals with sequential decision-making problems where an

agent aims to maximize its expected total reward while interacting with an un-

known environment and receiving sequentially available information over time.

The constrained reinforcement learning framework further includes safety con-

straints or conflicting requirements during the learning process through secondary

expected cumulative rewards. To address the limitations of the learning process in

constrained reinforcement learning problems, a novel first-order stochastic gradient

descent-ascent (GDA) algorithm is proposed: the stochastic dissipative GDA algo-

rithm. This algorithm almost surely converges to the optimal occupancy measure

and optimal policy, overcoming the issue of policy oscillation and convergence to

suboptimal policies often encountered in C-RL problems.
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Chapter 1

Introduction

Online decision-making is a fundamental and rapidly evolving area of study that ad-

dresses the challenges of making effective decisions in dynamic and time-sensitive

environments. In contrast to traditional decision-making scenarios, where all in-

formation is available upfront, online decision-making deals with situations where

data arrives sequentially and continuously over time. This dynamic nature of

data streams presents unique challenges, requiring decision-makers to adapt and

respond promptly to changing conditions without the luxury of hindsight.

The ubiquity of data sources and the increasing speed of data generation in

today’s interconnected world have further emphasized the importance of devel-

oping robust and efficient online decision-making algorithms. Industries such as

finance, healthcare, transportation, and manufacturing are increasingly reliant on

real-time data to optimize processes, enhance customer experiences, and improve

overall efficiency. Whether it’s optimizing resource allocation, managing traffic

flow, controlling autonomous vehicles, or personalizing recommendations for on-

line shoppers, the ability to make timely and informed decisions has become a

critical competitive advantage.

In this context, this thesis explores the concept of online decision-making, delv-

ing into the theoretical foundations, algorithms, and practical applications for
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dynamical systems. We investigate two distinct online decision-making frame-

works, each catering to different scenarios based on the availability of system

dynamic information. Through the exploration of case studies and empirical analy-

ses, we aim to shed light on the opportunities and challenges associated with online

decision-making, contributing to the advancement of this vital and ever-evolving

field.

In the first scenario, when the system’s behavior can be adequately represented

by ordinary differential equations using a state-space model, a time-varying convex

optimization framework is introduced. This framework ingeniously integrates

motion planning and control techniques to design control signals that enable the

dynamical system to asymptotically track optimal trajectories, implicitly defined

through constrained time-varying optimization problems.

In the second scenario, where the system dynamics are not explicitly available,

the thesis adopts a data-driven approach known as constrained reinforcement

learning. This methodology revolves around sequential decision-making tasks,

where an agent strives to maximize its expected cumulative reward while interacting

with an unknown environment and progressively receiving new information over

time. To accommodate safety constraints or conflicting requirements during the

learning process, the constrained reinforcement learning framework incorporates

secondary expected cumulative rewards.

1.1 Model-Based Approach: Time-varying Optimiza-

tion

Autonomy refers to the capability of a robot or machine to carry out tasks without

any human intervention. In domains like robotics and transportation, autonomous

tasks typically entail several steps. First, the system must gather information from
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the environment, often dealing with noisy data (sensing). Next, it needs to de-

termine its own precise position in the environment (localization). Then, a safe

and efficient navigation strategy must be devised (planning). Finally, the system

must be able to adapt and respond to unexpected changes in the environment

(control) [1, 2, 3]. These components collectively enable the system to operate inde-

pendently and accomplish tasks without relying on continuous human guidance. A

particularly challenging step of this process is the motion planning stage [1, 2, 3, 4],

wherein an agent with uncertain information about its position and environment

must devise an admissible and collision-free trajectory to be followed toward a

final destination. This highly complex task has received widespread research inter-

est [5, 6, 7, 3, 8, 4, 9, 10, 11, 2], as it requires a delicate balance between computational

complexity and optimality while simultaneously respecting the agent’s dynamic

capabilities.

Standard approaches to solving this problem can be broadly categorized into

three groups: Grid-based search (GBS), Sampling-based Planning (SBP), and Opti-

mization based (OB). GBS algorithms assign each configuration of the dynamical

system to a grid point and use graph search algorithms such as Dijkstra [5], A∗ [6],

and D∗ [7] to find a path. Although GBS algorithms are easy to implement and

often provide an acceptable answer, they scale poorly with the number of degrees

of freedom of the configuration space [12] and fail to ensure the dynamic feasibility

of the path. SBP algorithms [3], such as rapidly-exploring random trees (RRTs)

[8], probabilistic roadmap methods (PRMs) [4], and their variants scale better for

high-dimensional problems. However, optimality guarantees are usually absent,

and path feasibility is only achieved via sufficiently dense sampling of either the

configuration or action space [12]. On the other hand, OB algorithms such as direct

multiple-shooting [13] and direct collocation [14] explicitly consider the dynamic

constraints in the optimization problems, providing by construction dynamically
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feasible trajectories which can be enforced to avoid collisions [15, 16]. However,

OB algorithms suffer from high computational costs, typically requiring solving a

nonlinear programming problem without convergence guarantees [11].

Two common features of the above-mentioned solutions are (a) the struggle

between the computational complexity of the planning process and the need to

enforce dynamic constraints and (b) the open-loop nature of the solution that does

not account for unmodeled dynamics or disturbances. Thus, such methodologies

are commonly complemented with a motion execution stage that implements a

feedback controller that tracks the open-loop trajectory. However, such an ap-

proach requires some level of conservativeness in the planning stage to avoid

collisions [17, 18], further increasing the computational complexity of the solu-

tion. This work aims to explore an alternative approach aiming at breaking the

decoupling between planning and control while ensuring dynamic feasibility and

accounting for changing conditions in real time.

1.1.1 Prior work

Our work also broadly aligns with and contributes to the growing literature of online

optimization with feedback loops, network systems, and algorithm design for time-varying

optimization.

Online optimization with feedback loops seeks to design online optimization al-

gorithms to regulate the output of a dynamical system towards the optimal solution

of an optimization problem. For the case of LTI systems, numerous works have

design controllers that track the optimal solution of (i) a static optimization prob-

lem [19, 20, 21], and (ii) time-varying convex optimization problems [22], including

also input-output constraints [23]. Nonlinear system dynamics are considered for

steering a physical system to a steady state that solves a predefined constrained

static optimization problem [24] and unconstrained time-varying optimization

4



problem [25].

Online optimization of network systems considers the extension of the above

framework for problems where systems and computations are distributed. The

papers [26, 27] seek to design controllers to regulate the network of agents to

the global minimizer of a predefined convex optimization problem. Time-varying

versions of this problem are have been considered, including versions with in-

equality constraints [28], with double-integrator dynamics [29], and with nonlinear

dynamics in a strict feedback form [30].

Time-varying optimization has been a popular subject of research for online

decision-making. It provides a computationally frugal optimization framework that

produces solutions in ªa timely fashion and is essential when input data streams

are of large-scale and decisions must be made at high frequency.º [29, 31, 32, 33, 34].

Our work is a direct application of time-varying optimization formalisms in the

area of feedback control and motion planning [31]. Online solvers for time-varying

optimization problems have been proposed both in continuous time [29, 32] and in

discrete time [33, 34].

1.1.2 Thesis contribution

This work uses time-varying optimization to combine safe motion planning and

control in a unique closed-loop task. We seek to encode planning goals and safety

constraints as a time-varying (TV) constrained optimization problem and develop

a general methodology to design closed-loop feedback controllers by drawing

insights from mathematical optimization. Our methodology combines tools from

differential flatness and optimization theory to develop controllers which effectively

transform a dynamical system into an optimization algorithm that seeks to track

the optimal solution of the aforementioned optimization problem.

The contributions of our work are as follows:
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Figure 1-1. Feedback linearization transforms a nonlinear system into a linear

system via nonlinear state feedback control and coordinate transformation.

• Planning and Control as TV Optimization. We formulate a framework to en-

code planning and control goals within a time-varying optimization problem,

wherein planning goals are implicitly encoded as the (apriori unknown) opti-

mal solution y∗(t) of a TV-Optimization problem. This formulation allows us,

in turn, to recast the control design problem as the problem of choosing an

optimization algorithm.

• Flat Systems as Optimization Algorithms. We provide a general methodology to

design control laws that steer the output y(t) of a differentially flat nonlinear

system towards y∗(t). Inspired by feedback linearization [35, 36] (Fig. 1-1),

the proposed methodology transforms any flat system of order k into a time-

varying optimization algorithm that depends on the first k−1 time derivatives

of the objective function’s gradient (Fig. 1-2).

• Theoretical Guarantees. Our control design framework can readily provide

rigorous theoretical guarantees on the asymptotic behavior of the system. Pre-

cisely, we show that under mild conditions, the output y(t) of a differentially

flat nonlinear system converges asymptotically to y∗(t).

• Extensions for Formation and Collision Avoidance. We further extend our frame-

work to allow for formation and collision avoidance specifications. We extend

our time-varying feedback optimization framework to allow the asymptotic

satisfaction of time-varying equality constraints (that allow for the specifi-

cation of formation constraints) and inequality constraints (that can enforce
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Figure 1-2. Time Varying Optimization framework effectively transforms a differen-

tially flat system into an optimization algorithm.

collision avoidance).

1.2 Data-Driven approach: Constrained Reinforcement

Learning

Reinforcement learning (RL) is concerned with tackling sequential decision-making

problems, where an agent seeks to maximize its expected total reward while inter-

acting with an unknown environment over time. Nevertheless, certain real-world

applications, such as electric grids and robotics, pose unique challenges. In these

scenarios, the agent often encounters conflicting requirements [37] or must adhere

to safety constraints during the learning process [38]. To address these complexities

effectively, the constrained reinforcement learning (C-RL) framework emerges as a

natural and efficient approach. C-RL allows the seamless integration of conflicting

requirements and the incorporation of safety considerations, enabling the agent

to navigate through such intricate environments with improved effectiveness and

robustness [38, 39, 40, 41, 42, 43, 44].

In tackling constrained reinforcement learning (C-RL) problems and finding the

optimal policy, there are two major approaches. The first approach involves solving

the problem in the occupancy measure space using the constrained Markov Deci-

sion Process (CMDP) framework, a well-established formulation for reinforcement

learning with constraints [39]. In this approach, the agent seeks to maximize the

total reward function while adhering to secondary cumulative reward constraints.
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The CMDP problem is transformed into an equivalent linear programming problem

in the occupancy measure space, and the optimal policy is derived from the optimal

occupancy measure [39]. However, this approach requires explicit knowledge of

the transition kernel of the underlying dynamical system, which may not always be

available in realistic applications.

An alternative approach is to tackle the C-RL problem in policy space, em-

ploying the principles of Lagrangian duality [42, 43, 44, 45, 46]. These approaches

utilize sampling-based primal-dual algorithms or stochastic gradient descent-ascent

(SGDA) algorithms, augmenting the Lagrangian function with possible regular-

ization terms, like KL divergence regularization. The primal and dual variables

are iteratively updated using gradient information or by solving sub-optimization

problems. The outcome of these algorithms can be characterized into two cases:

in the first case, the output is a mixing policy, which is a weighted average of

historical outputs [42, 43, 44]. In the second case, rather than showing the output

policy converges to the optimal policy, these approaches present a regret analysis

for objective functions and constraints [45, 46]. A key limitation in these approaches

is that the policy often oscillates and fails to converge to the optimal policy, resulting

in a mismatch between the behavioral policy and the optimal one.

In this thesis, we aim to address the aforementioned limitations by introducing

a novel SGDA algorithm that leverages recent results on regularized saddle flow

dynamics. By leveraging the insights from regularized saddle flow dynamics, we

seek to enhance the performance and reliability of decision-making algorithms in

constrained reinforcement learning scenarios. The critical observation made about

the sampling-based primal-dual algorithms discussed earlier is that the Lagrangian

function used in the constrained reinforcement learning (C-RL) problem lacks

sufficient convexity. Specifically, in occupancy measure space, the Lagrangian

function is bilinear, and in policy space, it becomes non-convex-concave. As a
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consequence, these algorithms fail to converge reliably.

One commonly employed approach involves taking averaged iterates, which

combines previous outputs with certain weights. However, theoretical guaran-

tees for the averaged iterates are limited, especially when dealing with objective

functions that are not convex-concave [47, 48]. Additionally, in the context of Rein-

forcement Learning (RL) and Constrained Reinforcement Learning (C-RL), relying

on averaged results can be undesirable. This is because the mixture of past policies

may obscure oscillating or overshooting objective/constraint functions, hindering

the attainment of an optimal policy iterate [49]. Therefore, it becomes crucial to

explore training algorithms that ensure the final iteration of the training process ap-

proaches the equilibrium point directly, a concept known as last-iterate convergence,

rather than merely relying on an average outcome. To this end, the Extra-gradient

(EG) method [50], the Optimistic gradient (OG) method [51], and their variants have

gained significant attention in recent literature. These algorithms are particularly

appealing due to their superior empirical performance and last-iterate convergence

guarantees, especially in the convex-concave setting.

1.2.1 Prior work

Constrained Reinforcement Learning

Conventional Constrained Reinforcement Learning problems can be formulated

as constrained min-max optimization problems, either in the Policy space [38, 52]

or the Occupancy measure space, known as Constrained Markov Decision Process

(CMDP) [39]. Since the min-max optimization problem is nonconvex in Policy

space and bilinear in Occupancy measure space, vanilla GDA algorithms either

fail to converge or only provide average-iterate convergence [43, 44]. Global last-

iterate asymptotic convergence results in terms of occupancy measure iterates have

been established by previous works [53, 54] through Saddle flow dynamics and

9



Optimistic Mirror Descent (OMD), respectively. [49] extends this by providing a

non-asymptotic last-iterate convergence result for an infinite-horizon discounted

CMDP in terms of occupancy measure and policy iterates.

Min-Max Optimization, Variational Inequalities, and Zero-Sum Games

The Extra-gradient (EG) method, the Optimistic gradient (OG) method, and their

variants have been extensively studied in the context of min-max optimization

problems, zero-sum games, and variational inequality problems (VIPs). In the

variational inequality perspective, [55] proves linear convergence rates for the EG

method in the bilinear and strongly monotone cases. More recently, in the context

of machine learning, specifically Generative Adversarial Networks (GANs), several

papers have explored the convergence rates of algorithms for solving saddle point

problems. [56] analyzes gradient-based saddle point dynamics, including EG and

OG, and shows linear convergence when the objective function is bilinear. [57]

interprets GANs within the VIP framework and studies OGDA as an extrapolation

from the past variant, proving a linear convergence rate for strongly monotone

VIPs. [58] provides a unified convergence analysis of EG and OGDA methods

as approximations of the proximal point method, deriving standard linear rates

for both bilinear and strongly monotone settings (µ/4L). [59] presents a unified

analysis of EG and OG for both strongly monotone and bilinear games, obtaining a

tighter global convergence rate through spectral analysis of the operators.

EG and OG methods are particularly well-suited for solving saddle-point prob-

lems due to their last-iterate convergence, as opposed to only average-iterate con-

vergence to min-max solutions. [60] shows that the primal-dual gap of the averaged

iterates generated by both EG and OG algorithms converges at a rate of O(1/k). [47]

provides a O(1/N) convergence rate guarantee for the last iterate of EG, in terms

of the squared norm of the operator (Hamiltonian), for monotone and Lipschitz
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operators with a Lipschitz Jacobian. [61] derives the same last-iterate convergence

rate in terms of Hamiltonian for EG, relaxing the additional Lipschitz Jacobian

assumption. In [62], they show that this O(1/N) last-iterate convergence can also be

achieved for OG methods without any assumption on the Jacobian of the operator.

[63] establishes the linear last-iterate convergence of OGDA in a constrained setting.

Additionally, [64] addresses the issue of limit cycling behavior in training GANs

and shows that OG exhibits final-iterate convergence to a neighborhood of the

solution for bilinear games, such as WGANs.

1.2.2 Thesis contribution

To address the limitation in solving C-RL problems, our proposed method draws

inspiration from the study of saddle flow dynamics. By incorporating a carefully

designed augmented regularization, we introduce a dissipative saddle flow, which

sets minimal requirements on convexity-concavity while ensuring asymptotic con-

vergence to a saddle point. Building upon the tools from this dissipative saddle

flow framework, we present a novel algorithm to tackle the C-RL problem in occu-

pancy measure space. The dynamics of this algorithm converge asymptotically to

the optimal occupancy measure and optimal policy. Furthermore, we extend this

continuous-time algorithm to a model-free setting, where the discretized stochastic

Dissipative Gradient Descent-Ascent (DGDA) emerges as the stochastic approxima-

tion of the continuous-time saddle flow dynamics. Our research establishes that

the SGDA algorithm almost surely converges to the optimal solution of the C-RL

problem. Notably, this work represents the first attempt to solve the C-RL problem

with a guarantee of convergence to the optimal occupancy measure and policy.

Besides, we prove the proposed DGDA algorithm exhibits linear last-iterate

convergence for strongly monotone (resp. bilinear) and Lipschitz VIP without any

additional assumptions. Moreover, we showed that when the problem is bilinear,
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the proposed algorithm provides a better linear convergence rate, in terms of

constant, compared with standard rates for the bilinear problem for EG and OGDA.

When the problem is strongly convex-strongly concave and condition number κ ≥ 2,

the proposed algorithm provides a better convergence rate compared with standard

rates for the bilinear problem for EG and OGDA. DGDA’s effectiveness in solving

bilinear and strongly convex-strongly concave problems is demonstrated through

the presentation of two numerical examples. In both cases, DGDA consistently

outperforms EG and OG methods.
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Chapter 2

Model-Based Online Decision
Making: A Time-Varying
Optimization Framework

In this chapter, we introduce the model-based online decision-making framework

motivated by time-varying optimization. The proposed framework encodes plan-

ning goals and safety constraints as a time-varying (TV) constrained optimization

problem. In doing so, the proposed time-varying optimization framework combines

safe motion planning and control in a unique closed-loop task. We combine tools

from feedback linearization, differential flatness, and optimization theory, which

effectively transform a dynamical system into an optimization algorithm that seeks

to track the optimal solution of the optimization problem.

Specifically, consider the general nonlinear dynamical system, with the state

x ∈ Rn, input u ∈ Rm and output y ∈ Rm, described in state-space form:

ẋ = f(x,u), y = h(x,u). (2.1)

Let t ≥ 0 be a continuous time index, and f0 : Rm × R+ → R be a time-varying

objective function of flat output y. The functions fi : Rm × R+ → R, i ∈ [p]

are the time-varying inequality constraint functions. We also define the time-

varying equality constraint functions hj : Rm × R+ → R taking values hj(y, t) =
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aj(t)
Ty − bj(t), j ∈ [q] , where A(t) : R+ → Rq×m, q < m is defined as A(t) = [a1(t)

, . . . , aq(t)]
T , b(t) : R+ → Rq is defined as b(t) = [b1(t), . . . , bq(t)]

T .

Consider a constrained time-varying optimization problem that has the follow-

ing form:

y∗(t) :=arg min
y∈Rm

f0(y, t)

s.t. fi(y, t) ≤ 0, i ∈ [p]

A(t)y = b(t). (2.2)

where f0, . . . , fp, h1, . . . , hq : Rm×R+ → R are assumed to be infinitely differentiable

(C∞) with respect to both y and t. Additionally, we assume the functions satisfy

∅ ̸= domf0 ⊂ (∩pi=1domfi) ∩ (∩qj=1domhj) for all t ≥ 0, i.e., the time-varying

optimization problem is always feasible. The goal is to generate a control input

u(t) such that ∥y(t) − y∗(t)∥ → 0 as t → ∞ for all initial conditions, i.e., global

asymptotic convergence.

Various motion planning and control tasks can be encoded as instances of

the time-varying optimization problem (2.2). For example, if the positions of a

controlled robot and a moving target are denoted by y(t) and yd(t) respectively,

then minimizing the objective function ∥y(t)−yd(t)∥ represents the task of tracking

a moving target. Along the same line, if y(t) denotes the vector of positions of

a network of agents in 2 dimensions, represented by complex values yi ∈ C, one

can impose formation constraints using a constraint of the form Ly(t) = 0, where

L(t) is the complex-valued Laplacian matrix associated with a desired formation

[65]. Similarly, to ensure collision avoidance, a set of inequality constraints can be

employed: {ai(y)Tz− bi(y) ≤ 0, i ∈ [m]} [32], which is elaborated further in Section

2.2.6.
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Chapter outline

This Chapter is organized as follows: In Section 2.1, we study the problem of regu-

lating a feedback linearizable system to trajectories implicitly defined via unconstrained

time-varying optimization problem. For feedback linearizable systems that have

(non)uniform vector relative degrees, we propose a control law that will globally

asymptotically converge to the optimal solution of the unconstrained time-varying

optimization problem. In Section 2.2, we further extend the result, including ex-

tensions from feedback linearization to general differentially flat systems, as well

as the inclusion of equality and inequalities constraints. We formally introduce the

time-varying optimization framework, which generalizes the notion of feedback

linearization and transforms a flat system into an optimization algorithm. Design-

ing the nonlinear feedback controller is reduced to finding a solution to the ODE

system that satisfies the optimization dynamic and system dynamic simultaneously.

Notation

Given an n-tuple (x1, ..., xn), x ∈ Rn is the associated column vector. The n × n

identity matrix is denoted as In. For a square symmetric matrix A, is positive (semi-

)definite, and write A ≻ 0 (A ⪰ 0), if and only if all the eigenvalues of A are positive

(nonnegative). We further write A ≻ B (A ⪰ B) whenever A−B ≻ 0 (A−B ⪰ 0).

The Euclidean norm of a vector x is denoted by ∥x∥2, and the spectral norm of a

matrix A by ∥A∥2. ⊗ denotes the Kronecker product between two matrices. We use

the short-hand notation x̄(k) = (x,x(1), . . . ,x(k)), where k is some finite but arbitrary

integer.

Given a continuously differentiable function f(x, t) of state x ∈ Rn and time

t ∈, the gradient with respect to x (resp. t) is denoted by ∇xf(x, t) (resp. ∇tf(x, t)).

The total derivative of ∇xf(x(t), t) with respect to t is denoted by ∇̇xf(x, t) :=
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d
dt
∇xf(x(t), t), and the n-th total derivative with respect to t by ∇(n)

x f(x, t). The

partial derivatives of ∇xf(x, t) with respect to x and t are denoted by ∇xxf(x, t) :=

∂
∂x
∇xf(x, t) ∈ Rn×n and ∇xtf(x, t) :=

∂
∂t
∇xf(x, t) ∈ Rn , respectively. The derivative

Lfh of a function h : Rn → R along the vector field f : Rn → Rn is given by

(Lfh)(x) = ∇h(x)Tf(x). Taking the derivative of h first along a vector field f

and then along a vector field g is given by (LgLfh)(x) =
∂(Lfh)

∂x
g(x). If h is being

differentiated k times along f , the notation Lkfh(x) =
∂(Lk−1

f
h)

∂x
g(x) is used.

2.1 Feedback linearizable systems

This section presents a novel optimization-based framework for joint real-time tra-

jectory planning and feedback control of feedback-linearizable systems. To achieve

this goal, we define a target trajectory as the optimal solution to a time-varying

optimization problem. In general, however, such a trajectory may not be feasible

due to, e.g., nonholonomic constraints. To solve this problem, we design a control

law that generates feasible trajectories that asymptotically converge to the target

trajectory. More precisely, for systems that are (dynamic) full-state linearizable, the

proposed control law implicitly transforms the nonlinear system into an optimiza-

tion algorithm of a sufficiently high order. We prove global asymptotic convergence

to the target trajectory for both the optimization algorithm and the original system.

Section 2.1.1 introduces some preliminary definitions, including feedback lin-

earization, which means a system can be transformed into a linear system by a

state diffeomorphism, its dynamic feedback extension, and elementary analysis of

Hurwitz linear systems. We formally state the problem and present two motivating

examples with different system dynamics (integrator and wheeled mobile robot).

In Section 2.1.2 and 2.1.3, for feedback linearizable systems with uniform/nonuni-

form vector relative degrees, we design a control law which (i) implicitly defines a

16



target trajectory as the optimal solution of a time-varying optimization problem,

and (ii) asymptotically drives the system to the target trajectory. We illustrate the

effectiveness of our approach using two examples in Section 2.1.4, one where a

wheeled mobile robot switches from tracking one moving object to another, and

another where multiple agents must track multiple objects with internal distance

constraints.

2.1.1 Preliminaries

Static Feedback Linearization

We consider a square control-affine nonlinear system with the state x ∈ D ⊂ Rn, m

inputs u ∈ Rm and m outputs y ∈ Rm, described in state-space form:

ẋ = f(x) +G(x)u , (2.3a)

y = h(x) , (2.3b)

where f : D → Rn, G : D → Rn×m, and h : D → Rm are sufficiently smooth on a

domain D ⊂ Rn, with G and h expanded as

G(x) =
[︁

g1(x), . . . , gm(x)
]︁

∈ R
n×m,

h(x) = (h1(x), . . . , hm(x)) ∈ R
m.

Problem 1 (State-Space Exact Linearization). Given a point x0 ∈ D ⊂ Rn, for the

control-affine nonlinear system (2.3), find a feedback controller u = α(x) + β(x)v defined

on a neighborhood U of x0, a coordinate transformation z = Φ(x) also defined on U , and a

controllable pair (A,B) (A ∈ Rn×n,B ∈ Rn×m) such that:

ż=Az+Bv=
∂Φ(x)

∂x

(︂

f(x)+g(x)(α(x)+β(x)v)
)︂

.

The key condition on (2.3) for the solvability of the State-Space Exact Lineariza-

tion Problem is that the system possesses vector relative degree [36]. In other

references [66], this is also called Full State Linearization.
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Definition 1 (Vector Relative Degree [36]). The control affine system (2.3) is said to

have vector relative degree {r1, r2, . . . , rm} at a point x0 ∈ D ⊂ Rn if:

(i) LgjL
k
fhi(x) = 0 for all 1 ≤ i ≤ m, for all k < ri − 1, for all 1 ≤ j ≤ m, and for all

x in a neighborhood of x0, and

(ii) the m×m matrix,

R(x)=

⎡

⎢

⎢

⎢

⎣

Lg1L
r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) . . . LgmL

r2−1
f h2(x)

... . . .
...

Lg1L
rm−1
f hm(x) . . . LgmL

rm−1
f hm(x)

⎤

⎥

⎥

⎥

⎦

, (2.4)

is nonsingular at x = x0.

Lemma 1 (Solution of Exact Linearization Problem with static feedback linearization

[36, Lemma 5.2.1]). Suppose the matrix G(x0) has rank m. Then the State-Space Exact

Linearization Problem is solvable if and only if there exists a neighborhood of x0 such that

the system (2.3) has vector relative degree {r1, r2, . . . , rm} at x0 and r1+r2+ · · ·+rm = n.

In particular, one may choose

(i) the feedback as

u = −R(x)−1p(x) +R(x)−1v,

where p(x) = col(Lr1f h1(x), . . . , L
rm
f hm(x)) ∈ Rm and R(x) is defined in (2.4),

(ii) the coordinate transformation as

Φ(x) = col(h1(x), . . . , L
r1−1
f h1(x), . . . , L

rm−1
f hm(x)),

(iii) (A,B) having the Brunovsky Canonical Form

A = diagA1, . . . ,Am, B = diagb1, . . . ,bm,
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where Ai ∈ Rri×ri and bi ∈ Rri are

Ai =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0

⎤

⎥

⎥

⎥

⎥

⎦

, bi =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0
0
...
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Remark: The input vi controls only the output yi throughout a chain of ri integrator.

When r1+ r2+ · · ·+ rm = n, in the closed-loop system there are no unobservable dynamics.

Dynamic Feedback Linearization

For systems that do not have vector relative degree, one can sometimes achieve a

vector relative degree by introducing auxiliary state variables ζ, e.g., for a system

that is differentially flat [67], by using dynamic feedback of the form

u = α(x, ζ) + β(x, ζ)w, (2.5a)

ζ̇ = γ(x, ζ) + δ(x, ζ)w. (2.5b)

Consider then the composite system formed by (2.3) and (2.5)

[︃

ẋ

ζ̇

]︃

= f̃(x, ζ) + G̃(x, ζ)w, y = h(x), (2.6)

where

f̃(x, ζ)=

[︃

f(x)+G(x)α(x, ζ)
γ(x, ζ)

]︃

, G̃(x, ζ)=

[︃

g(x)β(x, ζ)
δ(x, ζ)

]︃

.

The following is a direct extension of Lemma 1. Further details on this approach,

known as dynamic extension, can be found in [36] and [66].

Lemma 2 (Solution of Exact Linearization Problem using dynamic feedback lin-

earization [36]). Suppose the matrix G̃(x0, ζ0) has rank m. Then the State-Space Exact

Linearization Problem is solvable if and only if there exists a neighborhood of [x0, ζ0]
T

such that the system (2.6) has vector relative degree {r1, r2, . . . , rm} at [x0, ζ0]
T and

r1 + r2 + · · ·+ rm = n. In particular, one may choose
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(i) The dynamic feedback defined by (2.5) and

w = −R−1(x, ζ)p(x, ζ) +R−1(x, ζ)v, (2.7)

where p(x, ζ) = col(Lr1
f̃
h1(x), . . . , L

rm
f̃
hm(x)) ∈ Rm and R(x, ζ) is defined in (2.4).

(ii) the coordinate transformation as

Φ(x, ζ)=col(h1(x),. . ., L
r1−1

f̃
h1(x),. . ., L

rm−1

f̃
hm(x)),

(iii) (A,B) having the Brunovsky Canonical Form.

Convergence Rate of Hurwitz Matrix

A square matrix H is called Hurwitz if

µ(H) := max
λ∈spec(H)

ℜ[λ] < 0 ,

where spec(H) := {λi} denotes the set of eigenvalues of H. If H is Hurwitz, then

limt→+∞ eHt = 0.

Theorem 3 (Exponential Convergence of Hurwitz Matrices [68, Theorem 8.1]). If H

is Hurwitz, then there exist constants c, α > 0 such that

∥eHt∥2 ≤ ce−αt, for all t ≥ 0,

where −α := maxλ∈spec(H) ℜ[λ] + ϵ, for some ϵ > 0 that are small enough.

When H is diagonalizable, i.e., when all Jordan blocks of H have size equal to 1,

one can choose −α = maxλ∈spec(H) ℜ[λ].
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2.1.2 Uniform vector relative degree

Formally, we consider a nonlinear system as described in (2.3). Let t ≥ 0 be a

continuous time index, and f0 : Rm × R+ → R be a time-varying function of the

output y. Using f0(y, t) we implicitly define our target trajectory; i.e., the minimizing

path:

y∗(t) = arg min
y∈Rm

f0(y, t). (2.8)

The goal is to generate a control input u(t) such that ∥y(t) − y∗(t)∥2 → 0 as

t→ ∞ for all initial conditions; i.e., global asymptotic convergence. The following

assumption will be used throughout this paper.

Assumption 1 (Objective Function). The objective function f0(y, t) is infinitely differ-

entiable (C∞) with respect to both y and t, and is uniformly strongly convex in y; i.e.,

∇yyf0(y(t), t) ⪰ mfIm for all t ≥ 0 and for some mf > 0.

The remainder of this section provides two examples that help motivate both

our goals and our solution approach.

Example #1: Integrator

We aim to design a control law for an integrator

ẋ = u, y = x, (2.9)

such that y converges asymptotically to the optimal solution of time-varying opti-

mization problem (2.8):

y∗(t) = argmin
y

f0(y, t).

Notice that, even though we can instantaneously change the speed and direction

of y(t) in (2.9), the initial condition y(0) may not match y∗(0). This is illustrated in

Figure 2-1.
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Figure 2-1. The plot of a robot tracking an object, where y∗(t) (2.8) is simply

the object trajectory and y(t) represents the real trajectory of the robot. Due to

mismatching initial conditions (highlighted using asterisk), we design a control law

that converges asymptotically to the target trajectory y∗(t).

This problem can be overcome by finding a control law that transforms (2.9) into

the following optimization dynamics

∇̇yf0(y, t) = −P∇yf0(y, t), P ≻ 0, (2.10)

where the gradient ∇yf0(y, t) is driven to zero exponentially fast [32, 34]. Thus,

since by convexity (see Assumption 1), the optimal trajectory y∗(t) is characterized

by ∇yf0(y
∗(t), t) = 0, the controlled y asymptotically reaches y∗(t).

To achieve this transformation, we first characterize the required evolution of y

for (2.10) to hold, and then define the proper control law. Using the chain rule to

differentiate the gradient term with respect to time yields

∇̇yf0(y, t) = ∇yyf0(y, t)ẏ +∇ytf0(y, t).

Then, by combining (2.10) and the above equation, we find that ẏ is implicitly
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defined by

ẏimp = −∇−1
yyf0(y, t)[P∇yf0(y, t) +∇ytf0(y, t)]. (2.11)

Finally, since by (2.9), u = ẏ, equation (2.11) leads to the control:

u = −∇−1
yyf0(y, t)[P∇yf0(y, t) +∇ytf0(y, t)].

The above control law implicitly transforms (2.9) into (2.10). Further, it has a

nice optimization-based interpretation consisting of two terms [32, 34]:

1. a prediction term −∇−1
yyf0(y, t)∇ytf0(y, t),which tracks the change of the opti-

mal solution; i.e., target trajectory,

2. and a correction term −∇−1
yyf0(y, t)P∇yf0(y, t), which acts as a proportional

controller that cancels the optimality error and drives the system toward the

optimum.

Unfortunately, the solution approach shown in this example critically relies on

the integrator structure in (2.9) that allows one to arbitrarily control ẏ by choosing

u. However, for a general nonlinear system, satisfying (2.10) may not be possible.

This is shown in the next example.

Example #2: Wheeled Mobile Robot

We now show how to extend the approach described above for a more involved

example where we aim to drive a nonholonomic wheeled mobile robot (WMR)

[69, 66]:

ẋ1 = cos(x3)u1, (2.12a)

ẋ2 = sin(x3)u1, (2.12b)

ẋ3 = u2, (2.12c)

y = (x1, x2), (2.12d)
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such that y converges asymptotically to the optimal solution of time-varying opti-

mization problem (2.8).

If we once again want (2.12) to match the dynamics (2.10), we need (2.11) to hold.

However, it follows from (2.12) that ẏ = [cos(x3)u1, sin(x3)u1]
T , which is ill-defined.

It is obvious that one cannot control every direction of ẏ with this ill-defined

equation, therefore, cannot derive a control law that ensures (2.11).

This motivates the search for an alternative to (2.10) that has the equivalent

effect of driving y towards y∗(t). Instead, we seek to transform (2.12) into

[︃

∇̇yf0(y, t)

∇̈yf0(y, t)

]︃

=

[︃

0 Im
−kpIm −kdIm

]︃ [︃∇yf0(y, t)

∇̇yf0(y, t)

]︃

, (2.13)

where kp, kd > 0, which defines a Hurwitz matrix, and col(∇yf0(y, t), ∇̇yf0(y, t))

can be interpreted as the optimality error of y, and its time derivative.

To find the control law that transforms (2.12) into (2.13), we can differentiate the

gradient term with respect to time twice:

∇̈yf0(y, t) =∇yyf0(y, t)ÿ + ∇̇yyf0(y, t)ẏ + ∇̇ytf0(y, t).

Now combining once again the second row of (2.13) and the above equation

leads to the following implicit condition for the acceleration ÿ:

ÿimp = −∇−1
yyf0(y, t)

[︁

∇̇yyf0(y, t)ẏ + ∇̇ytf0(y, t) + kp∇yf0(y, t) + kd∇̇yf0(y, t)
]︁

(2.14)

Finally, by differentiating y with respect to time twice we notice that the matrix

on the right-hand side of

ÿ =

[︃

cos(x3) − sin(x3)u1
sin(x3) cos(x3)u1

]︃ [︃

u̇1
u2

]︃

(2.15)

is invertible for every nonzero u1 and thus, we can use (u̇1, u2) to control ÿ to follow

(2.14):

[︃

u̇1
u2

]︃

=

[︃

cos(x3) − sin(x3)u1
sin(x3) cos(x3)u1

]︃−1

ÿimp.
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As long as u1 ̸= 0, the control law is well-defined by introducing u1 as an auxiliary

state.

We finalize this section showing a particular case of (2.14) that is familiar for

most control audience. If the task is simply tracking a moving object, we can define

the following time-varying problem:

y∗(t) = argmin
y

1
2
∥y − yd(t)∥22,

where yd(t) represents the target trajectory. And according to (2.14), the implicitly

defined trajectory takes the form:

ÿimp = ÿd(t)− kp(y − yd(t))− kd(ẏ − ẏd(t)).

Thus, in this case, equation ÿimp can be interpreted as a common Proportional-

Derivative (PD) controller.

The above motivating example shows how to extend the algorithm from a first-

order system (an integrator) to a second-order system (a unicycle). In this Section,

we aim to carry this procedure over to a more general setting.

We assume now that the system under consideration has a uniform vector

relative degree, which will in general need to be achieved via dynamic extension.

This is a natural extension from the WMR model, where the vector relative degree

is {2, 2} and n = 4.

Assumption 2 (Uniform Vector Relative Degree). The multivariable nonlinear system

(2.6) has vector relative degree r1 = · · · = rm = k and m× k = n.

Based on Lemma 2, it is straightforward that for a multivariable nonlinear system

satisfying Assumption 2, the feedback function (2.7) and a state diffeomorphism z =

Φ(x, ζ) will transform the composite system (2.6) into ż = Az+Bv, with (A,B) in

Brunovsky Canonical Form. By computing the higher derivatives of output channel,
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we can implicitly design the trajectory for y using col(∇yf0(y, t), . . . ,∇(k−1)
y f0(y, t))

as a proxy for optimality error, where the goal is to construct the following dynami-

cal system:

⎡

⎢

⎣

∇̇yf0(y, t)
...

∇(k)
y f0(y, t)

⎤

⎥

⎦
= H

⎡

⎢

⎣

∇yf0(y, t)
...

∇(k−1)
y f0(y, t)

⎤

⎥

⎦
, (2.16)

with

H =

⎡

⎢

⎢

⎢

⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
a0 a1 a2 . . . ak−1

⎤

⎥

⎥

⎥

⎦

⊗ Im (2.17)

being Hurwitz. The following technical lemma will be used during the calculation

of new optimality error state.

Lemma 4 (Gradient Time Differentiation). Differentiating the gradient ∇yf0(y, t) with

respect to time k−times yields:

∇(k)
y f0(y, t) =

k−1
∑︂

m=0

(︃

k − 1

m

)︃

∇(m)
yy f0(y, t)y

(k−m) +∇(k−1)
yt f0(y, t), (2.18)

where
(︁

k−1
m

)︁

represents the binomial coefficient.

Proof: See A2.1.5.

Combining (2.16) and (2.18), we can implicitly design the trajectory for y by:

y
(k)
imp = ∇−1

yyf0(y, t)[
k−1
∑︂

i=0

ai∇(i)
y f0(y, t)

−
k−1
∑︂

m=1

(︃

k − 1

m

)︃

∇(m)
yy f0(y, t)y

(k−m) −∇(k−1)
yt f0(y, t)]. (2.19)

Now, we formally provide our solution for systems with uniform relative degrees.

Theorem 5 (Control Law for Uniform Vector Relative Degree Systems). Consider the

multivariable system defined as (2.3) and the time-varying optimization problem defined as
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(2.8). If both assumptions 1 and 2 are satisfied, then the system will globally asymptotically

converge to the optimal solution of (2.8), by using the control law:

u = α(x, ζ) + β(x, ζ)R(x, ζ)−1[y
(k)
imp − p(x, ζ)], (2.20)

where y
(k)
imp is given in (2.19) and the dynamic feedback function defined in (2.7). Moreover,

the following inequalities hold:

∥y(t)− y∗(t)∥2 ≤ Ce−αt,

0 ≤ f0(y(t), t)− f0(y
∗(t), t) ≤ mfC

2e−2αt,

0 < C =
(︂

c2

m2
f

∑︂k−1

j=0
∥∇(j)

y f0(y(0), 0)_2
2)
)︂

1

2

<∞,

for some constant C > 0, −α = max{ℜ(λi) + ϵ, i ∈ [1...n], for some ϵ > 0 small enough.

Proof: See Section 2.1.5.

Theorem 5 makes a strong assumption on the structure of the nonlinear system,

which is that the system must have equal vector degree {r1 = · · · = rm}. In the next

section, we relax this assumption.

2.1.3 Non-uniform vector relative degree

We now consider the less restrictive assumption.

Assumption 3 (Non-Uniform Vector Relative Degree). The multivariable nonlinear

system (2.6) has vector relative degree {r1, . . . , rm} and r1 + r2 + · · ·+ rm = n.

As a result of Assumption 3, the order of Lie differentiation of each channel is

different (c.f.(2.4)) and we cannot directly design the trajectory as in (2.19). However,

remember that according to Lemma 2, the system is transformed into ż = Az+Bv,

with (A,B) in Brunovsky Canonical Form. As a matter of fact, the input vi controls

only the output yi throughout a chain of r1 integrators. If {r1, ...rm} are not equal,

we can always introduce k − ri auxiliary states (integrators) for each channel yi,
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where k = max{r1, r2, . . . , rm} and define the new input si accordingly. Notice

that this construction makes a dynamic extension of ż = Az+Bv that possesses

uniform order of Lie differentiation of each channel. For example, for channel yi,

we introduce the following states ξi1 = vi, ξ
i
2 = ξ̇

i

1, . . . , ξ̇
i

k−ri
= si. More specifically,

the auxiliary states ξ should satisfy the following dynamic:

v = α̃(ξ) + β̃(ξ)s, (2.21a)

ξ̇ = γ̃(ξ) + δ̃(ξ)s. (2.21b)

Then the feedback function (2.7), the auxiliary states dynamic of ξ (2.21), and a state

diffeomorphism z = Φ(x, ζ, ξ) will transform the composite system (2.6) into

ż = Az+Bs,

with A,B in Brunovsky Canonical Form.

Theorem 6 (Control Law for General Vector Relative Degree System). Consider the

multivariable system defined as (2.3) and the time-varying optimization problem defined as

(2.8). Suppose that both Assumption 4 and Assumption 3 are satisfied, then the system will

globally asymptotically converge to the optimal solution of (2.8), by using the control law:

u=α(x, ζ)+β(x, ζ)R−1(x, ζ)[α̃(ξ)+β̃(ξ)y
(k)
imp−p(x, ζ)] (2.22)

where y
(k)
imp be the solution of (2.19), the dynamic feedback function defined in (2.7) and the

auxiliary states ξ satisfy (2.21). Moreover, the following inequalities hold:

∥y(t)− y∗(t)∥2 ≤ Ce−αt,

0 ≤ f0(y(t), t)− f0(y
∗(t), t) ≤ mfC

2e−2αt,

0 < C =
(︂

c2

m2
f

∑︂k−1

j=0
∥∇(j)

y f0(y(0), 0)∥22)
)︂

1

2

<∞,

for some constant C > 0, −α = maxℜ(λi) + ϵ, i ∈ [1...n], for some ϵ > 0 small enough.

Proof: Feedback function of the form (2.22) results in col(y
(k)
1 , . . . , y

(k)
m ) = y

(k)
imp, where y

(k)
imp

is the solution of (2.19). The rest of the proof follows Theorem 5.
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Figure 2-2. Trajectory of the optimal solution y∗(t) (dashed green), the robot (solid

red), and the objects (black for 1 and blue for 2). The robot converges to the target

trajectory, which is to track the first object from [0s, 5s] and gradually switch to track

the second object in [5s, 15s].

2.1.4 Numerical experiments

In this section, we illustrate how to leverage the time-varying optimization algo-

rithm to solve the following robot tracking problems.

Switching Tracking Goals

Consider a wheeled mobile robot (2.12) charged with the task of tracking two

moving objects sequentially. In the first time interval [t0, ts], the agent is required to

track the first object and in the second time interval [ts, tf ] gradually switched to

track the second object. The equivalent time-varying optimization problem takes

the following form:

min
y
S(t)∥y − yd1(t)∥22 + (1− S(t))∥y − yd2(t)∥22,
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where y(t) is the robot position satisfying (2.12), yd1(t),y
d
2(t) represents the position

of moving objects at time t respectively. The smooth switch function S(t) takes the

form: S(t) = 0.5− 0.5 tanh( t−a
b
), where the parameters a and b can be used to define

the switch point and the smoothing level. The target trajectories are designed via

time parametric representation, where we use differential flatness in this trajectory

generation problem [70]. Specifically, we parametrize the components of the flat

output ϕ1 = y = [x1, x2],ϕ2 = ẏ, by

ϕi(t) =
n−1
∑︂

j=0

Aijλj(t),

where the λj(t) = tj are the standard polynomial basis functions and the degree of

the polynomial is set to be n = 4. Thus, the trajectory generation problem reduces

from finding a function to finding a set of parameters.

The resulting trajectories we proposed are illustrated in Figure 2-2, with a=

10, b=1.5. It can be observed that the robot successfully tracks the first object up

to time ts = 5s, gradually switching to the second object until tf = 15s, and track

the second object until simulation stops. Particularly, the randomly picked starting

positions (highlighted using asterisk) for the two objects are [−5,−5] and [5,−3]

and the agent is positioned randomly near the starting position, which is [−5, 4].

We set t0 = 0s and the total simulation time is 20s. For this implementation, the

differential equation (2.12) is solved based on an explicit Runge-Kutta (4, 5) formula,

the Dormand-Prince pair.

Multi-robot Navigation

In this numerical example, two agents are required to track two moving objects

respectively, but the maximum distance between two agents is limited (e.g., due to

communication or formation constraints). We assume y1(t),y2(t) representing the

current position of each robot, whose dynamic are unicycles satisfying (2.12). We
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consider the following time-varying optimization problem for this task:

min
y1,y2

∥y1−yd1(t)∥22+∥y2−yd2(t)∥22+H(∥y1−y2∥22),

where yd1(t),y
d
2(t) represents the current position of the moving object. H(x) =

α tan(xπ
2d
)2 is a smooth barrier function, where the parameter d determines the

maximum distance allowed for the two agents and α determines the flatness of

penalty gain. In this scenario, although our theory does not exactly holds since

the barrier function is not defined globally, as long as the initial conditions are not

violated, the numerical result suggests that our algorithm can be applied beyond

the presented assumptions.

Figure 2-3. Trajectories of two objects yd1(t),y
d
2(t) (solid) and two agents y1,y2

(dashed). Agents succeed in tracking objects while satisfying distance constraints

between them.

The trajectories for the objects were also in time parametric representation, fol-

lowing the same computing procedure as in the previous section. Particularly,

the randomly picked starting position (using asterisk) for two objects are [−5,−3]
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and [−2,−3], respectively. The maximum allowed distance is set to be d = 2, and

the gain is α = 1e − 8. As to the agents, they are positioned randomly near the

starting position, while satisfying the distance constraint between them, which are

[−4.5,−3.5] and [−3.5,−3.5] (using asterisk). For this implementation, the differ-

ential equation (2.12) is solved using the same procedure as in Section 2.1.4. The

resulting trajectories are illustrated in Figure 2-3, where both robots, starting from

arbitrary positions succeed in tracking the moving object and keep the maximum

distance within limits simultaneously.

2.1.5 Appendix

Proof of Lemma 4

We prove this by mathematical induction. First, we consider when k = 1 and 2.

∇̇yf0(y, t) =
∂∇yf0(y, t)

∂y
ẏ +

∂∇yf0(y, t)

∂t

= ∇yyf0(y, t)ẏ +∇ytf0(y, t)

∇̈yf0(y, t) =
d

dt
(∇yyf0(y, t)ẏ +∇ytf0(y, t))

= ∇yyf0(y, t)ÿ + ∇̇yyf0(y, t)ẏ + ∇̇ytf0(y, t)

We want to show that for every k ≥ k0, k0 ≥ 2, if the statement holds for k, then it

holds for k + 1.

∇(k)
y f0(y, t) =

k−1
∑︂

m=0

(︃

k − 1

m

)︃

∇(m)
yy f0(y, t)y

(k−m)

+∇(k−1)
yt f0(y, t)
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Using the binomial theorem we obtain:

∇(k+1)
y f0(y, t) =

d

dt
(
k−1
∑︂

m=0

(︃

k − 1

m

)︃

∇(m)
yy f0(y, t)y

(k−m))

+
d

dt
(∇(k−1)

yt f0(y, t))

=
k

∑︂

m=0

(︃

k

m

)︃

∇(m)
yy f0(y, t)y

(k+1−m)

+∇(k)
yt f0(y, t),

which completes the proof.

Proof of Theorem 5

By uniformly strong convexity of f0(y, t) in y, the Hessian inverse ∇−1
yyf0(y, t) is

defined for all t ≥ 0. Because the vector relative degree of the nonlinear system

is r1 = · · · = rm = k, which means y(k) has a linear relationship with new input

v. According to Lemma 4, we have (2.18). Furthermore, as a result of Theorem 2,

feedback function of the form (2.20) results in y(k) = y
(k)
imp, where y

(k)
imp is the solution

of (2.19).

Now, we are able to construct the desired dynamical system (2.16), where H is

the designed Hurwitz matrix, and the solution of this ODE is:

⎡

⎢

⎣

∇yf0(y, t)
...

∇(k−1)
y f0(y, t)

⎤

⎥

⎦
= eHt

⎡

⎢

⎣

∇yf0(y(0), 0)
...

∇(k−1)
y f0(y(0), 0)

⎤

⎥

⎦
(2.23)

where y(0) ∈ Rm is the initial point. By taking the Frobenius norms of both sides

and applying Theorem 3 we obtain

k−1
∑︂

j=0

∥∇(j)
y f0(y, t)∥22 ≤ c2e−2αt(

k−1
∑︂

j=0

∥∇(j)
y f0(y(0), 0)∥22) (2.24)

for some constant c > 0, −α = maxℜ(λi) + ϵ, i ∈ [1...n], for some ϵ > 0 small

enough.
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Next, we use the mean-value theorem to expand ∇yf0(y, t) with respect to y as

follows, where η(t) is a convex combination of y(t) and y∗(t). Additionally using

the fact that ∇yf0(y
∗(t), t) = 0 for all t ≥ 0, we obtain:

y(t)− y∗(t) = ∇−1
yyf0(η(t), t)∇yf0(y(t), t). (2.25)

It follows from Assumption 1, that ∥∇−1
yyf0(y, t)∥2 ≤ m−1

f . Taking the norm on both

sides together with equation (2.24) we have:

∥y(t)− y∗(t)∥2 ≤ Ce−αt,

0 ≤ C =
(︂

c2

m2
f

∑︂k−1

j=0
∥∇(j)

y f0(y(0), 0)∥22)
)︂

1

2

<∞. (2.26)

On the other hand, convexity of f0(y, t) implies that for each t ≥ 0

0≤f0(y, t)−f0(y∗, t)≤∇yf0(y, t)
T (y−y∗) (2.27)

By applying Cauchy-Swhartz inequality on the right-hand side we obtain;

0 ≤ f0(y(t), t)− f0(y
∗(t), t) ≤ mfC

2e−2αt (2.28)

which completes the proof.

2.2 Differentially flat systems

In this section, we further extend the work in Section 2.1, including extensions from

feedback linearization to general differentially flat systems, as well as the inclusion

of equality and inequalities constraints. Furthermore, we generalize the notion of

feedback linearization, which makes nonlinear systems behave as linear systems,

and develop controllers that effectively transform a differentially flat system into

an optimization algorithm that seeks to find the optimal solution of a (possibly

time-varying) optimization problem.

Section 2.2.1 introduces some preliminary definitions and tools we use. We

revisit the two motivating examples in Section 2.1.2, Integrator and Wheeled Mobile
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Robot, with a more generalized time-varying optimization framework. Further-

more, we summarize the key features of the proposed framework, which generalize

the notion of feedback linearization and transform a flat system into an optimiza-

tion algorithm. Designing the nonlinear feedback controller is reduced to finding

a solution to the ODE system that satisfies the optimization dynamic and system

dynamic simultaneously. Our major results are illustrated in section 2.2.3,2.2.4 and

2.2.5, which deal with unconstrained and constrained time-varying optimization

problems respectively. To illustrate our results, we perform two numerical evalua-

tions in 2.2.6 on multi-object tracking problem and obstacle avoidance problem, to

illustrate the effectiveness of our framework.

2.2.1 Preliminaries

Differential Flatness and Feedback Linearization

Over the past several decades, differential flatness theory has been a main direction

in the area of nonlinear control for motion planning, trajectory generation, and

stabilization [71]. Roughly speaking, flat systems are those systems that are equiva-

lent to a controllable linear one, namely a system made of chains of integrators of

arbitrary length [70]. A system is differentially flat if there exist outputs, called flat

outputs, for which all states and inputs are determined by the outputs and a finite

number of their derivatives [72]. More precisely, if the system has states x ∈ Rn and

inputs u ∈ Rm, described as a system of differential equations

ẋ = f(x,u). (2.29)

Then the system (2.29) is differentially flat if we can find flat outputs y ∈ Rm of the

form

y = h(x,u[r]), (2.30)
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such that

x = φ(y[k]), u = α(y[k]). (2.31)

The advantage of using flat outputs in control system design is that doing so

simplifies the process of generating input trajectories that satisfy certain constraints.

Instead of designing complex controllers that directly manipulate the control in-

puts, one can design controllers that manipulate the flat outputs, and then use the

algebraic relationships between the flat outputs and the control inputs to generate

optimal trajectories.

Notably, many commonly used classes of systems in nonlinear control theory

are differentially flat, for example fully actuated holonomic systems, mobile robots,

and classical n-trailer systems. A complete characterization of differential flatness

and a catalog of finite dimensional flat systems can be found in [71, 70].

Another important concept in nonlinear control theory is (dynamic) feedback lin-

earization, which means a nonlinear system can be transformed into a linear system

by a state diffeomorphism and a feedback transformation [36]. Although differential

flatness and feedback linearization are related concepts, they are inherently differ-

ent. In fact, all state feedback linearizable systems are differentially flat. However,

a differentially flat system is dynamic feedback linearizable on an open dense set,

which may not include the equilibrium points. Differential flatness is an inherent

geometric property of a system, independent of coordinate representation and thus

we can exploit its inherent geometric structure in designing control algorithms [70].

2.2.2 Problem Statement

We formally state the problem together with some regularity assumptions needed in

our derivations and introduce two motivating examples. Consider a differentially
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flat system described as in (2.29), along with the associated flat output

ẋ = f(x,u), y = h(x,u[r]),

The goal is to generate a control input u(t) such that for some C > 0, ∥y(t) −

y∗(t)∥2 ≤ Ce−αt for all t ≥ 0 and all initial conditions, i.e., global asymptotic

convergence, where y∗(t) is the solution to (2.2). Additionally, we assume the

minimizer y∗(t) is unique for all t ≥ 0 (see Assumption 4). The following regularity

assumptions will be used throughout this section, and are commonly used in the

context of time-varying optimization [31].

Assumption 4 (Uniform strong convexity). The objective function f0(y, t) is uniformly

strongly convex in y, i.e., ∇yyf0(y, t) ⪰ mfIm for some mf > 0, for all y and for all t ≥ 0.

The inequality constraint functions fi(y, t) are convex in y for all t ≥ 0 and for all i ∈ [p].

Assumption 5 (Uniform Mangasarian-Fromowitz constraint qualification). For a

global minimum y∗(t) of (2.8)

1. there exists a uniformly bounded d̄(t) ∈ Rm, i.e., ∥d̄(t)∥2 ≤ d for some constant

d > 0, and a constant ϵ > 0 such that

∇yfi(y
∗(t), t)T d̄(t) ≤ −ϵ, i ∈ I(y∗(t)),

aj(t)
T d̄(t) = 0, j = 1, . . . q,

for all t ≥ 0, where I(y∗(t)) := {i|fi(y∗(t), t)= 0} denotes the index set associated

with active inequality constraints.

2. there exist constants 0 < τmin ≤ τmax < +∞ such that σmin(A(t)) ≥ τmin and

σmax(A(t)) ≤ τmax for all t ≥ 0, i.e., the vectors {aj} for j ∈ [q] are uniformly

linearly independent and uniformly bounded.

Since the time-varying convex optimization problem has smooth objective and

constraints functions, Assumption 4 and Assumption 5 imply that the Karush-Kuhn-
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Tucker (KKT) conditions [73] provide necessary and sufficient conditions for opti-

mality. Notice that these Assumptions are not written in the most familiar way. For

example in Assumption 5, we are replacing the traditional ∇yfi(y
∗(t), t)T d̄(t) < 0

with ∇yfi(y
∗(t), t)T d̄(t) ≤ −ϵ for some positive constants ϵ > 0. Such modifications

are made in order to exclude the possibility that, e.g., ∇yfi(y
∗(t), t)T d̄(t) → 0 as

t→ ∞. In Section 2.2.5, we will show that these assumptions are sufficient for the

time-varying optimization problem (2.8) to be well-defined for all t ≥ 0, and ex-

clude the possibility that the optimal dual variables escape to infinity exponentially

fast, which was merely assumed to hold in prior work [32].

The remainder of this section provides two examples that help motivate both

our goals and our solution approach. In Section 2.2.2, we begin with a linear

system, an integrator, which is the simplest form of a flat system. We illustrate

how to design a control law that steers it to the trajectory implicitly defined by

an unconstrained time-varying optimization problem. We relate this case with

recent research concerning Prediction-Correction Methods and describe a general

methodology for control design wherein we match the evolution of the flat output

with that of a time-varying gradient descent algorithm that converges to y∗(t). In

Section 2.2.2, we extend the approach for a simple but representative second-order

nonholonomic system, the Wheeled Mobile Robot (WMR), to illustrate how to

incorporate kinematic or dynamic constraints in the system modeling by matching

the flat output to a second order gradient descent algorithm. Lastly, we summarize

the key features of the time-varying optimization-based framework to illustrate

our solution approach, which effectively transforms a general flat system into

an optimization algorithm that achieves asymptotic convergence to the optimal

solution.
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Example #1: Integrator

We revisit the analysis with the simplest possible flat system, the linear integrator

ẋ = u, y = x, (2.32)

where y is the flat output. The inputs are determined by the flat outputs and a finite

number of their derivatives, and this relationship (2.31) can be expressed using the

following expression:

u := α(y[k]) = ẏ. (2.33)

For our purposes, it will be useful to represent it using the following implicit

function:

F(ẏ,u) := ẏ − u = 0. (2.34)

We consider an unconstrained version of the time-varying optimization prob-

lem (2.8), in which our goal is to regulate the output y of the integrator (2.32) to

asymptotically track the minimizer

y∗(t) = argmin
y

f0(y, t). (2.35)

The minimizer y∗(t) is characterized by ∇yf0(y
∗(t), t) = 0 (under convexity assump-

tion 4). Converging to the minimizer y∗(t) can be solved by designing a control

algorithm such that the output y of (2.32) satisfies the following target system :

∇̇yf0(y, t) = −P∇yf0(y, t), P ≻ 0, (2.36)

where the gradient ∇yf0(y, t) is driven to zero exponentially fast, which by uniform

strong convexity of f0 (c.f. Assumption 4) makes y(t) converge to y∗(t) exponen-

tially fast.

Thus, with (2.36) as our target, we first characterize the required evolution of y

such that (2.36) holds. Using the chain rule to differentiate the gradient ∇yf0(y, t)
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with respect to time yields

∇̇yf0(y, t) = ∇yyf0(y, t)ẏ +∇ytf0(y, t).

Substituting the above into (2.36), the desired time-varying optimization dynamics

can be equivalent described via the implicit function G(ẏ,y, t) = 0, where

G(ẏ,y, t) = ∇yyf0(y, t)ẏ +∇ytf0(y, t) +P∇yf0(y, t), (2.37)

which can be viewed as an implicit model for (2.36).

Consider now the combined implicit function H(y, ẏ,u, t) := 0 defined by simul-

taneously considering the previous two implicit equations

H(y, ẏ,u, t) =

[︃

F(ẏ,u)
G(ẏ,y, t)

]︃

=

[︃

0
0

]︃

We seek to resolve these implicit equations for a solution (ẏ,u) = S(y, t). In this

simple case, by uniform strong convexity (Assumption 4), the Hessian matrix

∇yyf0(y, t) is uniformly positive definite. Consequently, one can uniquely solve

G(ẏ,y, t) = 0 for ẏ and then recover u from (2.34), yielding

ẏ = u = −∇−1
yyf0(y, t)[P∇yf0(y, t) +∇ytf0(y, t)]. (2.38)

This choice of control input therefore regulates the output of the integrator such

that it asymptotically tracks the trajectory implicitly defined by an unconstrained

time-varying optimization problem, i.e., y converges to the minimizer y∗(t) expo-

nentially fast. Another key observation is that the proposed algorithm generalizes

the notion of feedback linearization, in that it transforms the dynamical system into

an optimization algorithm that seeks to find the optimizer of a time-varying opti-

mization problem. Precisely, the nonlinear feedback control law (2.38) effectively

transforms the integrator into the following linear system:

ż = −Pz, P ≻ 0,

z = ∇yf0(y, t).
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Such optimization algorithm exponentially converges to the optimal solution of the

time-varying optimization problem.

Example #2: Wheeled Mobile Robot

We now show how the previous approach extends to a more involved example,

where we aim to control a nonholonomic flat system, the wheeled mobile robot

(WMR) [70]:
ẋ1 = cos(x3)u1, ẋ2 = sin(x3)u1,

ẋ3 = u2, y = (x1, x2).
(2.39)

The states (x1, x2) ∈ R2 represent the position, and x3 is the angular position of

the WMR. The control inputs (u1, u2) are the positional and angular velocities,

respectively, and the position vector y is the flat output.

Consider again an unconstrained time-varying optimization problem (2.35),

where our goal is to regulate the output vector y of a WMR to asymptotically track

the time-varying minimizer.

Again, the inputs are determined by the flat outputs and a finite number of

their derivatives, and this relationship (2.31) can be expressed using the following

expression:

u := α(y[k]) =

[︃ √︁

ẏ21 + ẏ22
(ẏ1ÿ2 − ÿ1ẏ2)/(ẏ

2
1 + ẏ22)

]︃

Again, we implicitly express the input using the algebraic equation:

F(y, ẏ, ÿ,u) :=

{︄

u1 −
√︁

ẏ21 + ẏ22
u2 − (ẏ1ÿ2 − ÿ1ẏ2)/(ẏ

2
1 + ẏ22)

=

[︃

0
0

]︃

Accordingly, we could generalize the target system (2.36) by considering a second-

order time-varying opimization algorithm:

[︃

∇̇yf0(y, t)

∇̈yf0(y, t)

]︃

=

[︃

0 Im
−kpIm −kdIm

]︃ [︃∇yf0(y, t)

∇̇yf0(y, t)

]︃

, (2.40)
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where kp, kd > 0 makes the gradient dynamics a Hurwitz linear system system with

state z := (∇yf0(y, t), ∇̇yf0(y, t)).

Using the chain rule to differentiate the gradient term ∇yf0(y, t) with respect to

time twice, we derive

∇̈yf0(y, t) =∇yyf0(y, t)ÿ + ∇̇yyf0(y, t)ẏ + ∇̇ytf0(y, t).

Now combining once again the second row of (2.40) and the above equation leads

to the following implicit function that describes the solution trajectory of the time-

varying optimization problem,

G(y, ẏ, ÿ, t) :=∇yyf0(y, t)ÿ + ∇̇yyf0(y, t)ẏ

+ ∇̇ytf0(y, t) + kp∇yf0(y, t) + kd∇̇yf0(y, t) = 0,
(2.41)

which can be viewed as an implicit model for (2.40). The problem of designing

the control algorithm is reduced to define an implicit function of the form (ÿ,u) =

S(y, ẏ, t) to the combined implicit function by simultaneously considering the

previous two implicit equations

H(y, ẏ, ÿ,u, t) :=

{︄

F(y, ẏ, ÿ,u)

G(y, ẏ, ÿ, t)
=

[︃

0
0

]︃

where the two planning and tracking components are given by the two implicit

functions. We could find the unique solution pair (ÿ,u) to the ordinary differential

equations:

ÿ :=g(y, ẏ) = −∇−1
yyf0(y, t)

[︁

∇̇yyf0(y, t)ẏ + ∇̇ytf0(y, t)

+ kp∇yf0(y, t) + kd∇̇yf0(y, t)
]︁

u1 = ∥ẏ∥2,

u2 =
1

∥ẏ∥22
g(y, ẏ)T

[︃

−1 0
0 1

]︃

ẏ

Again, we would like to emphasize that the proposed solution approach gen-

eralizes the notion of feedback linearization, where the above nonlinear feedback

42



control law effectively transforms the WMR (2.39) into an optimization algorithm:

ż = Hz,

z = (∇yf0(y, t), ∇̇yf0(y, t))
T ,

where H is the Hurwitz matrix designed in (2.40). Such an optimization algorithm

seeks to find the optimal solution of the unconstrained version of the time-varying

optimization problem (2.8).

Key Features

We end this section by highlighting the key features that made the application of our

framework possible in the two motivating examples. The framework we propose is

a combination of two implicit functions

H(y[k],u[r], t) :=

{︄

F(y[k],u[r])

G(y[k], t)
=

[︃

0
0

]︃

which comprise of:

1. a system dynamics or tracking component F(y[r],u[r]), which is an implicit func-

tion derived from the dynamical system characterizing the system input-

output relationship;

2. an optimization dynamic or planning component G(y[k], t), which is an implicit

function derived from a set of target dynamics, guarantee asymptotic conver-

gence to the minimizer of the time-varying optimization problem.

Thus, finding the desired controller can be reduced to the problem of finding

a solution to this system of implicit functions. In the context of a flat system, the

system dynamic term can be easily expressed using (2.31), resulting in F(y[k],u) :=

u − α(y[k]) = 0. As a result, our focus in the subsequent sections shifts towards

the optimization dynamic term. In the two illustrative examples, the optimization
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dynamics G(y[k], t) = 0 that we considered are obtained from an exponentially

stable linear system. This system is characterized by a state comprising the gradient

∇yf0(y, t) and its higher-order time derivatives as given in (2.41).

In the rest of this paper, we seek to generalize this approach to tackle the specific

problem: for an arbitrary differentially flat system (2.29) and a time-varying convex

optimization problem (2.8), define an implicit function of the form G(y[k], t) = 0,

such that its solutions globally asymptotically converge to the minimizer of a general

time-varying constrained convex optimization problem. A key to the success of this

effort is the design of general target systems of the form

ẇ = Hw,

w = (∇zL(z, t), ...,∇k−1
z L(z, t))T ,

(2.42)

where L, z = (y, λ), and H, are properly chosen to guarantee the asymptotic

convergence of y(t) to the optimal solution of a general constrained time-varying

optimization problem of the form of (2.8).

2.2.3 Unconstrained time-varying optimization framework

In this section, we first consider the case where our goal is to regulate a general

differentially flat system (2.29), to the minimizer y∗(t) of an unconstrained time-

varying optimization problem (2.8), reproduced here for convenience as

y∗(t) :=arg min
y∈Rm

f0(y, t). (2.43)

Recall that for a differentially flat system (2.29), the inputs are determined by

the flat outputs and a finite number of their derivatives according to (2.31). That

is, the implicit function F(y[k],u) := u− α(y[k]) = 0 represents the system dynamics,

which is a function of up to k-th order derivatives of the flat output y. Recall

the time-varying optimization problem is assumed to be uniformly convex, (see

Assumption 4) and infinitely differentiable. Building on the insights from previous
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section, we are motivated to devise a k-th order optimization dynamics that enables

us to achieve convergence towards the unique minimizer y∗(t). Thus, we consider

⎡

⎢

⎣

∇̇yf0(y, t)
...

∇(k)
y f0(y, t)

⎤

⎥

⎦
= H

⎡

⎢

⎣

∇yf0(y, t)
...

∇(k−1)
y f0(y, t)

⎤

⎥

⎦
, (2.44)

with

H = Ĥ⊗ Im, Ĥ :=

⎡

⎢

⎢

⎢

⎣

0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
−a0 −a1 −a2 . . . −ak−1

⎤

⎥

⎥

⎥

⎦

being Hurwitz. Equation (2.44) is a natural k-th order generalization of (2.36) and

(2.40). The need to increase the order of the target system as the order of the flat

system increases is evidenced by the following lemma.

Recall the result from Lemma 4, Differentiating the gradient ∇yf0(y, t) with

respect to time k−times yields

∇(k)
y f0(y, t) =

k−1
∑︂

m=0

(︁

k−1
m

)︁

∇(m)
yy f0(y, t)y

(k−m) +∇(k−1)
yt f0(y, t). (2.45)

Lemma 4 shows that the k-th time derivative of the gradient is the first one where

the term y(k), which allows, in turn, to have access to the necessary information

for control. Thus, now combining (2.44) and (2.45), for a general flat system and

unconstrained time-varying optimization problem, we obtain the following implicit

for the optimization dynamics:

Gunc(y
[k], t) :=

k−1
∑︂

m=0

(︁

k−1
m

)︁

∇(m)
yy f0(y, t)y

(k−m) +∇(k−1)
yt f0(y, t) +

k−1
∑︂

i=0

ai∇(i)
y f0(y, t) = 0.

(2.46)

The next theorem states that if certain regularity conditions are met, the output

y, which follows the optimization dynamics described in equation (2.46), will

asymptotically converge globally to the minimizer y∗(t) of equation (2.43).
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Theorem 7 (Convergence of optimization dynamics (2.46)). Let Assumption 4 hold.

Then for any initial condition, the trajectory t ↦→ y(t) of system Gunc(y
[k], t) = 0 defined in

(2.46) globally asymptotically converges to the optimal solution y∗(t) of (2.43). Moreover,

the following bounds

∥y(t)− y∗(t)∥2 ≤ Ce−αt,

f0(y(t), t)− f0(y
∗(t), t) ≤ mfC

2e−2αt

hold, where

C =
(︂

c2

m2
f

∑︂k−1

j=0
∥∇(j)

y f0(y(0), 0)∥22)
)︂

1

2

<∞,

for some constant c > 0, and where −α := maxλ∈spec(H) ℜ[λ] + ϵH , for some ϵH > 0

sufficiently small.

Proof : See Appendix 2.2.7.

The above theorem states that the solution trajectory of the implicit function

Gunc(y
[k], t) = 0 from (2.46) converges asymptotically to the minimizer y∗(t) of (2.43).

It remains to show that one can indeed simultaneously solve the system of implicit

equations:

H(y[k],u, t) :=

{︄

F(y[k],u) := u− α(y[k])

Gunc(y
[k], t)

=

[︃

0
0

]︃

(2.47)

for the pair (y(k),u) = S(y[k−1], t). By uniform strong convexity (see Assumption 4),

the Hessian matrix ∇yyf0(y, t) is uniformly positive definite, which allows to solve

(2.47) by solving for first for y(k) using (2.46), and subsequently solving for u using

(2.31). The following theorem summarizes these findings.

Theorem 8 (TVO-based control for system (2.29)). Let Assumption 4 hold and consider

the differentially flat system (2.29) with the feedback controller

u := α(y, . . . ,y(k−1), gunc(y
[k−1]))
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where

gunc(y
[k−1]) := −∇−1

yyf0(y, t)

[︄

k−1
∑︂

i=0

ai∇(i)
y f0(y, t)

+∇(k−1)
yt f0(y, t) +

k−1
∑︂

m=1

(︁

k−1
m

)︁

∇(m)
yy f0(y, t)y

(k−m)

]︄

is a solution to (2.47) with closed-loop dynamics given by y(k) = gunc(y
[k−1]). Then, for any

initial condition, the flat output of (2.29) globally asymptotically converges to the optimal

solution y∗(t) of (2.43).

Notably, the above nonlinear feedback control effectively transforms the differ-

entially flat system into an optimization algorithm (2.42) that seeks to converge to

the optimal solution of the time-varying optimization problem.

2.2.4 Equality Constrained time-varying optimization framework

In this section, we consider an equality-constrained version of the time-varying

optimization problem (2.8):

y∗(t) :=arg min
y∈Rm

f0(y, t)

s.t. A(t)y = b(t).
(2.48)

Define the Lagrangian L : Rm × Rq × R+ → R associated with the problem as

L(y,ν, t) = f0(y, t) + νT (A(t)y − b(t)) (2.49)

and refer νi as the Lagrange multiplier associated with the ith equality constraint

ai(t)
Ty = bi(t). The Assumption 5 on A(t) means that there are fewer equality

constraints than variables and that the equality constraints are independent uni-

formly. Additionally, the time-varying optimization problem is uniformly con-

vex (see Assumption 4), and the KKT conditions are necessary and sufficient

for the points to be primal and dual optimal. That is, the optimal trajectory
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z∗(t) = col(y∗(t),ν∗(t)) ∈ Rm+q is characterized by the following KKT conditions:

∇yf0(y
∗(t), t) +A(t)Tν∗(t) = 0 = ∇yL(y

∗(t),ν∗(t), t),

A(t)y∗(t)− b(t) = 0 = ∇νL(y
∗(t),ν∗(t), t),

which is equivalent to ∇zL(z
∗(t), t) = 0.

Similarly to (2.44), one can make z(t) converge to the optimal primal-dual

trajectory z∗(t) by designing a target linear system with state represented by

col(∇zL(z, t), . . . ,∇(k−1)
z L(z, t)), i.e.,

⎡

⎢

⎣

∇̇zL(z, t)
...

∇(k)
z L(z, t)

⎤

⎥

⎦
= H

⎡

⎢

⎣

∇zL(z, t)
...

∇(k−1)
z L(z, t)

⎤

⎥

⎦
, (2.50)

where H = Ĥ⊗Im+q is Hurwitz. As a result of Lemma 4, differentiating the gradient

∇zL(z, t) with respect to time k−times yields

∇(k)
z L(z, t)=

k−1
∑︂

m=0

(︁

k−1
m

)︁

∇(m)
zz L(z, t)z

(k−m)+∇(k−1)
zt L(z, t). (2.51)

Notice that the KKT matrix is defined as [73]:

∇zzL(z, t) =

[︃

∇yyf0(y, t) AT (t)
A(t) 0q×q

]︃

.

The KKT matrix is nonsingular because rank(∇yyf0(y, t)) = m for all t ≥ 0 and

rank(A(t)) = q for all t ≥ 0 by Assumption 4 and Assumption 5. This also means the

optimal primal-dual pair (y∗(t),ν∗(t)) is unique at each t ≥ 0. In classical convex

optimization, the bounded inverse KKT matrix assumption ∥∇−1
zz L(z, t)∥2 ≤ K−1

plays the role of the strong convexity assumption 4 in the unconstrained setting. In

the time-varying optimization setting, the following Uniform Lipschitz Continuity

assumption helps us establish the uniform boundedness of the inverse KKT matrix.

To that end, we make the following assumption.

Assumption 6 (Uniform Lipschitz continuity). The objective function f0 and the in-

equality constraint functions fi, i ∈ [p], have uniformly bounded gradients with respect to
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y, i.e.,

∥∇yf0(y, t)∥2 ≤ L, ∥∇yfi(y, t)∥2 ≤ Li,

for constants L,Li > 0, for all y, all t ≥ 0, and all i ∈ [p].

Remark 1. The Uniform Lipchitz continuity Assumption 6 could be relaxed by the uniform

Lipschitz gradient assumption whenever the feasible set is bounded. Precisely, suppose that

K ⊂ Rm is a bounded closed convex set. Assume that,

∥∇yf0(y, t)−∇yf0(y
∗(t), t)∥2 ≤ L∥y − y∗(t)∥2 (2.52)

for all y ∈ K, all t ≥ 0 for some constant L ≥ 0. This implies that ∥∇yf0(y, t)∥ ≤

L∥y − y∗(t)∥2, which is bounded by some constant depending on K.

The following Lemma characterizes the uniform boundedness of the eigenvalues

of the KKT matrix

Lemma 9 (Eigenvalues of KKT matrix). [74, Lemma 2.1] For all t ≥ 0, let µ1 ≥ µ2 ≥

· · · ≥ µm > 0 be the eigenvalues of ∇yyf0(y, t), σ1 ≥ σ2 ≥ · · · ≥ σq ≥ 0 be the singular

values of A(t), and denote by Λ(∇zzL(z, t)) the spectrum of the KKT matrix. Then

Λ(∇zzL(z, t)) ⊂ I = I− ∪ I+

where I− = [1
2
(µn−

√︁

µ2
n + 4σ2

1),
1
2
(µ1−

√︁

µ2
1 + 4σ2

m)] and I+ = [µn,
1
2
(µ1+

√︁

µ2
1 + 4σ2

1)]]

A direct application of the above lemma establishes the uniform boundedness

of the inverse KKT matrix.

Corollary 10 (Uniform boundeness of inverse KKT matrix). Let Assumptions 4, 5 and

6 hold, then for all t ≥ 0, we have ∥∇−1
zz L(z, t)∥2 ≤ K−1 for some K > 0.

We are now ready to extend our framework to solve (2.48). Combining (2.50)

and (2.51), we use the following implicit function to define the optimization dynamics,
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when time-varying equality constraints are included:

Geq(z
[k], t) :=

k−1
∑︂

m=0

(︃

k − 1

m

)︃

∇(m)
zz L(z, t)z

(k−m)

+∇(k−1)
zt L(z, t) +

k−1
∑︂

i=0

ai∇(i)
z L(z, t) = 0. (2.53)

The following theorem states that if certain regularity conditions are met, the

output z, which follows the optimization dynamicss described in equation (2.53),

will globally asymptotically converge to the optimal primal solution y∗(t) and the

optimal equality constraint dual solution ν∗(t) of (2.48).

Theorem 11 (Convergence of equality constrained optimization dynamics (2.53)).

Let Assumptions 4, 5 and 6 hold. Then for any initial condition, the trajectory t ↦→ z(t) of

system Geq(z
[k], t) = 0 defined in (2.53) globally asymptotically converges to the optimal

solution of z∗(t) = col(y∗(t),ν∗(t)) of the time-varying equality constrained optimization

problem (2.48). Moreover, the following bound holds

∥z(t)− z∗(t)∥2 ≤ Ce−αt,

where

0 < C =
(︂

c2

K2

∑︂k−1

j=0
∥∇(j)

z L(z(0), 0)∥22)
)︂

1

2

<∞,

for some constant c > 0 ,−α := maxλ∈spec(H) ℜ[λ] + ϵH , for some ϵH > 0 small enough.

Proof: See Appendix 2.2.7

Lastly, it remains to show that one can simultaneously solve the system of

implicit equations

H(z[k],u, t) :=

{︄

F(z[k],u) := u− αz(z
[k])

Geq(z
[k], t)

=

[︃

0
0

]︃

(2.54)

for the pair (z(k),u) = S(z[k−1], t), where αz(z
[k]) := α(y[k]). According to Corollary

10, the KKT matrix ∥∇−1
zz L(z, t)∥2 ≤ K−1 is uniformly bounded, which allows to
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solve (2.54) by solving for first for z(k) using (2.53) and subsequently solving for u

using (2.31). The following theorem summarizes these findings.

Theorem 12 (Equality constrained TVO-based control for system (2.29)). Let As-

sumption 4, 5 and 6 hold and consider the differentially flat system (2.29) with the feedback

controller

u = αz(z, . . . , z
(k−1), geq(z

[k−1]))

where

geq(z
[k−1]) := −∇−1

zz L(z, t)

[︄

k−1
∑︂

i=0

ai∇(i)
z L(z, t)

+∇(k−1)
zt L(z, t) +

k−1
∑︂

m=1

(︃

k − 1

m

)︃

∇(m)
yy L(z, t)z

(k−m)

]︄

,

is a solution to (2.54) with closed-loop dynamics given by z(k) = geq(z
[k−1]). Then, for any

initial condition, the flat output of (2.29) globally asymptotically converges to the optimal

solution y∗(t) of (2.48).

2.2.5 Inequality Constrained time-varying optimization frame-

work

In Section 2.2.4, we showed how to incorporate equality constraints by Lagrangian

duality in our framework. In this section, we consider a time-varying optimization

problem where only inequality constraints are included:

y∗(t) =arg min
y∈Rm

f0(y, t)

s.t. fi(y, t) ≤ 0, i ∈ [p].
(2.55)

Define the Lagrangian L : Rm × Rp × R+ → R associated with the problem (2.55) as

L(y,λ, t) = f0(y, t) +

p
∑︂

i=1

λifi(y, t)

and refer λi as the Lagrange multiplier associated with the ith inequality constraint

fi(y, t) ≤ 0. Additionally, the time-varying optimization problem is uniformly
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strongly convex (see Assumption 4), and the KKT conditions are necessary and

sufficient for optimality [73, 75]. Precisely, for any t ≥ 0, we have the following KKT

conditions, where the primal feasibility conditions automatically hold for global

minimum y∗(t) and are neglected:

∇yf0(y
∗(t), t)+

p
∑︂

i=1

λ∗i (t)∇yfi(y
∗(t), t)) = 0

λ∗i (t) ≥ 0, i ∈ [p],

λ∗i (t)fi(y
∗(t), t)) = 0, i ∈ [p].

(2.56)

Motivated by [32, 73], in this section, we will use a particular interior-point

algorithm to incorporate inequality constraints as in (2.55), the barrier method.

The goal of the barrier method is to approximately formulate the time-varying

inequality-constrained problem as a time-varying unconstrained problem. Towards

this goal, the first step is to rewrite the problem (2.55), making the inequality

constraints implicit in the objective function:

y∗(t) =arg min
y∈Rm

f0(y, t) +

p
∑︂

i=1

I−(fi(y, t)), (2.57)

where I− : R → R is the indicator function for the nonpositive reals: I−(u) = 0

for u ≤ 0 and I−(u) = +∞ for u > 0. To approximate the indicator function

I−, we use a continuously differentiable logarithmic barrier function given by:

Î−(u, t) = − 1
c(t)

log(−u), where c(t) > 0 is a parameter that ensures the accuracy

of the approximation improves as t increases. Therefore, the logarithmic barrier

coefficient c(t) is required to be monotonic increasing, asymptotically converging to

infinity, and bounded in finite time. A convenient choice would be

c(t) = c0e
αct (2.58)

with αc, c0 > 0.
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Substituting I− with Î− gives the approximation of (2.57)

Φ(y, t) = f0(y, t) +

p
∑︂

i=1

− 1

c(t)
log(−fi(y, t)). (2.59)

One of the limitations of (2.59), is that it requires a starting point that satisfies all the

constraints. If such a point is not known a priori, a preliminary step called phase I is

used to find a feasible point. In this phase, a time-varying slack variable denoted

as s(t) is introduced to ensure that the constraints are satisfied and overcome any

limitations related to the initial point. We thus consider in such case the perturbed

approximation of (2.59):

Φ̂(y, t) := f0(y, t)−
1

c(t)

p
∑︂

i=1

log(s(t)− fi(y, t)), (2.60)

where a good choice of s(t) is s0e
−αst and for any initial condition y(0), s0 can be

chosen large enough such that:

s0=

{︄

0 if maxi fi(y(0), 0)≤0

maxi fi(y(0), 0) + ϵs if maxi fi(y(0), 0)>0
(2.61)

for some ϵs > 0. By incorporating the inequality constraints into the objective

function with logarithmic barrier functions as in (2.60), the above constrained

time-varying optimization problem can be approximated by:

ŷ∗(t) :=arg min
y∈Rm

Φ̂(y, t). (2.62)

The following Lemma [32, Lemma 1] provides an upper bound on the duality

gap associated with y∗(t) and the Lagrange multiplier λ∗(t). It also confirms that

with proper choices of s(t), c(t), ŷ∗(t) converges to the optimal solution y∗(t) as

t→ +∞, provided that the Lagrange multipliers λ∗(t) remain bounded.

Lemma 13 (Approximation error[32, Lemma 1]). Consider the inequality-constrained

time-varying optimization problem (2.55) and y∗(t) be the optimal solution. Let λ∗(t) be

the Lagrange multiplier associated with inequality constraints and ŷ∗(t) be the optimal
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solution of the perturbed approximation (2.60). Under Assumptions 4 and 5, the following

inequality holds:

|f0(ŷ∗(t), t)− f0(y
∗(t), t)| ≤ p

c(t)
+

p
∑︂

i=1

λ∗i (t)s(t) (2.63)

Lemma 13 not only provides a uniform bound for the optimality error, but it

also suggests appropriate selections of s(t), c(t). In particular, choosing c(t) as in

(2.58) ensures that the first term in (2.63) goes to zero. Thus, if one were to further

guarantee that
∑︁p

i=1 λ
∗
i (t)s(t) → 0 as t → +∞, then this would readily imply that

the optimal solution ŷ∗(t) of (2.62) converges to the optimal solution y∗(t) of (2.8).

Since we are interested in asymptotic convergence, roughly speaking, this requires

that the optimization problem does not have exponentially unbounded optimal

dual variables. We will prove next that under sufficient regularity conditions, one

can provide a uniform constant bound on the value of the multipliers λ∗(t), thus

making the approximation ŷ∗(t) of (2.62) converges asymptotically to y∗(t). One

notable contribution of this paper is the direct establishment of regularity conditions

that ensure the uniform boundedness of the Lagrange multipliers. This contributes

to the literature of time-varying optimization [32, 33], wherein asymptotic bound-

edness of multipliers is assumed. For a static nonconvex optimization problem,

Mangasarian-Fromowitz constraint qualification (MFCQ) is shown to be necessary and

sufficient to have the set of Lagrange multipliers being nonempty and bounded [76].

For a general time-varying optimization problem (2.8), where both equality and

inequality constraints are considered, the following Lemma provides a sufficient

condition for the uniform boundedness of the set of Lagrange multipliers.

Lemma 14. (Uniform boundedness of Lagrange multipliers) Let y∗(t) be the optimal

solution of (2.55), and suppose that Assumptions 4, 5, and 6 are satisfied. For all t ≥ 0, the

set of Lagrange multipliers λ∗(t) ∈ Rp satisfying the KKT conditions (2.56) is nonempty
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and uniformly bounded

∥λ∗(t)∥1 ≤
Ld

ϵ
,

where ∥ · ∥1 denotes the l1 vector norm.

Proof: See Appendix 2.2.7.

A direct application of lemmas 13 and 14, shows the desired exponential decrease

on the approximation error. Therefore, we consider the following target system as a

natural extension of (2.44) when inequality constraints are included

⎡

⎢

⎣

∇̇yΦ̂(y, t)
...

∇(k)
y Φ̂(y, t)

⎤

⎥

⎦
= H

⎡

⎢

⎣

∇yΦ̂(y, t)
...

∇(k−1)
y Φ̂(y, t)

⎤

⎥

⎦
, (2.64)

where H = Ĥ⊗ Im being Hurwitz.

Analogously, combining (2.64) and Lemma 4, we can use the following im-

plicit function to define the optimization dynamics, when inequality constraints are

included:

Gineq(y
[k], t) :=

k−1
∑︂

m=0

(︃

k − 1

m

)︃

∇(m)
yy Φ̂(y, t)y(k−m)

+∇(k−1)
yt Φ̂(y, t) +

k−1
∑︂

i=0

ai∇(i)
y Φ̂(y, t) = 0.

(2.65)

The following theorem shows that, under sufficient regularity conditions, the

output y(t) satisfying the optimization dynamics (2.65) globally converges to the

minimizer y∗(t) of the time-varying inequality constrained optimization problem

(2.55).

Theorem 15 (Convergence of inequality constrained optimization dyanmics (2.65)).

Let Assumptions 4, 5 and 6 hold, with c(t) given by (2.58), and s(t) = s0e
−αst with s0 as

in (2.61). Then for any initial condition, the trajectory t→ y(t) of system Gineq(y
[k], t) = 0

defined in (2.65) will globally asymptotically converges to the optimal solution of y∗(t)
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of the time-varying inequality constrained optimization problem (2.55). Moreover, the

following bounds hold

∥y(t)− ŷ∗(t)∥2 ≤ Ce−αt,

|f0(y(t), t)−f0(y∗(t), t)|≤LCe−αt+pc0e−αct+
Lds0
ϵ

e−αst,

where

0 < C =
(︂

c2

m2
f

∑︂k−1

j=0
∥∇(j)

y Φ̂(y(0), 0)∥22)
)︂

1

2

<∞,

for some constant c > 0 ,−α := maxλ∈spec(H) ℜ[λ] + ϵH , for some ϵH > 0 small enough.

Proof: See Appendix 2.2.7.

The above theorem states that the solution trajectory of the implicit function

Gineq(y
[k], t) from (2.65) converges to the minimizer y∗(t) of (2.55). It remains to

show that one can simultaneously solve the system of implicit equations

H(y[k],u, t) :=

{︄

F(y[k],u) := u− α(y[k])

Gineq(y
[k], t)

=

[︃

0
0

]︃

(2.66)

for the pair (y(k),u) = S(z[k−1], t). Since, from the proof of Theorem 15, we have

∥∇−1
yyΦ̂(y, t)∥2 ≤ m−1

f (see Appendix 2.2.7), we can solve (2.66) by solving for first

for y(k) using (2.65) and subsequently solving for u using (2.31). The following

theorem summarizes these findings.

Theorem 16 (Inequality constrained TVO-based control for system (2.29)). Let

Assumptions 4, 5 and 6 hold, with c(t) given by (2.58), and s(t) = s0e
−αst with s0 as in

(2.61). Consider the differentially flat system (2.29) with the feedback controller

u := α(y, . . . ,y(k−1), gineq(y
[k−1]))
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where

gineq(y
[k−1]) := −∇−1

yyΦ̂(y, t)

[︄

k−1
∑︂

i=0

ai∇(i)
y Φ̂(y, t)

+∇(k−1)
yt Φ̂(y, t) +

k−1
∑︂

m=1

(︁

k−1
m

)︁

∇(m)
yy Φ̂(y, t)y(k−m)

]︄

is a solution to (2.66) with closed-loop dynamics given by y(k) = gineq(y
[k−1]). Then, for

any initial condition, the flat output of (2.29) globally asymptotically converges to the

optimal solution y∗(t) of (2.55).

Notably, the above nonlinear feedback control effectively transforms the differ-

entially flat system into an optimization algorithm similar to (2.42) that seeks to

converge to the optimal solution of the time-varying optimization problem:

ż = Hz,

z = (∇yΦ̂(y, t), ...,∇k−1
y Φ̂(y, t))T . (2.67)

2.2.6 Numerical experiments

In this section, we use two numerical examples arising in multi-robot coordination

to illustrate the effectiveness of our solution approach. As our time-varying feed-

back optimization framework automatically guarantees asymptotic satisfaction of

time-varying equality and inequality constraints, we apply the method for the spec-

ification of formation constraints (Section 2.2.6) and to enforce collision avoidance

(Section 2.2.6).

Multi-robot Navigation with formation constraints

In this numerical example, two WMRs (2.39) are required to track two moving

objects respectively, but the maximum distance between two agents is limited (e.g.,

due to communication or formation constraints). Let y1(t),y2(t) ∈ R2 denote the

position of each WMR, with yd1(t),y
d
2(t) denoting the positions of the two moving
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Figure 2-4. Trajectories of two moving objects yd1(t),y
d
2(t) (solid) and two WMRs

y1,y2 (dashed). WMRs succeed in tracking two moving objects while satisfying

distance constraints between them.

objects. To model the above objectives, consider the time-varying optimization

problem
min
y1,y2

∥y1−yd1(t)∥22+∥y2−yd2(t)∥22

s.t. ∥y1−y2∥2 ≤ d(t),
(2.68)

where d(t) denotes the maximum (Euclidean) separation allowed between the two

robots at time t. The trajectories of the moving objects, yd1(t) and yd2(t), are designed

using a time-parametric representation (Section 2.4 [70]). More specifically, we

parametrize the trajectories yd1(t) and yd2(t) by

ydi (t) =
N
∑︂

j=1

Aijλj(t), (2.69)
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where the λj(t) = tj are the standard polynomial basis functions and Aij can be

calculated from the initialization.

Figure 2-5. Euclidean distance between two WMRs ∥y1−y2∥2. The maximum

distance constraint is satisfied for all t ≤ T .

The simulation results are illustrated in Figure 2-4 and Figure 2-5. The solid

black and blue curves in Figure 2-4 represent two random moving objects trajec-

tories which are generated using the time parametric representation (2.69). More

specifically, the randomly picked starting states x (using asterisk) are [−5;−3; 0.5]

and [−2;−3; 0.5]. As to the robots, they are positioned around the starting position

with random perturbations, which are [−4.5,−3.5; 0.5] and [−3,−3.5;−0.5] (using

asterisk). The two WMRs’ trajectories are represented using dashed green and red

curves. And the arrows represent the positional velocity vector at each position

ẏi . The total simulation time T = 10s and the maximum distance allowed be-
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tween two robots d(t) = 3. For calculation simplicity, we choose the logarithmic

barrier coefficient c0 = 1. For this implementation, the differential equations are

solved using MATLAB standard ODE solver based on an explicit Runge-Kutta

(4,5) formula (ode45). In Figure 2-4, two robots starting from arbitrary positions

succeed in tracking the minimizers of (2.68), i.e., two WMRs track two moving

objects respectively. Furthermore, in Figure 2-5 we plot the (euclidean) distance

between two WMRs ∥y1−y2∥22 and we conclude that the time-varying inequality

constraints are not violated using our solution approach, i.e., ∥y1−y2∥22 ≤ 3.

Robot tracking and obstacle avoidance

Figure 2-6. Trajectory of the WMR (red curve and red disks, starting at the red

asterisk) tracking a moving target (blue curve, starting at the blue asterisk) while

avoiding the obstacles (grey disks), where the dots represent their locations at

different t.
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In this section, we aim to solve the problem of navigating a disk-shaped wheeled

mobile robot (WMR) to track a moving target without colliding with spherical obsta-

cles in the environment. Fazlyab et al. [32] formulate the robot navigation problem,

whose dynamic is an integrator (2.32), via a time-varying convex optimization

problem using the idea of projected goal [77]. We first introduce some definitions and

then show how to generalize the results of [32] in our framework.

Consider a closed and convex workspace W ⊂ R2, which is populated with m

non-intersecting spherical obstacles, where the center and radius of the ith obstacle

are denoted by yi ∈ W and ri > 0, respectively. Suppose the wheeled mobile robot

(WMR) of radius r > 0 is defined as in (2.39), where the flat output, namely the

position vector of the center of mass of the WMR, is given by yc = (x1, x2). We

define the free space, denoted by F , as the set of configurations in the workspace in

which the robot does not collide with any obstacle, i.e.,

F = {y ∈ W : B̄(y, r) ⊆ W \ ∪mi=1B(yi, ri)} (2.70)

where B(y, r) is the 2-dimensional open ball centered at y with radius r, and B̄(y, r)

denotes its closure. Given the moving target yd(t) ∈ F for all t ≥ 0, we aim to

solve for the control input u(t) such that yc(t) ∈ F for all t ≥ 0 with initialization

yc(0) ∈ F . Moreover, we want to have limt→∞ yc(t) = yd(t), i.e., global asymptotic

convergence.

In [32], Fazlyab et al. reformulated this robot navigation problem in a time-

varying optimization framework. The central concept projected goal, inspired

by [77], involves the consistent calculation of the destination point’s projection

yd(t) onto a safe area around the robot’s center of mass, void of obstacles. The

collision-free local workspace LF around current position yc is defined as

LF(yc) = {y ∈ W : ai(yc)
Ty − bi(yc) ≤ 0, i ∈ [m]},
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where

ai(yc) = yi − yc, θi(yc) =
1

2
− r2i − r2

2∥yi − yc∥2
,

bi(yc) = (yi − yc)
T

(︃

θiyi + (1− θi)yc + r
yc − yi

∥yc − yi∥

)︃

.

We denote y∗(t) as the orthogonal projection of the desired configuration yd(t)

onto the collision-free local workspace LF(yc), which can be defined as the solution

of the following optimization problem:

y∗(t) :=arg min
y∈R2

1

2
∥y − yd(t)∥2

s.t. ai(yc)
Ty − bi(yc) ≤ 0, i ∈ [m].

In this scenario, where the WMR is intended to track a moving target, this

method from [77, 32] does not offer any theoretical guarantees. However, the fol-

lowing simulation results illustrate how our solution approach could be used to

solve the navigation problem. In Figure 2-6, the red and blue curves represent

the real-time trajectories of the WMR y(t) and moving target yd(t) respectively.

Likewise, the randomly moving target trajectory is generated using the time para-

metric representation (2.69). The randomly picked starting states (using asterisk)

are [−6;−3; 20] and [−5;−5; 0.5] for the WMR and moving target. The black disks

represent four random nonintersecting spherical obstacles and the red disks repre-

sent the robot configurations at each time instant (the WMR radius r = 0.2). For this

implementation, the ODEs are also solved using MATLAB ode45. We observe the

robot succeeds in tracking the moving target while avoiding the spherical obstacles.

2.2.7 Appendix

Proof of Theorem 7

According to Lemma 4, the trajectory y(t) of system G(ȳ(k), t) = 0 (2.46) satisfy the

optimization dynamics as in (2.44), with H being the designed Hurwitz matrix.
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And the solution to ODE system (2.44) is:

⎡

⎢

⎣

∇yf0(y, t)
...

∇(k−1)
y f0(y, t)

⎤

⎥

⎦
= eHt

⎡

⎢

⎣

∇yf0(y(0), 0)
...

∇(k−1)
y f0(y(0), 0)

⎤

⎥

⎦

where y(0) ∈ Rm is the initial point. By taking the Euclidean norms of both sides

and applying Lemma 3 we obtain

k−1
∑︂

j=0

∥∇(j)
y f0(y(t), t)∥22≤c2e−2αt

k−1
∑︂

j=0

∥∇(j)
y f0(y(0), 0)∥22 (2.71)

for some constant c > 0, −α := maxλ∈spec(H) ℜ[λ]+ ϵH for some ϵH > 0 small enough.

Next, we use the mean-value theorem to expand ∇yf0(y, t) with respect to y as

follows, where η(t) is a convex combination of y(t) and y∗(t). Additionally using

the fact that ∇yf0(y
∗(t), t) = 0 for all t ≥ 0, we obtain:

y(t)− y∗(t) = ∇−1
yyf0(η(t), t)∇yf0(y(t), t).

It follows from Assumption 4, that ∥∇−1
yyf0(y, t)∥2 ≤ m−1

f . Taking the norm on both

sides together with equation (2.71) we have:

∥y(t)− y∗(t)∥2 ≤ Ce−αt,

0 ≤ C =
(︂

c2

m2
f

∑︂k−1

j=0
∥∇(j)

y f0(y(0), 0)∥22)
)︂

1

2

<∞.

On the other hand, convexity of f0(y, t) implies that for each t ≥ 0

0≤f0(y(t), t)−f0(y∗(t), t)≤∇yf0(y(t), t)
T (y(t)−y∗(t))

By applying Cauchy-Swhartz inequality on the right-hand side we obtain;

0 ≤ f0(y(t), t)− f0(y
∗(t), t) ≤ mfC

2e−2αt

which completes the proof.
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Proof of Theorem 11

The structure of proof is similar to the proof of Theorem 7. According to Lemma

4, the trajectory z(t) of system (2.53) satisfy the optimization dynamics as in (2.50),

with H being the designed Hurwitz matrix. Similarly, the solution to this ODE

satisfies the following inequality:

k−1
∑︂

j=0

∥∇(j)
z L(z(t), t)∥22 ≤ c2e−2αt

k−1
∑︂

j=0

∥∇(j)
z L(z(0), 0)∥22

for some constant c > 0, −α := maxλ∈spec(H) ℜ[λ]+ ϵH for some ϵH > 0 small enough.

Next, using the mean-value theorem to expand ∇zL(z(t), t), where η(t) is a convex

combination of z(t) and z∗(t) yields:

z(t)− z∗(t) = ∇−1
zz L(η(t), t)∇zL(z(t), t).

It follows from Corollary 10 that∥∇−1
zz L(z, t)∥2 ≤ K−1 for some K > 0 and therefore,

∥z(t)− ẑ∗(t)∥2 ≤ Ce−αt,

0 < C =
(︂

c2

K2

∑︂k−1

j=0
∥∇(j)

z L(z(0), 0)∥22)
)︂

1

2

<∞.

Proof of Lemma 14

The proof follows from [76] and considers a time-varying inequality constrained

optimization problem. For all t ≥ 0, we assume that uniform MFCQ holds at y∗(t)

(see Assumption 5). For any d̄(t) ∈ Rm given by uniform MFCQ, define a point

ȳ(s, t) sufficiently close to y∗(t) by:

ȳ(s, t) = y∗(t) + sd̄(t).
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For all active inequality constraint functions, that is i ∈ I(y∗(t)), we apply Taylor’s

theorem:

fi(ȳ(s, t), t) = fi(y
∗(t) + sd̄(t), t)

= fi(y
∗(t), t) +∇yfi(y

∗(t), t)T sd̄(t)

+R(y∗(t), sd̄(t))

= s∇yfi(y
∗(t), t)T d̄(t) +R(y∗(t), sd̄(t))

, where R(y∗(t), sd̄(t)) is the remainder satisfying

R(y∗(t), sd̄(t))

∥sd̄(t)∥ → 0 as sd̄(t) → 0.

From part 1) of uniform MFCQ it follows immediately that for s sufficiently small,

ȳ(s, t) is feasible for (2.8). Thus, for s sufficiently small,

f0(y
∗(t), t) = f0(ȳ(0, t), t) ≤ f0(ȳ(s, t), t)

and

∇yf0(y
∗(t), t)T d̄(t) = ∇yf0(ȳ(0), t)

T d̄(t) ≥ 0 =⇒

−∇yf0(y
∗(t), t)T d̄(t) ≤ 0.

Next, we consider the linear program:

max
d

−∇yf0(y
∗(t), t)Td

s.t. ∇yfi(y
∗(t), t)Td ≤ −1, i ∈ I(y∗(t))

d unrestricted.

Any optimization variable d satisfying these constraint functions also satisfy the

uniform MFCQ, and the value of the objective function is upper bounded by

−∇yf0(y
∗(t), t)Td ≤ 0 based on previous analysis. Besides, the feasibility of this
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linear program is also guaranteed by Assumption 5 (uniform MFCQ), since there

exists ∥d̄(t)∥2 ≤ d for some constant d > 0, and a constant ϵ > 0 such that,

∇yfi(y
∗(t), t)T d̄(t) ≤ −ϵ, i∈ I(ŷ(t)) =⇒

∇yfi(y
∗(t), t)T

d̄(t)

ϵ
≤ −1, i∈ I(ŷ(t)),

which means that a feasible d is given by d̄(t)
ϵ

. Furthermore, using Assump-

tion 6 and Cauchy-Schwarz inequality we have −∇yf0(y
∗(t), t)Td ≥ −Ld

ϵ
. To-

gether, we showed that this linear program is feasible and bounded, with −Ld
ϵ
≤

−∇yf0(y
∗(t), t)Td ≤ 0 holds for all t ≥ 0. Its dual problem:

min
λ

∑︂

i∈I(y∗(t))

−λi

s.t. λi ≥ 0, i ∈ I(y∗(t))

∇yf0(y
∗(t), t)+

p
∑︂

i=1

λi∇yfi(y
∗(t), t) = 0

is also feasible and bounded since strong duality holds. That is, the set of feasible λ

vectors is nonempty and bounded

0 ≤
∑︂

i∈I(y∗(t))

λ∗i (t) ≤
Ld

ϵ

for all t ≥ 0, which completes the proof.

Proof of Lemma 13

The proof follows from [32, Lemma 1], where equality constraints are considered.

Define ỹ∗(t) as:

ỹ∗(t), t) :=arg min
y∈Rm

f0(y, t) +

p
∑︂

i=1

I−(fi(y, t)− s(t))

s.t. A(t)y = b(t), (2.72)

By perturbation and sensitivity analysis [73, Sec.5.6.2], we have the following

established when when s(t) ≥ 0,

0 ≤ f0(y
∗(t), t)− f0(ỹ

∗(t), t) ≤
p

∑︂

i=1

λ∗
i (t)s(t).

66



On the other hand, replacing the indicator function I−(u) using logarithmic barrier

function −1/c log(−u), we have [73, Sec.11.2.2]

f0(ŷ
∗(t), t)− f0(ỹ

∗(t), t) ≤ p

c(t)
(2.73)

The result follows from combining the above two inequalities using triangular

inequality.

Proof of Lemma 14

For all t ≥ 0, if we assume that uniform MFCQ holds at y∗(t) (see Assumption 5),

then the matrix A(t) has full row rank and its pseudoinverse is defined as A+(t) =

AT (t)[A(t)AT (t)]−1. [Im −A+(t)A(t)] is the projection of Rm into the subspace of

Rm which is orthogonal to aj(t), j = 1, . . . , q. Therefore, for any d̄(t) ∈ Rm given

by uniform MFCQ, there exist a z(t) ∈ Rm, such that d̄(t) = [Im −A+(t)A(t)]z(t).

Define a point ȳ(s, t) sufficiently close to y∗(t) by:

ȳ(s, t) = y∗(t) + s[Im −A+(t)A(t)]z(t).

Notice that the point ȳ(s, t) defined above is a feasible point of (2.2) for s sufficiently

small since the equality constraint functions are satisfied:

A(t)ȳ(s, t) = A(t)(y∗(t) + s[Im −A+(t)A(t)]z(t))

= b(t) + s[A(t)−A(t)A+(t)A(t)]z(t)

= b(t) + s[A(t)−A(t)]z(t) = b(t).

And for all active inequality constraint functions, that is i ∈ I(y∗(t)), we apply

Taylor’s theorem:

fi(ȳ(s, t), t) = fi(y
∗(t) + sd̄(t), t)

= fi(y
∗(t), t) +∇yfi(y

∗(t), t)T sd̄(t)

+R(y∗(t), sd̄(t))

= s∇yfi(y
∗(t), t)T d̄(t) +R(y∗(t), sd̄(t))
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, where R(y∗(t), sd̄(t)) is the remainder satisfying

R(y∗(t), sd̄(t))

∥sd̄(t)∥ → 0 as sd̄(t) → 0.

From part 1) of uniform MFCQ it follows immediately that for s sufficiently small,

ȳ(s, t) is feasible for (2.2). Thus, for s sufficiently small,

f0(y
∗(t), t) = f0(ȳ(0, t), t) ≤ f0(ȳ(s, t), t)

and

∇yf0(y
∗(t), t)T d̄(t) = ∇yf0(ȳ(0), t)

T d̄(t) ≥ 0 =⇒

−∇yf0(y
∗(t), t)T d̄(t) ≤ 0.

Next, we consider the linear program:

max
d

−∇yf0(y
∗(t), t)Td

s.t. ∇yfi(y
∗(t), t)Td ≤ −1, i ∈ I(y∗(t))

aj(t)
Td = 0, j = 1, . . . q

d unrestricted.

Any optimization variable d satisfying these constraint functions also satisfy the

uniform MFCQ, and the value of the objective function is upper bounded by

−∇yf0(y
∗(t), t)Td ≤ 0 based on previous analysis. Besides, the feasibility of this

linear program is also guaranteed by Assumption 5 (uniform MFCQ), since there

exists ∥d̄(t)∥2 ≤ d for some constant d > 0, and a constant ϵ > 0 such that,

∇yfi(y
∗(t), t)T d̄(t) ≤ −ϵ, i∈ I(ŷ(t)) =⇒

∇yfi(y
∗(t), t)T

d̄(t)

ϵ
≤ −1, i∈ I(ŷ(t)),

which means that a feasible d is given by d̄(t)
ϵ

. Furthermore, using Assump-

tion 6 and Cauchy-Schwarz inequality we have −∇yf0(y
∗(t), t)Td ≥ −Ld

ϵ
. To-

gether, we showed that this linear program is feasible and bounded, with −Ld
ϵ
≤

−∇yf0(y
∗(t), t)Td ≤ 0 holds as t→ ∞.
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Its dual problem:

min
λ,ν

∑︂

i∈I(y∗(t))

−λi

s.t. λi ≥ 0, i ∈ I(y∗(t))

νj unrestricted, j = 1, . . . q,

∇yf0(y
∗(t), t)+

p
∑︂

i=1

λi∇yfi(y
∗(t), t)+A(t)Tν = 0

is also feasible and bounded since strong duality holds. Notice that the set of

optimization variables satisfying the dual problem is K(y∗(t)). That is, the set of

feasible λ vectors is nonempty and bounded

0 ≤
∑︂

i∈I(y∗(t))

λ∗
i (t) ≤

Ld

ϵ

as t → ∞. From part 2) of uniform MFCQ, since A(t)T has linearly independent

columns, and A(t)A(t)T is invertible, we have:

A(t)A(t)Tν∗(t)=−A(t)[∇yf0(y
∗(t), t)

+

p
∑︂

i=1

λ∗
i (t)∇yfi(y

∗(t), t)] (2.74)

For any invertible matrix B, according to [78, Theorem 4.2.2(Rayleigh)] we have:

λmin(B
TB) = min

x ̸=0∈Cn

xTBTBx

xTx
,

by definition which implies

σmin(B)∥x∥2 ≤ ∥Bx∥2.

Therefore, since A(t)A(t)T is invertible, the following inequality holds for the left

side of (2.74):

σmin(A(t)A(t)T )∥ν∗(t)∥2 ≤ ∥A(t)A(t)Tν∗(t)∥2.
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By definition of induced matrix norm and triangular inequality, we have:

∥A(t)[∇yf0(y
∗(t), t)+

p
∑︂

i=1

λ∗
i (t)∇yfi(y

∗(t), t)]∥2

≤∥A(t)∥2(∥∇yf0(y
∗(t), t)∥2 + ∥

p
∑︂

i=1

λ∗
i (t)∇yfi(y

∗(t), t)∥2)

≤σmax(A(t))(L+
Ld

ϵ

p
∑︂

i=1

Li)

Combining the above two inequalities together, we have:

∥ν∗(t)∥2 ≤
σmax(A(t))

σmin(A(t))2
(L+

Ld

ϵ

p
∑︂

i=1

Li)

≤ τmax

τ 2min

(L+
Ld

ϵ

p
∑︂

i=1

Li).

It indicates that the set of feasible ν∗(t) vectors is also nonempty and bounded as

t→ ∞, which completes the proof.

Proof of Theorem 15

The structure of proof is similar to the proof of Theorem 7. According to Lemma

4, the trajectory y(t) of system (2.65) satisfy the optimization dynamics as in (2.64),

with H being the designed Hurwitz matrix. Similarly, the solution to this ODE

satisfies the following inequality:

k−1
∑︂

j=0

∥∇(j)
y Φ̂(y(t), t)∥22 ≤ c2e−2αt

k−1
∑︂

j=0

∥∇(j)
y Φ̂(y(0), 0)∥22

for some constant c > 0, −α := maxλ∈spec(H) ℜ[λ]+ ϵH for some ϵH > 0 small enough.

Next, we use the mean-value theorem to expand ∇yΦ̂(y, t), where η(t) is a

convex combination of y(t) and ŷ∗(t):

y(t)− ŷ∗(t) = ∇−1
yyΦ̂(η(t), t)∇yΦ̂(y(t), t). (2.75)

Notice that the Hessian ∇yyΦ̂(y, t) is given by:

1

c(t)

p
∑︂

i=1

∇yfi(y(t), t)∇yfi(y(t), t)
T

[s(t)− fi(y(t), t)]2
+

∇yyfi(y(t), t)

s(t)− fi(y(t), t)

+∇yyf0(y(t), t)
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It follows from Assumption 4 and [78, Corollary 4.3.12], that ∥∇−1
yyΦ̂(y, t)∥2 ≤

∥∇−1
yyf0(y, t)∥2 ≤ m−1

f . Taking the norm on both sides of equation (2.75) we have:

∥y(t)− ŷ∗(t)∥2 ≤ Ce−αt,

0 ≤ C =
(︂

c2

m2
f

∑︂k−1

j=0
∥∇(j)

y Φ̂(y(0), 0)∥22)
)︂

1

2

<∞.

On the other hand, convexity of f0(y, t) implies that for each t ≥ 0

f0(y(t), t)−f0(ŷ∗(t), t)≤∇yf0(y(t), t)
T (y(t)−ŷ∗(t))

By applying Cauchy-Swhartz inequality on the right-hand side and using Assump-

tion 6 we obtain:

|f0(y(t), t)− f0(ŷ
∗(t), t)| ≤ LCe−αt, (2.76)

Lastly, a direct application of Lemma 13 and Lemma 14 yields:

|f0(ŷ∗(t), t)− f0(y
∗(t), t)| ≤ pc0e

−αct +
Ld

ϵ
s0e

−αst (2.77)

It follows from (2.76) ,(2.77) , and the triangular inequality that:

|f0(y(t), t)− f0(y
∗(t), t)|≤LCe−αt+pc0e−αct+

Ld

ϵ
s0e

−αst

which completes the proof.

2.3 Conclusion

In this chapter, we study the model-based approach for online decision-making

of nonlinear dynamical systems. Particularly, we first develop an optimization-

based framework for joint real-time trajectory planning and feedback control of

feedback-linearizable systems. We implicitly define a target trajectory as the optimal

solution of a time-varying optimization problem, which is strongly convex and

smooth. For systems that are (dynamic) full-state linearizable, the proposed control
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law transforms the nonlinear system into an optimization algorithm of sufficiently

high order. Under reasonable assumptions, our method globally asymptotically

converges to the time-varying optimal solution of the original problem.

We further extend the result by considering a more general set of nonlinear

dynamical systems, i.e., differentially flat systems, and considering adding time-

varying equality and inequality constraints to the time-varying optimization frame-

work. We investigate the problem of steering in real time a differentially flat system

to the minimizer of a time-varying constrained optimization problem. Under

reasonable assumptions, we show optimization dynamics for (un)constrained time-

varying optimization problems globally asymptotically converge to the optimal

solution. Lastly, the effectiveness of our method is illustrated in two numerical

examples: a multi-robot navigation problem and an obstacle avoidance problem.
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Chapter 3

Constrained Reinforcement Learning
via Stochastic Dissipative Gradient
Descent Ascent

The chapter is structured as follows: In Section 3.1, we formally present the Con-

strained Reinforcement Learning problem, along with two major methodologies

for finding the optimal policy and their limitations. We then delve into our key

insight from saddle flow dynamics, explaining the shortcomings of vanilla gra-

dient descent ascent in convergence. Moving on to Section 3.2, we introduce the

Dissipative Gradient Descent Ascent (DGDA) algorithm, designed to solve the

min-max optimization problem with last iterate convergence guarantees. Moreover,

we provide linear convergence rate estimates for DGDA in both the bilinear setting

and strongly convex-strongly concave settings. To assess DGDA’s performance,

we compare it with other methods, such as Extra-Gradient (EG) and Optimistic

Gradient (OG) methods, which also exhibit linear convergence in similar settings. In

Section 3.3, we apply the stochastic DGDA algorithm to address the C-RL problem

in occupancy measure space, showcasing global asymptotic convergence in terms

of occupancy measure and the recovery of the optimal policy. Section 3.4 illustrates

the effectiveness of our approach through a case study involving a discrete-time

single-server queue with a limited buffer size problem. Finally, we conclude the
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chapter with remarks in Section 3.6.

Notation

Let K ⊂ Rn be a closed convex set. Given a point y ∈ Rn, ΨK[y] = argminz∈K ∥z− y∥

denote the point-wise projection (nearest point) in K to y. Given x ∈ K and

v ∈ Rn, define the vector field projection of v at x with respect to K as: ΠK[x, v] =

limδ→0+
ΨK[x+δv]−x

δ

3.1 Problem Formulation

In the constrained reinforcement learning problem (C-RL), S denotes the finite state

space, A denotes the finite action space, and P : S ×A → △|S| gives the transition

dynamics of the CMDP, where P (·|s, a) denotes the probability distribution of next

state conditioned on the current state s and action a. r : S ×A → [0, 1] is the reward

function, gi : S ×A → [−1, 1] denotes the ith constraint cost function. The scalar γ

denotes the discount factor, and q denotes the initial distribution of the states. A

stationary policy is a map π : S → △|A| from states to a distribution in the action

space. The value functions for both reward and constraints’ cost following policy π

are given by:

V π
r (q) = (1− γ)Eπ[

∑︁∞
t=0 γ

tr(st, at) | s0 ∼ q],

V π
gi(q) = (1− γ)Eπ[

∑︁∞
t=0 γ

tgi(st, at) | s0 ∼ q].

The standard C-RL problem aims to maximize the total reward function while

satisfying requirements in secondary cumulative reward constraints:

max
π

V π
r (q)

s.t. V π
gi(q) ≥ hi, ∀i ∈ [I]. (3.1)
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There are two major methodologies for finding the optimal policy of a C-RL

problem: The first approach is to apply Lagrangian duality to parametrize and

solve the C-RL problem (3.1) in the policy space (π), which is equivalent to solving

a min-max optimization problem [42, 43, 44, 45, 46]. These approaches solve the

min-max optimization problem using a sampling-based primal-dual algorithm

or stochastic gradient descent-ascent (SGDA) algorithms, where the Lagrangian

function is augmented with a possible regularization term, e.g., KL divergence. The

primal variables and dual variables are updated iteratively, either using gradient

information or solving a sub-optimization problem. However, the Lagrangian

function

L(π, µ) = V π
r +

I
∑︂

i=1

µi(V
π
gi − hi) (3.2)

is nonlinear (nonconvex) in π and classical sampling-based primal-dual algorithms

generally require strict convexity to converge. Therefore, proposed algorithms

generally fail to converge to an equilibrium. Among the sampling-based primal-

dual algorithms, several algorithms output a mixing policy of the form

πT =
T−1
∑︂

k=0

ηkπk, (3.3)

which is a weighted average of the history updates [42, 43, 44]. However, the output

policy πk oscillates and does not converge to the optimal policy. Therefore, the

above algorithms only provide average iterate convergence instead of a last-iterate

convergence guarantee, which is critical in online decision-making.

On the other hand, the well-studied constrained Markov Decision Process

(CMDP) framework parametrizes and solves the C-RL in occupancy measure space (λ)

[39]. Given a policy π, occupancy measure is defined as

λπ(s, a) = (1− γ)
∑︁∞

t=0 γ
tP π

q (st = s, at = a), (3.4)

where s0 ∼ q. By definition, the occupancy measure belongs to the probability

simplex λπ ∈ ∆, which can be interpreted as the total expected probability of
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visiting any state-action pair along the trajectory. The C-RL problem in policy space

(3.1) can be equivalently written as a linear programming problem in occupancy

measure space λ:

max
λ∈∆

∑︁

a λ
T
a ra (3.5)

s.t.
∑︁

a λ
T
a g

i
a ≥ hi, i ∈ [I]

∑︁

a∈A(I − γP T
a )λa = (1− γ)q,

where ra = [r(1, a), . . . , r(s, a)]T ∈ R|S| denotes reward function associated with

action a, λa = [λ(1, a), . . . , λ(s, a)]T ∈ R|S| is the ath column of λπ, Pa denotes the

transition matrix associated with action a. Besides, the optimal policy could be

recovered from the optimal occupancy measure by solving the linear programming

problem (3.5):

π∗(a|s) = λ∗(s, a)
∑︁

a′∈A λ
∗(s, a′)

However, this approach requires knowledge of the underlying transition kernel

explicitly i.e., Pa, ra, g
i
a. Also, CMDP-LPs are tabular solution methods that suffer

from the curse of dimensionality, and high-dimensional solution methods are

lacking.

In summary, the CMDP approach directly solves for the optimal occupancy

measure and policy, but it requires explicit knowledge of the transition kernel. On

the other hand, when using sampling-based gradient descent-ascent algorithms

to solve the C-RL problem in policy space, the output often involves a mixture of

historical policies and fails to converge to the optimal policy. These algorithms only

offer average-iterate convergence without last-iterate convergence guarantees. The

main limitation lies in the insufficient convexity of the Lagrangian function for the

C-RL problem, which hinders standard gradient descent-ascent from converging.

Specifically, the Lagrangian function is bilinear in occupancy measure space and
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Figure 3-1. Time series trajectories of gradient descent ascent algorithm for

L(x, y) = xy

nonconvex in policy space. In this paper, we aim to overcome these challenges by

introducing a novel algorithm.

Key insight from saddle flow dynamics

Before introducing our algorithm, we would like to illustrate our key insight from

saddle flow dynamics, which explains why the primal-dual algorithm oscillates and

does not converge. For a min-max optimization problem, primal-dual algorithms

require the Lagrangian L(x, y) function to be strictly convex or concave on x or y,

respectively, to converge. Consider the following motivating example with bilinear

Lagrangian function:

min
x

max
y
L(x, y) := xy.

Our goal is to apply different dynamic laws that seek to converge to some saddle

point (x∗, y∗) = (0, 0) of L(x, y), which satisfies L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗). In
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Figure 3-2. Phase portrait of gradient descent ascent algorithms for L(x, y) = xy

particular, consider the following classical primal-dual algorithm:

ẋ = −∇xL(x, y) = −y,

ẏ = ∇yL(x, y) = x.

In Figure 3-1 plots the time series trajectory of states x and y, and Figure 3-2plots

the vector field and corresponding phase portrait. We observe that the dynamical

system oscillates and does not converge to the saddle point (0,0).

In [79], the authors introduce a regularization framework for saddle flow dy-

namics that guarantees asymptotic convergence to a saddle point based on mild

assumptions. In this paper, we further extend the above framework to solve the C-

RL problem. Specifically, consider the following constrained min-max optimization

problem,

min
x∈K

max
y∈V

L(x, y)

where K ⊂ Rn,V ⊂ Rm are bounded closed convex sets. We propose a regularized
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surrogate for L(x, y) via the following augmentation:

L(x, y, z, w) :=
1

2ρ
∥x− z∥2 + L(x, y)− 1

2ρ
∥y − w∥2

The following projected and regularized saddle flow dynamics aim to find the

saddle points of the regularized Lagrangian, which contains the saddle point of the

original Lagrangian. The regularized saddle flow dynamics still preserve the same

distribution structure, which can be implemented in a fully distributed fashion, and

requires the same gradient information as the classical primal-dual algorithm:

ẋ = ΠK

[︂

x,−∇xL(x, y)−
1

ρ
(x− z)

]︂

, ż = ΠK

[︂

z,
1

ρ
(x− z)

]︂

ẏ = ΠV

[︂

y,−∇yL(x, y)−
1

ρ
(y − w)

]︂

, ẇ = ΠV

[︂

w,
1

ρ
(y − w)

]︂

(3.6)

Theorem 17. Assume that L(·, y) is convex for ∀y and L(x, ·) is concave for ∀x, contin-

uously differentiable, and there exists at least one saddle point (x∗ ∈ K, y∗ ∈ V), where

K ⊂ Rn,V ⊂ Rm are closed and convex. Then the projected saddle flow dynamics (3.6)

asymptotically converge to some saddle point (x∗, y∗) of L(x, y), while x(t) ∈ K, y(t) ∈

V , ∀t with initialization x(0) ∈ K, y(0) ∈ V .

Proof: See Section 3.5.

The above theorem shows the projected and regularized saddle flow dynamics

will asymptotically converge to the saddle point of the Lagrangian function, which

requires mild assumptions on convexity. Additionally, the following result sum-

marizes conditions under which the solutions of the projected system exist and are

unique.

Proposition 18. [80, Prop 2.2] Let f : Rn → Rn be Lipschitz on a closed convex polyhedron

K ∈ Rn. Then, for any x0 ∈ K, there exists a unique solution t → x(t) of the projected

system ẋ = ΠK

[︂

x, f(x)
]︂

with x(0) = x0.

We now apply the regularized saddle flow dynamics to the bilinear Lagrangian
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Figure 3-3. Regularized saddle flow dynamics for L(x, y) = xy

function L(x, y) = xy.

ẋ = −y − 1

ρ
(x− z), ż =

1

ρ
(x− z),

ẏ = x− 1

ρ
(y − w), ẇ =

1

ρ
(y − w).

According to Figure 3-3, the trajectories of the above saddle flow dynamics asymp-

totically converge to the saddle point (0, 0, 0, 0), even when the original Lagrangian

function is bilinear.

3.2 Dissipative gradient descent asecnt

In recent years, Min-max optimization and variational inequality problems (VIP)

have received significant attention, particularly in domains such as Generative

Adversarial Networks (GANs) [81, 57, 64], Reinforcement Learning (RL) [82], and

Constrained Reinforcement Learning (C-RL) [53, 49]. However, a major challenge

faced by these approaches is the instability of the training process. Specifically, when
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solving the min-max optimization problem using variants of the Stochastic Gradient

Descent Ascent (SGDA) algorithm simultaneously, it often leads to oscillatory

behavior rather than converging to an equilibrium.

A common approach to address this instability is taking averaged iterates, which

combines previous outputs with certain weights. However, few theoretical guar-

antees exist for the averaged iterates, especially when the objective function is not

convex-concave [47, 48]. Moreover, the practice of averaging the weights of neural

networks proves impractical, particularly in training GANs [64]. In the context

of Reinforcement Learning (RL) and Constrained Reinforcement Learning (C-RL),

relying on averaging results becomes undesirable because the mixture of past poli-

cies obscures oscillating or overshooting objective/constraint functions, hindering

the attainment of an optimal policy iterate [49]. As a result, it becomes crucial

to explore training algorithms that can ensure the final iteration of the training

process approaches the equilibrium point directly, a concept known as last-iterate

convergence, rather than merely relying on an average outcome. Therefore, the

Extra-gradient (EG) method [50], the Optimistic gradient (OG) method [51], and

their variants have garnered significant attention in recent literature due to their su-

perior empirical performance and last-iterate convergence guarantees, particularly

in the convex-concave setting.

In this section, we introduce a novel first-order algorithm called the Dissipative

Gradient Descent-Ascent (DGDA) algorithm, which demonstrates linear last-iterate

convergence for strongly monotone (and bilinear) and Lipschitz variational inequal-

ity problems (VIPs) without any additional assumptions. Notably, we establish that

for bilinear problems, the proposed algorithm achieves a superior linear conver-

gence rate in terms of the constant (see Table 3-I) compared to the standard rates of

EG and OGDA for bilinear problems. And for strongly convex-strongly concave

games, the proposed algorithm achieves a convergence rate when the condition
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[56] [57] [58] [59] This Work

EG (Bil) 1
2

γ2

κ/σ2
min

(A)+γ2κ2
- κ−1

20
κ−1

64
-

EG (Str) - - κ−1

4
κ−1

4
+ γ2

64L2 -

OG (Bil) κ−1

16
- κ−1

800
κ−1

128
-

OG (Str) - κ−1

4
κ−1

4
κ−1

4
+ γ2

128L2 -

DG (Bil) - - - - κ−1

4

DG (Str) - - - - κ−1 −O(κ−2)

Table 3-I. Comparision of global convergence rates results for bilinear and strongly-

convex-strongly-concave objective functions, including our proposed Dissipative

gradient descent (DGDA), Extra-gradient (EG), and Optimistic gradient descent

ascent (OGDA) methods. If a result shows that the iterates converge as O((1− r)t),
the quantity r is reported (the larger the better).

number κ ≥ 2. To validate the effectiveness of DGDA in solving bilinear and

strongly convex-strongly concave problems, we present two numerical examples.

In both cases, DGDA consistently outperforms EG and OG methods, showcasing

its superior performance.

Preliminaries

In this paper, we study the problem of finding saddle points in the min-max opti-

mization problem:

min
x∈Rn

max
y∈Rm

f(x, y), (3.8)

where the function f : Rn × Rm → R is a convex-concave function. Precisely, f(·, y)

is convex for all y ∈ Rm and f(x, ·) is concave for all x ∈ Rn. Our goal is to study

different optimization algorithms that seek to converge to some saddle point (x∗, y∗)

of Problem 3.8.

Definition 2 (Saddle Point). A point (x∗, y∗) ∈ Rn × Rm is a saddle point of convex-
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concave function (3.8) that satisfies

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗) (3.9)

for all x ∈ Rn, y ∈ Rm.

We present some properties and notations used in our results.

Definition 3 (L-Lipschitz). A function F : Rn → R is L-Lipschitz if it has L-Lipschitz

continuous gradients on Rn, i.e., ∀w,w′, we have ∥F (w)−F (w′)∥ ≤ L∥w−w′∥, ∀w,w′ ∈

R.

Definition 4 (Strongly convex). A differentiable function f : Rn → R is said to be

µ-strongly convex if f(w) ≥ f(w′) +∇f(w)T (w − w′) + µ
2
∥w − w′∥2. Further f(w) is

µ-strongly concave if −f(w) is µ-strongly convex. If µ = 0, then we recover the definition

of convexity for a continuous differentiable function.

And throughout this paper, we consider two specific cases of Problem 3.8, which

are stated in the next set of assumptions.

Assumption 7 (Bilinear function). The function f : Rn × Rm → R is a bilinear function

of the form f(x, y) = xTAy, where A ∈ Rm×n is non-singular.

Assumption 8 (Strongly convex-strongly concave function). The function f : Rn ×

Rm → R is continuously differentiable, µ strongly convex in x, and µ strongly concave in

y. Further, f is L-Lipschitz. The unique saddle point of f(x, y) is denoted by (x∗, y∗).

First-order explicit algorithms

In this section, we introduce several first-order methods for solving the min-max

problem in 3.8. Precisely, we focus on Gradient Descent-Ascent (GDA), Extra-

gradient (EG), and Optimistic Gradient Descent-Ascent (OGDA) methods.
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Gradient descent ascent (GDA):

xk+1 = xk − η∇xf(xk, yk), (3.10)

yk+1 = yk + η∇yf(xk, yk) (3.11)

When the problem is strongly convex-strongly concave, the GDA method pro-

vides linear convergence. However, the GDA method is known not to converge

when the game is bilinear. Therefore, EG and OGDA methods have attracted much

attention in recent literature because of their superior empirical performance in

solving min-max optimization problems such as training GANs and solving C-RL

problems.

Extra-gradient is a classical method introduced in [50], where its linear rate

of convergence for smooth and bilinear functions and strongly convex-strongly

concave functions have been established in many recent literatures (See Table 3-

I). The Extra-gradient method first computes an extrapolated point (xk+1/2, yk+1/2)

by performing a GDA update. Then the gradients evaluated at the extrapolated

point are used to compute the new iterates (xk+1, yk+1) by performing the following

updates.

Extra-gradient (EG):

xk+1/2 = xk − η∇xf(xk, yk),

yk+1/2 = yk + η∇yf(xk, yk),

xk+1 = xk − η∇xf(xk+1/2, yk+1/2),

yk+1 = yk + η∇yf(xk+1/2, yk+1/2).

(3.12)

One issue with the Extra-gradient method is that, as the name suggests, each up-

date requires evaluation of extra gradients at the extrapolated point (xk+1/2, yk+1/2),

which doubles the computational complexity of EG method compared to vanilla

GDA method. On the other hand, the Optimistic gradient descent ascent (OGDA)
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method store and re-use the extrapolated gradient for the extrapolation, which only

requires a single gradient computation per update.

Optimistic gradient descent ascent (OGDA):

xk+1 = xk − 2η∇xf(xk, yk) + η∇xf(xk−1, yk−1),

yk+1 = yk + 2η∇yf(xk, yk)− η∇yf(xk−1, yk−1).
(3.13)

The convergence properties of OGDA were recently investigated in (refer to Ta-

ble 3-I), demonstrating linear convergence rates with smooth and bilinear functions,

as well as strongly convex-strongly concave functions.

The algorithm presented below was independently introduced by Jiawei et al.

in [83]. It shares a similar structure with our own proposed algorithm. However, it

was originally introduced to solve the nonconvex-concave min-max optimization

problem, where the objective function is nonconvex in x and concave of y. They

introduce a "smoothing" technique to the primal updates to fix the oscillation issue.

Preciesly, the introduce an auxiliary sequence {zk} and define a function

K(x, z; y) = f(x, y) +
p

2
∥x− z∥2, (3.14)

where p > 0 is a constant. By alternately performing gradient descent and gradient

ascent on this function and incorporating an averaging step on z, the resulting

algorithm can be described as an asynchronous approach.

Smoothed gradient descent ascent (Smoothed-GDA):

xk+1 = xk − c
(︁

∇xf(xk, yk) + p(xk − zk)
)︁

yk+1 = yk + α∇yf(xk+1, yk)

zk+1 = zk + β(xk+1 − zk)

(3.15)

Bilinear Objective

In this section, we present a novel first-order method for solving the min-max

optimization problem outlined in 3.2. The foundation of this method was initially

85



introduced in [79], where the authors proposed a regularization framework for

continuous saddle flow dynamics, ensuring asymptotic convergence to a saddle

point under mild assumptions. Consider a regularized surrogate for f(x, y) in

Problem 3.8 via the following augmentation:

f(x, y, x̂, ŷ) :=
ρ

2
∥x− x̂∥2 + f(x, y)− ρ

2
∥y − ŷ∥2, (3.16)

wherex̂ ∈ Rn and ŷ ∈ Rm serve as two new sets of virtual variables and ρ > 0 is

a regularization parameter. The following Lemma verifies the fixed positions of

saddle points between f(x, y) and f(x, y, x̂, ŷ) with virtual variables aligned with

original variables.

Lemma 19 (Saddle Point Invariance). [79, Lemma 6] For problem 3.8, if Assumption

7 or Assumption 8 holds, then a point (x∗, y∗) is a saddle point of f(x, y) if and only if

(x∗, y∗, x̂∗, ŷ∗) is a saddle point of f(x, y, x̂, ŷ), with x̂∗ = x∗ and ŷ∗ = y∗.

The dissipative saddle-flow dynamic motivates the following Dissipative gradi-

ent descent ascent algorithm, where the regularized function f(x, y, x̂, ŷ) is convex

in (x, x̂) and concave in (y, ŷ).

Dissipative gradient descent ascent (DGDA):
⎡

⎢

⎢

⎣

xk+1

x̂k+1

yk+1

ŷk+1

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

xk − η∇xf(xk, yk)− ρ(xk − x̂k)
x̂k − ρ(x̂k − xk)

yk + η∇yf(xk, yk)− ρ(yk − ŷk)
ŷk − ρ(ŷk − yk)

⎤

⎥

⎥

⎦

(3.17)

Significantly, the proposed DGDA algorithm has twice as many state variables

as the vanilla GDA algorithm and EG methods. However, it stands out as it only ne-

cessitates a single gradient computation per update. Additionally, DGDA does not

require storing and re-using the extrapolated gradient, which is a characteristic of

the OGDA method. Another advantage of DGDA is that it remains a synchronized

algorithm, preserving the same distributed structure that the vanilla GDA algorithm

may have. As a result, it can be implemented in a fully distributed manner. In the
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following theorem, we elucidate the convergence rate of the DGDA method for the

bilinear min-max optimization problem.

Theorem 20. (Last-iterate convergence of DGDA, bilinear case) If Assumption 7 holds,

then the updates 3.17 of DGDA with ρ = 1/2 and η = 1/δmax(A) provide linearly

converging iterates:

rk ≤
(︃

1− 1

4

σ2
min(A)

σ2
max(A)

)︃k

r0, (3.18)

where rk = ∥xk − x∗∥2 + ∥yk − y∗∥2 + ∥x̂k − x̂∗∥2 + ∥ŷk − ŷ∗∥2.

Proof: See Appendix 3.5.

The outcome detailed in Theorem 20 underscores DGDA’s linear convergence

within a bilinear scenario. The total iteration count required to attain an ϵ-accurate

solution is bound by O(κ log(1/ϵ)), where κ := σ2
max(A)/σ

2
min(A) signifies the bilinear

problem’s condition number. It’s worth noting that this convergence finding aligns

with the results in Table 3-I. Notably, our proposed DGDA algorithm holds the

potential for theoretically swifter convergence, courtesy of a heightened constant

value of 1/4.

Strongly Monotone Objective

In the subsequent theorem, we provide an estimation of the convergence rate for

the DGDA algorithm when applied to address the broader context of a strongly

convex-strongly concave min-max optimization problem as depicted in equation

3.8.

Theorem 21. (Last-iterate convergence of DGDA, strongly convex-strongly concave case)

If Assumption 8 holds, then the updates 3.17 with ρ = 1/2 and η = 1/(L+ µ) of DGDA

provide linearly converging iterates:

rk ≤
(︃

1− κ−1 +O(κ−2)

)︃k

r0 (3.19)
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where rk = ∥xk − x∗∥2 + ∥yk − y∗∥2 + ∥x̂k − x̂∗∥2 + ∥ŷk − ŷ∗∥2 and κ := L/µ ∈ (1,∞)

denotes the condition number of the problem.

Proof: See Appendix 3.5.

The upcoming Lemma provides a straightforward contrast between the esti-

mated linear convergence rate of DGDA as given by equation (3.19), and estab-

lished convergence rates for the EG and OGDA methods in the context of a strongly

convex-strongly concave problem. Our demonstration reveals that our proposed

method exhibits a theoretically expedited convergence outcome, particularly when

κ ≥ 2.

Corollary 22 (Strongly convex-strongly concave, comparison with known rates).

If Assumption 8 holds and suppose that L ≥ 2m, i.e., κ ≥ 2 , the linear convergence rate

estimate of DGDA (3.19) is smaller (better) than the standard one 1 − µ/4L of EG and

OGDA (Theorem 6&7 [59] and Theorem 4&7 [58]).

Again, the result in Theorem 21 demonstrates the linear convergence of DGDA

when solving a general strongly convex-strongly concave min-max optimization

problem. Accordingly, if we want to achieve an ϵ-accurate solution, we need to run

at most O(κ log(1/ϵ)) iterations.

Numerical Examples for DGDA

The purpose of this numerical experiment is to support our theoretical results, which

form the paper’s main contributions. In this section, we compare the performance of

the proposed Dissipative gradient descent (DGDA) method with the Extra-gradient

(EG), Gradient descent ascent method (GDA), and Optimistic gradient descent

ascent (OGDA) methods.
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Figure 3-4. Convergence of DGDA, EG, and OGDA in terms of the number of

gradient evaluations for the bilinear problem in 3.20. All algorithms converge linearly,

and the DGDA method has the best performance.

Bilinear problem

We first consider the following bilinear min-max optimization problem:

min
x∈Rn

max
y∈Rm

xTAy (3.20)

where A ∈ Rm×n is full-rank. The simulation results are illustrated in Figure 3-

4 and Figure 3-5. In this experiment, we set the dimension of the problem to

m = n = 10 and the iterates are initialized at x0, yo, which are randomly drawn from

the standard uniform distribution on the open interval (0, 1). We plot the errors

(distance to saddle points) of DGDA, EG, and OGDA versus the number of gradient

evaluations for this problem in Figure 3-4. The solid line and grey-shaded error

bars represent the average trajectories and standard deviations of 20 trials, where

in each trial the randomly generated matrix A has fixed condition number, i.e.,

κ = σ2
max(A)/σ

2
min(A) = 4. The key motivation is that all three algorithms commit a
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Figure 3-5. Convergence of DGDA, EG, and OGDA in terms of the number of

gradient evaluations for the bilinear problem in 3.20. All algorithms converge linearly,

and the DGDA method has the best performance.

linear convergence rate as a function of κ−1, and by fixing the condition number we

provide an explicit comparison of their convergent speed. We pick the step size for

different methods according to theoretical findings. That is, we select ρ = 1/2 and

η = 1/δmax(A) for DGDA (Theorem 20), η = 1/4L = 1/4δmax(A) for EG and OGDA

(Theorem 6&7 [59] and Theorem 4&7 [58]). According to the plots, all algorithms

converge linearly, and the DGDA method has the best performance.

In Figure 3-5, we plot the sample trajectories of DGDA, EG, and OGDA on a

2d bilinear game, i.e., m = n = 1. We can observe that all the three considered

algorithms converge linearly to the saddle point (x∗, y∗) = (0,0), and our proposed

algorithm (DGDA) exhibits a faster linear convergence rate.
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Figure 3-6. Convergence of DGDA, EG, and OGDA in terms of the number of

gradient evaluations for the strongly convex-strongly concave problem in 3.21. All

algorithms converge linearly, and the DGDA method has the best performance.

Strongly convex-strongly concave problem

In the second numerical example, we focus on a strongly convex-strongly concave

quadratic problem of the following form:

min
x∈Rn

max
y∈Rm

1

2
xTAx− 1

2
yTBy + xTCy, (3.21)

where the matrices satisfy µAI ⪯ A ⪯ LAI , µBI ⪯ B ⪯ LBI , µ2
cI ⪯ CTC ⪯ LCI and

that problem 3.21 satisfy Assumption 8. In this experiment, we set the dimension of

the problem to n = 50,m = 10, and the iterates are initialized at x0, yo, which are

randomly drawn from the standard uniform distribution on the open interval (0, 1).

We plot the errors (distance to saddle points) of DGDA, EG, and OGDA versus the

number of gradient evaluations for this problem in Figure 3-6. Again, the solid

line and grey-shaded error bars represent the average trajectories and standard
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deviations of 20 trials, where in each trial the randomly generated matrix

[︃

A C
−CT B

]︃

(3.22)

has a fixed condition number, i.e., κ = L/µ = 25. Similarly as in the bilinear problem

3.2, we pick the step size for the DGDA method according to our theoretical finding

in Theorem 21. The step sizes for EG and OGDA methods are selected as η = 1/4L

(Theorem 6&7 [59] and Theorem 4&7 [58]). According to the plots, all algorithms

converge linearly, and the DGDA method has the best performance.

3.3 Stochastic approximation for constrained reinforce-

ment learning

A direct application of the above projected and regularized saddle flow dynamic

and the discretized DGDA method (3.17) is to solve the C-RL problem in occupancy

measure space (3.5), where the Lagrangian function is also bilinear. Specifically, the

Lagrangian function for (3.5) in occupancy measure space is:

L(λ, µ, v) =
∑︂

a

λTa ra +
∑︂

i

µi(
∑︂

a

λTa g
i
a − hi) + (1− γ)⟨q, v⟩ −

∑︂

a∈A

λTa (I − γPa)v,

(3.23)

where µi ≥ 0 is the Lagrange multiplier associated with the ith inequality constraint

and v is the Lagrange multiplier associated with the equality constraint. Therefore,

motivated by the projected and regularized saddle flow dynamics framework, we

propose a regularized surrogate for (3.23) via the following augmentation:

L(v, v̂, µ, µ̂, λ, λ̂) :=
1

2ρ
∥v − v̂∥2 + 1

2ρ
∥µ− µ̂∥2 + L(v, µ, λ)− 1

2ρ
∥λ− λ̂∥2 (3.24)

Slater’s condition for C-RL and the following Lemma establishes the bounded-

ness of dual decision variables, which naturally provides a closed convex set for

projection.
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Assumption 9 (Slater’s condition for C-RL). There exists a strictly feasible occupancy

measure λ̃ ∈ ∆ of problem (3.5), i.e., there exist some ψ > 0 such that

∑︂

a

λ̃
T

a g
i
a ≥ hi + ψ, i ∈ [I]

∑︂

a∈A

(I − γP T
a )λ̃a = (1− γ)q,

Lemma 23. [43, Lem.1][Bounded dual variable] Under the assumption 9, the optimal dual

variables µ∗, v∗ are bounded. Formally, it holds that ∥µ∗∥1 ≤ 2
ψ

and ∥v∗∥∞ ≤ 1
1−γ

+ 2
(1−γ)ψ

Therefore, we propose the following projected saddle flow dynamics to find the

saddle points of (3.24), where U := {µ|µ ∈ RI≥0, ∥µ∥1 ≤ 2
ψ
},V := {v|v ∈ Rs, ∥v∗∥∞ ≤

1
1−γ

+ 2
(1−γ)ψ

} are both closed convex polyhedrons.

v̇ = ΠV

[︂

v,
∑︂

a∈A

(I − γP T
a )λa − (1− γ)q − 1

ρ
(v − v̂)

]︂

,

v̇̂ = ΠV

[︂

v̂,
1

ρ
(v − v̂)

]︂

,

µ̇i = ΠU

[︂

µi, h
i −

∑︂

a

λTa g
i
a −

1

ρ
(µi − µ̂i)

]︂

,

µ̇̂i = ΠU

[︂

µ̂,
1

ρ
(µ− µ̂)

]︂

,

λ̇a = Π∆

[︂

λ, ra − (I − γPa)v +
∑︂

i

µig
i
a −

1

ρ
(λa − λ̂a)

]︂

,

λ̂
̇
a = Π∆

[︂

λ̂a,
1

ρ
(λ− λ̂)

]︂

, (3.25)

The following theorem is a direct application of Theorem 17 and Proposition 18,

which guarantees (3.25) asymptotically converge to the unique (optimal) saddle

point of the C-RL problem (3.5). Then we could recover the optimal policy from the

optimal occupancy measure λ∗.

Theorem 24. Let Assumption 9 hold. Then the projected saddle flow dynamics (3.25)

asymptotically converge to some saddle point (λ∗, µ∗, v∗) of L(λ, µ, v), while satisfying

λ(t) ∈ ∆, µ(t) ∈ U , ∀t with proper initialization.
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In the subsequent part, our goal is to expand the proposed continuous-time

saddle flow algorithm (3.25) to a model-free setting. To achieve this, we introduce

the stochastic-DGDA algorithm that operates without requiring knowledge of the

transition kernel. We establish that the S-DGDA algorithm serves as a stochastic

approximation of the continuous-time saddle flow dynamics (3.25), leading to

almost sure convergence (with probability 1) to the unique saddle point of the C-RL

problem.

In many optimization problems, the goal is to find some recursive numerical

procedure that sequentially approximates a value of the decision variable x, which

minimizes the objective function, e.g., ẋ = h(x) or xn+1 = xn + αnh(xn). Stochastic

approximations attempt to solve the problem when one cannot actually observe

h(x), but rather h(x) plus some error or noise. Consider the following projection

algorithm:

xn+1 = ΨG

[︂

xn + αn
(︂

h(xn) + ξn
)︂]︂

, (3.26)

where G := {x : qi(x) ≤ 0, i ∈ [s]} denotes the constraints and {ξn} denotes a

sequence of random variables. The goal is to generate a sequence {xn} estimate of

the optimal value of x when the actual observation has random noise h(xn) + ξn. In

general, the projection ΨG[x] is easy to compute when the constraints are linear; i.e.,

when G is a polyhedron. We introduce the following list of standard assumptions

for stochastic approximation

Assumption 10 (Stochastic Approximation).

1.1 h(·) is a continuous function.

1.2 {αn} is a sequence of positive real numbers such that αn > 0,
∑︁

n α
n = ∞,

∑︁

n(α
n)2 <

∞,
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1.3 G is the closure of its interior and is bounded. The qi(·), i ∈ [s] are continuously

differentiable.

1.4 There is a T > 0 such that for each ϵ > 0

lim
n
P{sup

j≥n
max
t≤T

|
m(jT+t)−1

∑︂

i=m(jT )

αiξi| ≥ ϵ} = 0,

where tn :=
∑︁n−1

i=0 α
i and m(t) := maxn{tn ≤ t} for t ≥ 0.

Under those standard assumptions for stochastic approximations, the sequence

{xn} generated by the projection algorithm (3.26) will converge almost surely to a

stable solution to the projected system.

Theorem 25. [84, Theorem 5.3.1] Assume Assumption 10 hold. Consider the following

ODE:

ẋ = ΠG

[︂

x, h(x)
]︂

. (3.27)

Let x∗ denotes an asymptotically stable point of (3.27) with domain of attraction DA(x∗)

and xn generated by (3.26). If A ∈ DA(x∗) is compact and xn ∈ A infinitely often, then xn

converges to x∗ almost surely as n→ ∞.

Consider the following randomized primal-dual approach proposed in [43, 85],

where we assume the presence of a generative model. For a given state action

pair (s, a), the generative model provides the next state s′ and the reward functions

r(s, a), gi(s, a) to train the policy. Consider the following stochastic approximation

for the Lagrangian function (3.23) for a distribution ξ:

Lξ(λ, µ, v) = (1− γ)v(s0)−
∑︂

i∈[I]

µih
i+ (3.28)

1ξ(s,a)>0

λ(s, a)
[︂

r(s, a)− v(s) + γv(s′) +
∑︁

i∈[I] µig
i(s, a)

]︂

ξ(s, a)
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where s0 ∼ q, (s, a) ∼ ξ, and the next state s′ ∼ P (·|s, a). The stochastic approxima-

tion Lξ(λ, µ, v) (3.28) is an unbiased estimator for the Lagrangian function (3.23), i.e.,

Eξ,P (·|s,a),q

[︂

Lξ(λ, µ, v)
]︂

= L(λ, µ, v). Using the proposed stochastic approximation of

the Lagrangian function, consider the following projection algorithm for solving

the C-RL problem in a model-free setting:

vn+1 = ΨV

[︂

vn + αn
(︂

1ξ(s,a)>0
λ(s, a)[e(s)− γe(s′)]

ξ(s, a)
(1− γ)e(s0)−

1

ρ
(vn − v̂n)

)︂]︂

,

v̂n+1 = ΨV

[︂

v̂n + αn
1

ρ
(vn − v̂n)

]︂

,

µn+1
i = ΨU

[︂

µni + αn
(︂

hi − 1ξ(s,a)>0
λ(s, a)gi(s, a)

ξ(s, a)
− 1

ρ
(µni − µ̂ni )

)︂]︂

,

µ̂n+1
i = ΨU

[︂

µ̂ni + αn
1

ρ
(µni − µ̂ni )

]︂

,

λn+1
a = Ψ∆

[︂

λna + αn
(︂

− 1

ρ
(λna − λ̂

n

a) + 1ξ(s,a)>0

r(s, a)− v(s) + γv(s′) +
∑︁

i µ
n
i g

i(s, a)

ξ(s, a)

)︂]︂

,

λ̂
n+1

a = Ψ∆

[︂

λ̂
n

a +
1

ρ
(λna − λ̂

n

a)
]︂

,

(3.29)

The following Theorem is a direct application of Theorem 25 and 24, which

shows the sequence from (3.29) almost surely converges to the optimal solution to

the C-RL problem.

Theorem 26. Assume 9 and 10 hold, as n→ ∞, the sequence {λn, vn, µn} generated by

(3.29) almost surely (w.p.1) converge to the optimal solution of the C-RL problem (3.5).

3.4 Numerical experiments

In this section, we illustrate the effectiveness of our proposed approach using a

classical CMDP problem: flow and service control problem in a single-server queue

[39]. Specifically, we consider a discrete-time single-server queue with a buffer

of finite size L. We assume that, at most, one customer may join the system in a

time slot. The state s corresponds to the number of customers in the queue at the

beginning of a time slot (|S| = L+ 1). The service action a is selected from a finite
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subset A, and the flow action b is selected from a finite subset B. Specifically, for

two real numbers satisfying 0 < amin ≤ amax < 1, if the queue is non-empty and

if the action of the server is a ∈ A, where A is a finite subset of [amin, amax], then

the service of a customer is successfully completed with probability a. Likewise,

for two real numbers satisfying 0 ≤ bmin ≤ bmax < 1, if the queue is not full and if

the action of the server is b ∈ B(s), where B(s) is a finite subset of [bmin, bmax], then

the probability of having one arrival during this time slot is equal to b. We assume

that 0 ∈ B(x) for all x; moreover, when the buffer is full, no arrivals are possible

(B(L) = 0). The transition law P (·|s, a) is therefore given by:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a(1− b) if 1 ≤ x ≤ L, y = x− 1;

ab+ (1− a)(1− b) if 1 ≤ x ≤ L, y = x;

(1− a)b if 0 ≤ x < L, y = x+ 1;

1− (1− a)b if y = x = 0;

The reward function r(s, a, b) is a real-valued decreasing function that depends only

on s, which can be interpreted as a holding cost. The reward function g1(s, a, b) cor-

responding to the service rate is assumed to be a decreasing function that depends

only on a. It can be interpreted as a higher service success rate having a higher cost.

The reward function g2(s, a, b) corresponding to the flow rate b is assumed to be an

increasing function that depends only on b. It can be interpreted as a higher flow

rate is more desired.

Suppose we want to solve the optimal policy for C-RL problem (3.5), while

satisfying constraints for service and flow. In the following numerical example,

we compare the result generated by (3.29) and the ground truth result by directly

solving the linear programming 3.5, where we use the transition law stated above.

Specifically, we choose L = 4, A = [0.2, 0.3, 0.5, 0.6, 0.8], B = [0.1, 0.3, 0.5, 0.9, 0].

The initial distribution q is set as uniform distribution. The reward functions are

r(s) = −s+ 5, g1(a) = −10a+ 3, g2(b) = 10b− 3.

We compare the cumulative reward function, constraint functions, and output
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Figure 3-7. objective function

space4ex
Figure 3-8. constraint functions

space4ex

Figure 3-9. occupancy measure λ
space4ex

Figure 3-10. dual variable v

space4ex

decision variables λ, µ, v with the ground truth result by directly solving the linear

programming problem (3.5). Results show that the decision variables converge to

the optimal solution while satisfying the constraints for flow and service.

3.5 Appendix

Proof of Theorem 17

We will use the following technical Lemma:

Lemma 27. For any closed convex set K ⊂ Rn and a, b ∈ K, v ∈ Rn,the inner product

⟨b− a, v − ΠK[a, v]⟩ ≤ 0
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Proof: According to [86, Sec.0.6, Cor.1], we have the following variational inequality holds:

⟨b−ΨK[c], c−ΨK[c]⟩ ≤ 0, ∀b ∈ K, ∀c ∈ R
n.

The rest follows from [87, Lem.4]

Using this lemma, the proof of Theorem 17 essentially follows from [79, Thm.9].

Proof of Theorem 20

To begin with, let’s assume A ∈ Rm×m is a square matrix, which we will relax to a

general non-square matrix shortly. Applying the updates 3.17 to f(x, y) = xTAy

and denote z = [x, y]T , ẑ = [x̂, ŷ]T yields:

[︃

zk+1

ẑk+1

]︃

=

[︃

zk − ηMzk − ρ(zk − ẑk)
ẑk − ρ(ẑk − zk)

]︃

=

[︃

(1− ρ)I − ηM ρI
ρI (1− ρ)I

]︃ [︃

zk
ẑk

]︃

, (3.30)

where

M =

[︃

0 A
−AT 0

]︃

According to [59, Lemma 7]

Sp(M) = {±iδ|δ2 ∈ Sp(AAT )}

Since M is a normal matrix and diagonalizable, this simplifies the spectral analysis

∇Hη,ρ :=

[︃

(1− ρ)I − ηM ρI
ρI (1− ρ)I

]︃

=

[︃

U−1 0
0 U−1

]︃ [︃

(1− ρ)I − ηΛ ρI
ρI (1− ρ)I

]︃ [︃

U 0
0 U

]︃

where Λ = diag(λ1, ..., λm) and λj = ±iδj ∈ Sp(M), j = {1, ...,m}. In order to show

linear convergence, we want to show that |µj|2 < 1, ∀j ∈ [m], where µj are the

eigenvalues of ∇Hη,ρ,

µj =
1

2
(2− 2ρ− ηλj ±

√︂

η2λ2j + 4ρ2)

=1− ρ± i(
1

2
ηδj)±

1

2

√︂

4ρ2 − η2δ2j (3.31)
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For complex number |c|2 = cc̄, therefore the magnitude of eigenvalues |µj|2 are

given by,

|µj|2 =
(︃

1− ρ+ i
1

2
ηδj ±

1

2

√︂

4ρ2 − η2δ2j

)︃(︃

1− ρ− i
1

2
ηδj ±

1

2

√︂

4ρ2 − η2δ2j

)︃

=(1− ρ)2 +
1

4
η2δ2j +

1

4
(4ρ2 − η2δ2j )± (1− ρ)ℜ(

√︂

4ρ2 − η2δ2j )

± i

4
ηδj

√︂

4ρ2 − η2δ2j ∓
i

4
ηδj

√︂

4ρ2 − η2δ2j

=

⎧

⎨

⎩

2ρ2 − 2ρ+ 1± (1− ρ)
√︂

4ρ2 − η2δ2j , if 4ρ2 − η2δ2j ≥ 0

2ρ2 − 2ρ+ 1± 1
2
ηδj

√︂

η2δ2j − 4ρ2, if η2δ2j − 4ρ2 ≥ 0
(3.32)

Suppose that we choose η = 2ρ
δmax

and 0 < ρ < 1, this implies η ≤ 2ρ
δj

and therefore

4ρ2 − η2δ2j ≥ 0. From (3.32), in this case we have,

2ρ2 − 2ρ+ 1− (1− ρ)
√︂

4ρ2 − η2δ2j ≤ 2ρ2 − 2ρ+ 1 + (1− ρ)
√︂

4ρ2 − η2δ2j

Substituting η = 2ρ
δmax

yields,

|µj|2 ≤ 2ρ2 − 2ρ+ 1 + (1− ρ)

√︄

4ρ2 − 4ρ2

δ2max

δ2j , ∀j ∈ [m]. (3.33)

Considering the worst-case of |µj|2, and its maximum is reached at δj = δmin,

|µj|2 ≤ 2ρ2 − 2ρ+ 1 + (1− ρ)2ρ

√︄

1− δ2min

δ2max

= ρ2
(︃

2− 2

√︄

1− δ2min

δ2max

)︃

− ρ

(︃

2− 2

√︄

1− δ2min

δ2max

)︃

+ 1

≤ 1− 1

2
(1−

√︄

1− δ2min

δ2max

) =
1

2
+

1

2

√︄

1− δ2min

δ2max

, ∀j ∈ [m]

where the last inequality comes from selecting optimal ρ = 1
2

of a quadratic polyno-

mial of ρ. Using the fact that
√
1− x ≤ 1− x/2, we have

|µj|2 ≤ 1− 1

4

δ2min

δ2max

= 1− 1

4

σ2
min(A)

σ2
max(A)

, ∀j ∈ [m]. (3.34)

Note: We could also choose η = 2ρ
δmin

such that η2δ2j − 4ρ2 ≥ 0. And we could

construct a similar linear convergence rate by repeating the above process. However,

in practice, we found that the step sizes η = 2ρ
δmax

, ρ = 1/2 always perform better in

numerical experiments. Therefore, we choose this pair of step sizes by default.
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Proof of Theorem 21

The proof relies on the application of dissipativity theory to construct Lyapunov

functions and establish linear convergence. For more detailed information, refer to

[88].

According to [88], a linear dynamical system of the form:

ξk+1 = Aξk +Bwk (3.35)

Here, ξ ∈ Rnξ is the state, wk ∈ Rnw is the input, A is the state transition matrix and

B is the input matrix. Suppose that there exist a (Lyapunov) function V , satisfying

V (ξ) ≥ 0, ∀ξ ∈ Rnξ , some 0 ≤ α < 1 and a supply rate function S(ξk, wk) ≤ 0, ∀k

such that

V (ξk+1)− α2V (ξk) ≤ S(ξk, wk). (3.36)

This dissipation inequality (3.36) implies that V (ξk+1) ≤ α2V (ξk), and the state will

approach a minimum value ate equilibrium no slower than the linear rate α2. The

flowing theorem states how to construct the dissipation inequality (3.36) by solving

a semidefinite programming problem.

Theorem 28. [88][Theorem 2] Consider the following quadratic supply rate with X ∈

R(nξ+nw)×(nξ+nw) and XT = X

S(ξ, w) :=

[︃

ξ
w

]︃T

X

[︃

ξ
w

]︃

. (3.37)

If there exists matrix P ∈ Rnξ×nξ with P ⪰ 0 such that

[︃

ATPA− α2P ATPB
BTPA BTPB

]︃

−X ≤ 0, (3.38)

then the dissipation inequality holds for all trajectories of (3.35) with V (ξ) = ξTPξ.

A major benefit of the proposed constructive dissipation approach is that it

replace the trouble some component of a dynamical system (e.g. the gradient term
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∇xf(xk, yk)) by a quadratic constraint on its inputs and outputs that is always

satisfied, namely integral quadratic constraints. This leads to a two-step novel

approach to the convergence analysis of optimization algorithms.

1. Choose a proper quadratic supply rate function S such that S(ξk, wk) ≤ 0, ∀k.

2. Solve the Linear Matrix Inequality (3.38) to obtain a storage function V and

finding the linear convergence rate α.

Use the following concatanate notation for the DGDA update (3.17), where

z = [x, y]T , ẑ = [x̂, ŷ]T and F (zk) = (∇xf(xk, yk;−∇yf(xk, yk), we rewrite (3.17) as

in the form of (3.35):
[︃

zk+1

ẑk+1

]︃

=

[︃

zk − ηF (zk)− ρ(zk − ẑk)
ẑk − ρ(ẑk − zk)

]︃

=

[︃

1− ρ ρ
ρ 1− ρ

]︃ [︃

zk
ẑk

]︃

+

[︃

−η
0

]︃

wk (3.39)

where wk = F (zk).

According to [88] eq(7) and Assumption 8, we have

S(ξk, wk) =

⎡

⎣

zk
ẑk

F (zk)

⎤

⎦

T ⎡

⎣

2µLI 0 (−µ+ L)I
0 0 0

(−µ+ L)I 0 2I

⎤

⎦

⎡

⎣

zk
ẑk

F (zk)

⎤

⎦ ≤ 0 (3.40)

as a proper quadratic supply rate function S(ξk, wk) ≤ 0.

Then, it reduces to find a matrix P ∈ R2×2 ⪰ 0, α ∈ [0, 1) such that (3.38) is

satisfied, where the problem parameters are given by

A =

[︃

1− ρ ρ
ρ 1− ρ

]︃

, B =

[︃

−η
0

]︃

, X =

⎡

⎣

2µLI 0 (−µ+ L)I
0 0 0

(−µ+ L)I 0 2I

⎤

⎦ . (3.41)

Consequently, we are solving a LMI problem of dimension 3 by 3, with design

parameters P ∈ R2×2, α2 ∈ [0, 1), ρ and η. Motivated by the step size in the bilinear

case Theorem 20, we simplify the process by choosing ρ = 0.5. And one set of

feasible solutions is given by

η =
1

L+ µ
, α2 =

3L2 + 2Lµ+ 3µ2 +
√︁

(L+ µ)4 + 16L2µ2

4(L+ µ)2
, P =

[︃

(L+ µ)2 0
0 (L+ µ)2

]︃

,

(3.42)
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where

α2 = 1− µ

L
+O

(︁

(
µ

L
)2
)︁

(3.43)

3.6 Conclusion

In this chapter, we explore a data-driven approach for online decision-making

of dynamical systems, especially when we lack precise knowledge of the system

dynamics. To tackle this challenge, we adopt the framework of constrained rein-

forcement learning. In this setup, an agent aims not only to maximize its expected

total reward but also to satisfy secondary cumulative rewards constraints while

interacting with an unknown environment and receiving information over time.

The core of our investigation involves formulating the constrained reinforcement

learning problem as a min-max optimization problem in the occupancy measure

space. However, the presence of a bilinear Lagrangian function makes vanilla

gradient descent ascent (GDA) methods ineffective, leading to convergence issues.

To overcome this, we introduce a novel solution: the Dissipative GDA algorithm.

This new first-order approach demonstrates strong convergence properties. We

compare its performance with established methods like Extra-Gradient (EG) and

Optimistic GDA (OGDA), both of which also exhibit linear convergence under

similar conditions.

Our approach proves particularly effective in bilinear problems, offering a better

estimate of the linear convergence rate compared to EG and OGDA. Furthermore,

in scenarios that are strongly convex-strongly concave and meet the condition κ ≥ 2,

the DGDA algorithm provides a more accurate estimate of convergence compared

to EG and OGDA.

Moving forward, we apply the stochastic DGDA algorithm to address the

constrained reinforcement learning problem within the occupancy measure space.
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This application showcases the algorithm’s ability to achieve global asymptotic

convergence concerning occupancy measure and its capacity to recover the optimal

policy. To validate our method’s practical utility, we employ it in a case study

involving a discrete-time single-server queue with a constrained buffer size problem.

This example effectively highlights the strengths of our proposed approach.

104



Chapter 4

Conclusions

In conclusion, this thesis explores the exciting landscape of online decision-making

algorithms for dynamical systems, leveraging tools from control theory, optimiza-

tion, and learning. The growing availability and speed of data sources have pre-

sented both new opportunities and challenges in this field, prompting the need

for real-time decision-making capabilities that align with the dynamic nature of

systems.

The research presents two distinct online decision-making frameworks based

on the availability of system dynamic information. In the first scenario, where the

system’s behavior can be captured by ordinary differential equations using a state-

space model, a time-varying convex optimization framework is introduced. This

framework efficiently combines motion planning and control, enabling the design

of control signals that guide the dynamical system to asymptotically track optimal

trajectories defined through constrained time-varying optimization problems. By

effectively transforming the nonlinear dynamical system into an optimization al-

gorithm, the method achieves global exponential asymptotic convergence to the

minimizer of the time-varying optimization problem, subject to sufficient regularity

assumptions.

In the second scenario, when system dynamics remain unknown, the thesis
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adopts a data-driven approach known as constrained reinforcement learning. This

approach tackles sequential decision-making problems, where an agent seeks to

maximize its expected total reward while interacting with an unfamiliar environ-

ment and receiving sequential information over time. The constrained reinforce-

ment learning framework incorporates safety constraints or conflicting require-

ments during the learning process by introducing secondary expected cumulative

rewards. To overcome the limitations often faced in constrained reinforcement learn-

ing problems, the thesis proposes a novel first-order stochastic gradient descent-

ascent (GDA) algorithm: the stochastic dissipative GDA algorithm. This powerful

algorithm exhibits remarkable properties, almost surely converging to the optimal

occupancy measure and optimal policy. By overcoming the challenges of policy

oscillation and convergence to suboptimal policies frequently encountered in C-

RL problems, the stochastic dissipative GDA algorithm significantly enhances the

performance and efficiency of the constrained reinforcement learning process.

In essence, this thesis contributes to advancing the field of online decision-

making algorithms by offering innovative methodologies for dynamical systems,

with applications in various domains, such as robotics, control systems, and rein-

forcement learning. The proposed frameworks and algorithms pave the way for

more robust and adaptive decision-making in real-time scenarios, aligning with

the dynamic nature of modern data streams and dynamic environments. As data

sources continue to grow in ubiquity and speed, the research findings in this thesis

hold great promise in addressing the evolving challenges of decision-making in

dynamic systems.
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