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Abstract

We generalize the work found in the paper [KY10] of Kudla and Yang to the case

of Hilbert modular forms that come from the Weil representation associated to a

1-dimensional quadratic space. We also provide a computation of the level groups

of certain forms produced this way. To achieve our results, we compute closed-form

formulas for quadratic Gauss sums over local fields of characteristic 0. This includes

the case of both odd and even residue characteristic.
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Chapter 1

Introduction

This thesis started off as a computation related to The Ghost Conjecture and certain

“generalized Hurwitz class numbers". A single step in this calculation proved especially

difficult and ended up becoming what is essentially this thesis. We will not remark on

the original problem and limit our discussion to the calculation that resulted from it.

Our calculation is based on a classical result of Zagier’s found in [HZ76] Theorem

2, so we will take a moment to introduce it, mainly though the lens of the treatment

in [BS20]. This result states that there is a (nonholomorphic) modular form of weight

3/2 and level Γ0(4) whose (holomorphic) Fourier coefficients are exactly the Hurwitz

class numbers H(m). We start by recalling the properties of Hurwitz class numbers

and Zagier’s modular form of weight 3/2.

The Hurwitz class number H(m) is defined for any integer m ≥ 0. H(m) = 0 if

−m is not a square mod 4 (alternatively: if m ̸≡ 0, 3 mod 4). H(0) = −1/12. In

all other cases, one defines H(m) to be the number of equivalence classes of binary

quadratic forms ax2 + bxy + cy2 (a, b, c ∈ Z) of discriminant b2 − 4ac = −m up to

certain multiplicities. Specifically, we can consider the action of SL2(Z) on these

quadratic forms via basechange. H(m) is then the number of orbits under this action

where each orbit is weighted by 2/#stab where #stab is the size of its stabilizer. In

practice, the weights will almost all be 1, with a weight of 1/2 occurring iff the orbit
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contains a multiple of x2 + y2 and a weight of 1/3 occurring iff the orbit contains a

multiple of x2 + xy + y2. The first handful of Hurwitz class numbers are

m 0 1 2 3 4 5 6 7 8 9 10 11 12
H(m) −1

12 0 0 1
3

1
2 0 0 1 1 0 0 1 4

3

The Hurwitz class numbers are quite close to the class numbers of imaginary quadratic

number fields. For example, if we were to count the orbits for H(m) but use trivial

weights by weighting every orbit by 1, we would get the class number of Q[
√

−m]. A

further connection is given by the following formula for H(m), which is a restatement

of the one on p.2301 of [KY10]. The formula assumes that m is either 0 or 3 mod 4.

H(m) = 2h(Q[
√

−m])
w(Q[

√
−m]) ρh(Q[

√
−m]), with ρh(Q[

√
−m]) =

∑︂
c|f
c
∏︂
p|c

(1 −
(︄

−m
p

)︄
p−1)

Here, h is the class number and w is the number of roots of unity in the field. We

informally refer to ρh as a “Hurwitzification factor" due to its role in converting a

normal class number into a Hurwitz class number. f is the positive integer determined

by the equation −m = f 2Disc(Q[
√

−m]) (note that our assumption on the value of

m mod 4 is required for f to be integral). c varies over all positive divisors of f and p

varies over all prime divisors of c. Finally,
(︂

−m
p

)︂
is the Legendre symbol.

We can now address Zagier’s result. For a variable τ = u+ iv in the upper half

plane H and q = e2πiτ , Zagier’s modular form is given by the following equation. Note

that we choose to separate out a term from each sum, which we will call the m = 0

term of that sum.

Z(τ) = − 1
12 +

∞∑︂
m=1

H(m)qm + 1
8π

√
v

+ 1
4
√
π

∞∑︂
m=1

m
∫︂ ∞

t=4πm2v
t−3/2e−tdt · q−m2

Note the terms are separated into two parts. First there are the holomorphic terms

which form a standard Fourier series where the coefficients are the Hurwitz class

numbers. Second are the nonholomorphic terms, where the integrals are incomplete

gamma functions (so called because the integral doesn’t start from 0). Zagier proves

that this (nonholomorphic) function transforms like a modular form of weight 3/2 and
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level Γ0(4). We will recall the exact definition of this later, but he shows that for all(︄
a b
c d

)︄
∈ SL2(Z) with 4/c and some choice of the squareroot of cτ + d,

Z

(︄
aτ + b

cτ + d

)︄
= (cτ + d)−3/2Z(τ)

This implies a great number of nontrivial relations between the Hurwitz class numbers

H(m).

Since Zagier’s original modular form, there have been many generalizations. We

quickly review them, since our work will nestle in among them. In [Coh75], Cohen

gives generalizations of Z(τ) to arbitrary weights κ+ 1/2 for integral κ ≥ 1. In [Su16],

Ren uses the framework of [HI13] to further generalize this work to the case of Hilbert

modular forms over a totally real number field K.

Finally, there is a certain kind of Eisenstein series E(τ, s,Φ) that is studied in

[KY10], among other places. (Although we mainly refer to [KRY06] sections 5 and

8, [KRY04] (see equation (6.20) for a definition), and [KY10] for our approach to

these ideas.) Here, τ is the main argument to the function, and one may treat s,Φ as

parameters that determine which Eisenstein series one gets. Following the construction

in [KRY06], one obtains vast quantities of Hilbert-Siegel1 modular forms of either

integral or half-integral weight. There are also expressions provided to calculate the

Fourier series of these modular forms. However, these formulas involve numerous

tricky integrals and are quite difficult to evaluate in most cases. In addition, it is not

always clear what the levels of these modular forms are. [KY10] works to remedy this

by showing how to extract explicit Fourier expansions in the classical case of K = Q

with modular forms defined on H. Their arguments also give some access to the level

group.

Of particular note is that [KY10] not only implies that Zagier’s modular form
1Although the construction allows for general Hilbert-Siegel modular forms, we will only work in

the particular case of standard Hilbert modular forms. So, we will not make further reference to
Siegel modular forms.
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Z(τ) arises as such an Eisenstein series, but their proposition 6.5 tells us that for

µ ∈ {0, 1/2} there are Eisenstein series called E(τ, 1/2,Φ3/2,µ) (or E3/2,µ(τ, 1/2) for

short) such that the Fourier expansions of −12E3/2,µ(4τ, 1/2) consist of exactly the

even m and odd m terms of Z(τ) for µ = 0, 1/2 respectively. In particular, this

implies that −12(E3/2,0(4τ, 1/2) + E3/2,1/2(4τ, 1/2)) = Z(τ). It is not surprising that

the quantities E3/2,µ(τ, 1/2) are modular forms (very general arguments tell us that if

one takes any subset of the terms of the Fourier series in arithmetic progression, we

get another modular form). What is interesting is that these forms arise from very

nice choices of the parameters s,Φ and this realization of them as Eisenstein series

allows one to determine levels for them.

We now move onto the problem we are trying to solve. Fix a totally real number

field K of degree n > 1. Our goal is to show that certain quantities showing up in

Mizumoto’s trace formula ([Miz84], Theorem 3) are the coefficients of a modular form.

The quantities under consideration will be labeled H(m) for m ∈ OK . H(m) = 0

unless m ≫ 0 (m totally positive) and −m is a square mod 4OK . If these conditions

hold, then H(m) is given by

H(m) = 2h(K[
√

−m])
w(K[

√
−m]) ρh(K[

√
−m]), with

ρh(K[
√

−m]) =
∑︂
c|f
N(c)

∏︂
p|c

(1 −
(︄

−m
p

)︄
N(p)−1) (1.1)

Here, h is the class number and w is the number of roots of unity. We will call

ρh(K[
√

−m]) a “Hurwitzification factor" in analogy with before. Under our conditions

onH(m) being nonzero, there is an integral ideal f obeying −m = Disc(K[
√

−m]/K)f2,

where Disc(L/K) denotes the relative discriminant. c iterates over all integral divisors

of f, and p iterates over prime divisors of c. Finally,
(︂

−m
p

)︂
is the quadratic character

associated to the extension K[
√

−m] and is given explicitly by

(︄
−m
p

)︄
=

⎧⎪⎪⎨⎪⎪⎩
0 p ramifies in K[

√
−m]

1 p splits
−1 p is inert
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As is heavily implied, the quantity H(m) reduces to the Hurwitz class numbers if we

allow K = Q, and for this reason we call H(m) a generalized Hurwitz class number.

Our goal is to prove the following result.

Theorem 1.2. Given µ ∈ 1
2OK/OK , there is a Hilbert modular form of parallel weight

3/2 whose Fourier coefficients are nearly the generalized Hurwitz class numbers. It is

one of the Eisenstein series described in [KY10] and is given by

E3/2,µ(4τ⃗ , 1/2) = 1OK
(µ) + 1

ζK(−1)
2n−1

hK

∑︂
m′≫0

m′∈−(2µ)2+4OK

H(m′)
QK[

√
−m′]

e2πim′⃗ ·τ⃗

where 1OK
(µ) is an indicator function for µ to be integral and QK[

√
−m′] ∈ {1, 2} is

given in terms of regulators by 2n−1/QK[
√

−m′] = Reg(K[
√

−m′])/Reg(K).2

There are several points worth note about the above formula. The first is that this

is a generalization of the pair of modular forms in [KY10] proposition 6.5. There are

2n elements of 1
2OK/OK , and indeed we get 2n distinct Eisenstein series whose Fourier

coefficients are pairwise disjoint. Adding them all produces the Eisenstein series

E3/2(4τ⃗ , 1/2) = 1 + 1
ζK(−1)

2n−1

hK

∑︂
m′≫0

H(m′)
QK[

√
−m′]

e2πim′⃗ ·τ⃗

This particular Fourier series is one of the series found in Theorem 10.3 of [Su16]. For

all m′ > 0, QQ[
√

−m′] = 1, and so in the case K = Q the above formula reduces to (a

constant multiple of) the holomorphic part of Z(τ).

This leads into the second thing of note, which is that E3/2,µ is holomorphic for all

K ⊋ Q. We are not choosing to drop any nonholomorphic terms that may naturally

arise. Rather, whenever K ⊋ Q, the nonholomorphic terms that could show up in our

Fourier series vanish. It is rather surprising that the formula becomes nicer in the

general case, so we will briefly attempt to explain how this phenomenon comes about.

One way to prove the modularity of Zagier’s Z(τ) is to first cleverly pick the right
2We will give some more explicit formulas for QK[

√
−m′] later.
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Eisenstein series E(τ, s,Φ). Being an Eisenstein series, it is easy to prove modularity.

Then, one has to compute the Fourier expansion of E(τ, s,Φ) and show that you get

Z(τ). During this computation, it turns out that each of the nonholomorphic terms

comes about from an indeterminate expression. Specifically, for each nonholomorphic

term the simple pole of the Riemann zeta function at s = 0 ends up canceling with a

zero from something called a local Whittaker function, giving rise to an incomplete

gamma function. However, when we do similar computations in the case of K ⊋ Q

the analogous calculation ends up seeing the pole of the Dedekind zeta function ζK at

0 multiplied by a local Whittaker function for each Archimedean place of K. Each

Whittaker function will have a simple zero, and so if K has degree n, the Whittaker

functions will in total contribute a zero of order n. However, ζK has a simple pole

and hence the indeterminate expression will evaluate to 0.

Finally, we note that our Fourier coefficients above originally come about as L

functions which were rewriten in terms of H(m) using the formula

2n−1

hK

H(m)
QK[

√
−m′]

= L

(︄
0,
(︄

−m
·

)︄)︄
ρh(K[

√
−m])

In fact, it seems to be common practice to prefer using L functions to express Fourier

coefficients of such series, since they generalize more readily than class numbers. Even

more strongly, one may observe that the quantity L
(︂
0,
(︂

−m
·

)︂)︂
ρh(K[

√
−m]) is itself a

possible way to generalize the notion of Hurwitz class number, different from the one

we chose. Of course, we have already given our reasons for preferring our choice of

H(m).

Finally, we summarize the steps we will follow to prove this result. We are mainly

trying to follow the outline given in [KY10] to evaluate the Eisenstein series E(τ, s,Φ)

in the case of Hilbert modular forms. [KY10] is generally an outline for those who

are already somewhat familiar with the concepts involved, so we will take the time to

elaborate on all of the necessary details and attempt to collect together most of what

6



one needs to understand the argument into one place. [KY10] also only performs the

arguments in the case K = Q, so we rely on [HI13], [Su16], and [KRY06] to help fill

in details in the case of general K (although, again, when using [KRY06] we only use

the case of Hilbert modular forms and not Hilbert-Siegel modular forms). Although

most of the steps directly generalize form [KY10], due to difficulties in tracking down

arguments for some steps as well as differing notation and different coordinate systems

between different references, I have chosen to include proofs for as many arguments as

possible. I hope this will help make the paper a somewhat self-contained collection of

the relevant ideas.

The actual core of our argument in [KY10] is to build an Eisenstein series E(τ, s,Φ)

out of a sum of functions Φ(g′, s) which are called sections and collectively form a

certain representation I(s, χ) of a metaplectic group. As such, we start by discussing

metaplectic groups and build up many of their relevant properties. We next discuss

the Weil representation, which is a representation of the metaplectic group on a space

of Schwartz functions. The Weil representation requires us to fix a quadratic space

V . Spaces V of any dimension may be used, although the results we need will all

come from dimension 1. The Weil representation then gives rise to the representation

I(s, χ) through a map called λ. This gives us our functions Φ, and from them we get

an Eisenstein series.

Depending on which functions Φ ∈ I(s, χ) we choose, we can get a whole host of

Eisenstein series. We will be interested in a particular series called El,µ. This is in fact

the desired series with Hurwitz class number Fourier coefficients. However, actually

computing the Fourier series will be a grueling task, which boils down to computing

certain integrals called local Whittaker functions.

This takes us to one of the main steps that does not easily generalize from [KY10].

The local Whittaker functions involve general quadratic Gauss sums over local fields.

Although it is not strictly necessary to compute the Gauss sums in order to evaluate

7



the local Whittaker functions in the case dim(V ) = 1, we opt to evaluate them anyway

for the sake of getting closer to being able to evaluate the case dim(V ) > 1.

As for the Gauss sums themselves, let Kp be a completion of K at an (even or odd)

finite place. For an unramified additive character3 ψ′ : K → C, a quadratic character

χ : O×
Kp

→ ±1 (extend χ to 0 outside of O×
Kp

) and a ∈ K×, b ∈ K, we will compute

closed forms for the Gauss sums

γ(a, b) =
∫︂
OKp

ψ(ax2 + bx)dx, γ(χ, a) =
∫︂
OKp

χ(x)ψ(ax)dx

which we call quadratic form and quadratic character Gauss sums, respectively. The

most difficult case is a quadratic form Gauss sum at an even place, the formula for

which is given in corollary 6.35. Although the two types of Gauss sum are effectively the

same thing in odd residue characteristic, they are not as obviously related for residue

characteristic 2. Additionally, since computing the Gauss sums requires building up a

significant body of work, we choose to take the time to include proofs of some fun

facts at little extra cost. Namely, we show a correspondence between quadratic form

and quadratic character Gauss sums in the case of residue characteristic 2 that mimics

the correspondence in odd residue characteristic in proposition 6.83. We also show

that in residue characteristic 2, for a ∈ (1/4)O×
Kp

, b = 0, the Gauss sum γ(a, 0) is a

“multiplicative character of second degree in a" (essentially a multiplicative version

of a quadratic form) and classify it up to isomorphism in proposition 6.71. After

computing the Gauss sums, we use them to compute the local Whittaker functions,

which will in turn give us our desired Fourier series. As already alluded to, I have

not managed to perform all of the computations in this paper in a way that works

for dim(V ) > 1. However, a theme throughout is that I will attempt to do these

computations in as much generality as possible. This results in some propositions

being stronger than needed, but allows us to move closer to the case of general V .

3That is, trivial on OK but nontrivial on p−1.
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Chapter 2

Notation and Setup

2.1 Notation

We start with some notation and conventions that will recur throughout. Let K ⊋ Q

be a totally real number field of degree n, OK be its ring of integers, and ∂ its different.

For a finite place p of K, let π be some fixed choice of uniformizer, p denote the

integer prime it lies over, e be the ramification index, f be the inertial degree, and

q = pf be the size of the residue field. If a finite prime p lies over 2, we call it even.

Otherwise we call it odd. Use vπ(x) for the π-adic valuation of x. Although we will

often use z̄ to denote complex conjugation, sometimes (especially when it comes to

valuations) we will prefer to let it denote reduction mod 2. That is, vπ(x) ∈ {0, 1}

such that vπ(x) ≡ vπ(x) mod 2. We will point out any such uses of the notation.

Let Kp denote the completion at p. For any sort of global object x, we will use

xp to denote its local version or local component at p. If the object comes with a

subscript such as xn, then we will write the local version as xn,p. All notation in the

first paragraph carries over to here as appropriate. Let ∂p denote the different of

Kp. We will often use rp to denote the valuation of this local different. That is, let

∂p = (πrp). We may omit the subscripts if it is clear we are working at some place p.

Additionally, for the entirety of chapter 6 we will be focused on a fixed local field. As

such, for just chapter 6, K will instead be used to denote one of these completions Kp.
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Let AK be the ring of adeles. Let ψ : AK/K → C× be the standard additive

character given by

ψ(x) =
∏︂
p<∞

e−2πi{tr(xp)} ∏︂
p|∞

e2πixp , (2.1)

where {} denotes the fractional part, the trace is from Kp to Qp, and the product is

over all primes of K.

We also recall the definition of smoothness of a function f on AK . Write the

function as f(x, y) where x consists of all Archimedean places and y consists of all

non-Archimedean places. Then f is smooth if it is infinitely differentiable with respect

to x and is locally constant in y. That is, for each pair x0, y0 there exists an open set V

of the finite adeles such that y0 ∈ V and f(x0, V ) = f(x0, y0). Furthermore, we require

uniformity in that our choice of V will be valid for all x in an open neighborhood of

x0.

Let G = SL2. For G(K) = SL2(K), let P = NM be the standard Borel subgroup

given by

N =
{︄
n(b) =

(︄
1 b
0 1

)︄
: b ∈ K

}︄
, M =

{︄
m(a) =

(︄
a 0
0 a−1

)︄
∈ K×

}︄
.

Obviously the definitions above also can define the groups G,P,N,M with entries

in the adeles or at any completion Kp as well. For a place p, we use Kp to denote

a certain choice of maximal compact subgroup of G(Kp). We let Kp = SO2(R) for

infinite places and for finite places let

Kp =
{︄(︄

a b
c d

)︄
∈ SL2(Kp)

⃓⃓⃓⃓
⃓b ∈ ∂−1, c ∈ ∂, a, d ∈ OKp

}︄

We use K0,p(N) to denote the further subgroup whose bottom left entry is in N∂.

(This is in reference to the notation Γ0(N).) K is then used to denote the maximal

compact subgroup of G(AK) which is a product over all places of Kp. On the other

hand, K0(N) will denote product of K0,p(N) over all finite places.
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Following [KY10], we will write

w =
(︄

0 −1
1 0

)︄

This is the opposite of what is done in [KRY06], who take w to be the inverse of the

above matrix. Some care must then be taken when comparing with their work.

We will denote a point in the n-fold product of upper halfplanes Hn as a vector τ⃗ .

Furthermore, given a number m ∈ K, we will let m⃗ ∈ Rn denote the image of m under

the Minkowski embedding. The main purpose of this notation will be in computing

the complex number m⃗ · τ⃗ , as an alternative to the more common notation tr(mτ).

For τ⃗ = (u1 + iv1, u2 + iv2, . . .) ∈ Hn, we let

gτ⃗ = (n(u1)m(√v1), n(u2)m(√v2), . . .) ∈ P (R)n

which when used as a linear fractional transformation takes i⃗ = (i, i, . . .) to τ⃗ . Further,

for θ⃗ = (θ1, . . .) ∈ Rd let k(θ⃗) = (k(θ1), k(θ2), . . .), where k(θ) is a (clockwise!) rotation

matrix by θ.

Similarly to the notation in [Su16], if we ever need to choose a branch cut for

an exponential ab with a, b ∈ C, we will default to taking ab = eb ln(a) for −π <

Im(ln(a)) ≤ π.

2.2 Modular Forms

We quickly recall the definition of a modular form, modular forms of half-integral

weight, Hilbert modular forms, and then Hilbert modular forms of half-integral

weight. See [Fre90] for details on Hilbert modular forms. See the start of [Shi87] and

proposition 1.2 of [Shi85] for the definition of the half-integral weight case.1

Standard modular forms: Let Γ ⊂ SL2(Q) ⊂ SL2(R) be a subgroup commen-

surable with SL2(Z) (two groups are commensurable if their intersection has finite
1Shimura uses a slightly different normalization on his modular forms than the rest of our sources.

In our chosen notation, the functions Shimura considers are of the form f(τ/2) where f is a modular
form. This explains Shimura’s slightly different level group.
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index in each of them). Let k be an integer. A modular form of weight k level Γ is a

function f(τ) : H → C that is holomorphic, bounded as Im(τ) → ∞ and obeys the

modularity condition

f(γτ) = (cτ + d)kf(τ), γ =
(︄
a b
c d

)︄
∈ Γ, τ ∈ H

and γτ is given by the Mobius transformation

γτ = aτ + b

cτ + d

We use j(γ, τ) = (cτ+d) to refer to the automorphy factor in the (weight 1) modularity

condition.

Modular forms of half-integral weight: The theta function

θ(τ) =
∑︂
n∈Z

e2πin2τ , τ ∈ H

obeys a modularity condition of the form

θ(γτ) = jθ(γ, τ)θ(τ), γ ∈ Γ0(4) =
{︄(︄

a b
c d

)︄
∈ SL2(Z)

⃓⃓⃓⃓
⃓4|c

}︄

where jθ is an automorphy factor satisfying the relation jθ(γ, τ)4 = j(γ, τ)2. This

makes θ(τ) into a modular form of level Γ0(4) and “weight 1/2", since we have

jθ(γ, τ) = ±
√

±1
√
c+ dτ . Note that we couldn’t simply define jθ(γ, τ) =

√︂
j(γ, τ)

since this is not a factor of automorphy due to the signs not working out. For Γ ⊂ Γ0(4)

and a (non-integral) half-integer k, a modular form of level Γ weight k is a function

f(τ) : H → C that is holomorphic, bounded as Im(τ) → ∞ and obeys the modularity

condition

f(γτ) = jθ(γ, τ)(cτ + d)k−1/2f(τ), γ ∈ Γ, τ ∈ H

Note that if one multiplies a modular form of weight k1 by a form of weight k2, one

does not get a form of weight k1 + k2, since j2
θ ≠ j. An alternate (non-equivalent!)

way that people sometimes define a modular form of weight k is by the transformation

property

f(γτ) = jθ(γ, τ)2kf(τ), γ ∈ Γ, τ ∈ H
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Each definition has its advantages, although the forms we will be building fit the

latter of the two. Forms of weight 1/2 are the same in both definitions, so for those

there can be no confusion. When we later need to specify that a form f is of weight

3/2 with respect to the second definition, we will instead say that f ∗ θ is of weight 2.

This allows one to unambiguously specify which conventions are being used.

Hilbert modular forms: Given our totally real number field K of degree n > 1,

let ι1 . . . ιn denote the embeddings of K into R. Given x ∈ K, temporarily let

xi = ιi(x). Then, we may embed SL2(K) as a subset of SL2(R)n using the Minkowski

embedding (︄
a b
c d

)︄
↦→
(︄(︄

a1 b1
c1 d1

)︄
, . . . ,

(︄
an bn
cn dn

)︄)︄

Under this embedding, SL2(OK) is a discrete subgroup. Let Γ ⊂ SL2(K) ⊂ SL2(R)n

be a subgroup commensurable with SL2(OK) (under our embedding). Let k⃗ ∈ Zn.

A Hilbert modular form of level Γ weight k⃗ is a function f(τ⃗) : Hn → C that is

holomorphic and obeys the modularity condition

f(γτ⃗) =
n∏︂
i=1

(ciτi + di)ki f(τ⃗), γ ∈ Γ, τ⃗ ∈ Hn

and γτ⃗ is given by the component-wise Mobius transformation

(γτ⃗)i = aiτi + bi
ciτi + di

We do not ask for boundedness as Im(τ⃗) → ∞, since this is implied by the other

conditions when n > 1 by the Koecher principle. If all components of k⃗ are the same

integer k, then we say the Hilbert modular form has parallel weight k.

Hilbert modular forms of half-integral weight: Given x ∈ K, we use x⃗ to

denote the vector (x1, x2, . . . xn). Let ∂ be the different ideal of K. The theta function

θK(τ⃗) =
∑︂
n∈OK

e2πi
−→
n2·τ⃗ , τ⃗ ∈ Hn
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obeys a modularity condition of the form

θK(γτ⃗) = jθ(γ, τ⃗)θK(τ⃗),

γ ∈ Γ[∂−1, 4∂] =
{︄(︄

a b
c d

)︄
∈ SL2(K)

⃓⃓⃓⃓
⃓ b ∈ ∂−1, c ∈ 4∂, a, d ∈ OK

}︄
(2.2)

where jθ satisfies the relation jθ(γ, τ)4 = ∏︁n
i=1(ciτi + di)2. This makes θ(τ) into a

modular form of level Γ[∂−1, 4∂] and “parallel weight 1/2". The appearance of the

different ideal may be surprising, but things clear up quickly if one attempt any direct

calculations.

Example 2.3. Fix t ∈ ∂−1 and let γ0 =
(︄

1 t
0 1

)︄
∈ Γ[∂−1, 4∂]. Then we have

γ0τ⃗ = (τ1 + t1, . . . τn + tn). Thus,

θK(γ0τ⃗) =
∑︂
n∈OK

e2πi
−→
n2·(τ⃗+t⃗), τ⃗ ∈ Hn

However, for n ∈ OK , t ∈ ∂−1 we have

e2πi
−→
n2·t⃗ = e2πiTr(n2t) = 1

since the trace of any element of ∂−1 is an integer. So, we get θK(γ0τ⃗) = θK(τ⃗).

For Γ ⊂ Γ[∂−1, 4∂] and a weight vector k⃗ all of whose components are (non-integral)

half-integers, a modular form of level Γ weight k⃗ is a function f(τ⃗) : Hn → C that is

holomorphic and obeys the modularity condition

f(γτ⃗) = jθ(γ, τ)
n∏︂
i=1

(ciτi + di)ki−1/2f(τ⃗), γ ∈ Γ, τ⃗ ∈ Hn

If all entries of k⃗ are the same half-integer k, we say f is of parallel weight k. However,

we will instead prefer to use a different (again non-equivalent) definition. For this

definition, we only have forms of parallel weight k. The transformation rule is

f(γτ⃗) = jθ(γ, τ)2kf(τ⃗), γ ∈ Γ, τ⃗ ∈ Hn
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Chapter 3

The Metaplectic Group

3.1 Motivation

We start by describing the classical treatment of the metaplectic group and why this

group is relevant to our construction (the answer boiling down to the fact that our

modular forms will have half-integral weight, although in some sense this only pushes

the question back to one I do not know the answer to). We will not use this description

of the metaplectic group in our arguments, but it still makes for decent motivation.

When we were discussing (non-Hilbert) modular forms of half-integral weight, we

ran into the complication that we could not simply use
√
cτ + d as a weight 1/2 factor

of automorphy since the signs don’t work out. A rather simple way around this is

instead of having the group SL2(R) acting on the upper half plane, one can instead

consider the group of pairs

Mp2(R) =
(︄(︄

a b
c d

)︄
, f(z)

)︄
, where

(︄
a b
c d

)︄
∈ SL2(R), f(z)2 = cτ + d

Here, f(z) must be a holomorphic function on H.

So, an element of this classical metaplectic group is just an element of SL2 along

with a choice of which sign to use on the automorphy factor. One could go further

and simply think of it as the group of all possible automorphy factors. Composition
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in this group is given simply by composing the chosen automorphy factors. That is,

(g1, f1(z)) ∗ (g2, f2(z)) = (g1g2, f1(g2z)f2(z))

This group therefore gives a natural way of working with automorphy factors of weight

1/2 without needing to choose signs. Hence, the fact that we wish to create a modular

form of weight 3/2 makes the appearance of the metaplectic group actually quite

natural as a starting point. We close with two remarks.

First, it is clear that Mp2 is a double cover of SL2. Topologically, we have that

SL2(R) is homeomorphic to S1 ×R2. As such it admits a unique nontrivial topological

double cover. This cover is Mp2.

Secondly, we connect this group back to the automorphy factor coming from the θ

function. To do this, consider the 4-fold cover of SL2(R)

H =
(︄(︄

a b
c d

)︄
, f(z)

)︄
, where

(︄
a b
c d

)︄
∈ SL2(R), f(z)4 = (cτ + d)2

Then, our choice of weight 1/2 automorphy factor j̃ actually gives us a section of the

covering map taking Γ0(4) ↦→ H. Indeed, the existence of such a section is equivalent

to finding a way to “choose the signs" on
√
cτ + d. It is worth noting that such a

section does not exist on a larger subgroup than Γ0(4), which is why one will run into

various divisibility by 4 criteria when looking at the level of a half-integral weight

modular form.

3.2 Important functions

Fix a completion Kp where p is either finite or infinite. In order to define general

metaplectic groups, we will need a collection of specialized functions, some more

esoteric than others. We start by collecting a set of such functions related to the place

p and state some important properties of each.
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3.2.1 The Hilbert Symbol

We start with the Hilbert symbol. The (quadratic) local Hilbert symbol is a commu-

tative function ⟨·, ·⟩p : K×
p ×K×

p → ±1 is given by

⟨a, b⟩p =

⎧⎨⎩1 ax2 + by2 = z2 admits a solution in K3
p − {(0, 0, 0)}

−1 otherwise

For example, if Kp = R, then the Hilbert symbol is -1 iff both arguments are negative.

In the case of a non-archimedean field, the Hilbert symbol is related to the quadratic

residue symbol.

The Hilbert symbol vanishes when either input is a square, owing to the solution

(x, y, z) = (1/a, 0, 1) of a2x2 + by2 = z2. A less trivial property is that the Hilbert

symbol is bimultiplicative, from which it follows that the Hilbert symbol is actually a

function ⟨·, ·⟩p : K×
p /K

×2
p ×K×

p /K
×2
p → ±1. It also obeys the identities

⟨a, 1 − a⟩p = ⟨a,−a⟩p = 1

Whenever p is odd and a, b ∈ O×
Kp

, we have ⟨a, b⟩p = 1. As such, when a, b ∈ A×
K are

members of the Idele group, we see that the local Hilbert symbols ⟨a, b⟩p will be 1 for

all but finitely many places. This allows one to define the global Hilbert symbol

⟨a, b⟩A :=
∏︂
p≤∞

⟨a, b⟩p

Finally, whenever a, b ∈ K, we have ⟨a, b⟩A = 1, which may be thought of as a product

formula on the local Hilbert symbols.

3.2.2 The Weil Constant

Next we discuss the Weil constant, also known as the Weil (local) index. Much of the

following discussion comes from sections 1 of [HI13] and [Su16]. Let S(Kp) denote

the set of Schwartz functions on Kp. If p is archimedean, this is defined to be the set

of smooth functions of fast decay. If p is finite, this is defined to be locally constant
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functions of compact support. All of the following definitions will depend on our

choice of additive character ψ, which for us is the standard additive character given in

equation (2.1). In particular, the Weil constant depends on our choice of ψ, although

we suppress this in the notation.

For each Schwartz function ϕ ∈ S(Kp), the Fourier transform ϕ̂ is given by

ϕ̂(x) = q−r/2
∫︂
Kp

ϕ(y)ψ(xy)dy

where the measure q−r/2dy is the self dual Haar measure for the Fourier transform.

For each a ∈ K×
p , there is then a constant called the Weil constant, which we denote

γw(a). It is defined by and satisfies the identity
∫︂
Kp

ϕ(x)ψ(ax2)dx = γw(a)|2a|−1/2
∫︂
Kp

ϕ̂(x)ψ
(︄

−x2

4a

)︄
dx (3.1)

for any ϕ ∈ S(Kp).1 If Kp ≠ C, γw(a) is a non-constant in a. The Weil constant

γw(a) is an eighth root of unity which only depends on the class of a in K×
p /K

×2
p .

Furthermore, for any a, b ∈ K×
p , γw(a)/γw(b) is always a fourth root of unity. 2

It satisfies γw(−a) = γw(a), and for any a, b ∈ K×
p we have

γw(a)γw(b)
γw(1)γw(ab) = ⟨a, b⟩p (3.2)

If Kp is non-Archimedean over an odd prime and a ∈ O×
Kp

, then γw(a) = 1. Combined

with equation (3.2), we see that for an odd place and a, b ∈ O×
Kp

, we have ⟨a, b⟩p = 1.

For a ∈ K×, the Weil constant obeys the product formula

∏︂
p≤∞

γw(a) = 1 (3.3)

In the case of an infinite place, the formula for γw is well known. (See [HI13]

section 7 for b = 1 and section 1 for how γw varies with b.)
1In [KRY06], the the notation for this Weil constant is γ(η), where η is an additive character on

Kp. The two notations compare via γw(a) = γ(ψ(ax)). In [KRY06], η is taken to be ψ((1/2)x).
2This implies that, depending on the local field, γw(a) is always a primitive eighth root of unity

or it is always a fourth root of unity. The former case happens iff p is even and Kp is an odd degree
extension of Q2.
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Fact 3.4. If Kp = C, then γw(a) = 1.

If Kp = R and one has chosen an additive character with ψL,p(t) = e2πibt where

b ∈ K×
p , then

γw(a) = e2πi·sign(ba)/8

(By our choice of ψ, we are in the case b = 1.)

The case of finite places is harder, but we can make a first step in this direction.

Lemma 3.5. Let p be finite. Let ϕ0(t) ∈ S(Kp) denote the characteristic function of

OKp. Then

ϕ̂0(t) = q−r/2ϕ0(πrt)

Proof. This follows immediately from the definitions.

Lemma 3.6. Let p be finite. Let e2 = vπ(2). In other words, it is the ramification

index if p is even and 1 otherwise. Write a = ua ∗ πvπ(a), where ua is a unit. Let

vπ(a) ∈ {0, 1} denote the value mod 2. Then,

γw(a) = q(e2+r+vπ(a))/2
∫︂
OKp

ψ
(︃

ua

π2e2+r+r+vπ(a)
x2
)︃
dx (3.7)

Proof. Since the Weil constant is insensitive to square factors, we have γw(a) =

γw
(︂

ua

π2e2+r+r+vπ(a)

)︂
. Equation (3.1) with ϕ = ϕ0 now tells us

∫︂
OKp

ψ
(︃

ua

π2e2+r+r+vπ(a)
x2
)︃
dx =

γw

(︃
ua

π2e2+r+r+vπ(a)

)︃ ⃓⃓⃓⃓
2 ua

π2e2+r+r+vπ(a)

⃓⃓⃓⃓−1/2
q−r/2

∫︂
π−rOKp

ψ

⎛⎝−π2e2+r+r+vπ(a)x2

4ua

⎞⎠ dx
(3.8)

Since π2e2+r+r+vπ(a)

4ua
∗ π−2r ∈ ∂−1

p , the right side integrand is identically 1 and the result

follows.

This identifies the Weil constant with a particular integral called a Gauss sum.

Once we compute the Gauss sum later, we will have a formula for the Weil constant
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for finite p. For now, we will only be able to calculate the Weil constant in simple

cases.

Remark 3.9. The integrand in equation (3.7) only depends on the value of ua mod

π2e2+r+vπ(a). It follows that γw(a) only cares about the value of ua mod π2e2+r+vπ(a)

(which we could upper bound as mod π2e2+1, which is mod π for odd places!) In

particular, it follows that for any finite place p, γw(a) is a continuous function on K×
p .

(Continuity on K×
p also follows for infinite places by fact 3.4.)

Example 3.10. Let K = Q and p = 2. At this place, recall ψ(t) = e−2πi{t} and take

π = 2. We have q = 2, e2 = 1, r = 0. We may calculate

γw(1) = 21/2
∫︂
OKp

ψ
(︃1

4 x2
)︃
dx

The value of x2 only matters mod 4 in the above integral. We know that mod 4, x2 is

either 0 or 1 depending on if x is even or odd. Hence, we get

γw(1) = 21/2
(︃1

2ψ(0) + 1
2ψ

(︃1
4

)︃)︃
= 21/2

(︃1
2(1 − i)

)︃
= e−2πi/8

Remark 3.11. The Weil constant γw(a) is not defined for a = 0, but it will notationally

convenient to pretend that γw(0) = 1. We will adopt this convention, although one

needs to be very careful to note that this γw(0) does not play well with any of the nice

formulas or properties enjoyed by the Weil constant.

3.2.3 Local Factors

These next facts about quadratic spaces and “local factors" composed from Weil

constants are mainly from the appendix to [RR93] and section 8 of [KRY06]. There is

also a commonly used relative variant of the Weil constant. Per p. 367 of [RR93], for

a ∈ K×
p let

γw(a, b) := γw(ab)
γw(b)
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For our purposes, a quadratic space (V,Q) is a pair consisting of a Kp vector

space V and a nondegenerate quadratic form Q on V . Let (x, y)Q = Q(x + y) −

Q(x) − Q(y) denote the associated bilinear form. We will often use L to denote a

sublattice of V and L∗ to denote the dual lattice under (x, y)Q. Let det(V ) ∈ K×
p /K

×2
p

denote the determinant of the matrix of this bilinear form when written in any basis.

Also associated to V is a character χV (x) := ⟨x, (−1)dim(V )∗(dim(V )−1)/2det(V )⟩p (see

[KRY06] lemma 8.5.6). Nondegeneracy of Q will be important so that det(V ) ̸= 0, as

well as the relation L∗∗ = L.

We will only end up needing the case dim(V ) = 1, but list the more complicated

formulas to make it easier to find where they were taken from [KRY06].

There are a number of so called local factors associated to a quadratic space. First,

we have the Hasse invariant. In the case that V possesses a diagonalizable quadratic

form Q ∼ ∑︁
aix

2
i , this is defined to be

hp(V ) =
∏︂
i<j

⟨ai, aj⟩p

and is independent of the diagonalization. We will not define the Hasse invariant for

non-diagonalizable forms, but will mention that non-diagonalizability can only happen

if p|2. For a full definition, see definition A.6 and lemma A.7 of [RR93]. Note that in

the case that V is 1-dimensional, hp(V ) is vacuously 1.

Following [KRY06] equation (8.5.21), we may now define the local factor3

γ
(︃
ψ
(︃1

2t
)︃

◦ V
)︃

: = γw

(︃
det(V ), 1

2

)︃
γw

(︃1
2

)︃dim(V )
hp(V )

= γw

(︃1
2det(V )

)︃
γw

(︃1
2

)︃dim(V )−1
hp(V )

(3.12)

In the case dim(V ) = 1, this is simply γw
(︂

1
2det(V )

)︂
. There is one more local factor

3In actuality, this local factor is defined to be a Weil constant which can be associated to the
function ψ

(︁ 1
2Q
)︁
. However, this formula will suffice for our purposes, so we take it as the definition.
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that will show up later. It is given by4

γ(V ) := γw

(︃1
2

)︃
γ
(︃
ψ
(︃1

2t
)︃

◦ V
)︃−1

= γw

(︃
−1

2det(V )
)︃
γw

(︃1
2

)︃2−dim(V )
hp(V )

Under the further assumption Q(x) = (1/2)x2, we have det(V ) = 1 in which case

γ(V ) = 1.

3.2.4 j and x

Finally, we quickly define the j and x functions. x is given at the top of page 364 of

[RR93]. j can be deduced from the comment after [KRY06] equation (8.5.17) and

[RR93] definition 5.2.

Given a matrix in G(Kp), let

j

(︄(︄
a b
c d

)︄)︄
=

⎧⎨⎩0 c = 0
1 c ̸= 0

, x

(︄(︄
a b
c d

)︄)︄
=

⎧⎨⎩c c ̸= 0
d c = 0

Any time we will be using x(g), we will only care about its output up to a square.

This makes the next lemma, which is 5.1 from [RR93] particularly useful.

Lemma 3.13.

x(p1gp2)K×2
p = x(p1)x(g)x(p2)K×2

p , p1, p2 ∈ P (Kp), g ∈ G(Kp)

Proof. We show x(p1g) = x(p1)x(g) and then x(gp2)K×2
p = x(g)x(p2)K×2

p . The first

formula follows immediately from(︄
d−1 b
0 d

)︄(︄
a′ b′

c′ d′

)︄
=
(︄

∗ ∗
dc′ dd′

)︄

While proving x(gp2)K×2
p = x(g)x(p2)K×2

p , we may assume that g /∈ P (Kp), since

then the result would follow from the first case. We observe(︄
a′ b′

c′ d′

)︄(︄
d−1 b
0 d

)︄
=
(︄
d−1a′ ∗
d−1c′ ∗

)︄

Since g /∈ P (Kp), we know c′ ̸= 0 and the result follows immediately.
4In [KRY06] equation (8.5.21) there is an additional factor written χV (−1). This extra factor is

missing here due to the choice of matrix w we made when introducing notation.

22



3.3 The Local Metaplectic Group and Coordinate
Change

The following is based off of [KRY06] section 8.5 and [HI13] section 1. Although

not used directly in this section, other major references on this topic are [Gel06] and

[W+64].

Warning 3.14. Everything in [KRY06] section 8.5 makes the assumption ψ is an

unramified (kernel is OKp) character, which is contradictory to the choice of ψ we have

made. This is needed for some of their results, although many of the results (including

all of the results we need) do not depend on this assumption. This becomes clear since

there are no unramifiedness assumptions being made in the corresponding propositions

of their sources. As such, whenever we cite work from [KRY06] section 8.5 we will

either provide proof or cite the source that they used.

For two matrices g1, g2 ∈ G(Kp), we define a function on them called the Leray

cocycle. In our case of G = SL2, [KRY06] Example 8.5.1 based off of [RR93] Corollary

4.3 gives us the following formula, which we take as the definition.

Definition 3.15. Let g3 = g1g2 and write gi =
(︄
ai bi
ci di

)︄
. The Leray cocycle is then

given by

cL(g1, g2) := γw

(︃1
2c1c2c3

)︃
If c1c2c3 = 0, then the Leray cocycle is taken to be 1. cL depends on our earlier choice

of character ψ (via the Weil constant) although we suppress this from the notation.

From the definition, it is easy to see cL is trivial on P × G and G × P . We will

later show cL is non-trivial on K × K.

We may use this cocycle to define the (local) metaplectic group G′
Kp

. Let T denote

the group of complex numbers of norm 1. As a set, define

G′
Kp

= G(Kp) × T
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We will denote an element in this set as [g, z]L, where g ∈ G(Kp) and z ∈ T. By

[KRY06] example 8.5.1, the composition law

[g1, z1]L[g2, z2]L = [g1g2, z1z2cL(g1, g2)]L

turns G′
Kp

into a group. The subgroup [1,T]L is the center of this group, making G′
Kp

a central extension of G(Kp) by T. Given a subgroup H ⊂ G(Kp), we will use the

notation H ′ to denote the subgroup of G′
Kp

consisting of elements with first coordinate

in H. We will mainly use this to define the groups P ′(Kp) and K′
p.

Remark 3.16. For any g ∈ G(Kp), we have cL(g, [I, z]L) = 1. It follows that for any

g′ = [g, z]L ∈ G′
Kp

we have [g, z1]L[I, z2]L = [g, z1z2]L.

Example 3.17. Let K = Q and p = 2. As an example of a non-trivial multiplication,

we have [︄(︄
1 0

−4 1

)︄
, 1
]︄ [︄(︄

3 1
8 3

)︄
, i

]︄
=
[︄(︄

3 1
−4 −1

)︄
, iγw(64)

]︄

Using example 3.10, we may choose to simplify iγw(64) = iγw(1) = e2πi/8.

Example 3.18. Let p be Archimedean so that Kp = R. Define

ϵ : [0, 4π) → T ϵ(θ) =

⎧⎨⎩e
nπi

2 θ = nπ (n ∈ Z)
e

(2n+1)πi
4 nπ < θ < (n+ 1)π

For example, we are letting

ϵ(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 θ = 0
e2πi/8 0 < θ < π

e2πi/4 θ = π

e2πi∗3/8 π < θ < 2π
eπi θ = 2π
. . .

The set of pairs of the form

[k(θ), ϵ(θ)]L =
[︄(︄

cos(θ) sin(θ)
− sin(θ) cos(θ)

)︄
, ϵ(θ)

]︄
L
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is a subgroup of G′
Kp

which is isomorphic to ˜︂SO2(R), the double cover of SO2(R).

Rather than prove this is a subgroup, we will verify an example calculation. We check

that

[kπ/2, ϵ(π/2)][k3π/4, ϵ(3π/4)] = [k5π/4, ϵ(5π/4)]

This is equivalent to checking

ϵ(π/2)ϵ(3π/4)γw
(︄

1
2 ∗ −1 ∗ −1√

2
∗ 1√

2

)︄
= ϵ(5π/4) ↔ e

πi
4 e

πi
4 e2πi/8 = e

3πi
4

We would now like to define a global metaplectic group on the set G′
AK

= G(AK)×T.

The naive thing we would like to do is to simply define a global cocycle cL : G(AK) ×

G(AK) → T as the product

cL(g1, g2) =
∏︂
p

cL,p(g1, g2) (3.19)

of local cocycles acting on g1 and g2 at each place. From this we can then define

[g1, z1]L[g2, z2]L = [g1g2, z1z2cL(g1, g2)]L. Unfortunately, this does not quite work. In

order for the global cL to be well defined, for any input pair g1, g2 we need the local

cocycles to evaluate to +1 at almost all places. However, it is quite easy to cook up

examples where this fails.

Example 3.20. Fix any odd prime p. Since γw(a) is not a constant function, choose

u ∈ Kp so that γw(u) ̸= 1. Let

g1,p =
(︄

1 0
1 1

)︄
g2,p =

(︄
1 0

2uπ2 1

)︄
g1,pg2,p =

(︄
1 0

1 + 2uπ2 1

)︄

Then, we can calculate

cL,p(g1,p, g2,p) = γw
(︂
uπ2(1 + 2uπ2)

)︂
= γw

(︂
u(1 + 2uπ2)

)︂
By remark 3.9, we know that the quantity u(1 + 2uπ2) only matters mod π. Hence, we

get γw(u) ̸= 1.

Thus, we can choose g1, g2 ∈ G(AK) whose local components look like the above at

each odd place. Then, there will be infinitely many local cocycles that evaluate to -1.
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There are a number of ways to get around this issue. [HI13] section 8 uses an

alternate construction that only considers products of finitely many local cocycles

and their associated double covers, and then builds G′
AK

as a direct limit. We will

follow a more explicit construction from [KRY06] sections 8.5.1 and 8.5.5, where we

salvage the naive approach. We do this by changing coordinates to a new system

called normalized coordinates. In this new system we will have a new cocycle cN which

is trivial on Kp × Kp. Since in equation (3.19), g1, g2 ∈ Kp for almost all places, it

would follow that almost all of the local cocycles would be +1 and the product would

be well defined. Let us start this process by explaining what we mean by changing

coordinates.

Definition 3.21. Given a continuous map of sets ϵ : G(Kp) → T, we make the

definition

[g, z]ϵ := [g, zϵ(g)]L

The pairs [g, z]ϵ inherit a group law from G′
Kp

, which can be calculated as

[g1, z1]ϵ[g2, z2]ϵ = [g1, z1ϵ(g1)]L[g2, z2ϵ(g2)]L = [g1g2, z1z2cL(g1, g2)Lϵ(g1)ϵ(g2)]L

= [g1g2, z1z2cL(g1, g2)ϵ(g1)ϵ(g2)ϵ(g1g2)−1]ϵ

Thus, we could choose to instead work with pairs [g, z]ϵ and define multiplication

using the new (cohomologous) cocycle cϵ = cL(g1, g2)ϵ(g1)ϵ(g2)ϵ(g1g2)−1. This yields

an isomorphic way of working with the metaplectic group and is what we mean by

changing coordinates.

3.4 Rao Coordinates

An example of another coordinate system that sees heavy use called Rao coordinates.

This is the preferred coordinate system of many of our sources, including [HI13] so we

take a moment to list its properties for future use.
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Definition 3.22. Rao coordinates are given in terms of Leray coordinates by [KRY06]

equation (8.5.17). This is based off of [RR93] Section 5. We have

[g, z]R = [g, zβ(g)]L

where

β(g) = γw (x(g), 1/2)−1 γw(1/2)−j(g)

The associated cocycle cR is called the Rao cocycle. It is given by5

cR(g1, g2) =
⟨︄
x(g1)
x(g1g2)

,
x(g2)
x(g1g2)

⟩︄
p

As examples, the change of coordinates formula tells us that

[I, z]R = [I, z]L, [I, z]R = [I, zγW (−1, 1/2)−1]L

Furthermore, for any g ∈ G(Kp), cR(g, I) = 1 so we still have the relation

[g, z1]R[I, z2]R = [g, z1z2]R, similarly to remark 3.16.

Remark 3.23. A remarkable property of the Rao cocycle is that it is valued in ±1.

Hence, one actually has a subgroup G(Kp) × ±1 ⊂ G(Kp) × T. This subgroup is a

non-trivial double cover of G(Kp), which is also referred to in many contexts as the

metaplectic group. Of course, in other coordinate systems, this double cover will not

look as nice (see example 3.18). There will even be a double cover buried inside the

global metaplectic group once we build it.

Finally, we note that unlike Leray coordinates, Rao coordinates fail to be trivial

on P ×G.
5Rao gives a formula for cR when G = SL2 in a remark on page 364, where he notes that in

the case of G = SL2, his cocycle is equal to Kubota’s cocycle. The formula we have listed is a
rearrangement of Rao’s formula from [HI13] section 1.
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3.5 The Weil Representation

In order to create the normalized coordinate system, we will need to choose an

appropriate ϵ in definition 3.21. This will be done using an important tool - the Weil

representation. The following is [KRY06] lemma 8.5.6, which gives an explicit formula

for how g′ = [g, z]L acts in this representation, and which we will take as its definition.

This lemma is based off of Proposition 4.3 of [Kud96], which gives the action of an

element g′ = [g, z]R instead. However, the only difference in the formulas is a slightly

different Weil constant in front. It is trivial to check that they become the same upon

changing coordinates.

Definition 3.24. Given a quadratic space (V,Q) we have an associated Weil repre-

sentation ωV of G′
Kp

acting on the space of Schwartz functions S(V ). For a matrix

g =
(︄
a b
c d

)︄
and ϕ(t) ∈ S(V ) it is given by

ωV ([g, z]L)ϕ(t) = χV (x(g))
(︄
zγw

(︃1
2

)︃j(g))︄dim(V )

γ
(︃
ψ
(︃1

2t
)︃

◦ V
)︃−j(g)

rV (g)ϕ(t)

where

rV (g)ϕ(t) =
∫︂
y∈cV

ψ
(︃1

2(at, bt)Q + (bt, cy)Q + 1
2(cy, dy)Q

)︃
ϕ (at+ cy) dgy

and dim(V ) ∈ {0, 1} denotes the value mod 2. Here, we should interpret the domain

as

cV =

⎧⎨⎩V c ̸= 0
0 c = 0

and dgy is the unique Haar measure on cV that makes rV (g) unitary under the inner

product

(ϕ1, ϕ2) =
∫︂
V
ϕ1(t)ϕ2(t)dt

(In particular, this asserts that such a Haar measure exists.)
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We are interested in the case dim(V ) = 1, in which case the local factor out front

simplifies slightly to

ωV ([g, z]L)ϕ(t) = z⟨x(g), det(V )⟩p γw
(︃1

2

)︃j(g)
γw

(︃1
2det(V )

)︃−j(g)
rV (g)ϕ(t)

Finally, we remark that whenever dim(V ) is odd, the Weil representation obeys

ωV ([g, z]L)ϕ(t) = zωV ([g, 1]L)ϕ(t). This property is often referred to by saying that

the representation is genuine.

3.6 Normalized Coordinates for Odd Primes

In this section, we will only consider the case of an odd prime p.

Consider the Weil representation associated to the quadratic space (V = Kp, Q(x) =

(1/2)x2). We have (x, y)Q = xy and det(V ) = 1. In this case, the local factors out

front disappear and the Weil representation is given by

ωV ([g, z]L)ϕ(t) = zrV ([g, z]L)ϕ(t) = z
∫︂
y∈cKp

ψ
(︃1

2abt
2 + bcty + 1

2cdy
2
)︃
ϕ (at+ cy) dgy

It will be helpful to consider this representation on generating set of G′
Kp

where its

behavior is easier to understand. Let

n(b) =
[︄(︄

1 b
0 1

)︄
, 1
]︄
L

(b ∈ Kp), m(a) =
[︄(︄
a 0
0 a−1

)︄
, 1
]︄
L

(a ∈ K×
p ),

wa =
[︄(︄

0 −a−1

a 0

)︄
, 1
]︄
L

where the boldface indicates we are forming a matrix in the metaplectic group.

Proposition 3.25. The Weil representation ωV acts on a Schwartz function ϕ(t) ∈

S(Kp) via

ωV ([1, z]L)ϕ(t) = zϕ(t)

ωV (m(a))ϕ(t) = |a|1/2ϕ(at)

ωV (n(b))ϕ(t) = ψ
(︃1

2bt
2
)︃
ϕ(t)

ωV (wa)ϕ(t) = |a|−1/2ϕ̂(−a−1t)
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Proof. We will verify the second formula and leave the rest to the reader. The

remaining three formulas are just as easy and follow by the same argument we are

about to make. For the matrix m(a), we know

ωV (m(a))ϕ(t) =
∫︂
y∈{0}

ψ (0)ϕ (at) dgy = ϕ(at)µ(g)

where µ(g) is some unknown positive real number coming from the Haar measure.

To disambiguate µ(g), we will use ϕ0, which is the characteristic function of OKp . In

order for rV to be unitary, we must have

(rV (m(a))ϕ0, rV (m(a))ϕ0) = (ϕ0, ϕ0)

Which is the same as ∫︂
Kp

µ(g)2ϕ0(at)2dt =
∫︂
Kp

ϕ0(t)2dt

Since ϕ is a characteristic function, we have

µ(g)2
∫︂
a−1OKp

dt =
∫︂
OKp

dt

from which we get µ(g)2|a|−1 = 1, concluding the proof of this case.

The following proposition is commented on p. 322 of [KRY06].

Proposition 3.26. Continue taking p to be an odd prime and letting ϕ0 ∈ S(K ′
p)

denote the characteristic function of OKp. Then there is a character ϵ̃ : Kp → T such

that

w(g′)ϕ0(t) = ϵ̃−1(g′)ϕ0(t) (3.27)

for all g′ ∈ K′
p. ϵ̃−1 is genuine, which means that it obeys

ϵ̃−1([g, z]L) = zϵ̃−1([g, 1]L)

ϵ̃ is given explicitly in all cases by

ϵ0̃([g, z]) =

⎧⎨⎩z̄ cπ−r is a unit
z̄γw (−2cd) d is a unit

(3.28)
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Recall that by our convention γw(0) = 1. If cπ−r, d are both units, then both formulas

hold.

Proof. To show that ϕ0 is an eigenfunction, we observe that for matrices in Kp we

have

ωV (m(a))ϕ0 = ωV (n(b))ϕ0 = ωV (wπr)ϕ0 = ϕ0

We again check one of the cases and leave the rest to the reader. If m(a) ∈ K′
p, then

a must be a unit, and so |a| = 1. The result follows. The other two cases are just as

easy.

Since the above matrices along with [1, z]L generate K′
p, it follows that ϕ0 is

an eigenfunction under all of K′
p. Although ϕ0 is fixed by so many elements, the

eigenvalues will tend to be nontrivial due to the presence of the cocycle cL.

Now that we know ϵ̃−1 is well-defined and is a character, the claim that ϵ̃−1 is

genuine follows directly from the genuineness of the Weil representation.

Now we calculate ϵ̃−1, from which the formula for ϵ̃ will follow. Since it is genuine, it

suffices to verify our formula only for g′ = [g, 1]. First we calculate ϵ̃−1 on P ′(Kp) ∩ K′
p.

Write [︄(︄
d−1 b
0 d

)︄
, 1
]︄
L

=
[︄(︄
d−1 0
0 d

)︄
, 1
]︄
L

[︄(︄
1 bd
0 1

)︄
, 1
]︄
L

and so we get

ω

(︄[︄(︄
d−1 b
0 d

)︄
, 1
]︄
L

)︄
ϕ0 = ϕ0

Now we proceed in two cases. First, consider the case that cπ−r is a unit. We

compute the factorization of matrices (where at each step we always factor the

rightmost matrix)(︄
a b
c d

)︄
=
(︄
c−1πr aπ−r

0 cπ−r

)︄(︄
0 −π−r

πr dc−1πr

)︄
=(︄

c−1πr aπ−r

0 cπ−r

)︄(︄
0 −π−r

πr 0

)︄(︄
1 dc−1

0 1

)︄
= g1g2g3

31



It is easy to check that that as we perform each product, the Leray cocycle is always

trivial. Therefore,

ω

(︄[︄(︄
a b
c d

)︄
, 1
]︄
L

)︄
ϕ0 = ω ([g1, 1]L)ω ([g2, 1]L)ω ([g3, 1]L)ϕ0

However, we know that all three matrices on the right side act trivially on ϕ0, which

concludes this case.

For the second case, assume that d is a unit. Then we use the factorization (where

at each step we always factor the rightmost matrix)(︄
a b
c d

)︄
=
(︄
d−1 b
0 d

)︄(︄
1 0

d−1c 1

)︄
=
(︄
d−1 b
0 d

)︄(︄
0 −π−r

πr 0

)︄(︄
d−1cπ−r π−r

−πr 0

)︄

=
(︄
d−1 b
0 d

)︄(︄
0 −π−r

πr 0

)︄(︄
1 −d−1cπ−2r

0 1

)︄(︄
0 π−r

−πr 0

)︄
= g1g2g3g4

Out of the three factorizations we did, the Leray cocycles associated to the first and

third are trivial due to the upper-triangular matrix involved. However, for the second

factorization (︄
1 0

d−1c 1

)︄
=
(︄

0 −π−r

πr 0

)︄(︄
d−1cπ−r π−r

−πr 0

)︄

the associated Leray cocycle is γw
(︂
−1

2d
−1c

)︂
= γw(−2cd) if c ̸= 0 and 1 if c = 0. By

our choice of γw(0) = 1 we may treat these as the same case. We get[︄(︄
a b
c d

)︄
, γw (−2cd)

]︄
L

= [g1, 1]L [g2, 1]L [g3, 1]L [g4, 1]L

All the matrices on the right side act trivially on ϕ0. Hence, we get

w

(︄[︄(︄
a b
c d

)︄
, 1
]︄
L

)︄
ϕ0 = γw (2cd)ϕ0

and so

ϵ−1([g, 1]L) = γw (2cd)

We can use the character ϵ̃ to define a function ϵ on Kp simply by

ϵ(g) := ϵ̃([g, 1]L) =

⎧⎨⎩1 c is a unit
γw (−2cd) d is a unit

(3.29)
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Lemma 3.30. Let p be odd. For all g1, g2 ∈ Kp,

cL(g1, g2)ϵ(g1)ϵ(g2)ϵ(g1g2)−1 = 1

Proof. We know

ω([g1, 1]L)ω([g2, 1]L)ϕ0 = ω([g1g2, cL(g1, g2)]L)ϕ0

From the definition of ϵ, this becomes

ϵ(g1)−1ϵ(g2)−1ϕ0 = ϵ(g1g2)−1cL(g1, g2)ϕ0

and the result follows.

As our notation suggests, our choice of ϵ for use in definition 3.21 will be the above

function. The only remaining issue is that our ϵ is only defined on the set Kp and not

all of G(Kp). This can be easily remedied using [KRY06] equation (8.5.10), which we

do, which is the below proposition 3.31. First, we can see from the definition that ϵ is

trivial on P (Kp) ∩ Kp, since c = 0 for such matrices.

Even more strongly, ϵ is left invariant to P (Kp) ∩ Kp. Let p ∈ P (Kp) ∩ Kp and

g ∈ Kp. By lemma 3.30, we have

ϵ(pg) = ϵ(p)ϵ(g)cL(p, g) = ϵ(g)

This suggests a way to extend ϵ to all of G(Kp).

Proposition 3.31. For any g ∈ G(Kp), write g = pk for p ∈ P (Kp) and k ∈ Kp.

Then, we may extend the definition of ϵ by setting

ϵ(g) := ϵ(k)

This definition is well defined in that it doesn’t depend on the decomposition g = pk.

Proof. The proof is a standard argument. If g = p1k1 = p2k2, then set h = p−1
1 p2 =

k1k
−1
2 . Then h ∈ P (Kp) ∩ Kp and so ϵ(k2) = ϵ(h−1k1) = ϵ(k1).
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We now define normalized coordinates as in [KRY06] equation (8.5.11) and then

discuss some properties they mention right after.

Definition 3.32. For any odd place p, define normalized coordinates using the exten-

sion of ϵ above. Set

[g, z]N = [g, zϵ(g)]L

with cocycle

cN = cL(g1, g2)ϵ(g1)ϵ(g2)ϵ(g1g2)−1

Lemma 3.33. cN is trivial on the sets Kp × Kp, P (Kp) × P (Kp), and P (Kp) × Kp.

Proof. The first statement is lemma 3.30. The second follows since cL and ϵ are both

trivial on P (Kp). For the third, we calculate

cN(p, k) = cL(p, k)ϵ(p)ϵ(k)ϵ(pk)−1 = ϵ(k)ϵ(k)−1 = 1

Corollary 3.34. We may identify P (Kp) as a subgroup of P ′
Kp

via the splitting

map p ↦→ [p, 1]N . This gives a group isomorphism P (Kp) × T → P ′
Kp

given by

(p, z) ↦→ [p, z]N , where the group on the left is the product group.

Similarly, k ↦→ [k, 1]N gives us a splitting map Kp → K′
p and Kp × T ∼= K′

p as

groups.

In particular, if g ∈ P (Kp) ∩ Kp, then vanishing of ϵ on P (Kp) implies that under

either splitting map we have g ↦→ [g, 1]N = [g, 1]L.

We will later use this corollary to think of P (Kp) and Kp as subgroups of G′
Kp

.

3.7 The Even Case

Rather than jump straight into defining the global metaplectic group, we will first

perform an analogue of the above computations for even places. This is based on

[KRY06] section 8.5.4. Throughout this section, p will always denote an even prime.
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When working with even primes, we will use the Weil representation associated to

the quadratic space (V = Kp, Q(x) = x2). This has (x, y)Q = 2xy and det(V ) = 2. In

this case, the Weil representation is given by

ωV ([g, z]L)ϕ(t) = z⟨x(g), 2⟩p γw
(︃1

2

)︃j(g)
γw (1)−j(g) rV (g)ϕ(t)

with

rV (g)ϕ(t) =
∫︂
y∈cKp

ψ
(︂
abt2 + 2bcty + cdy2

)︂
ϕ (at+ cy) dgy

Recall K0,p(4) ⊂ Kp is the subset of Kp with c ∈ 4∂. Our goal is to show that although

ϕ0 is not an eigenfunction under all of Kp, it is an eigenfunction under K0,p(4). To

this end, we will again look at the Weil representation on a generating set in order to

get cleaner descriptions. In addition to the previous matrices we defined, let

n−(c) :=
(︄

1 0
c 1

)︄
, n−(c) :=

[︄(︄
1 0
c 1

)︄
, 1
]︄
L

Proposition 3.35. For the matrices in this proposition, assume that m(a),n(b),n−(c) ∈

K0,p(4). Then, the Weil representation satisfies the following 6 statements, where

the first three are for arbitrary ϕ(t) ∈ S(Kp) and the last three are related to ϕ0(t)

specifically.

ωV ([1, z]L)ϕ(t) = zϕ(t)

ωV (m(a))ϕ(t) = ⟨a, 2⟩pϕ(at)

ωV (n(b))ϕ(t) = ψ(bt2)ϕ(t)

ωV (w±πr)ϕ0(t) = |2|1/2γw

(︃1
2

)︃
γw (1)−1 ϕ0 (2t)

ωV (w±πr)ϕ0 (2t) = |2|−1/2γw

(︃1
2

)︃
γw (1)−1 ϕ0(t)

ωV (n−(c))ϕ0(t) = γw(2c)ϕ0(t)

Also note that if we specialize statements 2 and 3 to the case ϕ(t) = ϕ0(t), the outputs

become ⟨a, 2⟩pϕ0(t) and ϕ0(t), respectively.
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Proof. The first statement is trivial and is only included for completeness. We will

prove the second, fourth, and sixth statements. The omitted arguments are basically

carbon copies of the ones we give.

For the second statement, our assumption m(a) ∈ K0,p(4) implies that a is a unit.

We have j(m(a)) = 0, so we get

ωV (m(a))ϕ(t) = ⟨a, 2⟩p
∫︂
y∈{0}

ψ (0)ϕ (at) dgy = ⟨a, 2⟩pϕ(at)µ(g)

for some positive real µ(g) depending on the Haar measure. We now compute µ(g)

using the same exact method as before. If rV (g) is to be unitary, then in particular

we must have

(rV (m(a))ϕ0(t), rV (m(a))ϕ0(t)) = (ϕ0(t), ϕ0(t))

Since a is a unit, we may use ϕ0(at) = ϕ0(t) to get∫︂
Kp

ϕ0(t)2µ(g)2dt =
∫︂
Kp

ϕ0(t)2dt

from which we conclude µ(g)2 = 1 =⇒ µ(g) = 1.

For the fourth statement, we get a leading factor of

⟨±1, 2⟩pγw
(︃1

2

)︃
γ (1)−1 = γw

(︃1
2

)︃
γ (1)−1

The Hilbert symbol disappears in the case of −1 due to the equation 2∗12 −1∗12 = 12.

For the integral, we have

rV (wπr)ϕ0(t) =
∫︂
y∈Kp

ψ (−2ty)ϕ0 (±πry) dgy =
∫︂
y∈π−rOKp

ψ (−2ty) dgy = µ(g)ϕ0 (2t)

where we have abused notation slightly in the last step. The idea is that since we are

picking µ(g) to make this operation unitary, we may absorb any positive real factors

into µ(g) beforehand and then choose µ(g) to make things unitary. In this case, a

factor of qr was absorbed.

To evaluate µ(g) we use the same trick and get∫︂
Kp

ϕ0 (2t)2 µ(g)2dt =
∫︂
Kp

ϕ0(t)2dt
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This becomes

µ(g)2
∫︂

(1/2)OKp

dt = 1 =⇒ µ(g)2|1/2| = 1 =⇒ µ(g) = |2|1/2

For the sixth statement, if c ̸= 0 we make use of the factorization(︄
1 0
c 1

)︄
=
(︄

0 −π−r

πr 0

)︄(︄
cπ−r π−r

−πr 0

)︄
=
(︄

0 −π−r

πr 0

)︄(︄
1 −cπ−2r

0 1

)︄(︄
0 π−r

−πr 0

)︄

The Leray cocycles associated to these two factorizations are γw
(︂
−1

2π
2rc
)︂

= γw(−2c)

and 1 respectively. From this, we may conclude

n−(c)[1, γw(−2c)]L = wπrn(−c)w−πr

We may now use the previous statements in this proposition to conclude that

ωV (n−(c))ϕ0(t) = γw(2c)ωV (wπr)ωV (n(−c))ωV (w−πr)ϕ0(t)

By statement 5 of this proposition, this becomes

= |2|1/2γw (1) γw
(︃1

2

)︃−1
γw(2c)ωV (wπr)ωV (n(−c))ϕ0(2t)

By statement 3, we have

= |2|1/2γw (1) γw
(︃1

2

)︃−1
γw(2c)ωV (wπr)ψ(−ct2)ϕ0(2t)

However, ϕ0(2t) restricts t to lie in (1/2)OKp . Since c is a multiple of 4, it follows that

−ct2 will always be integral and ψ(−ct2)ϕ0(2t) = ϕ0(2t). We get

= |2|1/2γw (1) γw
(︃1

2

)︃−1
γw(2c)ωV (wπr)ϕ0(2t) = γw(2c)ϕ0(t)

as desired. If c = 0 in this case, then n−(c) is the identity element, so we clearly get

ϕ0(t) as our final answer. This fits with our convention γw(0) = 1.

Conjugating [KRY06] equation (8.5.26) gives us the following fact.

Fact 3.36. Every element of K0,p(4) may be written uniquely in the form n(b)m(a)n−(c)

for a ∈ O×
Kp

, b ∈ ∂−1, c ∈ 4∂.
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Corollary 3.37. There is a genuine character ϵ̃−1
2 : K0,p(4) → T so that

ωV (g′)ϕ0(t) = ϵ̃−1ϕ0(t)

For a, b, c ∈ OKp, it is given by

ϵ̃2([n(b)m(a)n−(c), z]L) = z̄⟨a, 2⟩pγw(−2c)

In terms of the matrix entries, this is

ϵ̃2

(︄[︄(︄
a b
c d

)︄
, z

]︄
L

)︄
= z̄⟨d, 2⟩pγw(−2cd)

Proof. The fact ϵ̃−1
2 is a genuine character follows from a similar argument to the

odd case (see proposition 3.26). The first explicit formula follows immediately from

proposition 3.35.

To get the formula directly in terms of the matrix entries, first note that since 4/c

and our matrix is in SL2(OKp), a and d must be units. This lets us factor the integral

matrix as(︄
a b
c d

)︄
=
(︄
d−1 b
0 d

)︄(︄
1 0

cd−1 1

)︄
=
(︄

1 bd−1

0 1

)︄(︄
d−1 0
0 d

)︄(︄
1 0

cd−1 1

)︄

From this, we see (︄
a b
c d

)︄
= n(bd−1)m(d−1)n−(cd−1)

We get that

ϵ̃2

(︄[︄(︄
a b
c d

)︄
, z

]︄
L

)︄
= z̄⟨d−1, 2⟩pγw(−2cd−1)

Since γw and the Hilbert symbol are insensitive to squares, we may swap out that d−1

for d to get the desired formula.

From this character, we get a function

ϵ2(g) = ϵ̃2([g, 1]L) = ⟨a, 2⟩pγw(−2cd)

Unlike in the odd case, there isn’t an obvious extension of ϵ2 to all of G(Kp), so we

don’t get a normalized coordinate system.
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Corollary 3.38. The splitting map k ↦→ [k, ϵ2(k)]L is a group homomorphism of

K0,p(4) into K′
0,p(4) and we get an isomorphism of groups K′

0,p(4) ∼= K0,p(4) × T.

Via the above corollary, we can use the splitting map to think of K0,p(4) as a subset

of G′
Kp

.

3.8 The Global Metaplectic Group

We may finally define the global metaplectic group using our earlier naive method.

This follows [KRY06] section 8.5.5. The next definition is [KRY06] equation (8.5.31).

Definition 3.39. Define the global cocycle cg : G(AK) ×G(AK) → T as the product

cg(g1, g2) =
∏︂
p|∞

cL,p(g1, g2)
∏︂
p|2
cL,p(g1, g2)

∏︂
p odd

cN,p(g1, g2)

of local cocycles acting on g1 and g2 at each place. For any g1, g2 ∈ G(AK) we will

have g1, g2 ∈ Kp for almost all places and hence the global cocycle is well defined.

Let G′
AK

= G(AK) × T as a set and denote an element in this set as [g, z]g, where

g ∈ G(AK) and z ∈ T. Give this set the group composition law

[g1, z1]g[g2, z2]g = [g1g2, z1z2cg(g1, g2)]g

We refer to this group as the (global) metaplectic group.

It will sometimes be convenient to refer to the p components of some g′ = [g, z]g,

which would lie in the local metaplectic groups. Our convention for this will be to

set g′
p = [gp, 1]L for p even and to set g′

p = [gp, 1]N for p odd. Note that none of these

depend on z, so we may also wish to introduce a z component, which we refer to as

zg′ . Of course, our choice of local components is fairly arbitrary and depends on our

choice of global coordinate system.

Definition 3.40. Given a collection of elements [gp, zp] in the local metaplectic groups

(using normalizaed coordinates for an odd place and Leray coordinates otherwise) as
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long as zp is almost always 1, it makes sense to form their product as an element of

G′
AK

. Define ∏︂
p≤∞

[gp, zp] = [
∏︂
p≤∞

gp,
∏︂
p≤∞

zp]g

It should be clear that the local components of some g′ (as given above this definition)

multiply to g′ in the sense that

g′ = [1, zg′ ]g
∏︂
p≤∞

g′
p

We call this the primary factorization of g′. In general, any product of local components

(along with possibly a [1, z]g term) that multiplies to an element g′ will be called a

factorization of g′.

If we have two factorizations g′ = ∏︁
p≤∞[gp,1, zp,1] = ∏︁

p≤∞[gp,2, zp,2], we must clearly

have gp,1 = gp,2 for all places. Furthermore, we know that all but finitely many of the

z components must be 1.

We conclude this section by noting that the local splitting maps we found earlier

imply global splittings as well.

Proposition 3.41. Let K0,f(4) ⊂ G(AK,finite) denote the set of all matrices where

c (the bottom left entry) is divisible by 4. Let K′
0,f(4) ⊂ G′

AK,finite
consist of all

elements with first coordinate in K0(4). One may think of these as subsets of G(AK)

and G′
AK

by letting all infinite components be trivial. Then, the splitting map k ↦→[︂
k,
∏︁

p|2 ϵ2,p(k)
]︂
g

is a homomorphism of K0,f (4) into K′
0,f (4). From this homomorphism,

we get K′
0,f (4) ∼= K0,f (4) × T.

Proof. The global splitting map follows immediately from the local splitting maps we

computed in corollaries 3.34 and 3.38.

Something new we didn’t have before is that there is also a splitting homomorphism

of G(K) into G′
AK

. This is [KRY06] lemma 8.5.15.
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Proposition 3.42. (i) For g ∈ G(K), ϵp(g) = 1 for almost all p. Hence,

ϵ(g) :=
∏︂
p odd

ϵp(g)

is well defined.

(ii) For g1, g2 ∈ G(K), cL,p(g1, g2)=1 for almost all p and we have a product

formula ∏︂
p≤∞

cL,p(g1, g2) = 1

(iii) A splitting homomorphism from G(K) to G′
AK

is given by

g ↦→ [g, ϵ(g)−1]g

It is trivial on P (K) in that the map becomes

p ↦→ [p, 1]g

(iv) We have

[g, ϵ(g)−1]g =
∏︂
p|2

[gp, 1]L
∏︂
p odd

[gp, ϵ(gp)−1]N
∏︂
p|∞

[gp, 1]L

At every place p, the element of G′
Kp

in this factorization is equal to [gp, 1]L.

Proof. For (i), equation (3.29) gives ϵp at odd places as

ϵp̃(g) =

⎧⎨⎩1 cπ−r is a unit
γw (−2cd) d is a unit

Since −2cd ∈ K, it follows that −2cd ∈ O×
Kp

for almost all places. The comment just

after equation (3.2) then implies that γw(−2cd) = 1 at almost all places, proving (i).

For (ii), we make a similar argument. Recall the definition cL(g1, g2) = γw
(︂

1
2c1c2c3

)︂
.

Since 1
2c1c2c3 ∈ K, we have 1

2c1c2c3 ∈ O×
Kp

for almost all places. The comment after

equation (3.2) then implies that the cocycle is 1 at almost all places. The product

formula follows from the product formula for the Weil constant - equation (3.3).
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For (iii), it suffices to show that for any g1, g2 ∈ G(K), we have

cg(g1, g2) = ϵ(g1)ϵ(g2)ϵ(g1g2)−1. This is because then

[g1, ϵ(g1)−1]g[g2, ϵ(g2)−1]g = [g1g2, cg(g1, g2)ϵ(g1)−1ϵ(g2)−1]g = [g1g2, ϵ(g1g2)−1]g

To show the desired identity, we write out

cg(g1, g2) =
∏︂
p|∞

cL,p(g1, g2)
∏︂
p|2
cL,p(g1, g2)

∏︂
p odd

cN,p(g1, g2)

By part (ii), cL is almost always 1, so it is okay to expand this as

∏︂
p|∞

cL,p(g1, g2)
∏︂
p|2
cL,p(g1, g2)

∏︂
p odd

cL,p(g1, g2)ϵp(g1)ϵp(g2)ϵp(g1g2)−1

We may collect terms and use the definition of the global ϵ to get

ϵ(g1)ϵ(g2)ϵ(g1g2)−1∏︂
p

cL,p(g1, g2)

By the product formula in part (ii), the desired result follows.

Finally, (iv) follows from the definition of normalized coordinates.
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Chapter 4

Sections

4.1 General Properties

The intermediary between the metaplectic group and the modular forms we will be

building is the notion of a section. We refer to [KRY04] page 902 (and for the general

case [Kud97] page 558) for all of the main ideas of this section, to which we add some

of our own exposition. (A definition of spherical may be found in [KY10] proposition

2.1.)

4.1.1 Preliminaries

For an idele class character χ (that is, a character of K×\AK) and a complex number

s, we obtain a character χP ′ of P ′
AK

. It is given by

χP ′

(︄[︄(︄
a b
0 a−1

)︄
, z

]︄)︄
= zχ(a)|a|sAK

(4.1)

We may think of this character as a 1 dimensional representation we will call ρ.

Although, this representation will only be a stepping stone and we will cease referring

to it after this argument. For p′ ∈ P ′
AK

and v ∈ C1, ρ is given by

ρ (p′) v = χP ′(p′)v
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We may now get to the representation we are actually interested in, which we denote

by I(s, χ). It is defined through normalized induction as

I(s, χ) = Ind
G′

AK

P ′
AK

ρ

By definition, I(s, χ) consists of all smooth functions Φ on G′
AK

satisfying

Φ([n(b)m(a), z]gg′, s) = zχ(a)|a|s+1
AK

Φ(g′, s), b ∈ AK , a ∈ A×
K (4.2)

This is a left representation, with the action of g′ ∈ G′
AK

given by Φ(x) ↦→ Φ(xg′).

Moreso than just functions in I(s, χ), we will be interested in sections. A section

Φ(s) will denote a (possibly arbitrary) choice of function in each I(s, χ) as s varies

over the entire complex plane.1 We will need some sense of coherence of a section over

different values of s. We will first define local sections and then address this with the

notion of a standard section.

Write our idele class character χ as χ = ⊗p≤∞χp. For a (finite or infinite) place p,

let Ip(s, χp) consist of smooth functions on G′
Kp

satisfying2

Φp([n(b)m(a), z]Lg′, s) = zχp(a)|a|s+1
p Φp(g′, s), b ∈ Kp, a ∈ K×

p (4.3)

Ip(s, χ) is a G′
Kp

representation where g′ acts via Φ(x) ↦→ Φ(xg′). A local section will

denote a (possibly arbitrary) choice of function in each Ip(s, χ) as s varies over the

entire complex plane.

Equation (4.3) tells us that a function Φp enjoys some form of degree s + 1

polynomial scaling in terms of the matrix entries. However, the exact nature in

terms of the matrix entries is unclear. The following calculation of the Iwasawa

decomposition will help clear things up for finite places.
1I find this notation somewhat confusing but it seems to be what people use. Essentially, these

functions should take as input some element g′ ∈ GAK
, but this argument is often omitted.

2Since ϵp(n(b)m(a)) = 1 for all odd places, there is no difference between using Leray or Normalized
coordinates in the formula above. We use Leray coordinates so as to handle all places simultaneously.
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Lemma 4.4. Let p be a finite place and take matrix entries in Kp. Given a matrix

g =
(︄
a b
c d

)︄
, we may write g = pk for p ∈ P (Kp) and k ∈ Kp. If p is unramified, this

may be done via an expression of the form(︄
a b
c d

)︄
=
(︄
M−1 ∗

0 M

)︄(︄
∗ ∗

cM−1 dM−1

)︄

where M ∈ {c, d} such that vπ(M) = min(vπ(c), vπ(d)).

Proof. Observe that (︄
M 0
0 M−1

)︄
g =

(︄
aM bM
cM−1 dM−1

)︄
By our choice of M , cM−1 and dM−1 are both integral and at least one is a unit.

Hence we have the equality of ideals (cM−1, dM−1) = (1) and we may choose integral

elements x, y so that x ∗ dM−1 − y ∗ cM−1 = 1. Now we can confirm that(︄
1 (x− aM)/(cM−1)
0 1

)︄(︄
M 0
0 M−1

)︄
g =

(︄
x y

cM−1 dM−1

)︄

This implies the desired decomposition.

The second part follows immediately from the first after noting that |χp| = 1.

Corollary 4.5. (i) A function Φp ∈ Ip(s, χp) is completely determined by its values

on Kp ⊂ K′
p.

(ii) Take p unramified. Given a g′ ∈ G′
Kp

, there is some k′ ∈ K′
p so that

|Φp(g′)| = q(s+1)min(vπ(c),vπ(d))|Φp(k′)|

Remark 4.6. Since Φp is smooth, it in particular takes on only finitely many different

absolute values on K′
p. Hence, (ii) above gives a precise description of the growth/decay

rate of Φp. One may get bounds in the ramified case as well.

4.1.2 Types of Sections

Definition 4.7. Let K′ denote the maximal compact subgroup of G′
AK

that is a product

of all local K′
p. A global section is called standard if its restriction to K′ is independent

of s. A local section is called standard if its restriction to K′
p is independent of s.
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Remark 4.8. A local standard section is completely determined by its values on the

compact subgroup K′
p (and even just by its values on Kp). Similarly, a global section is

determined by its values on K′, which follows from the global Iwasawa decomposition

G′
AK

= P ′
AK

K′.

Proposition 4.9. A function Φp with domain K′
p extends to a function in Ip(s, χp)

(with domain G′
Kp

) iff Φp obeys Φ([n(b)m(a), z]Lk) = zχp(a)Φ(k) for [n(b)m(a), 1]L, k ∈

K′
p. Such an extension is unique when it exists.

Let p be an odd prime so that we have the splitting giving Kp ⊂ G′
Kp

. Then, the above

holds for Kp. That is, a function Φp with domain Kp extends to a function in Ip(s, χp)

(with domain G′
Kp

) iff Φp obeys Φ([n(b)m(a), 1]Lk) = χp(a)Φ(k) for [n(b)m(a), 1]L, k ∈

Kp. Such an extension is unique when it exists.3

Proof. It is clear the stated hypothesis is needed, since it is just equation (4.3) restricted

to K′
p or Kp. Uniqueness follows from the previous remark. For existence, the natural

way to try to extend Φp is by using equation (4.3). We do this below in the Kp case,

although the same proof still works if one replaces all occurrences of Kp with K′
p.

Given g′ ∈ G′
Kp

, write g′ = p′k for p′ = [n(b)m(a), z]L ∈ P ′(Kp) and k ∈ Kp. Then

we would like to define the extension by setting

Φp(g′) = zχp(a)|a|s+1
p Φp(k)

The obstruction to this is showing that this definition does not depend on the decompo-

sition g′ = p′k. To prove this, consider two different decompositions g′ = p′
1k1 = p′

2k2.

Then, let h = p′−1
1 p′

2 = k1k
−1
2 ∈ P ′

AK
∩ Kp, so that p′

2k2 = (p′
1h)(h−1k1). Let p′

1 =

[n(b1)m(a1), z1]L and h = [n(bh)m(ah), zh]L, so that p′
2 = p′

1h = [n(b2)m(a1ah), z1zh]L.

We can see our construction is well defined if

z1χp(a1)|a1|s+1
p Φp(k1) = z1zhχp(a1ah)|a1ah|s+1

p Φp(h−1k1)
3Note the missing z term in this case! This is due to corollary 3.34.
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If we are in the Kp case, then the fact h ∈ P ′
AK

∩ Kp along with corollary 3.34 imply

zh = 1. The desired formula then follows immediately since by hypotheiss

Φp(h−1k1) = z−1
h χp(a−1

h )|a−1
h |s+1

p Φp(k1)

Now, we just need to show that Φ0
p is a section. The fact that Φ0

p obeys equation

(4.3) will follow immediately from well-definedness. Namely, if we have some g′ = p′
1k,

then we get

Φ0
p(p′

2g
′) = Φ0

p(p′
2p

′
1k) = χP ′,p(p′

2p
′
1) = χP ′,p(p′

2)χP ′,p(p′
1) = χP ′,p(p′

2)Φ0
p(p′

1g
′)

Corollary 4.10. If χp is unramified (this is, it is trivial on O×
Kp

), then there is a

unique Φp ∈ Ip(s, χp) that is identically 1 on Kp. This is called the spherical function.

Similarly, there is a unique standard section Φp(s) that is identically 1 on Kp,

which we call the spherical section. We denote it by Φ0
p(s).

An alternate description of sphericality is that this is the unique element of the

representation Ip(s, χ) invariant under Kp and having Φ0
p(1, s) = 1.

Given a collection of sections Φp(s) at every place such that almost all of the

sections are spherical, we may form their tensor product

Φ(s) = ⊗p≤∞Φp(s)

This is a function via

Φ(g′, s) = zg′
∏︂
p≤∞

Φp(g′
p, s) (4.11)

where we used the primary factorization of g′ in definition 3.40. The product is well

defined in the sense that almost all terms are 1. This is because g′
p ∈ Kp almost

everywhere, and almost all of our sections are spherical. One can also take such tensor

products over smaller collections of local sections. For example, one could form a
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section Φf over finite places. Finally, we note that the above definition is invariant of

the factorization of g′ that is used. That is, if we swap out the z and local components

of the primary factorization for any other factorization, we will get the same result for

Φ(g′, s).

The representation I(s, χ) is the restricted product I(s, χ) = ⊗′
p≤∞Ip(s, χ) (see

[Kud96] p.558). We will take this to mean that it is given by sums of functions

Φ = ⊗p≤∞Φp

where almost all of the component functions are spherical. Smoothness of sections

of I(s, χ) should make it unsurprising that they tend to look spherical at almost all

places.

Remark 4.12. It can be informative to verify that such a pure tensor is indeed an

element of I(s, χ). Let p′ =
[︄(︄
a b
0 a−1

)︄
, zp′

]︄
∈ P ′(AK). We can then check

Φ(p′g′) = zp′zg′
∏︂
p≤∞

Φ(p′
pg

′
p)p = zp′zg′

∏︂
p≤∞

χp(ap)|a|s+1
p Φ(g′

p)p = zp′χ(a)|a|s+1
AK

Φ(g′)

A section Φ(s) is called factorizable if Φ(s) = ⊗pΦp(s) is a pure tensor with respect

to the restricted product.

4.2 The λ mapping

For this section, take p to be a finite place. Given a quadratic space (V,Q) of odd

dimension over Kp there is a way to use the Weil representation to associate a local

section to any Schwartz function ϕ on V called the λ map. Although we provide

proofs, the below properties of the λ mapping are found in [KRY06] pages 328-329 and

[Kud96] section III.5. Afterwards, we use λ to prove a type of symmetry possessed by

local sections.
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4.2.1 Properties of λ

Definition 4.13. Define a map λV : S(V ) → Ip(s0, χV ) by

λV (ϕ) :=
(︄
g′ ↦→ (ωV (g′)ϕ(t))|t=0

)︄

where s0 = dim(V )
2 − 1.

λV (ϕ) then extends to a unique standard section, which we call the section associated

to ϕ.

Of course, we need to show that λV (ϕ) is a member of Ip(s0, χV ). First we need a

lemma where we look at some of the behavior of the Weil action.

Lemma 4.14.

ωV ([n(b)m(a), z]L)ϕ(t) = zχV (a)|a|dim(V )/2ψ
(︃1

2b(t, t)Q
)︃
ϕ(at)

Proof. This is similar to many calculations we have already done. First recall the

definition of the Weil representation.

ωV ([g, z]L)ϕ(t) = χV (x(g))
(︄
zγw

(︃1
2

)︃j(g))︄dim(V )

γ
(︃
ψ
(︃1

2t
)︃

◦ V
)︃−j(g)

rV (g)ϕ(t)

where

rV (g)ϕ(t) =
∫︂
y∈cV

ψ
(︃1

2(at, bt)Q + (bt, cy)Q + 1
2(cy, dy)Q

)︃
ϕ (at+ cy) dgy

Note j(g) = 0 here so we have

ωV ([n(b)m(a), z]L)ϕ(t) = zχV (a−1)
∫︂
y∈{0}

ψ
(︃1

2(at, a−1bt)Q
)︃
ϕ (at) dgy

= zχV (a−1)ψ
(︃1

2b(t, t)Q
)︃
ϕ(at)µ(g)

for some positive real µ(g) coming from the Haar measure. For rV (g) to be unitary, we

must have (rV ([n(b)m(a), z]L)ϕL(t), rV ([n(b)m(a), z]L)ϕL(t)) = (ϕL(t), ϕL(t)), where

ϕL is the indicator function of some lattice L ⊂ V of measure #L. Or in other words

µ(g)2
∫︂
V
ψ
(︃

−1
2b(t, t)Q

)︃
ϕ(at)ψ

(︃1
2b(t, t)Q

)︃
ϕ(at)dt = #L
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The integral is just over the set a−1L, and so we get µ(g)2|a|−dim(V )#L = #L =⇒

µ(g) = |a|dim(V )/2. Thus, we have

ωV ([n(b)m(a), z]L)ϕ(t) = zχV (a)|a|dim(V )/2ψ
(︃1

2b(t, t)Q
)︃
ϕ(at)

where we used the fact χV is quadratic to swap out χV (a−1) for χV (a).

Proposition 4.15. Assume dim(V ) is odd.

(i) λV (ϕ) is indeed a function in Ip(s0, χV ).

(ii) The map λV intertwines the Weil action with the action of G′
Kp

on Ip(s0, χV ).

That is, if λV (ϕ) = Φ(x, s0), then λV (ωV (g′)ϕ) = Φ(xg′, s0).

(iii) Take dim(V ) = 1 and p odd. If det(V ) ∈ O×
Kp

, then λV (ϕ0) is identically 1

on Kp ⊂ G′
Kp

. Hence, the associated section to ϕ0 is the spherical section ϕ0
p.

Proof. Points (i) and (ii) are stated on page 328 of [KRY06], which come from the

start of section III.5 of [Kud96]. (iii) is a weaker version of Lemma 4.1 from [KY10].

We give elementary verifications for all of these points except for showing that the

function λV (ϕ) is smooth.

Before anything else, we remark that the representation IGP (χψV |det|m/2−(n+1)/2)

given in section III.5 of [Kud96] is indeed the same as the I(s, χV ) from [KRY06] that

we use (although we must plug in n = 1 into their formula which corresponds to us

taking G = SL2). Using [Kud96] proposition 4.3 for the definition of χψV , we see they

use the normalized induction of the one dimensional representation[︄(︄
a b
0 a−1

)︄
, z

]︄
R

↦→ zχV (a)γw(a, 1/2)−1|a|dim(V )/2−1

Definition 3.22 gives the coordinate change [g, z]R = [g, zγw (x(g), 1/2)−1 γ(1/2)−j(g)]L.

Since in the above formula g is upper triangular, we have j(g) = 0, and we see their

representation is the same as[︄(︄
a b
0 a−1

)︄
, zγw

(︂
a−1, 1/2

)︂−1
]︄
L

↦→ zχV (a)γw(a, 1/2)−1|a|dim(V )/2−1
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Since γw is insensitive to square factors, it follows that this is just the representation

given by the character in equation (4.1), which is what we used to build I(s, χV ). Now

we move on to our elementary verification.

For (i), we must verify equation (4.3). We start with the definition

λV (ϕ)([n(b)m(a), z]Lg′) = ωV ([n(b)m(a), z]Lg′)ϕ(t)|t=0

Since we are working in Leray coordinates, cL is trivial on P ×G and so this equals

= ωV ([n(b)m(a), z]L)ωV (g′)ϕ(t)|t=0

By the lemma, this is the same as

= χV (a)|a|dim(V )/2ψ
(︃1

2b(t, t)Q
)︃

(ωV (g′)ϕ)(at)
⃓⃓⃓⃓
⃓
t=0

= χV (a)|a|dim(V )/2(ωV (g′)ϕ)(0)

However, this is precisely the same as χV (a)|a|dim(V )/2λV (ϕ), proving (i).

(ii) follows immediately from the definitions. We may describe the section λV (ϕ)

as a function using the notation

λV (ϕ) =
(︄
x ↦→ (ωV (x)ϕ(t))|t=0

)︄

We also clearly have

λV (ωV (g′)ϕ) =
(︄
x ↦→ (ωV (x)ωV (g′)ϕ(t))|t=0

)︄
=
(︄
x ↦→ (ωV (xg′)ϕ(t))|t=0

)︄

Putting these two observations together, we have (ii).

Now we tackle (iii). The splitting Kp ⊂ G′
Kp

is given by corollary 3.34 as k ↦→

[k, ϵ(k)]L. The element of I(s0, χV ) corresponding to ϕ0 is given on Kp by

λV (ϕ0) =
(︄

[k, ϵ(k)]L ↦→ (ωV ([k, ϵ(k)]L)ϕ0(t))|t=0

)︄

Thus it suffices to check (ωV ([k, ϵ(k)]L)ϕ0(t))|t=0 = 1. However, this follows by the

definition of ϵ. Namely, by proposition 3.26 we have

ωV ([k, 1]L)ϕ0(t) = ϵ(k)−1ϕ0(t) =⇒ ωV ([k, ϵ(k)]L)ϕ0(t) = ϕ0(t)
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4.2.2 Symmetries of Schwartz Functions

The following proposition tells us that Schwartz functions always have some amount

of symmetry under the Weil action, which then carries over to the associated section.

This will later be used to prove the level structure of a modular form.

Proposition 4.16. (i) Given a Schwartz function ϕ ∈ S(V ), there exists a subgroup

Γ′
p ⊂ K′

0,p(4) commensurable with K′
0,p(4) such that ϕ is an eigenfunction under the

action of ωV (k′) for k′ ∈ Γ′
p.

(ii) If we denote the eigenvalue by ϵϕ(k′)−1, then ϵ−1
ϕ is a genuine character Γ′

p → T.

(iii) If V = K and ϕ = ϕ0 = 1OKp
, then we may take Γ′

p = K′
0,p(4) and take ϵϕ = ϵp

to be the character we defined previously.

(iv) If Φ is the associated section to ϕ, then for any Γ′
p and ϵϕ as above we have

Φ(g′k′, s) = ϵϕ(k′)−1Φ(g′, s) for k ∈ Γ′
p

Proof. Start by proving (i). Let L ⊂ V denote some sublattice and L∗ denote its dual

under (·, ·)Q. It suffices to prove the result for indicator functions ϕ = 1µ+L (µ ∈ V )

since every Schwartz function ϕ is a finite sum of such functions. For a given indicator

function ϕ, we will show that one may take

Γ = Γ(πN) =
{︄
g =

(︄
a b
c d

)︄ ⃓⃓⃓⃓
⃓ g ≡

(︄
1 0
0 1

)︄
mod πN

}︄

for N sufficiently large, which will prove the claim.

To reduce the problem further, note that Γ(πN) is generated by its elements of

the form m(a), n(b), n−(c). So, it suffices to show that ϕ is an eigenfunction under

these elements. Since ϕ is an indicator function, we have for a sufficiently close to

1 that (for all t) ϕ(at) = ϕ(t). Similarly, for all b sufficiently close to 0, we have

ψ
(︂

1
2b(t, t)Q

)︂
= 1. It follows from lemma 4.14 that for N large enough that ϕ is an

eigenfunction under m(a), n(b) ∈ Γ(πN ). This reduces the problem to checking that ϕ
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is an eigenfunction under ωV ([n−(c), 1]L) for c sufficiently small. In turn, it suffices to

check ϕ is an eiegenfunction under the action of rV .

To do this, we use of the following factorization which is derived from the one in

the proof of proposition 3.35:

n−(c) =
(︄

1 0
c 1

)︄
=
(︄

0 −π−r

πr 0

)︄(︄
1 −cπ−2r

0 1

)︄(︄
0 π−r

−πr 0

)︄

Temporarily adopt the notation ∼ to denote that two functions of t are constant

multiples of each other. Then, this factorization gives us

rV (n−(c))ϕ(t) ∼ rV (wπr)rV (n(−cπ−2r))rV (w−πr)ϕ(t)

Starting the evaluation from the right side, we have

rV (w−πr)ϕ(t) ∼
∫︂
y∈V

ψ (−(t, y)Q)ϕ(−πry)dy

Note that we no longer have to worry about the measure dgy since we only care about

everything up to a constant multiple. Plugging in ϕ = 1µ+L and lightly rearranging,

we get the Fourier transform

rV (w−πr)ϕ(t) ∼
∫︂
y∈V

ψ (−(t, y)Q)1L(−µ− πry)dy

Substitute y2 = −µ− πry to get

rV (w−πr)ϕ(t) ∼ ψ
(︃ 1
πr

(t, µ)Q
)︃ ∫︂

y2∈L
ψ
(︃ 1
πr

(t, y2)Q
)︃
dy2

Just as before, the integrand is an additive character and hence the integral is 0 unless

the integrand is identically 1. This gives us

rV (w−πr)ϕ(t) ∼ ψ
(︃ 1
πr

(t, µ)Q
)︃
1L∗(t)

From this, we can conclude that

rV (n(−cπ−2r))rV (w−πr)ϕ(t) ∼ ψ
(︃

−1
2cπ

−2r(t, t)Q
)︃
ψ
(︃ 1
πr

(t, µ)Q
)︃
1L∗(t)
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For c sufficiently close to 0, ψ
(︂
−1

2cπ
−2r(t, t)Q

)︂
will be identically 1 on L∗. Take N

large enough for this to happen, so that

rV (n(−cπ−2r))rV (w−πr)ϕ(t) ∼ ψ
(︃ 1
πr

(t, µ)Q
)︃
1L∗(t)

Finally, we apply the rV (wπr) operator, so that the operators on the left hand side

become (a constant multiple of) rV (n−(c))ϕ(t). This application of rV (wπr) will undo

the Fourier transform and give us our original indicator function back, which we check.

From the definitions, we have

rV (n−(c))ϕ(t) ∼
∫︂
y∈V

ψ (−(t, y)Q)ψ ((y, µ)Q)1L∗(πry)dy

Letting ynew = πryold alongside some simple rearranging gives

rV (n−(c))ϕ(t) ∼
∫︂
y∈L∗

ψ
(︃

− 1
πr

(y, t− µ)Q
)︃
dy ∼ 1µ+L(t)

This concludes the proof of (i). Note that in general the group Γ′
p will be able to be

bigger than what we constructed.

(ii) follows easily. For whichever Γ we choose, ϵ−1
ϕ is a character since it arises

from eigenvalues. Genuineness follows from the definition of the Weil representation.

The fact that this character outputs into T follows since the Weil representation is

normalized to be unitary.

(iii) follows immediately from proposition 3.26 and corollary 3.37.

Finally, we prove (iv). Write g′ = [m(a)n(b), 1]Lk′
g for k′

g ∈ K′
p. From the definition

of a standard section, we have

Φ(g′k′, s) = χp(a)|a|s+1
p Φ(k′

gk
′, s) = χp(a)|a|s+1

p Φ(k′
gk

′, s0)

By the intertwining property of λ from (ii) of proposition 4.15, we get

χp(a)|a|s+1
p Φ(k′

gk
′, s0) = χp(a)|a|s+1

p λV (ωV (k′)ϕ)(k′
g) = ϵϕ(k′)−1χp(a)|a|s+1

p λV (ϕ)(k′
g)
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From this point it is easy to reverse the previous steps to get to the desired result.

We continue from the previous line to get

= ϵϕ(k′)−1χp(a)|a|s+1
p Φ(k′

g, s0) = ϵϕ(k′)−1χp(a)|a|s+1
p Φ(k′

g, s) = ϵϕ(k′)−1Φ(g′, s)

4.3 The Archimedean Section Φl

For this section, take p to be an Archimedean place. We follow [KY10] p.2280, with

[KRY06] p.336-338 for the definition of Φl and [HI13] p.1988 for a formula for the

subgroup ˜︃SO2(R) in our particular cases.

The local metaplectic group G′
Kp

admits a subgroup ˜︃SO2(R), which we identify

with the group R/4π and is given in Rao coordinates (see remark 3.22 for all relevant

details on Rao coordinates) as

k′(θ) =

⎧⎨⎩[k(θ), 1]R −π < θ ≤ π

[k(θ),−1]R π < θ ≤ 3π
(4.17)

where k(θ) =
(︄

cos(θ) sin(θ)
− sin(θ) cos(θ)

)︄
is a (clockwise!) rotation by θ. This same group

in Leray coordinates is given by example 3.18. Notice that we have K′
p = ˜︃SO2(R)T,

where T = {[1, z]R}.

For l ∈ 1
2Z, let νl denote the character of ˜︃SO2(R) given by

νl(k′(θ)) = eilθ

For 2l odd, we may extend νl to all of K′
p (that is, to all z ∈ T) by letting4

νl(k′(θ)[I, z]R) = zeilθ (4.18)

It should be clear this is the unique such extension that is a genuine character.
4For 2l even, set νl(k′(θ)[I, z]R) = eilθ. However, we will only be interested in the odd case.
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Remark 4.19. Since k′(θ) = k′(θ+2π)[I,−1]R, checking this extension is well defined

comes down to the calculation

νl(k′(θ + 2π)[I,−1]R) = −eilθeil∗2π = eilθ = νl(k′(θ))

Proposition 4.20. Take p Archimedean. Fix a non-integral choice of l. Set κ = ±1,

taking κ = 1 if 2l is 1 mod 4 and κ = −1 if 2l is 3 mod 4. Set χp(x) = ⟨x, κ⟩p

(note that the Hilbert symbol only cares about the sign of κ). Then, there is a unique

Archimedean section Φl
p(s) ∈ Ip(s, χp) that satisfies

Φl
p(g′k′, s) = νl(k′)Φl

p(g′, s), Φl
∞(1, s) = 1

Furthermore, the existence of this section forces our above choice of κ ∈ {±1}. That

is, there is no such section if we had taken χp(x) = ⟨x,−κ⟩p instead.

Proof. By proposition 4.9, it suffices to verify that νl obeys equation (4.3) on the set

K′
p. That is, we need

νl(p′g′) = zχp(a)νl(g′) (4.21)

for p′, g′ ∈ K′
p and where p′ has the Leray coordinate description p′ = [n(b)m(a), z]L.

Write g′ in the form g′ = k′(θ)[I, z2]R. Now observe that [n(b)m(a), 1]L ∈ P ′(Kp) ∩

K′
p. However, since our place is Archimedean, we have P ′(Kp)∩K′

p = {[I, z]R, [−I, z]R}.

We proceed by casework. Take p′ = [I, z1]R and note that [I, z1]R = [I, z1]L.

Equation (4.21) becomes

νl([I, z1]Rk′(θ)[I, z2]R) = z1 ∗ χp(1)νl(k′(θ)[I, z2]R)

which is clearly true by how we defined νl.

Now take p′ = [−I, z1]R Note the equalities k′(π) = [−I, 1]R =⇒ [−I, z1]R =

[I, z1]Rk′(π) and [−I, z1]R = [−I, z1γw(−1, 1/2)−1]L = [−I, z1e
2πi/4]L. Equation (4.21)

becomes

νl([I, z1]Rk′(π)k′(θ)[I, z2]R) = z1e
2πi/4 ∗ χp(−1)νl(k′(θ)[I, z2]R)
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Using k′(π)k′(θ) = k′(θ+ π) and applying the definition of νl, we see this is equivalent

to

z1z2e
ilθeilπ = z1e

2πi/4⟨−1, κ⟩pz2e
ilθ

Simplifying, this holds iff

e2πi∗(2l−1)/4 = ⟨−1, κ⟩p

Since we are at an Archimedean place, the Hilbert symbol is -1 iff both arguments

are negative. Thus, if 2l is 1 mod 4, we need κ = 1 and if 2l is 3 mod 4, we need

κ = −1.

Let

Φl
∞(s) := ⊗p|∞Φl

p(s)

be a section of ⊗p|∞Ip(s, ⟨x, κ⟩p). We will later be building a factorizable section with

Φl
∞ as the Archimedean part. An Eisenstein series created from such a section (via

the method we are about to describe) will then have a weight of l.
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Chapter 5

Eisenstein Series

5.1 The Series E(Φ)

The following construction and formulas are based off of a standard calculation that

can all be found in any number of our sources. See for example [KY10] section 2 or

for greater generality [Kud97] parts I,1,2,4.

Proposition 3.42 gives us the splitting map γ ↦→ [γ, ϵ(γ)−1]g for γ ∈ G(K). Under

this map, we have p ↦→ [p, 1]g for p ∈ P (K). Every section Φ(s) ∈ I(s, χ) descends to

a function on P (K)\G′
AK

. This follows from the calculation

Φ
⎛⎝[︄(︄a b

0 d

)︄
, 1
]︄
g

g′ , s

⎞⎠ = χ(a)|a|s+1
AK

Φ(g′, s) = Φ(g′, s)

where we used that a ∈ K and χ is an idele class character.

For a standard section Φ(s) and g′ ∈ G′
AK

, we then form the sum

E(g′, s,Φ) =
∑︂

γ∈P (K)\G(K)
Φ(γg′, s)

This is the Eisenstein series associated to Φ(s). The comments around (I.2) of [Kud97]

tell us that this series is absolutely convergent for Re(s) > 1 and has a meromorphic

extension (in the variable s) to all s.

This function has a Fourier expansion, which can be found by temporarily fixing
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g′, using the splitting n(b) = [n(b), 1]g and considering the function of b ∈ AK

E(n(b)g′, s,Φ) =
∑︂

γ∈P (K)\G(K)
Φ(γn(b)g′, s)

For b ∈ K, we have (P (K)\G(K))n(b) = P (K)\G(K), and so it follows the above

function is periodic with respect to K and admits a Fourier series. Let ψ denote the

(unnormalized) exponential on AK . We may write (for Fourier coefficients depending

on g′)

E(n(b)g′, s,Φ) =
∑︂
m∈K

Em(g′, s,Φ)ψ(mb),

where Em(g′) =
∫︂
K\AK

E(n(b)g′, s,Φ)ψ(−mb)db (5.1)

In the above integral, db is chosen so the total measure is 1. Taking b = 0 in the left

sum lets us write

E(g′, s,Φ) =
∑︂
m∈K

Em(g′, s,Φ), where Em(g′) =
∫︂
K\AK

E(n(b)g′, s,Φ)ψ(−mb)db

which is called the Fourier series of E(g′, s,Φ).

In the case our section is factorizable, we get a nice formula for Em. Below, let δm

be a discrete delta function, equal to 1 when m = 0 and equal to 0 otherwise.

Proposition 5.2. If Φ is factorizable and g′ = [g, z′
g]g,

Em(g′, s,Φ) = δmΦ(g′, s) + zg′ |Disc(K)|−1/2 ∏︂
p≤∞

Wm,p(g′
p, s,Φp)

where Wm,p are the local Whittaker functions, given by

Wm,p(g′
p, s,Φp) =

∫︂
Kp

Φp([wn(b), 1]Lg′
p, s)ψp(−mb)db

Proof. Start with the definition of Em and plug in the definition of E to get

Em(g′) =
∫︂
K\AK

∑︂
γ∈P (K)\G(K)

Φ(γn(b)g′, s)ψ(−mb)db
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For the integral, we will use the fundamental domain
(︂∏︁

p<∞ OKp

)︂
× (Rn/OK). We

now swap the integral and sum and use (iv) of proposition 3.42 to get

∑︂
γ∈P (K)\G(K)

zg′
∏︂
p<∞

∫︂
OKp

Φp([γn(b), 1]Lg′, s)ψp(−mb)db·∫︂
Rn/OK

∏︂
p|∞

Φp([γn(b), 1]Lg′, s)ψp(−mb)db (5.3)

To maintain the correct measure, we choose db so that each OKp has measure 1 and

Rn/OK also has measure 1.

By the Bruhat decomposition, a set of coset representatives for P (K)\G(K) is

given by I along with
{︄
w

(︄
1 d
0 1

)︄}︄
d∈K

. We will prove the case we need right after

this proposition, but see [Kud97] equation (0.5) for the general statement. For now,

we continue with two cases.

When γ = I in the above sum, we get a summand of

zg′
∏︂
p<∞

∫︂
OKp

Φp([n(b), 1]Lg′, s)ψp(−mb)db
∫︂
Rn/OK

∏︂
p|∞

Φp([n(b), 1]Lg′, s)ψp(−mb)db

By the definition of section, Φp is left invariant to n(b). Hence, we get

zg′
∏︂
p<∞

∫︂
OKp

Φp(g′, s)ψp(−mb)db
∫︂
Rn/OK

∏︂
p|∞

Φp(g′, s)ψp(−mb)db

= zg′Φ(g′, s)
∏︂
p<∞

∫︂
OKp

ψp(−mb)db
∫︂
Rn/OK

∏︂
p|∞

ψp(−mb)db

Each of the integrals over OKp are 0 unless the integrand is identically 1. Hence, we

can only get a nonzero value if m ∈ ∂−1. Assuming this to be the case, we get

= zg′Φ(g′, s)
∫︂
Rn/OK

∏︂
p|∞

ψp(−mb)db = zg′Φ(g′, s)
∫︂
Rn/OK

e2πitr(−mb)

Since we assumed m ∈ ∂−1, it follows our integrand is an exponential that is periodic

with respect to the lattice OK . Hence, by general properties of Fourier series, the

integral is 0 unless m = 0. This gives us the δmΦ(g′, s) term in our sum.
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For the second case, we now consider all terms where γ = w

(︄
1 d
0 1

)︄
. This yields

∑︂
d∈K

zg′
∏︂
p<∞

∫︂
OKp

Φp([wn(b+ d), 1]Lg′, s)ψp(−mb)db
∫︂
Rn/OK

·
∏︂
p|∞

Φp([wn(b+ d), 1]Lg′, s)ψp(−mb)db (5.4)

We may change variables using bnew = bold + d to get

ψ(md)
∑︂
d∈K

∏︂
p<∞

∫︂
d+OKp

Φp([wn(b), 1]Lg′, s)ψp(−mb)db
∫︂
d+Rn/OK

·
∏︂
p|∞

Φp([wn(b), 1]Lg′, s)ψp(−mb)db (5.5)

Since md ∈ K, we have ψ(md) = 1. As d varies, our domain of integration perfectly

tessellates AK and we get

∏︂
p<∞

∫︂
Kp

Φp([wn(b), 1]Lg′, s)ψp(−mb)db
∫︂
Rn

Φp([wn(b), 1]Lg′, s)ψp(−mb)db

The last step is to rescale our measure to the “usual" measure on Rn. This gives us a

factor of 1 over the area of OK , which is where the |Disc(K)|−1/2 comes from.

Lemma 5.6. A set of coset representatives for P (K)\G(K) is given by I along with{︄
w

(︄
1 d
0 1

)︄}︄
d∈K

.

Proof. Once can easily verify the product(︄
a b
c d

)︄
=
(︄

1/c a
0 c

)︄(︄
0 −1
1 0

)︄(︄
1 d/c
0 1

)︄

Depending on whether c = 0, we see that our set of coset representatives is sufficient.

To see that I is not equivalent to any other representative, it suffices to check that

P (K) ̸= P (K)w
(︄

1 d
0 1

)︄
⇔ w

(︄
1 d
0 1

)︄
/∈ P (K)

To check the other representatives are not equivalent, we must verify

P (K)w
(︄

1 d1
0 1

)︄
̸= P (K)w

(︄
1 d2
0 1

)︄
⇔ w

(︄
1 d1 − d2
0 1

)︄
w−1 /∈ P (K)
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However, this just reduces to (︄
1 0

d2 − d1 1

)︄
/∈ P (K)

Although we didn’t explicitly check claims of the analyticity of E, it is easy enough

to directly check that Wm,p is holomorphic where defined. Even more strongly, there

is a sense in which W is meromorphic at positive real infinity, which we describe in

the next lemma.

Lemma 5.7. Wm,p is holomorphic in s for Re(s) > 1. For each fixed g′
p, there is a

meromorphic function fg′ on the open disc of radius 1/q such that Wm,p(g′
p, s,Φp) =

fg′(q−s) for all Re(s) > 1.

Proof. First recall the definition

Wm,p(g′
p, s,Φp) =

∫︂
Kp

Φp([wn(b), 1]Lg′
p, s)ψp(−mb)db

Write g′ =
[︄(︄
u v
0 u−1

)︄
, 1
]︄
L

∗ k(g′) for some k′(g′) ∈ K′
p. This gives us

Wm,p(g′
p, s,Φp) =

∫︂
Kp

Φp

(︄[︄(︄
0 −u−1

u v + bu−1

)︄
, 1
]︄
L

k′(g′), s
)︄
ψp(−mb)db

By lemma 4.4, we have the Iwasawa decomposition
(︄

0 −u−1

u v + bu−1

)︄
= p′

1k
′
1, with

p′
1 =

(︄
M(g′, b)−1 ∗

0 M(g′, b)

)︄
, where M(g′, b) ∈ {u, v+ bu−1} such that vπ(M(g′, b)) =

min(vπ(u), vπ(v + bu−1)). Letting the function k′(g′, b) := k′
1k

′(g′), we have

Wm,p(g′
p, s,Φp) =

∫︂
Kp

χp(M(g′, b)−1)|M(g′, b)−1|s+1
p Φp (k′(g′, b), s)ψp(−mb)db

Since we are dealing with a standard section, Φp (k′(g′, b), s) has no s dependence.

With a little cleanup, we get

Wm,p(g′
p, s,Φp) =

∫︂
Kp

χp(M(g′, b)−1)q(s+1)min(vπ(u),vπ(v+bu−1))Φp (k′(g′, b))ψp(−mb)db
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Since Φp is smooth, its absolute value on Kp is bounded above by some constant C.

This gives us the upper bound

|Wm,p(g′
p, s,Φp)| ≤ C

∫︂
Kp

q(s+1)min(vπ(u),vπ(v+bu−1))db

To handle the piecewise nature of the remaining term, it is convenient to partition

the domain as Kp = πv0OKp ⊔ (Kp − πv0OKp) for some constant v0. We choose

v0 = min(vπ(u2), vπ(uv)) since as long as b /∈ πv0OKp then we will have

vπ(b) < min(vπ(u2), vπ(uv)) =⇒ min(vπ(u), vπ(v + bu−1)) = vπ(bu−1)

Looking at our two cases, we can first consider∫︂
πv0OKp

q(s+1)min(vπ(u),vπ(v+bu−1))db

By construction, min(vπ(u), vπ(v)) ≤ min(vπ(u), vπ(v + bu−1)) ≤ vπ(u), so this is

clearly just some finite degree Laurent polynomial in q−s. The domain is compact, so

this integral converges absolutely.

In the second case, we consider∫︂
Kp−πv0OKp

q(s+1)vπ(bu−1)db

If we break up the integral by the valuation of b, we get
∞∑︂

j=v0+1
(qj − qj−1)q(s+1)(−j−vπ(u)) =

(︄
1 − 1

q

)︄
q−vπ(u)

∞∑︂
j=v0+1

q−s(j+vπ(u))

=
(︄

1 − 1
q

)︄
q−vπ(u)

∞∑︂
j=v0+vπ(u)+1

q−sj

Since (for the convergence of the Eisenstein series) we are assuming s > 1, this sum

converges absolutely. The desired results clearly follow.

Remark 5.8. When vπ(b) is sufficiently negative, the Iwasawa decomposition we used

above can be replaced by an explicit decomposition such as(︄
0 −u−1

u v + bu−1

)︄
=
(︄
b−1u b−1v − u−1

0 bu−1

)︄(︄
1 − b−1uv −b−1v2

b−1u2 1 + b−1uv

)︄
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Using this, one may perform a slightly more detailed analysis to show that as long as

m ̸= 0, the power series above will only have finitely many terms. The reason for this

vanishing is essentially that as vπ(b) gets more negative, the exponential ψp will start

to oscillate much faster than the other terms in the integral, and so will cause the

integral to average to 0.

We will now discuss how to convert the adelic Eisenstein series above into a Hilbert

modular form (and how the Fourier expansions of the two relate).

Let Φf (s) = ⊗p<∞Φp(s) denote a factorizable section of ⊗′
p<∞Ip(s, χp). Let v denote

the product of the imaginary parts of τ⃗ and let g′
τ⃗ = ∏︁n

j=1[n(uj)m(√vj), 1]L = [gτ⃗ , 1]g

where gτ⃗ is I at finite places and n(uj)m(√vj) at the jth infinite place. Then define

E(τ⃗ , s,Φl
∞(s) ⊗ Φf (s)) := v−l/2E(g′

τ⃗ , s,Φl
∞(s) ⊗ Φf (s))

Applying the earlier “Fourier series" formula here, we may write E(τ⃗) as a similar

looking sum, yielding

E(τ⃗ , s,Φ) =
∑︂
m∈K

Em(τ⃗ , s,Φ), where (5.9)

Em(τ⃗ , s,Φ)= δmv
−l/2Φ(g′

τ⃗ , s)+|Disc(K)|−1/2 ∏︂
p|∞

v−l/2
p Wm,p(g′

τ⃗ , s,Φl
p)
∏︂
p<∞

Wm,p(1, s,Φp)

We may simplify the formula with some notation. For archimedean places, let

Wm,p(τ⃗ , s,Φl
p) = v

−l/2
p Wm,p(g′

τ⃗ ,p, s,Φl
p). For nonarchimedean places, let Wm,p(s,Φp) =

Wm,p(1, s,Φp). With the new notation, we have

Em(τ, s,Φ) = δmv
−l/2Φ(g′

τ⃗ , s) + |Disc(K)|−1/2 ∏︂
p|∞

Wm,p(τ⃗ , s,Φl
p) ·

∏︂
p<∞

Wm,p(s,Φp)

(5.10)

Remark 5.11. The reason we leave the “Fourier series" in equation (5.9) the way

we do is that E(τ⃗ , s,Φ) will actually not be holomorphic in τ for most choices of s.

As such, it does not admit a standard Fourier series. However, the sum above will

provide a close enough stand in. When we compute the terms, we will find a natural
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decomposition Em = cm(s,Φ) ∗ f(s,Φ, v) ∗ e2πim⃗·τ⃗ where cm is a constant (in that it

doesn’t depend on τ) and f is some non-holomorphic part. Furthermore, in all cases

we will care about the non-holomorphic terms will vanish and we will get a standard

Fourier series for a holomorphic function E(τ⃗ , s,Φ).

5.2 Constructing El,µ

We discuss a method from section 6 of [KY10] that allows one to start from certain

Schwartz functions and build them into an Eisenstein series using the tools we have

introduced. We will then start to evaluate the Fourier series of this Eisenstein series

in a particular case.

Start by fixing a non-integer l ∈ 1
2Z and a character χ(x) = ⟨x, 2κ⟩A for some

squarefree integral element κ ∈ OK . From our discussion of the global Hilbert symbol,

χ is a ±1 valued character on K\AK .1 The local components of χ are just given by

χp = ⟨x, 2κ⟩p.

Assume that κ is either totally positive or totally negative and that, similarly to

before,

sign(κ) ≡ 2l mod 4

Note that before we were effectively taking κ to denote sign(κ). Regardless of whether

one uses κ or sign(κ), the Archimedean χp are unchanged, so this change doesn’t

affect any of our previous conversation.

Let (V,Q) be a quadratic space of odd dimension d, chosen so that χV = χ. Choose

an integral OK-lattice L - that is, such that (L,L)Q ∈ OK . Finally, take µ ∈ L∗.

Using the above data, for each finite place p consider the quadratic space (Vp, Q)

obtained by completing V . Let L̂ ⊂ Vp denote the corresponding completion of L. On

this space, we then take ϕp,µ to be the characteristic function 1µ+L̂, which will have
1In fact, as we vary κ we get every character with these properties.
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an associated standard section we call Φp,µ ∈ I(s, χp).

Multiplying these standard sections for all finite places along with Φl
∞ at the

infinite places yields a global section

Φl,µ =
∏︂
p<∞

Φp,µ ∗ Φl
∞ ∈ I(s, χ)

From this, we then get the Eisenstein series

El,µ(τ⃗ , s) := E(τ⃗ , s,Φl,µ)

Our goal is to compute the Fourier series of this function by evaluating the local

Whittaker functions and then plugging the results into equation (5.10). We first

handle Archimedean places, then describe how to reduce the Whittaker function at a

finite place to an integral in terms of more elementary functions. By far the hardest

part will be evaluating this integral, which we will end up devoting two sections of

writing to.

5.3 Level Structure of El,µ

We now analyze the Eisenstein series El,µ(τ, s) and attempt to determine its level

structure. The following arguments are based heavily on [KRY06] section 8.5.6 and

[HI13], sections 7 and 8.

The following proposition gives a transformation law for the function El,µ(g′, s) on

g′ ∈ G′
AK

.

Proposition 5.12. There is a group Γf = ∏︁
p<∞ Γf,p commensurable with ∏︁p<∞ G(OKp),

and a genuine character ϵ−1
µ : Γ′

f → T such that

El,µ(g′k′, s) = ϵ−1
µ (k′) El,µ(g′, s) for k′ ∈ Γ′

f

Here, Γ′
f consists of all metaplectic elements with first coordinate in Γf . We may think

of it as a subset of G′
AK

by taking the Archimedean components to be I. Furthermore,
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Γf may be chosen so that for all k′ ∈ Γf,p

ωV (k′)ϕµ,p(t) = ϵ−1
µ,p(k′)ϕµ,p(t)

where ϵ−1
µ (k′) = zk′

∏︁
p<∞ ϵ−1

µ,p(k′
p), the components of ϵ−1

µ are genuine characters guar-

anteed by proposition 4.16, and the quantities zk′ and k′
p are from the primary decom-

position of k′.

In particular, if k′
p ∈ Γ′

f,p ⊂ K′
0,p(4) and Φµ,p is spherical, then the component

ϵ−1
µ,p(k′

p) = 1.

Proof. By the definition of El,µ, we have

El,µ(g′k′, s) =
∑︂

γ∈P (K)\G(K)
zk′

∏︂
p<∞

Φµ,p([γ, 1]Lg′
p[kp, 1], s)

∏︂
p|∞

Φl
p([γ, 1]Lg′

p, s)

The result then follows by application of proposition 4.16. Commensurability follows

since the local sections are spherical for all but finitely many places.

Remark 5.13. The dependence of El,µ on Archimedean components is simpler to

calculate and basically comes down to the relation Φl(g′k′) = Φl(g′)νl(k′).

The above transformation law will turn into the level structure of El,µ(τ, s). For

this calculation, it will be most convenient to define a new automorphy factor of

half-integral weight and then show later how it matches up with the standard one we

introduced earlier.

Definition 5.14. Fix an Archimedean place p. Let [g, z] ∈ G′(Kp) act on the upper

half-plane H through the usual action of g ∈ SL2(R). (In particular, we ignore z

for this action, which is why we do not specify the coordinate system of [g, z].) Let

j(g, τ) = cτ + d denote the usual weight 1 factor of automorphy of SL2(R) acting on

H. Then, [HI13] section 7 tells us there is a unique factor of automorphy j̃ of G′(Kp)

acting on H such that

j̃([g, z]R, τ)2 = z2j(g, τ)
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j̃ is given by the formula

j̃

(︄[︄(︄
a b
c d

)︄
, z

]︄
R

, τ

)︄
=

⎧⎪⎪⎨⎪⎪⎩
z
√
d c = 0, d > 0

−z
√
d c = 0, d < 0

z
√
cτ + d c ̸= 0

Per our conventions, we use the branch cut of
√
x so that the output has a complex

argument obeying −π/2 < θ ≤ π/2.

Let G′
AK ,∞ denote those elements g′ = [g, z]g such that gp = I for all finite places.

(That is, G′
AK ,∞ is a metaplectic cover of SL2(R)n. An element g′ = [g, z]g of G′

AK ,∞

acts on Hn via g′τ⃗ = gτ⃗ . Writing g′ = zg′,R
∏︁n
j=1[gj, 1]R (the subscript R is to

emphasize that z comes from Rao coordinates), we define an automorphy factor for

this action by

j̃∞(g′, τ⃗) = zg′,R

n∏︂
j=1

j̃([gj, 1]R, τj)

Lemma 5.15. j̃∞ is indeed a factor of automorphy.

Proof. We do not check that the components j̃ are factors of automorphy, and continue

to take this as fact from [HI13]. For a product g′
1g

′
2, we have the decomposition

g′
1g

′
2 = zg′

1g
′
2,R
∏︁n
j=1[g1,jg2,j, 1]R. This yields

j̃∞(g′
1g

′
2, τ⃗) = zg′

1g
′
2,R

n∏︂
j=1

j̃([g1,jg2,j, 1]R, τj)

Since j̃ is a factor of automorphy for each Archimedean place, we have

j̃∞(g′
1g

′
2, τ⃗) = zg′

1g
′
2,R

n∏︂
j=1

cR(g1,j, g2,j)−1
n∏︂
j=1

j̃([g1,j, 1]R, g2,jτj)
n∏︂
j=1

j̃(g2,j, 1]R, τj)

This simplifies to

j̃∞(g′
1g

′
2, τ⃗) = zg′

1g
′
2,R

n∏︂
j=1

cR(g1,j, g2,j)−1z−1
g′

1,R
z−1
g′

2,R
j̃∞(g′

1, g
′
2τ⃗)j̃∞(g′

2, τ⃗)

Therefore, it suffices to show that

zg′
1g

′
2,R

n∏︂
j=1

cR(g1,j, g2,j)−1z−1
g′

1,R
z−1
g′

2,R
= 1
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However, this follows easily from g′
1g

′
2 = zg′

1g
′
2,R
∏︁n
j=1[g1,jg2,j, 1]R. We expand the g′

1

and g′
2 on the left as products of local terms and expand the right using the Rao

cocycle to get

zg′
1,R

n∏︂
j=1

[g1,j, 1]R · zg′
2,R

n∏︂
j=1

[g2,j, 1]R = zg′
1g

′
2,R

n∏︂
j=1

cR(g1,j, g2,j)−1
n∏︂
j=1

[g1,j, 1]R
n∏︂
j=1

[g2,j, 1]R

Cancelling terms yields the desired relation.

Besides an automorphy factor, we will also need a formula for El,µ(τ, s) that

depends more naturally on El,µ(g′, s) than the current way it is defined (where one

must use the particular choice of matrix g′
τ⃗ ).

Lemma 5.16. (i) For all τ = u+iv ∈ H, one has [n(u)m(
√
v), 1]L = [n(u)m(

√
v), 1]R.

In particular, this implies g′
τ⃗ = ∏︁n

j=1[n(uj)m(√vj), 1]L = ∏︁n
j=1[n(uj)m(√vj), 1]R

(ii) cR(gτ , h) = 1 for any h ∈ SL2(R).

(iii) cR(h, gτ ) = 1 for any h ∈ SL2(R).

Proof. Let gτ = n(u)m(
√
v). For (i), we have

[gτ , 1]L = [gτ , γw (x(gτ ), 1/2) γw(1/2)j(gτ )]R = [gτ , γw(1/(2
√
v))/γw(1/2)]R = [gτ , 1]R

This relation clearly implies the second part of (i).

For (ii), since gτ is upper triangular, we have x(gτh) = x(h)/
√
v. Hence

cR(gτ , h) =
⟨︄

1/
√
v

x(h)/
√
v
,

x(h)
x(h)/

√
v

⟩︄
R

Since the second entry is positive, the Hilbert symbol is automatically 1.

For (iii), write h =
(︄
a b
c d

)︄
. We may assume c ̸= 0, since that case is covered by

part (ii). Then, we have x(h) = c and x(hgτ ) = c
√
v. Hence

cR(gτ , h) =
⟨︄

c

c
√
v
,

√
v

c
√
v

⟩︄
R

Since the first entry is positive, the Hilbert symbol is automatically 1.
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Recall that i⃗ ∈ Hn is the vector all of whose entries are i.

Proposition 5.17. Fix a τ⃗ ∈ Hn and let g′ ∈ G′
AK ,∞. Write g′ = zg′,R

∏︁n
j=1[gj, 1]R as

above. Then, for any g′ such that g′i⃗ = τ⃗ (for example, g′
τ⃗ is one such element), we

have

El,µ(τ⃗ , s) = El,µ(g′, s)j̃∞(g′, i⃗)2lz
−(2l+1)
g′,R

Proof. As we have done so far, let the jth component of τ⃗ be τj and write τj = uj + ivj .

We first check that our formula holds In the case g′ = g′
τ⃗ . In this case, we have

j̃([gj, 1]R, i) =
√︂

1/√vj. Lemma 5.16 further tells us that [gj, 1]R = [gj, 1]L and

zg′,R = 1. It follows that setting g′ = g′
τ⃗ in the above formula gives

El,µ(τ⃗ , s) = El,µv−l/2(g′
τ⃗ , s)

which is precisely the definition of El,µ(τ⃗ , s). This shows that the desired formula

holds for g′ = g′
τ⃗ .

To prove the formula for arbitrary g′, we note that we can always write

g′ = g′
τ⃗

⎛⎝∏︂
p|∞

k′(θp)
⎞⎠ [1, z]g

where the middle term consists of an element of ˜︃SO2(Kp) at each Archimedean place.2

Our desired formula is clearly invariant to z, since El,µ(g′, s) scales with z1, j̃∞(g′, i⃗)2l

scales with z2l, and z
−(2l+1)
g′,R scales with z−(2l+1). So, it suffices to prove the formula

for g′ = g′
τ⃗

(︂∏︁
p|∞ k′(θp)

)︂
.

Generally, in a matrix k′(θp), one has 0 ≤ θp < 4π. However, since k′(θp + 2π) =

k′(θp)[1,−1]g, we may restrict ourselves to the range −π < θp ≤ π and hence take

k′(θp) = [k(θp), 1]R as per equation (4.17). Now write out the factorization

g′
τ⃗ = zg′

τ⃗
,R

n∏︂
j=1

[gτj
, 1]R

2Although we usually index the Archimedean places with 1 ≤ j ≤ n, we don’t in this formula to
really emphasize that the k′ are at different places.
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Multiplying each side by ∏︁p|∞[k(θp), 1]R then gives us

g′ = zg′
τ⃗
,R

n∏︂
j=1

[gτj
k(θp), 1]R

where we made use of part (ii) of lemma 5.16. However, the above equation is now

exactly the factorization that defines zg′,R and hence we conclude that zg′,R = zg′
τ⃗
,R.

We may now write

El,µ(g′, s)j̃∞(g′, i⃗)2lz
−(2l+1)
g′,R =

El,µ

⎛⎝g′
τ⃗

⎛⎝∏︂
p|∞

k′(θp)
⎞⎠ , s

⎞⎠ · j̃∞

⎛⎝g′
τ⃗

⎛⎝∏︂
p|∞

k′(θp)
⎞⎠ , i⃗

⎞⎠2l

· z−(2l+1)
g′

τ⃗
,R (5.18)

The El,µ term may be expanded via the definition of the section Φl. The j̃∞ term

may be expanded since it is an automorphy factor. Continuing from the previous line,

we have

= El,µ (g′
τ⃗ , s)

∏︂
p|∞

νl(θp) · j̃∞

(︂
g′
τ⃗ , i⃗
)︂2l

j̃∞

⎛⎝⎛⎝∏︂
p|∞

k′(θp)
⎞⎠ , i⃗

⎞⎠2l

· z−(2l+1)
g′

τ⃗
,R

By the case g′ = g′
τ⃗ we already did, the terms containing g′

τ⃗ combine to exactly form

El,µ(τ⃗ , s). We again plug in k′(θp) = [k(θp), 1]R to get

= El,µ(τ⃗ , s) ·
∏︂
p|∞

νl(θp) · j̃∞

⎛⎝⎛⎝∏︂
p|∞

[k(θp), 1]R

⎞⎠ , i⃗
⎞⎠2l

We can now evaluate this using the definition of j̃∞. It may help to recall that

k(θ) =
(︄

cos(θ) sin(θ)
− sin(θ) cos(θ)

)︄
. For our −π < θp ≤ π there is light casework on whether

θp ∈ {0, π}, although in any case we get

= El,µ(τ⃗ , s) ·
∏︂
p|∞

νl(θp) ·
∏︂
p|∞

(︂
e−iθp/2

)︂2l
= El,µ(τ⃗ , s)

For γ ∈ SL2(K), let γ0,∞ denote the image of γ0 under the embedding SL2(K) →

SL2(R)n. We may think of it as an element of G(AK) by taking it to be I at all

finite places. In particular, we have [γ0,∞, 1]g = ∏︁
p|∞[γ0,p, 1]L. Furthermore, let

γ0,f = ∏︁
p<∞ γ0,p. The following proposition gives an automorphy factor for El,µ(τ⃗ , s).
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Proposition 5.19. Let Γ = SL2(K) ∩ (Γf × SL2(R)n) for the group Γf guaranteed

by proposition 5.12. For γ0 ∈ Γ,

El,µ(γ0τ⃗ , s) = ϵµ([γ0,f , ϵ(γ0)−1]g)
∏︂
p|∞

βp(γ0,p) · j̃∞([γ0,∞, 1]R, τ⃗)2lEl,µ(τ⃗ , s)

where ϵ is the character giving the splitting of SL2(K) given in proposition 3.42, ϵµ

is from proposition 5.12, and βp(g) = γw (x(g), 1/2)−1 γw(1/2)−j(g) is from definition

3.22.

This proposition along with proposition 5.12 implies that any γ0 ∈ SL2(K) that

takes all of the ϕµ,p as eigenfunctions under the Weil representation will be a member

of Γ.

Warning 5.20. Although El,µ(γ0τ⃗ , s) transforms like a modular form and for each τ⃗

it is holomorphic in s, it will not be holomorphic in τ⃗ for most (if any) choices of s

and hence won’t be a (holomorphic) modular form. However, when we evaluate our

cases of interest later, it will be clear from their Fourier series formulas that they are

holomorphic and hence are actual modular forms.

Proof. Let γ0,∞ denote the image of γ0 under the embedding SL2(K) → SL2(R)n.

We may think of it as an element of G(AK) by taking it to be I at all finite places.

The idea is now to compute El,µ(γ0τ⃗ , s) by taking g′ = [γ0,∞, 1]gg′
τ⃗ in proposition 5.17,

since we have g′i⃗ = γ0τ⃗ . The first step is to find zg′,R. We do this by writing

g′ = [γ0,∞, 1]g · g′
τ⃗ =

∏︂
p|∞

[γ0,p, 1]L
∏︂
p|∞

[gτp , 1]R

Using definition 3.22 we convert to Rao coordinates and then apply part (iii) of lemma

5.16 to get

g′ =
∏︂
p|∞

β−1
p (γ0,p)

∏︂
p|∞

[γ0,pgτp , 1]R =⇒ zg′,R =
∏︂
p|∞

β−1
p (γ0,p)

where β is the factor that is picked up under the coordinate change.

72



If we now take g′ = γ0g
′
τ⃗ in proposition 5.17, we have

El,µ(γ0τ⃗ , s) = El,µ([γ0,∞, 1]gg′
τ⃗ , s) · j̃∞([γ0,∞, 1]gg′

τ⃗ , i)2l · z−(2l+1)
g′,R

Note that [γ0,f , ϵ
−1(γ0)]g[γ0,∞, 1]g = γ0. By proposition 5.12, we get

El,µ(γ0τ⃗ , s) = χl,µ([γ0,f , ϵ
−1(γ0)]g)El,µ(γ0g

′
τ⃗ , s) · j̃∞([γ0,∞, 1]gg′

τ⃗ , i)2l · z−(2l+1)
g′,R

Because we can reindex the sum defining El,µ(g′, s), it follows that El,µ(γ0g
′, s) =

El,µ(g′, s) for all γ0 ∈ SL2(K). So, we get

El,µ(γ0τ⃗ , s) = χl,µ([γ0,f , ϵ
−1(γ0)]g)El,µ(g′

τ⃗ , s) · j̃∞([γ0,∞, 1]gg′
τ⃗ , i)2l · z−(2l+1)

g′,R

Since j̃∞ is a factor of automorphy, we get

El,µ(γ0τ⃗ , s) = ϵµ([γ0,f , ϵ
−1(γ0)]g)El,µ(g′

τ⃗ , s) · j̃∞([γ0,∞, 1]g, τ⃗)2lj̃∞(g′
τ⃗ , i)2l · z−(2l+1)

g′,R

By part (i) of lemma 5.16, zg′
τ⃗
,R = 1 and so we get

El,µ(γ0τ⃗ , s) = ϵµ([γ0,f , ϵ
−1(γ0)]g)j̃∞([γ0,∞, 1]g, τ⃗)2l · z−(2l+1)

g′,R El,µ(τ⃗ , s)

For a final simplification, we can move some of the β terms into the j̃∞ term to get

El,µ(γ0τ⃗ , s) = ϵµ([γ0,f , ϵ
−1(γ0)]g)j̃∞([γ0,∞, 1]R, τ⃗)2l · z−1

g′,RE
l,µ(τ⃗ , s)

Unfortunately, we will need to wait until after our evaluation of the Gauss sum

in order to make these automorphy factors more explicit and relate them back to

the standard automorphy factors of half-integral weight. We do however have one

more important remark we can make. The Eisenstein series only converges for Re(s)

sufficiently large, so all of our formulas we have proven currently only hold for such s.

Remark 5.21. As previously stated, El,µ(τ⃗ , s) admits an analytic continuation to all

s. The transformation law

El,µ(γ0τ⃗ , s) = ϵµ([γ0,f , ϵ
−1(γ0)]g)

∏︂
p|∞

βp(γ0,p) · j̃∞([γ0,∞, 1]R, τ⃗)2lEl,µ(τ⃗ , s)
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also analytically continues. This is easily seen by noting that for fixed τ , the left and

right sides are both holomorphic in s. Hence, as long as our calculations show the two

sides are equal in some right halfplane, then they will be equal for all s.

5.4 Archimedean Local Whittaker Functions

Fix an infinite place so that Kp = R. In this case, computing the local Whittaker

function is mainly a calculus problem that was solved in [Shi82], where it is shown to

depend on a certain integral called a confluent hypergeometric function. We follow

the approach taken in [KY10] p.2281-2282. However, due to subtle differences in

coordinates, we will get a slightly different result that instead matches with [KRY06]

equation (5.7.14).

For this section we are working at a fixed place, so we write τ = u+ iv to denote

the appropriate component of τ⃗ . Furthermore, although m ∈ K, for this section we

will use m ∈ R to denote the image of m under the embedding of K into Kp.

Recall that the Archimedean local Whittaker function is given by

Wm,p(τ, s,Φl
p) = v−l/2

p

∫︂
R

Φl
p([wn(b), 1]Lg′

τ , s)e−2πimbdb

Temporarily introduce new quantities α, β given by

α = l + s+ 1
2 , β = −l + s+ 1

2

Proposition 5.22.

Wm,p(τ, s,Φl
p) = e2πi/8e2πimuvβp ξ(v,m;α, β)

where τ = u+ iv and

ξ(v,m;α, β) :=
∫︂
R
(b+ iv)−α(b− iv)−βe−2πimbdb
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is the same as the function Shimura defines in [Shi82] equation (1.25).3

Proof. This comes mostly down to evaluating the function Φl
p([wn(b), 1]Lg′

τ , s). To do

this, we multiply out

[wn(b), 1]Lg′
τ =

[︄(︄
0 −1
1 b

)︄
, 1
]︄
L

[︄(︄√
v u/

√
v

0 1/
√
v

)︄
, 1
]︄
L

=
[︄(︄

0 −1/
√
v√

v (u+ b)/
√
v

)︄
, 1
]︄
L

We then use the decomposition
[︄(︄

0 −1/
√
v√

v (u+ b)/
√
v

)︄
, 1
]︄
L

=⎡⎢⎣
⎛⎜⎝

√
v√

v2+(u+b)2
−(u+b)

√
v
√
v2+(u+b)2

0
√
v2+(u+b)2

√
v

⎞⎟⎠ , 1
⎤⎥⎦
L

⎡⎢⎣
⎛⎜⎝ u+b√

v2+(u+b)2
− v√

v2+(u+b)2

v√
v2+(u+b)2

u+b√
v2+(u+b)2

⎞⎟⎠ , 1
⎤⎥⎦
L

(5.23)

The second matrix should be in Rao coordinates so that we can evaluate equation

(4.18). From definition 3.22, we have

[g, z]L = [g, zγw (x(g), 1/2) γ(1/2)j(g)]R

In our case, this becomes⎡⎢⎣
⎛⎜⎝ u+b√

v2+(u+b)2
− v√

v2+(u+b)2

v√
v2+(u+b)2

u+b√
v2+(u+b)2

⎞⎟⎠ , 1
⎤⎥⎦
L

=

⎡⎢⎣
⎛⎜⎝ u+b√

v2+(u+b)2
− v√

v2+(u+b)2

v√
v2+(u+b)2

u+b√
v2+(u+b)2

⎞⎟⎠ , γw(x(g)/2)

⎤⎥⎦
R

In our case, x(g) = v/
√︂
v2 + (u+ b)2 > 0 and so γw(x(g)/2) = e2πi/8 by fact 3.4. By

equation (4.3) for the definition of a section, we can now write our section as

Φl
p([wn(b), 1]Lg′

τ , s) = e2πi/8χV

⎛⎝ √
v√︂

v2 + (u+ b)2

⎞⎠⎛⎝ √
v√︂

v2 + (u+ b)2

⎞⎠s+1

× Φl
p

⎛⎜⎝
⎡⎢⎣
⎛⎜⎝ u+b√

v2+(u+b)2
− v√

v2+(u+b)2

v√
v2+(u+b)2

u+b√
v2+(u+b)2

⎞⎟⎠ , 1
⎤⎥⎦
R

, s

⎞⎟⎠ (5.24)

3The function Shimura defines is more general and specializes to the function ξ we give here. One
does have to wade through some notational differences to check that Shimura’s definition lines up.
This is fairly straightforward using the fact that the case G = SL2 and Kp = R we are working
in corresponds to Case I, m = 1 in Shimura’s work. (Although take care that we mean m = 1 for
Shimura’s variable called m, which is not the same as our m.) The only point requiring some added
care is to note that equation (1.11) of [Shi82] gives the same exponentiation conventions on points in
the upper or lower halfplanes that we are using here.
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The matrix in Φl
p is now some k′(θ) ∈ ˜︃SO2(R). We will write it as such from now on

to save space. We can further simplify by noting that the χV term is trivial. To prove

this we first write out

χV

⎛⎝ √
v√︂

v2 + (u+ b)2

⎞⎠ =
⟨︄ √

v√︂
v2 + (u+ b)2

, (−1)dim(V )∗(dim(V )−1)/2det(V )
⟩︄

p

and then recall that at an Archimedean place the Hilbert symbol is 1 as long as either

argument (in this case the first one) is positive. From all this we may rewrite the

equation as the more manageable

Φl
p([wn(b), 1]Lg′

τ , s) = e2πi/8

⎛⎝ √
v√︂

v2 + (u+ b)2

⎞⎠s+1

νl (k′(θ))

To determine θ ∈ R/4π, we use (4.17)to see that −π < θ ≤ π. θ is now determined

by the relation ⎛⎜⎝ u+b√
v2+(u+b)2

− v√
v2+(u+b)2

v√
v2+(u+b)2

u+b√
v2+(u+b)2

⎞⎟⎠ =
(︄

cos(θ) sin(θ)
− sin(θ) cos(θ)

)︄

From this it follows that

eiθ = cos(θ) + i sin(θ) = u+ b− iv√︂
v2 + (u+ b)2

By our conventions on raising complex numbers to non-integer powers4, we get that

Φl
p([wn(b), 1]Lg′

τ , s) = e2πi/8

⎛⎝ √
v√︂

v2 + (u+ b)2

⎞⎠s+1⎛⎝ u+ b− iv√︂
v2 + (u+ b)2

⎞⎠l

Therefore, the Archimedean local Whittaker function is given by

Wm,p(τ, s,Φl
p) = e2πi/8v−l/2

p

∫︂
R

⎛⎝ √
v√︂

v2 + (u+ b)2

⎞⎠s+1⎛⎝ u+ b− iv√︂
v2 + (u+ b)2

⎞⎠l e−2πimbdb

If we apply the change of variables bnew = bold + u, we get

e2πi/8e2πimuv−l/2
p

∫︂
R

(︄ √
v√

v2 + b2

)︄s+1 (︄
b− iv√
v2 + b2

)︄l
e−2πimbdb

4Recall that at the end of our notation section, we take ab = eb ln(a) for −π < Im(ln(a)) ≤ π,
which works perfectly with what we have here.
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Again under our complex power conventions, we have the factorization
√
v2 + b2 =

(b+ iv)1/2(b− iv)1/2. This lets us rewrite the integral as

e2πi/8e2πimuvβp

∫︂
R
(b+ iv)−α(b− iv)−βe−2πimbdb

The following proposition comes directly from [Shi82] equation (1.29) and the

comment directly after, the definition of η is from [Shi82] equation (1.26). It is okay

that the condition on s we give is far from tight, since the bound on s here will not

affect the coefficients of the Fourier series we end up calculating.

Proposition 5.25. If the real part of s is sufficiently large (Re(s) > |l| + 1 suffices),

then

ξ(v,m;α, β) = 2π(−i)lΓ(α)−1Γ(β)−1η(2v, πm;α, β)

where

η(v,m;α, β) :=
∫︂
x>|m|

e−vx(x+m)α−1(x−m)β−1dx

Proof. Specializing Shimura’s results to our case gives the above on the condition that

Re(α) > 0 and Re(β) > 1. It is easy to check that Re(s) > |l| + 1 is sufficient for

these conditions to hold.

The function η is closely related to the confluent hypergeometric function of the

second kind. The following properties are from [LSL65] sections 9.10 and equation

(9.11.6) of section 9.11. This is a slight rearrangement of how things are stated in

[LSL65], but is better for our purposes.

Definition 5.26. Let a, z be complex numbers of positive real part and let b be any

complex number. The confluent hypergeometric function of the second kind is given by

the integral

Ψ(a, b; z) := 1
Γ(a)

∫︂ ∞

0
e−zt(t+ 1)b−a−1ta−1dt
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Ψ(a, b; z) is holomorphic in all three arguments and admits an analytic continuation

that is entire in a, b but where z is restricted to complex numbers of argument between

−π and π.

Define the related function

Ψl(s, z) := Ψ
(︄
l + s+ 1

2 , s+ 1; z
)︄

= 1
Γ(α)

∫︂ ∞

0
e−zt(t+ 1)β−1tα−1dt

and note that since replacing l with −l swaps α and β, we have

Ψ−l(s, z) := Ψ
(︄

−l + s+ 1
2 , s+ 1; z

)︄
= 1

Γ(β)

∫︂ ∞

0
e−zt(t+ 1)α−1tβ−1dt

Lemma 5.27.

Ψ(0, b; z) = 1

Proof. This fact is stated on page 2281 of [KY10]. We provide an informal argument

anyway for the fun of it. First, write

Ψ(0, b; z) = lim
a→0+

1
Γ(a)

∫︂ ∞

0
e−zt(t+ 1)b−a−1ta−1dt

In the limit, we have 1/Γ(a) ∼ a. On the other hand, for any ϵ > 0 we have that

lim
a→0+

1
Γ(a)

∫︂ ∞

ϵ
e−zt(t+ 1)b−a−1ta−1dt = lim

a→0+

1
Γ(a)

∫︂ ∞

ϵ
e−zt(t+ 1)b−1t−1dt = 0

Hence, the behavior of the integrand only matters near t = 0 and so we can replace

the integrand with e−z∗0(0 + 1)b−a−1ta−1 = ta−1. We then get

lim
a→0+

1
Γ(a)

∫︂ ∞

0
e−zt(t+ 1)b−a−1ta−1dt = lim

a→0+
a
∫︂ ∞

0
ta−1dt = 1

Lemma 5.28. For any α, β such that η(v,m;α, β) converges we have

η(v,m;α, β) =

⎧⎪⎪⎨⎪⎪⎩
(2m)se−mvΓ(β)Ψ−l(s, 2mv) m > 0
(2|m|)se−|m|vΓ(α)Ψl(s, 2|m|v) m < 0
v−sΓ(s) m = 0

The conditions Re(α), Re(β) > 0 are sufficient for η(v,m;α, β) to converge. Therefore,

it suffices for Re(s) > |l| − 1.
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Proof. It is trivial to check that Re(s) > |l|−1 implies that Re(α), Re(β) > 0 and that

this is sufficient for convergence, so we move onto calculating η. Start by substituting

xnew = xold −m to get

η(v,m;α, β) = e−mv
∫︂
x>0

e−vx(x+ 2m)α−1xβ−1dx

Now substitute xold = 2mxnew to get

η(v,m;α, β) = (2m)α+β−1e−mv
∫︂
x>0

e−2mvx(x+ 1)α−1xβ−1dx

At this point, we can use the relation α + β − 1 = s and recognize the integral as

Ψ−l(s, 2mv).

In the case m < 0, rewrite

η(v,m;α, β) =
∫︂
x>|m|

e−vx(x− |m|)α−1(x+ |m|)β−1dx = η(v, |m|, β, α)

This is then handled by the m > 0 case.

Finally, the m = 0 case immediately gives us

η(v, 0;α, β) =
∫︂
x>0

e−vxxα+β−2dx

Recognize α + β − 2 = s− 1 and substitute xnew = vxold to get

= v−s
∫︂
x>0

e−xxs−1dx = v−sΓ(s)

We may now put all of this work together to evaluate the Archimedean local

Whittaker function. Since this contains all of the formulas we will take away to use

later, we will use mp in the final formulas to emphasize we are using the embedding

of m into Kp (although we will continue to just write m in the proof). The first four

parts of the following lemma are taken from Proposition 2.3 of [KY10].
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Lemma 5.29. Assume l > 0 and l ̸= 1. Let qx = e2πixτ , τ = u + iv, and let

(−i)l = e−2πil/4. Continue to let α = s+1+l
2 and β = s+1−l

2 . For Re(s) sufficiently large

(Re(s) > l + 1 suffices) we have

(i) For mp > 0

Wm,p(τ, s,Φl
p) = 2π(−i)l−1/2vβ(2πmp)s

Ψ−l(s, 4πmpv)
Γ(α) qmp

(ii) For mp < 0

Wm,p(τ, s,Φl
p) = 2π(−i)l−1/2vβ(2π|mp|)s

Ψl(s, 4π |mp|v)
Γ(β) e−4π |mp|vqmp

(iii) For mp = 0

Wm,p(τ, s,Φl
p) = 2π(−i)l−1/2v

1
2 (1−l−s) 2−sΓ(s)

Γ(α)Γ(β)

For fixed τ,m, the Archimedean Wm,p is meromorphic in s and admits an analytic

continuation to all s given by the equations above. For this extension, we have

(iv) At the special value s = l − 1,

Wm,p(τ, l − 1,Φl
p) =

⎧⎨⎩0 mp ≤ 0
(2π)l(−i)l−1/2

Γ(l) ml−1
p qmp mp > 0

(v) When mp ≤ 0, the zero at s = l − 1 is a simple zero.

Proof. By proposition 5.22 we have

Wm,p(τ, s,Φl
p) = e2πi/8e2πimuvβp ξ(v,m;α, β)

By proposition 5.25 we have

Wm,p(τ, s,Φl
p) = e2πi/8e2πimuvβp · 2π(−i)lΓ(α)−1Γ(β)−1η(2v, πm;α, β)

There isn’t much simplification we can do, although we can combine the e2πi/8 and
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(−i)l terms. We now evaluate η(2v, πm;α, β) using lemma 5.28 to get

Wm,p(τ, s,Φl
p) =

e2πimuvβp · 2π(−i)l+1/2Γ(α)−1Γ(β)−1

⎧⎪⎪⎨⎪⎪⎩
(2πm)se−2πmvΓ(β)Ψ−l(s, 4πmv) m > 0
(2π|m|)se−2π|m|vΓ(α)Ψl(s, 4π|m|v) m < 0
(2v)−sΓ(s) m = 0

(5.30)

Parts (i),(ii),(iii) then follow immediately after some rearranging of terms.

Next we tackle (iv). When s = l − 1, we have α = l, β = 0.

First we tackle the case m < 0. By definition, we have

Ψl(l − 1, 4π |mp|v) = Ψ (l, l; z) = 1
Γ(l)

∫︂ ∞

0
e−zt(t+ 1)−1tl−1dt

Hence, 0 < Ψl(l − 1, 4π |mp|v) < ∞. It follows that when m < 0, the Whittaker

function vanishes due to the 1/Γ(β) term since all other terms are finite and nonzero.

When m = 0, we have to similarly verify that Γ(s)/Γ(α) = Γ(l−1)/Γ(l) = 1/(l−1)

won’t cause any problems. Since we assume l ̸= 1, it is clear that the Whittaker

function again vanishes.

Finally, we tackle m > 0. In this case we calculate

Ψ−l(l − 1, 4π |mp|v) = Ψ (0, l; z)

However, this is just 1 by lemma 5.27. Hence, in the case m > 0 we have

Wm,p(τ, s,Φl
p) = 2π(−i)l−1/2vβ(2πmp)l−1 1

Γ(l)q
mp

which gives us the desired formula.

During the proof of (iv) it should be clear that none of the factors in the formula

for Wm,p(τ, s,Φl
p) have zeros or poles at s = l− 1, except for the factor 1/Γ(β). 1/Γ(x)

has a simple pole at 0, which proves (v).
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5.5 Simplifying Wm,p for Finite Places

Throughout this section, let p be a finite place. Our goal is to simplify the quantity

Wm,p(s,Φp,µ) =
∫︂
Kp

Φp,µ([wn(b), 1]L, s)ψp(−mb)db

using a formula like equation (4.2) of [KY10]. We do this by following the procedure

of [KY10] section 4 (see the end of this section for the equation). From definition 4.13,

we know that for s0 = dim(V )
2 − 1 we may rewrite this as

Wm,p (s0,Φp,µ) =
∫︂
Kp

(ωV ([wn(b), 1]L)ϕp,µ(t))|t=0ψp(−mb)db

However, this formula only computes the Whittaker function for one value of s. Lemma

4.2 from [KY10] (or more generally lemma A.3 of [Kud97]) help extend our reach. Let

∆s be a non-negative integer. Let V∆s = K2∆s
p and give it a basis xi, x′

i (1 ≤ i ≤ ∆s).

We can make V∆s into a quadratic space under Q∆s = ∑︁
i xix

′
i. Let ϕ∆s denote the

characteristic function of O2∆s
Kp

.

Lemma 5.31. If Φp is the standard section associated to some ϕp then

Φp(g′, s0 + ∆s) = (ωV⊕V∆s
(g′)ϕp(t)ϕ∆s(t))|t=0

The end goal will be to use this to compute the Whittaker functions (and hence

the Eisenstein series) for infinitely many values of s and then use analytic continuation

to get values not covered by the above formula.5 In our particular case, lemma 5.31

gives us

Φp,µ(g′, s0 + ∆s) = (ωV⊕V∆s
([wn(b), 1]L)ϕp,µ(t)ϕ∆s(t))|t=0 (5.32)

This may be further reduced to an explicit integral in terms of more elementary

functions.
5As lemma 5.31 suggests, we end up computing the Whittaker function on the set s0 + N, which

is not enough to apply analytic continuation on its own. However, our formula will also “work at
positive real infinity", which will be enough to get analytic continuation to apply. We will make this
rigorous using lemma 5.7.
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Proposition 5.33. Fix some basis B of V , letting us identify V ∼= K
dim(V )
p . Take

the Haar measure dy on V ⊕ K2∆s
p such that in this basis Odim(V )+2∆s

Kp
has measure

1. Let detB(V ) denote the determinant of the matrix of Q in this basis (as opposed

to the basis-independent value in K×
p /K

×2
p we have used thus far). Let L ⊂ V denote

the lattice chosen when constructing El,µ and let V olB(L) denote its volume under dy.

Then,

Φp,µ(g′, s0+∆s) = γ(V ) |detB(V )|1/2
p

V olB(L)1/2 q
−r(∆s+dim(V )/2)

∫︂
y∈(µ+L)⊕O2∆s

Kp

ψ (bQ⊕Q∆s(y)) dy

Here,

γ(V ) = γw

(︃1
2

)︃
γ
(︃
ψ
(︃1

2t
)︃

◦ V
)︃−1

= γw

(︃
−1

2det(V )
)︃
γw

(︃1
2

)︃2−dim(V )
hp(V )

is the local factor we defined earlier.

Proof. We do this by evaluating equation (5.32). First we note

wn(b) =
(︄

0 −1
1 b

)︄

and yet again recall the Weil representation

ωV ([g, z]L)ϕ(t) = χV (x(g))
(︄
zγw

(︃1
2

)︃j(g))︄dim(V )

γ
(︃
ψ
(︃1

2t
)︃

◦ V
)︃−j(g)

rV (g)ϕ(t)

where

rV (g)ϕ(t) =
∫︂
y∈cV

ψ
(︃1

2(at, bt)Q + (bt, cy)Q + 1
2(cy, dy)Q

)︃
ϕ (at+ cy) dgy

We will first focus on calculating

rV⊕V∆s
(wn(b))(ϕp,µ(t)ϕ∆s(t))

By the formula for the Weil representation, this is

∫︂
y∈V⊕K2∆s

p

ψ

(︄
−(t, y)Q⊕Q∆s

+ b

2(y, y)Q⊕Q∆s

)︄
ϕp,µ(y)ϕ∆s(y)dgy (5.34)
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Now decompose the coordinate y as y = (y0, y1, y
′
1, . . . y∆s, y

′
∆s), where y0 ∈ V and

yi, y
′
i ∈ Kp for 1 ≤ i ≤ ∆s. Do the same decomposition for t. Then, we may rewrite

our integral as
∫︂
y∈(µ+L)⊕O2∆s

Kp

ψ

(︄(︄
−(t0, y0)Q +

∑︂
i

tiy
′
i + t′iyi

)︄
+ b

(︄
−1

2(y0, y0)Q +
∑︂
i

yiy
′
i

)︄)︄
dgy

We now write dgy = µ(g)dy, where dy is such that Odim(V )+∆s
Kp

has measure 1 (for

some choice of basis of V ). We will now have to determine µ(g). As we have done

in the past, we will do this by checking that rV⊕V∆s
is unitary when it acts on the

particular pairing (ϕp,0(t)ϕ∆s(t), ϕp,0(t)ϕ∆s(t)). We get the condition

1 = µ(g)2
∫︂
t∈V⊕K2∆s

p

[︄
∫︂
x∈L⊕O2∆s

Kp

ψ

(︄(︄
−(t0, x0)Q +

∑︂
i

tix
′
i + t′ixi

)︄
+ b

(︄
−1

2(x0, x0)Q +
∑︂
i

xix
′
i

)︄)︄
dx

×
∫︂
y∈L⊕O2∆s

Kp

ψ

(︄(︄
(t0, y0)Q +

∑︂
i

−tiy′
i − t′iyi

)︄
+ b

(︄
1
2(y0, y0)Q +

∑︂
i

−yiy′
i

)︄)︄
dy

]︄
dt

(5.35)

The giant integral can be written as a product of two pieces, for coordinates of index

0, and for coordinates of positive index.

Case 1: The coordinates of index 0 give us
∫︂
t0∈V

∫︂
x0∈L

∫︂
y0∈L

ψ

(︄
(t0, y0 − x0)Q + b

2((y0, y0)Q − (x0, x0)Q)
)︄
dy0dx0dt0

Using the identity (y0, y0)Q − (x0, x0)Q = (y0 +x0, y0 −x0)Q, we see the integral equals
∫︂
t0∈V

∫︂
x0∈L

∫︂
y0∈L

ψ

(︄
(t0 + b

2(x0 + y0), y0 − x0)Q
)︄
dy0dx0dt0

It would be convenient to be able to rearrange the integrals at this point, but as things

stand the triple integral does not converge absolutely. To get around this, note that

the inner double integral is over a compact domain and does converge absolutely, so

we can change variables to x = x0, y = x0 + y0 yielding
∫︂
t0∈V

∫︂
x∈L

∫︂
y∈L

ψ

(︄
(t0 + b

2y,−2x+ y)Q
)︄
dydxdt0
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Slight rearrangement gives

∫︂
t0∈V

∫︂
y∈L

ψ

(︄
(t0 + b

2y, y)Q
)︄∫︂

x∈L
ψ

(︄
(t0 + b

2y,−2x)Q
)︄
dxdydt0

The inner integral over x is the integral of an additive character and hence vanishes

unless the integrand is identically 1. Recalling the notation L∗ for the dual lattice of

L under (·, ·)Q and the fact that ψ is trivial on π−rOKp , the integral becomes

V olB(L)
∫︂
t0∈V

∫︂
y∈L

ψ

(︄
(t0 + b

2y, y)Q
)︄
1π−rL∗(−2t0 − by)dydt0

Notice that the indicator function can only be satisfied if the two sets 2t0+bL and π−rL∗

have some overlap, and for this to happen we must at least have 2t0 ∈ bL ∪ π−rL∗.

Therefore, we may restrict t0 to a compact domain. Choose a large enough that

π−aL ⊃ 2t0 ∈ bL ∪ π−rL∗. One may choose a arbitrarily large, but this is the

minimum size that lets the following arguments run smoothly. The integral becomes

V olB(L)
∫︂
t0∈π−aL

∫︂
y∈L

ψ

(︄
(t0 + b

2y, y)Q
)︄
1π−rL∗(−2t0 − by)dydt0

Now that we have absolute convergence, we are justified in performing the change of

variables t = t0 + b
2y, ynew = yold. The integral becomes

V olB(L)
∫︂
t∈π−aL

∫︂
y∈L

ψ ((t, y)Q)1π−rL∗(−2t)dydt =

V olB(L)
∫︂
t∈π−e−rL∗

∫︂
y∈L

ψ ((t, y)Q) dydt (5.36)

As before, the inner integral is of an additive character, which will be trivial when

t ∈ π−rL∗. One gets

V olB(L)2
∫︂
t∈π−rL∗

dt = qrdim(V )V olB(L)2V ol(L∗) = qrdim(V )V olB(L)/|detB(V )|p

where the last step is the general quadratic space identity V olB(L)V ol(L∗) = |detB(V )|−1
p ,

which holds for any lattice L.
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Case 2: The coordinates of positive index in equation (5.35) give rise to the

integral

∫︂
ti,t′i∈Kp(1≤i≤∆s)

∫︂
xi,x′

i,yi,y′
i∈OKp (1≤i≤∆s)

ψ

(︄(︄∑︂
i

tix
′
i + t′ixi

)︄
+
(︄∑︂

i

−tiy′
i − t′iyi

)︄
+

b

(︄∑︂
i

xix
′
i +

∑︂
i

−yiy′
i

)︄)︄
dxdx′dydy′dtdt′ (5.37)

Note that there are 6∆s variables of integration. For the sake of space, we have

condensed down the differentials by letting dx = ∏︁
i dxi, etc... For some particular

variable xi, if we consider only the terms it shows up in, we have the integral

∫︂
xi∈OKp

ψ (t′ixi + bx′
ixi) dxi = 1∂−1(t′i + bx′

i)

As we did previously, we choose a large enough so that π−aOKp ⊃ ∂−1 + bOKp . Notice

that in order for the indicator function to be satisfied for any x′
i, it is necessary (though

not necessarily sufficient) for t′i ∈ π−aOKp . Similarly, for a variable y′
i, one has

∫︂
y′

i∈OKp

ψ (−tiy′
i − yiy

′
i) dy′

i = 1∂−1(ti + byi)

Using this, we may integrate over the 2∆s variables of the form xi or y′
i. This reduces

integral (5.37) to

∫︂
ti,t′i∈Kp(1≤i≤∆s)

∫︂
x′

i,yi∈OKp (1≤i≤∆s)
ψ

(︄∑︂
i

tix
′
i − t′iyi

)︄
1∂−1(t′i+bx′

i)1∂−1(ti+byi)dx′dydtdt′

Since the inner integral vanishes for ti, t′i /∈ π−aOKp , we may restrict the integral to a

compact domain. We get

∫︂
ti,t

′
i∈π

−aOKp

(1≤i≤∆s)

∫︂
x′

i,yi∈OKp

(1≤i≤∆s)

ψ

(︄∑︂
i

tix
′
i − t′iyi

)︄
1∂−1(t′i + bx′

i)1∂−1(ti + byi)dx′dydtdt′

We now change variables, fixing x′
i, yi and letting ti,new = ti,old + byi and t′i,new =

t′i,old + bx′
i. This turns the integral into

∫︂
ti,t′i∈π−aOKp (1≤i≤∆s)

∫︂
x′

i,yi∈OKp (1≤i≤∆s)
ψ

(︄∑︂
i

tix
′
i − t′iyi

)︄
1∂−1(t′i)1∂−1(ti)dx′dydtdt′

86



Notice that when we make this substitution, the input to ψ does not appear to change.

This is due to the cancellation
∑︂
i

(ti − byi)x′
i − (t′i − bx′

i)yi =
∑︂
i

tix
′
i − byix

′
i − t′iyi + bx′

iyi =
∑︂
i

tix
′
i − t′iyi

Continuing with the integral, we may absorb the indicator functions into the domain,

which gives ∫︂
ti,t′i∈∂−1(1≤i≤∆s)

∫︂
x′

i,yi∈OKp (1≤i≤∆s)
ψ

(︄∑︂
i

tix
′
i − t′iyi

)︄
dx′dydtdt′

However, on the given domain ψ is identically 1 and so the integral evaluates to q2r∆s.

After all of this, we may finally plug back into equation (5.35) and obtain

µ(g)2 ∗ qrdim(V )V olB(L)/|detB(V )|p ∗ q2r∆s = 1

From this, we can see that

µ(g) = |detB(V )|1/2
p

V olB(L)1/2 q
−r(∆s+dim(V )/2)

We are now in a position to determine the quantity we were originally after, which

is the value of

(ωV⊕V∆s
([wn(b), 1]L)ϕp,µ(t)ϕ∆s(t))|t=0

By plugging t = 0 into equation (5.34) and using our value of µ(g), we see that it is

equal to

γ(V ) |detB(V )|1/2
p

V olB(L)1/2 q
−r(∆s+dim(V )/2)

∫︂
y∈(µ+L)⊕O2∆s

Kp

ψ

(︄
b

2(y, y)Q⊕Q∆s

)︄
dy

Using the general formula (x, x)Q = 2Q(x) now yields the desired result.

From this proposition, we have the formula

Wm,p (s0 + ∆s,Φp,µ) =

γ(V ) |detB(V )|1/2
p

V olB(L)1/2 q
−r(∆s+dim(V )/2)

∫︂
Kp

∫︂
y∈(µ+L)⊕O2∆s

Kp

ψ (b(Q⊕Q∆s(y) −m)) dydb

(5.38)
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It will be convenient to replace the ramified ψ with an unramified additive character

ψ′. The following equation is our analogue to [KY10] equation (4.2).

Lemma 5.39. Let ψ′ be any unramified additive character. Then

Wm,p (s0 + ∆s,Φp,µ) =

γ(V ) |detB(V )|1/2
p

V olB(L)1/2 q
r(1−∆s−dim(V )/2)

∫︂
Kp

∫︂
y∈(µ+OKp )⊕O2∆s

Kp

ψ′ (b(Q⊕Q∆s(y) −m)) dydb

(5.40)

We have a particular choice of ψ′ in mind, which we will introduce later.

Proof. Simply change variables via bold = bnew/π
r.

Since this new integral will become our entire focus, we give it a name.

IW,p(µ,m,∆s) :=
∫︂
Kp

∫︂
y∈(µ+OKp )⊕O2∆s

Kp

ψ′ (b(Q⊕Q∆s(y) −m)) dydb

This has reduced our calculation to (a local factor and) an integral in terms of

relatively elementary functions. However, even in simple cases when dim(V ) = 1, the

computation will be quite tedious and require many pages of algebra to finish.

Remark 5.41. Of some mild additional concern is that the double integral is no longer

absolutely convergent now that we have replaced Φp with the inner integral. We may

partially remedy this by noting the integral is equal to a limit of absolutely convergent

integrals, namely

IW,p(µ,m,∆s) = lim
k→∞

∫︂
π−kOKp

∫︂
y∈(µ+OKp )⊕O2∆s

Kp

ψ′ (b(Q⊕Q∆s(y) −m)) dydb
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Chapter 6

Evaluating the Gauss Sum

6.1 Review

For the particular application we have in mind, we will need to evaluate the integral

IW,p(µ,m,∆s) in the case dim(V ) = 1. These next two chapters will be dedicated to

this computation. The current chapter will be for calculating quadratic Gauss sums,

which will be used in the next chapter where we actually calculate the integral. Be

aware that for the duration of chapter 6 we will be letting K denote a local field. We

will redefine the relevant notation shortly.

In this section we will calculate explicit formulas for all quadratic Gauss sums over

any local field of characteristic 0. The case of odd residue characteristic is fairly easy,

so most of the computation is geared towards handling the case of characteristic 2. In

particular, in characteristic 2, there are two different types of quadratic Gauss sum.

One is of the form ∫︂
ψ(ax2)dx

whereas the other is of the form

∫︂
χ(x)ψ(ax)

where χ is some quadratic character on the local field. In general, there are 2n+1 such

quadratic characters, where n is the degree of the local field. This is in stark contrast
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to the case of odd residue degree, where there is a unique quadratic character and the

two types of Gauss sum we listed above are actually equal.

Finally, we note in the even residue characteristic case that
∫︁
ψ(ax2)dx acts like

a “character of second degree" in a and we classify this character up to isomorphism.

The classification will not be needed for our future computations, but our calculations

come so close to it that we may as well.

First we review the relevant notation and conventions. Let K be a finite extension

of the 2-adic field Q2. Denote the degree of K with n, and let n = ef , where e is the

ramification index and f is the degree of the residue field extension. Let OK denote

the ring of integers, and let q = 2f so that Fq is the residue field of OK . Let π be a

fixed uniformizer of OK , and let the different ideal be (∂) = (π)r, where this equation

defines r. Let K0 be the maximal unramified subfield of K. Also, let the unit α be

given by πe = 2α.

Given an integer x ∈ OK , we will often let x = x0 + x1π + x2π
2 . . . denote its

π-adic expansion. Throughout, we will use the convention that the coefficients of such

expansions will be the canonical multiplicative lifts coming from Fq. That is, our

coefficients will be the q − 1st roots of unity (and 0 of course), and whenever we refer

to any π-adic coefficient, we will be necessarily mean such a value.

For a prime number p ∈ Z and K = Qp, we have the standard exponential function

ψp : Qp → C, x ↦→ e2πix

Here, we make sense of the exponential using the isomorphism Qp/Zp ∼= Q/Z. Given

x ∈ Qp, the isomorphism gives us an element of Q/Z, which we can then exponentiate

the usual way.

From this we may define a normalized exponential function ψ∗ on K. Specifically,

set

ψ∗(x) := e2πitr( x
πr ),
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where the trace is trKQ2 . Note that due to the normalizing factor of πr and the definition

of the different, ψ∗ is unramified (ψ∗(x) = 1 on OK , but is nontrivial on 1
π
OK).

6.2 Tracechanging

The fact that π is an arbitrarily chosen uniformizer makes computing the trace in the

definition of ψ∗ both unnatural and messy. The goal of this section is to construct a

special unit τ ∈ O×
K that encodes data about this messiness. Then we will use τ to

create a simple formula to help compute some traces of the form trKK0

(︂
x

πr+a

)︂
. Such

a formula is the main goal of this section and will later be used to evaluate ψ∗ by

taking a further trace trK0
Q2 (trKK0

(︂
x

πr+a

)︂
) = trKQ2

(︂
x

πr+a

)︂
. Note that since ψ∗ only cares

about this trace mod Z2 and trK0
Q2 (OK0) = Z2, our formula in this section only needs

to compute the trace mod OK0 . We will end up taking advantage of this to simplify

the final computation.

The first step is the following general lemma

Lemma 6.1. Let L/K be a finite separable extension of fields, having basis b1, b2, . . . bn.

Then,

T : L → Kn, x ↦→ (trLK(b1x), trLK(b2x), . . . trLK(bnx))

is an isomorphism of K vector spaces.

Proof. Since L and Kn have equal dimension, it suffices to show ker(T )=0. So, let

x be such that T (x) = 0, so that trLK(bix) = 0 for all i. Let c1, c2, . . . cn be arbitrary

elements of K. Then we have

trLK
(︄

(
n∑︂
i=1

cibi)x
)︄

=
n∑︂
i=1

citrLK(bix) = 0

Of course, ∑︁n
i=1 cibi can be any element of L, so we have trLK(Lx) = 0. Since our

extension is separable, the trace map is nontrivial and we necessarily have x = 0.
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Corollary 6.2. There is a unique τ ∈ K such that

trKK0

(︃
τ

πr+1

)︃
= 1

2 , trKK0

(︃
τ

πr+i

)︃
= 0 2 ≤ i ≤ e.

Proof. Apply the previous lemma to K/K0 with the basis bi = 1
πr+i .

We can use this defining property of τ to get a general formula for all of the traces

we will need later on. However, let us first prove some useful properties of τ . In

particular, it turns out that as defined, we will always have τ ∈ O×
K . The main tool to

show this is the following general fact related to different ideals.1

Fact 6.3.

trKK0

(︃ 1
πr+a

OK

)︃
= 1

2⌈a/e⌉OK0

Proposition 6.4. For the τ given above we have τ ∈ O×
K.

Proof. Since we are working with local fields we have OK = OK0 [π]. This means that

for x ∈ OK , we may write x = ∑︁e−1
i=0 ciπ

i, where each ci ∈ OK0 . For such an x, we can

use the defining properties of τ to get

trKK0

(︃
x · τ

πr+e

)︃
=

e−1∑︂
i=0

citrKK0

(︃
τ

πr+e−i

)︃
= ce−1

2

From this we see

trKK0

(︃
OK · τ

πr+e

)︃
= OK0

2
This will immediately imply τ ∈ OK when combined with Fact 3. In particular, we

get ⌈(e− vπ(τ))/e⌉ = 1 =⇒ vπ(τ) ≥ 0.

To further show τ is a unit, start with the formula

trKK0

(︃
τ

πr+1

)︃
= 1

2

If we were to have τ ∈ πOK , then Fact 3 would imply the above trace is an integer.

Hence, τ is a unit.
1If you change which of the traces in corollary 6.2 is the nonzero one, along with the valuation of

the nonzero trace, you can get τ to have any valuation you want. I just chose the setup that makes τ
a unit, for the sake of convenience.
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Proposition 6.5. For the given τ , we have

trKK0

(︃
τ

πr+e+1

)︃
= 1

4α0
,

where α0 is defined by writing α = ∑︁e−1
i=0 αiπ

i with αi ∈ OK0.

Proof.
1
2 = trKK0

(︃
τ

πr+1

)︃
= 2trKK0

(︃
ατ

πr+e+1

)︃
Since OK = OK0 [π], we may uniquely write α = ∑︁e−1

i=0 αiπ
i with αi ∈ OK0 . Then we

get
1
4 =

e−1∑︂
i=0

αitrKK0

(︃
τ

πr+e+1−i

)︃
= α0trKK0

(︃
τ

πr+e+1

)︃
The result follows.

Though we will not need this fact, α0 admits a very nice description. Let xe +

2ae−1x
e−1 + . . . + 2a0 be the Eisenstein polynomial for π over K0. Then, we have

α = −∑︁e−1
i=0 aiπ

i. Thus, α0 = −a0 comes directly from the constant coefficient of the

Eisenstein polynomial.

We can now put together the main formula for this section.

Proposition 6.6. Tracechanging formula: Let τ be as defined above, let α0 be as in

the previous proposition. Then, if y ∈ OK has π-adic expansion y = ∑︁∞
i=0 yiπ

i, we

have

trKK0

(︃
τy

πr+e+1

)︃
≡ ye

2 + y0

4α0
mod OK0

and if 1 ≤ i ≤ e we have

trKK0

(︃
τy

πr+i

)︃
≡ yi−1

2 mod OK0

Proof. Applying fact 3, we get

trKK0

(︄
τ(∑︁∞

i=0 yiπ
i)

πr+e+1

)︄
≡ trKK0

(︄
τ(∑︁e

i=0 yiπ
i)

πr+e+1

)︄
mod OK0
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We may rewrite this as
e∑︂
i=0

yitrKK0

(︃
τ

πr+e+1−i

)︃
By the defining equations for τ and proposition 5, only the 0th and eth terms of the

sum are nonzero and we get
ye
2 + y0

4α0

The second part of the claim follows immediately from the first part by writing

trKK0

(︃
τy

πr+i

)︃
= trKK0

(︄
τ(yπe+1−i)
πr+e+1

)︄

and noting that the 0th π-adic coefficient of yπe+1−i is 0, and the eth coefficient is

yi−1.

Corollary 6.7. If d ∈ {0, 1}, then

trKK0

(︃
τy

πr+e+d

)︃
≡ ye+d−1

2 + d
y0

4α0
mod OK0

Proof. This follows from the proposition by just checking the two cases for d. The

formula is a little unnatural in how it uses d, but it will help us keep casework clean

later.

In later applications, the value y above will be a product. The following easy

lemma tells us how to deal with this.

Lemma 6.8. Let a ≤ e. Then,

(xy)a ≡
a∑︂
i=0

xiya−i mod 2

Proof. Although not entirely trivial, this can be checked easily by multiplying the

π-adic representations of x and y.
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6.3 The Odd Case

Here, we briefly jump back to a local field over Qp for p odd. We will compute the

value of a quadratic Gauss sum. In the case of K unramified, the ideas and result are

nothing new, but it will be a decent warmup for handling the more difficult case of

p = 2 later.

First, define τ as per corollary 6.2. To be specific, we will take e = 0 in the

corollary, so that τ is definde by the single property

trKK0

(︃
τ

πr+1

)︃
= 1
p

Define

ψ′(x) := ψ∗(τx)

Define the Gauss sums

γ′
(︃
u

πa

)︃
:=
∫︂
OK

ψ′
(︄
ux2

πa

)︄
dx =

∫︂
OK

e
2πitr

(︂
τux2
πr+a

)︂
dx

γ′
(︄
u

πa
,
u′

πa′

)︄
:=
∫︂
OK

ψ′
(︄
ux2

πa
+ u′x

πa′

)︄
dx =

∫︂
OK

e
2πitr

(︂
τux2
πr+a + u′x

πr+a′

)︂
dx

We will be focusing on these “quadratic form" (referring to the x2 in the integral) Gauss

sums for the bulk of the following subsections. However, there are also “quadratic

character" Gauss sums, which will be considered afterwards. This choice of ordering is

chosen because at even places, the calculation of quadratic form Gauss sums will be

useful in the calculations of quadratic character Gauss sums. This is interestingly in

contrast with odd places, where the calculations are more easily done the other way

around. Also worth note is that quadratic character Gauss sums are less diverse at an

odd place, since there will only be 1 quadratic character, as opposed to the 2n+1 of

them found at even places.

There is a unique quadratic character
(︂

·
p

)︂
on O×

Kp
, which we extend trivially to
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OKp , given by (︄
x

p

)︄
=

⎧⎪⎪⎨⎪⎪⎩
1 x is a square unit
−1 x is a nonsquare unit
0 x ∈ πOK

From this, we define the quadratic character Gauss sum for a unit u as

γ′
(︄(︄

·
p

)︄
,
u

πa

)︄
:=
∫︂
OK

(︄
x

p

)︄
ψ′
(︃
ux

πa

)︃
dx

6.3.1 Integration Lemmas

We will need three integration lemmas, which will be used here as well as later on.

Lemma 6.9. Let G be a subset of nonzero measure of OK and let #G denote the

measure of G. Then, for any integrable function f such that the double integral

converges absolutely, we have∫︂
x∈OK

f(x)dx = 1
#G

∫︂
x∈OK

∫︂
y∈G

f(x+ y)dydx

Proof. Start with the right hand side of the above equation. Switch the order of

integration (by absolute convergence) to get

1
#G

∫︂
y∈G

∫︂
x∈OK

f(x+ y)dxdy

For the inner integral, make the change of variables xnew = xold + y. This has trivial

Jacobian and we get
1

#G

∫︂
y∈G

∫︂
x∈OK

f(x)dxdy

We may now switch the order of integration back and take the trivial integral over y

to get our result.

Lemma 6.10. Let G be a subset of nonzero measure of O×
K and let #G denote

the measure of G. Then, for any integrable function f such that the double integral

converges absolutely, we have∫︂
x∈O×

K

f(x)dx = 1
#G

∫︂
x∈O×

K

∫︂
y∈G

f(xy)dydx

The result still holds (with the same proof) if x is being integrated over all of OK.
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Proof. Start with the right hand side of the above equation. Switch the order of

integration (by absolute convergence) to get

1
#G

∫︂
y∈G

∫︂
x∈O×

K

f(xy)dxdy

For the inner integral, make the change of variables xnew = xoldy. Since y is a unit,

|y| = 1 and the Jacobian is trivial. We get

1
#G

∫︂
y∈G

∫︂
x∈O×

K

f(x)dxdy

We may now switch the order of integration back and take the trivial integral over y

to get our result.

Lemma 6.11. Still letting # denote taking the measure of a set, we have

1
#O×2

K

∫︂
x∈O×2

K

f(x)dx = 1
#O×

K

∫︂
x∈O×

K

f(x2)dx

Proof. We start with the right hand side and apply the change of variables y = x2,

which has Jacobian dy = |2x|dx. Since x is a unit, the Jacobian is just dy = |2|dx =

|πe|dx = q−ndx. However, the map y = x2 is not a bijection from O×
K to O×2

K but is

rather a double covering. As such, we will need to introduce an additional factor of

1/2. We get

1
#O×

K

∫︂
x∈O×

K

f(x2)dx = 1
2

1
#O×

K

∫︂
y∈O×2

K

f(y)q−ndy = 1
#O×2

K

∫︂
x∈O×2

K

f(x)dx

Note that in the last step, we used that the square units form an index 2n+1 subgroup

in O×
K .

Finally, I would like to remark that there is an easier way to get the normalization

constants. Since we know that the change of variables y = x2 is a double covering

with constant Jacobian, it follows that the two integrals just differ up to a constant

factor, regardless of the function f . Taking f = 1 then makes this constant factor

clear.
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6.3.2 Evaluating the Odd Gauss Sums

We start by evaluating quadratic character Gauss sums.

Proposition 6.12. One has

γ′
(︄(︄

·
p

)︄
,
u

πa

)︄
=
(︄
u

p

)︄
γ′
(︄(︄

·
p

)︄
,

1
πa

)︄

and

γ′
(︄(︄

·
p

)︄
,
u

πa

)︄
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 a ̸= 1
−(−1)fq−1/2

(︂
u
p

)︂
a = 1, p ≡ 1 mod 4

−(−i)fq−1/2
(︂
u
p

)︂
a = 1, p ≡ 3 mod 4

Proof. The first claim is well known and is just the change of variables xnew = uxold,

from which we immediately get(︄
u

p

)︄∫︂
OK

(︄
x

p

)︄
ψ′
(︃
x

π

)︃
dx

From this, we see that it suffices to prove the second claim only in the case u = 1.

For the second claim, it is a well known fact that when integrating a multiplicative

character against an additive character, the integral will be 0 unless their conductors

are equal.
(︂

·
p

)︂
has conductor 1, hence the need for a = 1. In the case a = 1, we have

the integral ∫︂
OK

(︄
x

p

)︄
ψ′
(︃
x

π

)︃
dx

To do this, we start by noting that the value of x only matters mod π. Hence, we may

convert the integral to a sum to get

q−1 ∑︂
x∈Fq

(︄
x

p

)︄
ψ′
(︃
x

π

)︃

where we interpret elements of Fq as lying in OK via the standard embedding as roots

of unity.

By the definition of ψ′, this becomes

q−1 ∑︂
x∈Fq

(︄
x

p

)︄
e

2πitrK0
Qp

trK
K0( τx

πr+1 )
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Since x ∈ K0, we may pull it out and use the definition of τ to get

q−1 ∑︂
x∈Fq

(︄
x

p

)︄
e

2πitrK0
Qp (x

p ) = q−1 ∑︂
x∈Fq

(︄
x

p

)︄
e

2πi 1
p

trK0
Qp

(x)

We may now switch to a sum defined entirely within the residue field, yielding

q−1 ∑︂
x∈Fq

⎛⎝NFq

Fp
(x)
p

⎞⎠ e2πi 1
p

trFq
Fp

(x)

Evaluating this Gauss sum is now easy and is given by the Hasse-Davenport lifting

relation. This relation says that the Gauss sum under consideration is simply

(−1)f−1γf0

where

γ0 = p−1 ∑︂
x∈Fp

(︄
x

p

)︄
e2πi 1

p
x = p−1/2

⎧⎨⎩1 p ≡ 1 mod 4
i p ≡ 3 mod 4

is just the classical Gauss sum. As such, we have

q−1 ∑︂
x∈Fq

⎛⎝NFq

Fp
(x)
p

⎞⎠ e2πi 1
p

trFq
Fp

(x) = −q−1/2

⎧⎨⎩(−1)f p ≡ 1 mod 4
(−i)f p ≡ 3 mod 4

Proposition 6.13. Let u be a unit, t ∈ K, and without loss of generality, assume

a ≥ 0. (We may do this since if a < 0, we get the same result as if a = 0.) Then,

γ′
(︃
u

πa
, t
)︃

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 vπ(t) < −a
ψ′
(︂

−t2π2a

4u2

)︂
q−a/2 vπ(t) ≥ −a, a even

−(−1)fψ′
(︂

−t2π2a

4u2

)︂
q−a/2

(︂
u
p

)︂
vπ(t) ≥ −a, a odd, p ≡ 1 mod 4

−(−i)fψ′
(︂

−t2π2a

4u2

)︂
q−a/2

(︂
u
p

)︂
vπ(t) ≥ −a, a odd, p ≡ 3 mod 4

Proof. For the case that vπ(t) < −a, we invoke integration lemma 6.9 with G = πaOK .

We get
∫︂
OK

ψ′
(︄
ux2

πa
+ tx

)︄
dx = 1

#G

∫︂
x∈OK

∫︂
y∈πaOK

ψ′
(︄
u(x+ y)2

πa
+ t(x+ y)

)︄
dydx

Substituting yold = πaynew, we get

q−a

#G

∫︂
x∈OK

∫︂
y∈OK

ψ′
(︄
u(x+ πay)2

πa
+ t(x+ πay)

)︄
dydx
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Since ψ′ doesn’t care about integral inputs, some of the terms go away and we may

rearrange the integral to

q−a

#G

∫︂
x∈OK

ψ′
(︄
ux2

πa

)︄
ψ′ (tx)

∫︂
y∈OK

ψ′ (tπay) dydx

By assumption tπa /∈ OK , and so the inner integral vanishes, concluding this case.

As such, we may now take vπ(t) ≥ −a. In this case, we make the substitution

xnew = xold + tπa

2u . Notice that crucially we have tπa

2u ∈ OK . We get

ψ′
(︄

−t2π2a

4u2

)︄∫︂
OK

ψ′
(︄
ux2

πa

)︄
dx

We will now pull out the leading constant and shift focus entirely to computing the

integral ∫︂
OK

ψ′
(︄
ux2

πa

)︄
dx

First of all, if a ≥ 2, I claim that
∫︂
O×

K

ψ′
(︄
ux2

πa

)︄
dx = 0

and hence
∫︂
OK

ψ′
(︄
ux2

πa

)︄
dx =

∫︂
πOK

ψ′
(︄
ux2

πa

)︄
dx = q−1

∫︂
OK

ψ′
(︄
ux2

πa−2

)︄
dx

Proving the claim is a fairly straightforward application of our integration lemmas.

First, by lemma 6.11 we have
∫︂
O×

K

ψ′
(︄
ux2

πa

)︄
dx = 2

∫︂
O×2

K

ψ′
(︃
ux

πa

)︃
dx

Then, by lemma 6.10 with G = 1 + πOK , this equals

2q
∫︂
x∈O×2

K

∫︂
y∈1+πOK

ψ′
(︃
uxy

πa

)︃
dydx

Setting yold = 1 + πynew, we have

2
∫︂
x∈O×2

K

∫︂
y∈OK

ψ′
(︄
ux(1 + πy)

πa

)︄
dydx = 2

∫︂
x∈O×2

K

ψ′
(︃
ux

πa

)︃ ∫︂
y∈OK

ψ′
(︃
uxy

πa−1

)︃
dydx
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Since a ≥ 2 and ux is a unit, it follows that the inner integral is 0 and the desired

result follows.

Letting ā ∈ {0, 1} denote the value of a mod 2, the claim we just proved implies

∫︂
OK

ψ′
(︄
ux2

πa

)︄
dx = q−(a−ā)/2

∫︂
OK

ψ′
(︄
ux2

πā

)︄
dx

It is not hard to see that we have reduced the proposition to just the cases a = 0 and

a = 1. Since the a = 0 case is trivial, we now restrict attention to the a = 1 case. We

must now compute ∫︂
OK

ψ′
(︄
ux2

π

)︄
dx

There is a very common argument that shows this quadratic Gauss sum is the same a

character Gauss sum. By lemma 6.11, we may rewrite the integral as

∫︂
OK

ψ′
(︃
ux

π

)︃⎧⎪⎪⎨⎪⎪⎩
2 x is a square unit
0 x is a nonsquare unit
1 x ∈ πOK

dx

Since the integral of ψ′
(︂
ux
π

)︂
over all of OK is 0, the above integral is the same as

∫︂
OK

ψ′
(︃
ux

π

)︃⎧⎪⎪⎨⎪⎪⎩
1 x is a square unit
−1 x is a nonsquare unit
0 x ∈ πOK

dx

However, this is just the character Gauss sum γ′
(︂(︂

·
p

)︂
, u
π

)︂
.

Remark 6.14. It is worth special note that when t = 0, quadratic Gauss sums are

essentially the same as character Gauss sums. There is different dependence on a,

but up to some correction factors of the form qsomething they are basically identical.

Namely, one could write the correspondence as

γ′
(︃
u

πa
, 0
)︃

=

⎧⎨⎩q
−a/2γ′

(︂
1, u

π0

)︂
a is even

q−(a−1)/2γ′
(︂(︂

·
p

)︂
, u
π

)︂
a is odd

(Here, we are letting γ′
(︂
1, u

π0

)︂
denote a Gauss sum build from the trivial character

which is 1 on all of OKp.)
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This is not surprising, because of the “common argument" we used at the end

of the above proof. In the case of even primes, however, the “common argument"

fails completely. Despite this, we will still end up seeing a reincarnation of this

correspondence between the values of quadratic and character Gauss sums. The

differences will involve shuffling the units around and a constant factor (which only

depends on Kp) that shows up for a odd. (This is found in proposition 6.83 and the

remark following it.)

6.4 □0, □1, and δ

The goal of this section is to define and study three functions that show up in the

computation of the Gauss sum. These functions will essentially tell us if and how we

may write x ∈ OK as a norm from the extension K[
√
π].

By local class field theory we know N
K[

√
π]

K (K[
√
π]×) is a subgroup of K× of index

2. Since this subgroup evidently contains −π, it is of the form (−π)ZUN , for some

subgroup UN ∈ O×
K of index 2. Note that if NK[

√
π]

K (x + y
√
π) = u ∈ UN , then we

have x ∈ O×
K , y ∈ OK by valuation considerations.

Lemma 6.15. If u ∈ O×
K and we have x0 such that x2

0 ≡ v mod π2e+1, then there is a

lift x of x0 such that x2 = v in O×
K.

Proof. We apply Hensel’s lemma with f(x) = x2 − v and f ′(x) = 2x. Hensel’s lemma

states that if |f ′(x0)|2 > |f(x0)|, then the sequence given by xn+1 = xn − f(xn)
f ′(xn) has a

limit x, which is a root of of f .

In this case, x0 is a unit so |f ′(x0)|2 = |2x0|2 = 1
4 . Thus, the requirement in Hensel’s

lemma is that |f(x0)| < 1
4 . This is exactly the same as requiring x2

0 ≡ v mod π2e+1.

In particular, if we let Ui = {u ∈ O×
K : u ≡ 1 mod πi}, then every element of U2e+1

is square and hence UN ⊃ U2e+1.
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Lemma 6.16. For all π-adic coefficients c and all i < 2e, ∃u ∈ UN such that

u ≡ 1 + cπi mod πi+1.

Proof. Choose b so that b2 = c. There are two cases to consider. If i is odd, we have

N(1 + bπi/2) = 1 − cπi ≡ 1 + cπi mod πi+1

On the other hand, if i is even we have

N(1 + bπi/2) = (1 + bπi/2)2 ≡ 1 + cπi mod πi+1,

where the step 2πi/2 ≡ 0 mod πi+1 follows from the inequality i
2 + e > i.

Note also that since q − 1 is odd, UN contains all q − 1st roots of unity.

Consider the finite field Fq with q = 2f , along with the function f(x) = trFq

F2(ax2 +

bx), where a, b ∈ Fq. We have the following nice lemma which will be used repeatedly

and is what the calculation of the Gauss sum boils down to at the end.

Lemma 6.17. As x varies over Fq, f(x) is identically 0 if a = b2 and takes on the

values 0 and 1 equally often otherwise.

Proof. Treating Fq as an F2 vector space, f(x) is a linear transform. Hence, one of

the two possibilities listed above must occur, depending on whether f is identically 0.

The Frobenius element is x ↦→ x2, so bx and b2x2 are conjugate, and hence have the

same trace. Therefore, f(x) = trFq

F2((a+ b2)x2). It is now obvious that this function is

identically 0 iff a+ b2 = 0.

Proposition 6.18. 1 + δ̃π2e ∈ UN for exactly half of all δ ∈ Fq, independently of the

lift δ̃ chosen. Such δ are exactly those satisfying δ ∈ α−2 · ker(trFq

F2).

Proof. Let UN,i = {u ∈ UN : u ≡ 1 mod πi}, so that UN,0 = UN . We inductively show

that for all 0 ≤ i < 2e, UN,i has index 2 in Ui.
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The base case is the class field theory result. For the inductive step, we consider

the short exact sequences Ui+1 → Ui → Ui/Ui+1 and UN,i+1 → UN,i → UN,i/UN,i+1.

The natural inclusion of the second sequence into the first induces an isomorphism on

the quotient, by the previous lemma. The inclusion of the middle term has index 2 by

the inductive assumption, so the inclusion on the first terms also has index 2.

It follows that UN,2e has index 2 in U2e. Now using i = 2e in the short exact

sequences, we have U2e+1 → U2e → U2e/U2e+1 and UN,2e+1 → UN,2e → UN,2e/UN,2e+1.

We just observed the inclusion on the middle terms has index 2. The inclusion on the

left terms is an isomorphism since we know UN ⊃ U2e+1. Hence, the inclusion on the

quotients has index 2 and the first part of the result follows.

For the second part, consider

N(1 + bπe) = 1 + (b2 + α−1b)π2e = 1 + α−2((αb)2 + αb)π2e

As observed in proving lemma 6.17, the map x2 + x : Fq → Fq has image exactly the

kernel of the trace map. This realizes q/2 possible values for δ. Since we can only get

half of them, these must be exactly the possible values.

Note that our construction that realizes the values of δ shows the stronger statement

that they can be gotten as perfect squares, not merely norms.

Lemma 6.19. Suppose x2 − πy2 = z2 − πw2 for x, y, z, w ∈ OK. Then x2 ≡

z2 mod π2e+1 and y2 ≡ w2 mod π2e.

Proof. Since x+ z = x− z + 2z, we have

vπ(x− z) < e =⇒ vπ(x+ z) = vπ(x− z) =⇒ vπ(x2 − z2) = 2vπ(x+ z) < 2e

So, in this case the valuation is smaller than 2e and even. On the other hand,

vπ(x− z) ≥ e =⇒ vπ(x+ z) ≥ e =⇒ vπ(x2 − z2) ≥ 2e
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so in this case the valuation is at least 2e. Together, this implies that if vπ(a2 − b2) is

odd for any a, b ∈ OK , then vπ(a2 − b2) ≥ 2e + 1. From the initial assumption, we

have that vπ(x2 − z2) and vπ(y2 − w2) are consecutive integers, and so one of them is

odd. The result follows.

Definition 6.20. Once and for all, fix δ0 so that 1 + δ0π
2e /∈ UN . If u ∈ O×

K, define

δ(u) =

⎧⎨⎩0 u ∈ UN

δ0 u /∈ UN

From this, we may write

u(1 + δ(u)π2e) = x2 − πy2

Then by the previous lemma, it makes sense to define

□0(u) := x2 mod π2e+1 ∈ OK/π
2e+1, □1(u) := y2 mod π2e ∈ OK/π

2e

As stated earlier, these functions describe whether a unit is a norm as well as how

to write it as such.

Remark 6.21. If u′ = uc2 with c ∈ O×
K, then we clearly have □0(u′) = □0(u)c2.

Hence,
□0(u′)
u′ = □0(u)

u

In other words, the function u ↦→ □0(u)
u

only cares about the value of u in O×
K/O

×2
K .

Furthermore, if we had chosen a different value for δ0, say δ′
0, consider

ρδ = 1 + δ′
0π

2e

1 + δ0π2e

We have ρδ ∈ UN,2e. From the remarks after (lemma 7) and (proposition 9), this

implies that ρδ is a perfect square. It follows that □0(u)
u

is invariant of the choice of δ,

and similarly for □1(u)
u

.

Remark 6.22. The function u ↦→ □1(u)
u

only cares about the value of u in OK/π
2e

and so with the previous remark only depends on u ∈ (OK/π
2e)×

(OK/π2e)×2 .
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Proof. It is clear that u only matters mod π2e+1, since U2e+1 is comprised of squares.

So, it suffices to prove

□1(u · (1 + aπ2e))
u · (1 + aπ2e) = □1(u)

u
for a ∈ OK

If 1 + aπ2e ∈ UN,2e, then it is a perfect square and we have

□1(u · (1 + aπ2e))
u · (1 + aπ2e) = □1(u)(1 + aπ2e)

u · (1 + aπ2e) = □1(u)
u

Otherwise, write 1 + aπ2e = (1 + a′π2e)(1 + δ0) for 1 + a′π2e ∈ UN,2e. Then we have

□1(u · (1 + aπ2e))
u · (1 + aπ2e) = □1(u · (1 + δ0π

2e))(1 + a′π2e)
u · (1 + aπ2e) = □1(u · (1 + δ0π

2e))
u · (1 + δ0π2e)

The key is that □1(u · (1 + δ0π
2e)) = □1(u) due to how □1 is defined. Hence, the

numerator is just □1(u). On the other hand, the denominator is just u, since □1 is

only defined mod π2e. Note that because of this last step, this particular result only

holds for □1, and not □0.

Starting from u(1 + δ(u)π2e) = x2 − πy2 mod πe+1, we see u ≡ x2 + πy2 mod

πe+1. Further, note that when working mod πe+1, squaring is a homomorphism over

addition. (Since if we consider x2 = (x0 + x1π + x2π
2 + . . .)2, the lowest valuation

crossterm will be 2x0x1π, of valuation e+ 1.) It follows that x2 must be exactly the

even valuation terms of u, and πy2 the odd valuation terms.

In summary, □0(u) is a perfect square satisfying

□0(u) ≡
∑︂
i≥0

u2iπ
2i mod πe+1

and □1 satisfies

π□1(u) ≡
∑︂
i≥0

u2i+1π
2i+1 mod πe+1

This explains the choice of notation. □i is a square number that comes from the

coefficients of index congruent to i mod 2. Of course, this only true mod πe+1.
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6.5 Computing the Gauss Sum

We will build a factor of τ into the Gauss sum to simplify computation as well as

the final formula. It should be clear that computing this Gauss sum is the same as

computing the original Gauss sum. Define

ψ′(x) = ψ∗ (τx) , γ′
(︃
u

πa

)︃
= γ

(︃
τu

πa

)︃
=
∫︂
OK

ψ′
(︄
ux2

πa

)︄
dx

Similarly, define

γ′
(︄
u

πa
,
u′

πa′

)︄
= γ

(︄
τu

πa
,
τu′

πa′

)︄
=
∫︂
OK

ψ∗

(︄
τux2

πa
+ τu′x

πa′

)︄
dx

There is still a slightly more convenient form this sum can take on. Let t = u′

πa′ ∈ K.

For a certain function f given in the statement of proposition (number), we will

actually be evaluating sums of the form

γ′
(︃
u

πa
,

t

πf(a)

)︃
=
∫︂
OK

ψ∗

(︄
τux2

πa
+ τu′x

πf(a)+a′

)︄
dx

It should be clear that evaluating this sum is equivalent to evaluating the original

Gauss sum (regardless of f !). Finally, we may assume a ≥ 0, since if it is negative

we may increase it to 0 without affecting the value of the Gauss sum. It is with this

setup that we can begin our main computation.

6.5.1 The Main Computation

Proposition 6.23. Throughout, assume a ≥ 0 and take u ∈ O×
K. Let t = u′

πa′ with

a′ ∈ Z and u′ ∈ OK. Let ā ∈ {0, 1} denote the value of a mod 2. Similarly let

a+ e ∈ {0, 1} be the value of a+ e mod 2.

If a ≥ 2e+ 2, then

γ′
(︃
u

πa
,

t

πa−e

)︃
=

⎧⎨⎩0 t /∈ OK

q−(a−ā−2e)/2ψ′
(︂

−α2t2

πau

)︂
γ′
(︂

u
π2e+ā

)︂
t ∈ OK

If 0 ≤ a ≤ e, then

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=

⎧⎨⎩1 □1−ā(u) ≡ t2 mod πa

0 else
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If e ≤ a ≤ 2e+ 1, then

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=⎧⎨⎩q

−(a−e−a+e)/2ψ′
(︂

α2

π2e+ā

(︂
□1−ā(u)−t2

u

)︂)︂
β(a+ e) □1−ā(u) ≡ t2 mod π2e−a

0 else
(6.24)

where

β(a+ e) =

⎧⎨⎩1 a+ e = 0
ψ0
(︂

1
4

(︂
□1(α0)
α0

)︂)︂ (︂
− 1√

q
e2πi 5

8f
)︂

a+ e = 1

Here, ψ0 is the standard exponential of K0. Also recall α0 ∈ O×
K0 is given by

α = ∑︁e−1
i=0 αiπ

i.

We will rearrange these formulas into a cleaner form after completing the proof.

The forms above are chosen because it is easier to see how they come out of the

computations. Note that we end up with two nontrivially equal formulas for the case

a = e!

Proof. We will have to chip away at this computation one case at a time. We will

proceed roughly in the order of the formulas given above. Case 1 will deal with

a ≥ 2e+ 2.

Case 1a: This subcase deals with the further assumption t ̸∈ OK , or equivalently

a′ > 0.

We are starting with the expression

γ′
(︃
u

πa
,

t

πa−e

)︃
=
∫︂
OK

ψ′
(︄
ux2

πa
+ u′x

πa−e+a′

)︄
dx

Let y1 = ∑︁a−e+a′−2
i=0 xiπ

i and πa−e+a′−1y2 = πa−e+a′−1∑︁∞
i=0 xi+a−e+a′−1π

i be a parti-

tioning of the π-adic representation of x so that x = y1 + πa−e+a′−1y2. We write

γ′
(︃
u

πa
,

t

πa−e

)︃
=
∫︂
OK

ψ′
(︄
u(y1 + πa−e+a′−1y2)2

πa
+ u′(y1 + πa−e+a′−1y2)

πa−e+a′

)︄
dx

=
∫︂
OK

ψ′
(︄
uy2

1
πa

+ u2y1y2π
a−e+a′−1

πa
+ uy2

2π
2a−2e+2a′−2

πa
+ u′y1

πa−e+a′ + u′y2π
a−e+a′−1

πa−e+a′

)︄
dx
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In the exponential above are five summands. The second summand is an integer since

2 = πe/α and a′ > 0. The third summand is an integer since 2a− 2e− 2 > a ↔ a ≥

2e+ 2. As such, we get

=
∫︂
OK

ψ′
(︄
uy2

1
πa

+ u′y1

πa−e+a′ + u′y2

π

)︄
dx

It immediately follows that the integral only depends on the π-adic coefficients up to

xa−e+a′−1 and that furthermore for some function f , we may rewrite the integral as

=
∫︂
OK

ψ′
(︄
f(x0, . . . , xa−e+a′−2) + u′xa−e+a′−1

π

)︄
dx

Since only finitely many of the π-adic coefficients matter, we may rewrite the integral

as a finite sum over these coefficients and find

= q−(a−e+a′−1) ∑︂
x0,...,xa−e+a′−2

ψ′ (f(x0, . . . , xa−e+a′−2))
∑︂

xa−e+a′−1

ψ′
(︄
u′xa−e+a′−1

π

)︄

Of course, the sum over xa−e+a′−1 is just 0 and we are done. Though, we could make

this last step a bit more rigorous by observing

∑︂
xa−e+a′−1

ψ′
(︄
u′xa−e+a′−1

π

)︄
=
∫︂
OK

ψ′
(︄
u′x

π

)︄
dx

and then using the fact that the integral of a nonconstant exponential is 0.

Case 1b: Now we tackle the case a ≥ 2e+ 2, t ∈ OK .

Rewrite

∫︂
OK

ψ′
(︄
ux2

πa
+ tx

πa−e

)︄
dx =

∫︂
OK

ψ′
(︄
ux2

πa
+ 2αtx

πa

)︄
dx

We may complete the square to get

=
∫︂
OK

ψ′
(︄
u

πa

(︄(︃
x+ αt

u

)︃2
− α2t2

u2

)︄)︄
dx

Since t is integral, this is the same as

ψ′
(︄

−α2t2

πau

)︄∫︂
OK

ψ′
(︃
u

πa
x2
)︃
dx
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which is the desired result.

Case 1c: Finally, we will handle the case a ≥ 2e+ 2 and u′ = 0. In this case we

are concerned with the sum ∫︂
OK

ψ′
(︄
ux2

πa

)︄
dx

We will proceed similarly to case 1a. To do this, we let y1 = ∑︁a−e−2
i=0 xiπ

i and

πa−e−1y2 = πa−e−1∑︁∞
i=0 xi+a−e−1π

i so that x = y1 + πa−e−1y2. We get

∫︂
OK

ψ′
(︄
ux2

πa

)︄
dx =

∫︂
OK

ψ′
(︄
u(y1 + πa−e−1y2)2

πa

)︄
dx

=
∫︂
OK

ψ′
(︄
uy2

1
πa

+ 2uy1y2π
a−e−1

πa
+ uπ2a−2e−2y2

2
πa

)︄
dx (6.25)

In the exponential, there are three summands. The second summand can be simplified

using 2 = πe/α. The third summand is an integer and can be removed, since

2a− 2e− 2 ≥ a ↔ a ≥ 2e+ 2. We get

=
∫︂
OK

ψ′
(︄
uy2

1
πa

+ uy1y2

απ

)︄
dx

We see that for some function f , we have

=
∫︂
OK

ψ′
(︃
f(x0, . . . , xa−e−2) + ux0xa−e−1

απ

)︃
dx

Just as before, we write this as a finite sum and get

= q−(a−e−1) ∑︂
x0,...,xa−e−2

ψ′ (f(x0, . . . , xa−e−2))
∑︂

xa−e−1

ψ′
(︃
ux0xa−e−1

απ

)︃

This time, we see that the sum over xa−e−1 vanishes iff x0 ̸= 0. It follows from this

that ∫︂
OK

ψ′
(︄
ux2

πa

)︄
dx =

∫︂
πOK

ψ′
(︄
ux2

πa

)︄
dx = q−1

∫︂
OK

ψ′
(︄
ux2

πa−2

)︄
dx

We conclude that for a ≥ 2e+ 2

γ′
(︃
u

πa

)︃
= q−1γ′

(︃
u

πa−2

)︃
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This reduces all cases where a ≥ 2e + 2 to just cases where a ∈ {2e, 2e + 1}. In

particular, we have

γ′
(︃
u

πa

)︃
= q−(a−ā−2e)/2γ′

(︃
u

π2e+ā

)︃

It is left to the reader to check that this fits with the formulas claimed above.

Case 2 will deal with 0 ≤ a ≤ 2e+ 1.

Case 2a: This subcase will further assume t /∈ OK , or equivalently a′ > 0.

We are computing the sum

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=
∫︂
OK

ψ′
(︄
ux2

πa
+ u′x

π(a+ā)/2+a′

)︄
dx

Let y1 = ∑︁(a+ā)/2+a′−2
i=0 xiπ

i and π(a+ā)/2+a′−1y2 = π(a+ā)/2+a′−1∑︁∞
i=0 xi+(a+ā)/2+a′−1π

i

so that x = y1 + π(a+ā)/2+a′−1y2. We get

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=
∫︂
OK

ψ′
(︄
u(y1 + π(a+ā)/2+a′−1y2)2

πa
+ u′(y1 + π(a+ā)/2+a′−1y2)

π(a+ā)/2+a′

)︄
dx

=
∫︂
OK

ψ′
(︄
uy2

1
πa

+ 2uy1y2π
(a+ā)/2+a′−1

πa
+ uπa+ā+2a′−2y2

2
πa

+ u′y1

π(a+ā)/2+a′ + u′y2

π

)︄
dx

There are five summands in the exponential. The second summand may be removed

since it is an integer. This is slightly nontrivial, but the fact that 2 = πe/α reduces

this claim to showing the inequality

(a+ ā)/2 + a′ − 1 + e ≥ a. This is equivalent to the inequality 2e− 2 + 2a′ + ā ≥ a,

which is a combination of 2e− 2 + 2a′ + ā ≥ 2e+ ā, which is obvious and 2e+ ā ≥ a,

which follows by casework. The third summand is also an integer, though this time it

is obvious. It follows that for some function f , the integral becomes

=
∫︂
OK

ψ′
(︄
f(x0, . . . , x(a+ā)/2+a′−2) + u′x(a+ā)/2+a′−1

π

)︄
dx

Just as before, we may write this integral as a finite sum and it is clear that the sum

over x(a+ā)/2+a′−1 will vanish.

Case 2b: We now consider 0 ≤ a ≤ e and t ∈ OK .
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We are computing the sum

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=
∫︂
OK

ψ∗

(︄
τux2

πa
+ τtx

π(a+ā)/2

)︄
dx

If a = 0, t ∈ OK , the integrand is identically 1, so we may as well restrict to a ≥ 1.

Then from the definition of ψ∗, we have

=
∫︂
OK

exp
(︄

2πitrKQ2

(︄
τux2

πr+a
+ τtx

πr+(a+ā)/2

)︄)︄
dx

By the tracechanging formula, this becomes

=
∫︂
OK

exp
(︂
πitrK0

Q2

(︂
(ux2)a−1 + (tx)(a+ā)/2−1

)︂)︂
dx

To extract the given π-adic coefficients of these products, we appeal to (lemma). Once

we additionally note that

x2 ≡
∞∑︂
i=0

x2
iπ

2i mod 2

we can calculate that the integral becomes

=
∫︂
OK

exp
⎛⎝πitrK0

Q2

⎛⎝(a+ā)/2−1∑︂
i=0

ua−1−2ix
2
i +

(a+ā)/2−1∑︂
i=0

t(a+ā)/2−1−ixi

⎞⎠⎞⎠ dx

We can again use the trick where we write the integral as a finite sum to get

=
(a+ā)/2−1∏︂

i=0
q−1∑︂

xi

exp
(︂
πitrK0

Q2

(︂
ua−1−2ix

2
i + t(a+ā)/2−1−ixi

)︂)︂
Lemma 6.17 now kicks in and tells us that the above quantity is either 0 or 1, and is

0 unless we have

ua−1−2i = t2(a+ā)/2−1−i 0 ≤ i ≤ (a+ ā)/2 − 1

Reindex the conditions to get

u1−ā+2i = t2i 0 ≤ i ≤ (a+ ā)/2 − 1

Note that 1 − ā is either 0 or 1. We now sum the above conditions to get
(a+ā)/2−1∑︂

i=0
u1−ā+2iπ

2i =
(a+ā)/2−1∑︂

i=0
t2iπ

2i
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The left and right sides are just the π-adic expansions of □1−ā(u) and t2, stopping at

valuation a+ ā− 2 ∈ {a− 1, a− 2}. This implies that all the conditions are equivalent

to the single condition

□1−ā(u) ≡ t2 mod πa

This concludes the proof of this case.

Case 2c: We now consider e ≤ a ≤ 2e+ 1 and t ∈ OK .

As in the previous case, we are computing

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=
∫︂
OK

ψ∗

(︄
τux2

πa
+ τtx

π(a+ā)/2

)︄
dx

For b ≥ 0 (to be chosen soon) let

Iy :=
∫︂
y+πbOK

ψ∗

(︄
τux2

πa
+ τtx

π(a+ā)/2

)︄
dx

so that

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=

∑︂
y∈OK/πb

Iy(u)

By the change of variables xold = y + πbxnew, we have

Iy = q−b
∫︂
y+πbOK

ψ∗

(︄
τu(y + πbx)2

πa
+ τt(y + πbx)

π(a+ā)/2

)︄
dx

= q−bψ′
(︄
uy2

πa
+ ty

π(a+ā)/2

)︄∫︂
OK

ψ∗

(︄
τ · 2uyxπb

πa
+ τux2π2b

πa
+ τtxπb

π(a+ā)/2

)︄
dx

Set 2 = πe/α and use the definition of ψ∗ to get

= q−bψ′
(︄
uy2

πa
+ ty

π(a+ā)/2

)︄∫︂
OK

exp
(︄

2πitrKQ2

(︄
τuyxπb+e

απr+a
+ τux2π2b

πr+a
+ τtxπb

πr+(a+ā)/2

)︄)︄
dx

We now make the choice of b. Choose b = ⌊a−e
2 ⌋ = a−e−a+e

2 . Also set y′ = (uy)/α.

The integral simplifies to

= f(y)
∫︂
OK

exp
(︄

2πitrKQ2

(︄
τy′x

πr+(a−e+a+e)/2 + τux2

πr+e+a+e + τtx

πr+(e+ā+a+e)/2

)︄)︄
dx
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where to save space we have temporarily set

f(y) := q−(a−e−a+e)/2ψ′
(︄
uy2

πa
+ ty

π(a+ā)/2

)︄

We may further compress this down by setting t′ = t+ π(2e+ā−a)/2y′ to get

= f(y)
∫︂
OK

exp
(︄

2πitrKQ2

(︄
τt′x

πr+(e+ā+a+e)/2 + τux2

πr+e+a+e

)︄)︄
dx

Note that 2e+ ā− a ≥ 0, so that t′ is integral.

Now turn your attention to the integrand and more specifically the two exponents

in the denominators there. They are each at least as large as r. Our next goal is to

figure out just how much bigger than r they are.

The second exponent is either e or e+ 1 larger than r, depending on a+ e.

For the first exponent, we have

1 ≤ e+ ā+ a+ e

2 =
⌈︃
e+ ā

2

⌉︃
≤
⌈︃
e+ 1

2

⌉︃
≤ ⌈e⌉ = e

It follows we can use the tracechanging formula (proposition 6.6) to get

= f(y)
∫︂
OK

exp
(︄
πitrK0

Q2

(︄
(t′x)(e+ā+a+e)/2−1 + (ux2)e+a+e−1 + (a+ e)(ux2)0

2α0

)︄)︄
dx

By an application of lemma 6.8, we get

= f(y)
∫︂
OK

exp
(︄
πitrK0

Q2

(︄ (e+ā+a+e)/2−1∑︂
i=0

(︂
t′(e+ā+a+e)/2−1−ixi + ue+a+e−1−2ix

2
i

)︂
+ (a+ e)u0x

2
0

2α0

)︄)︄
dx (6.26)

This expression is rather messy, so it can be helpful to write down the first and last

terms inside the sigma notation. The sum goes
(︂
t′(e+ā+a+e)/2−1x0 + ue+a+e−1x

2
0

)︂
+ . . .+

(︂
t′0x(e+ā+a+e)/2−1 + u1−āx

2
(e+ā+a+e)/2−1

)︂
Moving on, just as in case 2b we may replace the integral with a finite sum and factor

over the various xi. The integral becomes

= f(y)
(e+ā+a+e)/2−1∏︂

i=0
q−1∑︂

xi

exp
(︂
πitrK0

Q2

(︂
t′(e+ā+a+e)/2−1−ixi + ue+a+e−1−2ix

2
i + θ

)︂)︂
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Here, we have temporarily let θ denote the quantity (a+ e)u0x2
0

2α0
. Notably, this quantity

is only nonzero when i = 0 and in the case a+ e = 1.

We will now evaluate Iy using case work on a+ e. Once we have evaluated each

case separately, things will come back together and we will continue Case 2c as a

whole.

Case 2ci: Assume a+ e = 0, so that a and e have the same parity.

Lemma 6.17 tells us that every term in the product is either 0 or 1, depending on

i. Hence, Iy is either 0 or f(y). For it to be nonzero, we must have

ue+a+e−1−2i = t′
2
(e+ā+a+e)/2−1−i 0 ≤ i ≤ (e+ ā+ a+ e)/2 − 1

Reindexing and setting a+ e = 0 gives the equivalent conditions

u1−ā+2i = t′
2
i 0 ≤ i ≤ (e+ ā)/2 − 1

Just like before, we may add these conditions to get

(e+ā)/2−1∑︂
i=0

u1−ā+2iπ
2i =

(e+ā)/2−1∑︂
i=0

t′
2
iπ

2i

The left and right sides are the π-adic expansions of □1−ā(u) and t′2, stopping at

valuation e+ ā− 2, which is an even number. It follows that all of the conditions are

equivalent to the single condition

□1−ā(u) ≡ t′
2 mod πe+ā

In conclusion,

Iy =

⎧⎨⎩f(y) □1−ā(u) ≡ t′2 mod πe+ā

0 else

Case 2cii: Next, we consider a+ e = 1.

In this case, we have

Iy = f(y)
(e+ā−1)/2∏︂

i=0
q−1∑︂

xi

exp
(︂
πitrK0

Q2

(︂
t′(e+ā−1)/2−ixi + ue−2ix

2
i + θ

)︂)︂
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Since a+ e = 1, the θ term will show up for the i = 0 term in the product, and will

there take on the value of u0x2
0

2α0
. We may now apply lemma 6.17 to see that for i ≥ 1,

every term in the product is 0 or 1. Note that lemma 6.17 tells us nothing when i = 0,

since the 2 in the denominator will cause us to care about our quantities mod 4.

From here we see Iy is either 0 or f(y)β(1),2 where

β(1) := q−1∑︂
x0

exp
(︄
πitrK0

Q2

(︄
t′(e+ā−1)/2x0 + uex

2
0 + u0x

2
0

2α0

)︄)︄

Furthermore, Iy is nonzero3 exactly when we have the conditions

ue−2i = t′
2
(e+ā−1)/2−i 1 ≤ i ≤ (e+ ā− 1)/2

Or, upon reindexing

u1−ā+2i = t′
2
i 0 ≤ i ≤ (e+ ā− 3)/2

As before, sum these conditions to get
(e+ā−3)/2∑︂

i=0
u1−ā+2iπ

2i =
(e+ā−3)/2∑︂

i=0
t′

2
iπ

2i

These are the starts of the π-adic expansions of □1−ā(u) and t′2i , stopping at the even

valuation e+ ā− 3. It follows that the many conditions are equivalent to the single

condition

□1−ā(u) ≡ t′
2 mod πe+ā−1

In conclusion,

Iy =

⎧⎨⎩f(y)β(1) □1−ā(u) ≡ t′2 mod πe+ā−1

0 else

Case 2c, continued: The two branches 2ci and 2cii now come back together.

Letting β(0) := 1, we have

Iy =

⎧⎨⎩f(y)β(a+ e) □1−ā(u) ≡ t′2 mod πe+ā−a+e

0 else
2We will deal with evaluating β(1) later. Though for now it is worth noting that β(1) itself

appears to be a Gauss sum, taken over K0.
3Later, we will show f(y)β is necessarily nonzero.
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Recalling t′ = t+ π(2e+ā−a)/2y′ and y′ = (uy)/α, we see that Iy is nonzero when

□1−ā(u) ≡ (t+ π(2e+ā−a)/2y′)2 ≡ t2 + π2e+ā−ay′2 ≡ t2 + π2e+ā−au
2y2

α2 mod πe+ā−a+e

This may be split into the pair of conditions

□1−ā(u) ≡ t2 mod π2e+ā−a ,
α2

u2
□1−ā(u) − t2

π2e+ā−a ≡ y2 mod πa−e−a+e

The second condition simplifies to

α

u

√︂
□1−ā(u) − t

π(2e+ā−a)/2 ≡ y mod π(a−e−a+e)/2

Recall that a−e−a+e
2 was exactly the choice of b, so this condition uniquely specifies

a value of y mod πb. Let

y0 = α

u

√︂
□1−ā(u) − t

π(2e+ā−a)/2

From the definition

Iy :=
∫︂
y+πbOK

ψ∗

(︄
τux2

πa
+ τtx

π(a+ā)/2

)︄
dx

we know that the value of y only matters mod πb. It follows that

Iy =

⎧⎨⎩f(y0)β(a+ e) □1−ā(u) ≡ t2 mod π2e+ā−a and y ≡ y0 mod πb

0 else

Also recall

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=

∑︂
y∈OK/πb

Iy(u)

We can now see that depending on t, this sum either consists entirely of 0s or contains

a unique nonzero term. It follows

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=⎧⎨⎩q−(a−e−a+e)/2ψ′

(︂
uy2

0
πa + ty0

π(a+ā)/2

)︂
β(a+ e) □1−ā(u) ≡ t2 mod π2e+ā−a

0 else
(6.27)
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Note 1: A necessary consequence of our proof thus far is that the above piecewise

formula cannot depend on the choice of representative y0. Inspection should reveal

that this is a nontrivial fact, although it can also be proven via direct computation.

Note 2: Since 2e+ā+a is an even number, the condition □1−ā(u) ≡ t2 mod π2e+ā−a

is equivalent to □1−ā(u) ≡ t2 mod π2e−a.

We may simplify the expression slightly by plugging in the definition of y0 to get

= q−(a−e−a+e)/2ψ′

⎛⎜⎜⎜⎝
u
(︃
α
u

√
□1−ā(u)−t

π(2e+ā−a)/2

)︃2

πa
+
t
(︃
α
u

√
□1−ā(u)−t

π(2e+ā−a)/2

)︃
π(a+ā)/2

⎞⎟⎟⎟⎠ β(a+ e)

Light simplification yields

= q−(a−e−a+e)/2ψ′

⎛⎜⎝α2

u

(︂√︂
□1−ā(u) − t

)︂2

π2e+ā + tα

u

√︂
□1−ā(u) − t

πe+ā

⎞⎟⎠ β(a+ e)

Expanding the square,

= q−(a−e−a+e)/2β(a+ e)×

ψ′

⎛⎝α2

u

□1−ā(u)
π2e+ā − α2

u

2t
√︂
□1−ā(u)
π2e+ā + α2

u

t2

π2e+ā + tα

u

√︂
□1−ā(u)
πe+ā

− t2α

u

1
πe+ā

⎞⎠ (6.28)

The fourth and fifth terms can each be multiplied by 1 = 2α/πe to get

= q−(a−e−a+e)/2β(a+ e)×

ψ′

⎛⎝α2

u

□1−ā(u)
π2e+ā − α2

u

2t
√︂
□1−ā(u)
π2e+ā + α2

u

t2

π2e+ā + 2tα2

u

√︂
□1−ā(u)
π2e+ā − 2t2α2

u

1
π2e+ā

⎞⎠
(6.29)

After canceling, we get the final result

= q−(a−e−a+e)/2ψ′
(︄

α2

π2e+ā

(︄
□1−ā(u) − t2

u

)︄)︄
β(a+ e)

Therefore, we have proved

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=⎧⎨⎩q

−(a−e−a+e)/2ψ′
(︂

α2

π2e+ā

(︂
□1−ā(u)−t2

u

)︂)︂
β(a+ e) □1−ā(u) ≡ t2 mod π2e+ā−a

0 else
(6.30)
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This concludes the main body of the casework.

Case 2c, β(1): This is a follow up to 2cii where we compute β(1).

Recall that

β(1) := q−1∑︂
x0

exp
(︄
πitrK0

Q2

(︄
t′(e+ā−1)/2x0 + uex

2
0 + u0x

2
0

2α0

)︄)︄

where the sum is taken over all q possibilities for the π-adic coefficient x0. There is an

implicit assumption a+ e = 1, since that is when β(1) shows up in our formula. Also

recall

t′ = t+ π(2e+ā−a)/2y′ , y′ = (uy0)/α =

√︂
□1−ā(u) − t

π(2e+ā−a)/2 =⇒ t′ =
√︂
□1−ā(u) 4

So, we get

= q−1∑︂
x0

exp
(︄
πitrK0

Q2

(︄(︃√︂
□1−ā(u)

)︃
(e+ā−1)/2

x0 + uex
2
0 + u0x

2
0

2α0

)︄)︄

= q−1∑︂
x0

exp
(︄
πitrK0

Q2

(︄√︂
(□1−ā(u))e+ā−1x0 + uex

2
0 + u0x

2
0

2α0

)︄)︄

= q−1∑︂
x0

exp
(︄
πitrK0

Q2

(︄
√
uex0 + uex

2
0 + u0x

2
0

2α0

)︄)︄

By lemma 6.17, we get

= q−1∑︂
x0

exp
(︄

2πitrK0
Q2

(︄
u0x

2
0

4α0

)︄)︄

Next, notice that x0 mod 2 determines x2
0 mod 4. It follows that we may rewrite

=
∫︂
OK0

exp
(︄

2πitrK0
Q2

(︄
u0x

2

4α0

)︄)︄
dx

Since u0 is a π-adic coefficient of u, it is a root of unity and in particular a perfect

square. We may absorb it into the variable x and get

=
∫︂
OK0

exp
(︄

2πitrK0
Q2

(︄
x2

4α0

)︄)︄
dx

4Note we took y = y0 in the definition of y′ since although technically β can be evaluated for any
choice of y, it was only when y = y0 that we got a contribution to γ. So, this is the only case we care
about.
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This leads us to observe that the result of this calculation only depends on α0 and the

residue field extension degree f . We can factor out the dependence on α0 by noting

that the quantity we are computing is in fact a Gauss sum for the field K = K0.

For the moment, take K = K0 so that e = 1. Choose π = 2, τ = 1. α and α0 for

this field will then be 1, so any further usage of the variable α0 will to refer to the one

coming from the older, original K. Apologies for any confusion due to this. The Gauss

sum we are trying to compute is then γ′
K0

(︃
α−1

0
22

)︃
, where the subscript is a reminder of

the field we are taking as K. For this Gauss sum, a = 2, so ā = 0, a+ e = 1.

Recall

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=⎧⎨⎩q

−(a−e−a+e)/2ψ′
(︂

α2

π2e+ā

(︂
□1−ā(u)−t2

u

)︂)︂
β(a+ e) □1−ā(u) ≡ t2 mod π2e+ā−a

0 else
(6.31)

so that we have

γ′
K0

(︄
α−1

0
22 , 0

)︄
=

⎧⎪⎨⎪⎩ψ0

(︃
1
4

(︃
□1(α−1

0 )
α−1

0

)︃)︃
β(1) □1(α−1

0 ) ≡ 0 mod 1

0 else

where ψ0 is the standard exponential for K0.

It is clear that the conditional □1(α−1
0 ) ≡ 0 mod 1 trivially holds. We get∫︂

OK0

exp
(︄

2πitrK0
Q2

(︄
x2

4α0

)︄)︄
dx = ψ0

(︄
1
4

(︄
□1(α−1

0 )
α−1

0

)︄)︄∫︂
OK0

exp
(︄

2πitrK0
Q2

(︄
x2

4

)︄)︄
dx

We can clean this up slightly using

□1(α−1
0 )

α−1
0

= α2
0□1(α−1

0 )
α0

= □1(α0)
α0

Regardless, the problem has been reduced to computing an integral that only depends

on f . I claim that ∫︂
OK0

exp
(︄

2πitrK0
Q2

(︄
x2

4

)︄)︄
dx = − 1

√
q
e2πi 5

8f

proof of which will be saved for the next proposition. Besides this one step, this

concludes the evaluation of the Gauss sum.
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Remark 6.32. Although the proof of the proposition does not make this obvious, the

formula

γa(u) = 1
q
γa−2(u)

continues to hold as long as a − 2 ≥ e and both Gauss sums are nonzero. This can

have some interesting implications, since if γe(u) is nonzero, it is necessarily 1. This

would imply that γe+2i is positive real. This claim is proven in corollary 6.40.

Proposition 6.33.

σf :=
∫︂
OK0

exp
(︄

2πitrK0
Q2

(︄
x2

4

)︄)︄
dx = − 1

√
q
e2πi 5

8f

Proof. x2 mod 4 depends only on x mod 2, so we rewrite the integral as a sum over

the leading π-adic coefficient of x. Here, we identify the values of the π-adic coefficient

with Fq in the obvious way. We get

σf = 1
q

∑︂
x∈Fq

exp
(︄

2πitrK0
Q2

(︄
x2

4

)︄)︄
,

We will often abuse notation like this by indexing our sums over elements of the residue

field, and let it be understood that the terms in the sum will be the multiplicative

lifts of these elements.

We now proceed using casework on whether f is even or odd. The proofs used in

each case will be mostly unrelated.

Case 1: Let us first consider what happens when f is even. Let f = 2n, so q = 22n.

The extension F2n ⊂ F22n determines a subextension L0 ⊂ K0. Let

σf,a =
∑︂

tr
F22n
F2n

(x)=a

exp
(︄

2πitrK0
Q2

(︄
x2

4

)︄)︄

so that we have

σf = 1
q

∑︂
a∈F2n

σf,a
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For any b ∈ F2n , we have trF22n

F2n (b) = 0, which implies

σf,a =
∑︂

tr
F22n
F2n

(x)=a

exp
(︄

2πitrK0
Q2

(︄
(x+ b)2

4

)︄)︄

Expanding out the square, we have

σf,a =
∑︂

tr
F22n
F2n

(x)=a

exp
(︄

2πitrK0
Q2

(︄
x2

4

)︄)︄
exp

(︄
2πitrK0

Q2

(︄
bx

2

)︄)︄
exp

(︄
2πitrK0

Q2

(︄
b2

4

)︄)︄

Since the lift of b lies in L0, we get

σf,a =
∑︂

tr
F22n
F2n

(x)=a

exp
(︄

2πitrK0
Q2

(︄
x2

4

)︄)︄
exp

(︄
2πitrL0

Q2

(︄
ab

2

)︄)︄
exp

(︄
2πitrL0

Q2

(︄
b2

2

)︄)︄

or equivalently,

σf,a = σf,a exp
(︄

2πitrL0
Q2

(︄
ab+ b2

2

)︄)︄

Lemma 6.17 tells us that if a = 1, then exp
(︂
2πitrL0

Q2

(︂
ab+b2

2

)︂)︂
= 1 for all choices of b.

On the other hand, if a ̸= 1, then we may pick b so that exp
(︂
2πitrL0

Q2

(︂
ab+b2

2

)︂)︂
≠ 1, in

which case it follows σf,a = 0.

We can conclude then, that

σf = 1
q

∑︂
tr

F22n
F2n

(x)=1

exp
(︄

2πitrK0
Q2

(︄
x2

4

)︄)︄

To finish the computation, we will show that the terms in this sum all have the same

value. To do this, let x ∈ OK0 be the lift of some index in the sum. That is, x is a

root of unity obeying

x+ x2n ≡ 1 mod 2

Raise both sides to the 2i to get for all i ≥ 0,

x2i + x2n+i ≡ 1 mod 2

Squaring this relation yields for all i ≥ 0,

x2i+1 + x2n+i+1 ≡ 1 + 2x2n+i+2i mod 4
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We will now use this last identity to compute the value of the exponential in the sum

for σf . To do this, we need to find the value mod 4 of

trK0
Q2

(︂
x2
)︂

=
2n−1∑︂
i=0

x2i+1

We can regroup these terms and apply the identity to get
2n−1∑︂
i=0

x2i+1 =
n−1∑︂
i=0

x2i+1 + x2i+n+1 ≡
n−1∑︂
i=0

1 + 2x2n+i+2i mod 4

We slightly rewrite this sum as

n+ 2
n−1∑︂
i=0

(︂
x · x2n

)︂2i

From the fact x2n ≡ 1 + x mod 2, we get

n+ 2
n−1∑︂
i=0

(︂
x · x2n

)︂2i

≡ n+ 2
n−1∑︂
i=0

(︂
x+ x2

)︂2i

mod 4

Writing out the sum, we have

n+ 2
(︂
(x+ x2) + (x2 + x4) + . . .+ (x2n−1 + x2n)

)︂
≡ n+ 2 mod 4

Plugging this back into the sum for σf , we have

σf = 1
q

∑︂
tr

F22n
F2n

(x)=1

exp
(︄

2πitrK0
Q2

(︄
x2

4

)︄)︄
= 1
q

∑︂
tr

F22n
F2n

(x)=1

exp
(︃

2πi · n+ 2
4

)︃

Keeping in mind q = 2f = 22n and that there are 2n terms in the sum, we get

σf = − 1
√
q
e2πin

4 = − 1
√
q
e2πi 5n

4 = − 1
√
q
e2πi 5f

8

Case 2: Now we must consider the case when f is odd. The idea is to first

compute the magnitude of the Gauss sum, and then do a counting argument to show

there is only one way to add up the terms to get something of that magnitude.

To compute the magnitude of σf , we write let H denote the quaternions with

coefficients inOK0 . That is, for h ∈ H, we may write h = a+bi+cj+dk, a, b, c, d ∈ OK0 .

Letting N be the standard norm down to OK0 , we may write

σ4
f =

∫︂
h∈H

exp
(︄

2πitrK0
Q2

(︄
N(h)

4

)︄)︄
dh
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In order to compute the integral, we start with just the integral over H×:

∫︂
h∈H×

exp
(︄

2πitrK0
Q2

(︄
N(h)

4

)︄)︄
dh

Note that by the standard inverse formula h−1 = (a− bi− cj− dk)/N(h), H× consists

of exactly those elements so that N(h) ∈ O×
K0 . Also note that the condition to be in

H× may be worded as a+ b+ c+ d ̸≡ 0 mod 2. Hence, H× has a measure of 1 − 1
q
.

Let µ(x) = meas({h ∈ H|N(h) ≡ x mod 4}). For any function f : OK0/4 → C,

we have ∫︂
h∈H×

f(N(h)) dh = 1
q2

∑︂
x∈(OK0/4)×

µ(x)f(x)

I claim that all the measures above are nonzero - that is, every class in (OK0/4)× is

a norm coming from H×. This is easily verified directly by considering a norm of

the form 0 + x2 + y2 + y2 = x2 + 2y2. Furthermore, all of the measures above are

equal. This follows because given x, y, there is z ∈ H× so that N(z) = y/x. Then,

multiplication by z is a measure preserving bijection on H that maps µ(x) onto µ(y).

Call this common measure µ. Then, we have

∫︂
h∈H×

f(N(h)) dh = µ

q2

∑︂
x∈(OK0/4)×

f(x)

Setting f = 1, we get

1 − 1
q

= µ

q2 (q2 − q),

so that µ = 1. Applying this to the desired integral and converting the sum back to

an integral, we have

∫︂
h∈H×

exp
(︄

2πitrK0
Q2

(︄
N(h)

4

)︄)︄
dh =

∫︂
x∈O×

K0

exp
(︃

2πitrK0
Q2

(︃
x

4

)︃)︃
dx

Applying the change of variables xold = xnew + 2s, we see

∫︂
x∈O×

K0

exp
(︃

2πitrK0
Q2

(︃
x

4

)︃)︃
dx = exp

(︃
2πitrK0

Q2

(︃
s

2

)︃)︃ ∫︂
x∈O×

K0

exp
(︃

2πitrK0
Q2

(︃
x

4

)︃)︃
dx
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Choosing s ∈ O×
K0 so that trK0

Q2 (s) = 1, we conclude that the integral of interest is 0.

That is, we have shown

∫︂
h∈H×

exp
(︄

2πitrK0
Q2

(︄
N(h)

4

)︄)︄
dh = 0

Hence, it suffices to compute

σ4
f =

∫︂
h∈H−H×

exp
(︄

2πitrK0
Q2

(︄
N(h)

4

)︄)︄
dh

Such an h in the domain necessarily satisfies h ≡ a + bi + cj + (a + b + c)k mod 2.

We get

σ4
f = 1

q

∫︂
(a,b,c)∈O3

K0

exp
(︄

2πitrK0
Q2

(︄
a2 + b2 + c2 + (a+ b+ c)2

4

)︄)︄
dadbdc

Expanding, we get

σ4
f = 1

q

∫︂
(a,b,c)∈O3

K0

exp
(︄

2πitrK0
Q2

(︄
a2 + b2 + c2 + ab+ bc+ ac

2

)︄)︄
dadbdc

Since we only care about a2 + b2 + c2 + ab + bc + ac = a2 + a(b + c) + b2 + c2 + bc

mod 2, lemma 6.17 tells us that the integral over a will vanish unless b+ c ≡ 1 mod 2.

Thus, we assume c ≡ b+ 1 mod 2, which occurs in 1/q cases. This gives

σ4
f = 1

q2

∫︂
(a,b)∈O2

K0

exp
(︄

2πitrK0
Q2

(︄
a2 + a+ b2 + (1 + b)2 + b(1 + b)

2

)︄)︄
dadb

Simplifying, we get

σ4
f = 1

q2

∫︂
(a,b)∈O2

K0

exp
(︄

2πitrK0
Q2

(︄
a2 + a+ b2 + b+ 1

2

)︄)︄
dadb

By lemma 6.17, tr(x2 + x)≡ 0 mod 2, so we get

σ4
f = 1

q2

∫︂
(a,b)∈O2

K0

exp
(︃

2πitrK0
Q2

(︃1
2

)︃)︃
dadb

= 1
q2

∫︂
(a,b)∈O2

K0

exp
(︄

2πif2

)︄
dadb = 1

q2 (−1)f

We conclude that |σf | = 1√
q
.
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Now we can start the counting argument. Note that

ψ∗

(︄
(x+ 1)2

4

)︄
= ψ∗

(︄
x2

4

)︄
ψ∗

(︃
x

2

)︃
ψ∗

(︃1
4

)︃
= ifψ∗

(︄
x2

4

)︄
ψ∗

(︃
x

2

)︃

If trFq

F2(x) = 0, then it further reduces to ifψ∗
(︂
x2

4

)︂
. Using this, we write

σf =
∫︂

trFq
F2

(x)=0
exp

(︄
2πitrK0

Q2

(︄
x2

4

)︄)︄
dx+

∫︂
trFq

F2
(x)=1

exp
(︄

2πitrK0
Q2

(︄
x2

4

)︄)︄
dx

=
∫︂

trFq
F2

(x)=0
exp

(︄
2πitrK0

Q2

(︄
x2

4

)︄)︄
dx+

∫︂
trFq

F2
(x)=0

exp
(︄

2πitrK0
Q2

(︄
(x+ 1)2

4

)︄)︄
dx

= (1 + if )
∫︂

trFq
F2

(x)=0
exp

(︄
2πitrK0

Q2

(︄
x2

4

)︄)︄
dx

x + x2 : Fq → Fq is a linear function with kernel of size 2. Lemma 6.17 tells us its

image consists of elements of trace 0. It follows that the image consists of every

element of trace 0, twice. We apply the change of variables xold = x2
new +xnew, yielding

σf = 1 + if

2

∫︂
x∈Fq

exp
(︄

2πitrK0
Q2

(︄
(x+ x2)2

4

)︄)︄
dx

= 1 + if

2

∫︂
x∈Fq

exp
(︄

2πitrK0
Q2

(︄
x2 + 2x3 + x4

4

)︄)︄
dx

Since x ∈ OK0 is a root of unity, x2 and x4 are conjugates and have the same trace.5

We get

σf = 1 + if

2

∫︂
x∈Fq

exp
(︄

2πitrK0
Q2

(︄
x2 + x3

2

)︄)︄
dx

Let

I =
∫︂
x∈Fq

exp
(︄

2πitrK0
Q2

(︄
x2 + x3

2

)︄)︄
dx

I is clearly real. An elementary check shows that our desired result holds if I is the

rational number 1
2(f−1)/2

(︂
2
f

)︂
, where the second factor is the quadratic symbol. Note

that since we know |σf |, we at least know that I = ± 1
2(f−1)/2

(︂
2
f

)︂
. We will resolve the

sign by induction.

For the base case, take f = 1. Then, we check

I =
∫︂
x∈F2

exp
(︄

2πitrK0
Q2

(︄
x2 + x3

2

)︄)︄
dx = 1

2(1 + 1) = 1

5This replacement still works even if we use an arbitrary lift.
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For the inductive step, assume we have shown the claim for all values ≤ f and

we wish to prove it for f . Since f is odd, let p denote any prime factor of f , and let

f ′ = f/p. Since the quantity trK0
Q2

(︂
x2+x3

2

)︂
is constant on conjugacy classes in F2f , we

may write

2fI = 2f ′
∫︂
x∈F2f ′

exp
(︄

2πitrK0
Q2

(︄
x2 + x3

2

)︄)︄
dx+

∑︂
c∈conj classes in F2f − F2f′

#c · exp
(︄

2πitrK0
Q2

(︄
c2 + c3

2

)︄)︄
, (6.34)

where to evaluate the function on a conjugacy class just means to evaluate it on any

element.

In the sum above, #c is always divisible by p. Hence, we get

2fI ≡ 2f ′
∫︂
x∈F2f ′

exp
(︄

2πitrK0
Q2

(︄
x2 + x3

2

)︄)︄
dx mod p

If we let L0 ⊂ K0 be the subset corresponding to the residue field F2f ′ , we may reduce

this to

2fI ≡ 2f ′
∫︂
x∈F2f ′

exp
(︄

2πi · p · trL0
Q2

(︄
x2 + x3

2

)︄)︄
dx mod p

However, since p is odd, it won’t affect the value of the exponential. Hence, the

integral is just 1
2(f ′−1)/2

(︂
2
f ′

)︂
, by the inductive assumption. We also choose to bring in

the fact that I = ± 1
2(f−1)/2

(︂
2
f

)︂
to get the equation

±2(f+1)/2
(︄

2
f

)︄
≡ 2(f ′+1)/2

(︄
2
f ′

)︄
mod p

Rewrite this as

±2(pf ′+1)/2
(︄

2
pf ′

)︄
≡ 2(f ′+1)/2

(︄
2
f ′

)︄
mod p

Rearranging again, we get

±2(f ′(p−1))/2 ≡
(︄

2
p

)︄
mod p

However, we know
(︂

2
p

)︂
≡ 2(p−1)/2 mod p. Since, f ′ is odd, its presence doesn’t change

the congruence. Hence the sign must be +1, as desired.
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6.5.2 Cleaning up the Formula

Corollary 6.35. Let a be any integer and take u ∈ O×
K. Let t ∈ K. Let ā ∈ {0, 1}

denote the value of a mod 2. Similarly let a+ e ∈ {0, 1} be the value of a+ e mod 2.

Then

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
= g0(a)g1(a, u, t)g2(a, u, t)g3(a)

Each gi (i ≥ 1) is given by a piecewise formula where you check each condition in turn

and only use the formula for the first one that holds.

g0 determines what the magnitude of the Gauss sum should be when the Gauss

sum is non-zero.

g0(a) = q−max(0,a−e)/2

g1(a, u, t) is always 0 or 1 and its job is to control whether γ′ is zero or not.

g1(a, u, t) =

⎧⎨⎩1 □1−ā(u) ≡ t2 mod πmin(a+ā,2e−a+ā)

0 else

g2(a, u, t) is the main term in the formula and shows how the complex argument of γ′

depends on u, t. It is given by

g2(a, u, t) =

⎧⎨⎩1 a ≤ e

ψ′
(︂

α2

π2e+ā
□1−ā(u)−t2

u

)︂
a > e

g3(a) is an extra constant factor that shows up when a ̸≡ e mod 2.

g3(a) =

⎧⎪⎪⎨⎪⎪⎩
1 a ≤ e

1 a+ e = 0
ψ0
(︂

1
4
□1(α0)
α0

)︂ (︂
−e2πi 5

8f
)︂

a+ e = 1

Here, ψ0 is the standard exponential of K0. Also recall α0 ∈ O×
K0 is given by

α = ∑︁e−1
i=0 αiπ

i.

Remark 6.36. In the proof below, we will show that the function

galt2 (a, u, t) =

⎧⎨⎩1 a < e

ψ′
(︂

α2

π2e+ā
□1−ā(u)−t2

u

)︂
a ≥ e
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also would work in our formula for the Gauss sum! Surprisingly, in the case a = e,

our two different formulas for g2(e, u, t) are not necessarily equal to each other! This

is not a contradiction because if the two possibilities are not the same then we will

have g1(a, u, t) = 0 and the difference does not matter. This does mean that our

definition would be more natural if we combined g1 and g2 into a single function (since

g1(a, u, t)g2(a, u, t) = g1(a, u, t)galt2 (a, u, t)). However, we have opted to keep them

separate to make the algebra a bit easier to handle.

Proof. We use the formulas we just proved in proposition 6.23. For convenience we

recall them.

If a ≥ 2e+ 2, then

γ′
(︃
u

πa
,

t

πa−e

)︃
=

⎧⎨⎩0 t /∈ OK

q−(a−ā−2e)/2ψ′
(︂

−α2t2

πau

)︂
γ′
(︂

u
π2e+ā

)︂
t ∈ OK

If 0 ≤ a ≤ e, then

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=

⎧⎨⎩1 □1−ā(u) ≡ t2 mod πa

0 else
If e ≤ a ≤ 2e+ 1, then

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=⎧⎨⎩q

−(a−e−a+e)/2ψ′
(︂

α2

π2e+ā

(︂
□1−ā(u)−t2

u

)︂)︂
β(a+ e) □1−ā(u) ≡ t2 mod π2e−a

0 else
(6.37)

where

β(a+ e) =

⎧⎨⎩1 a+ e = 0
ψ0
(︂

1
4

(︂
□1(α0)
α0

)︂)︂ (︂
− 1√

q
e2πi 5

8f
)︂

a+ e = 1
Note that this implies if e ≤ a ≤ 2e+ 1, then

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=

⎧⎨⎩q
−(a−e)/2ψ′

(︂
α2

π2e+ā

(︂
□1−ā(u)−t2

u

)︂)︂
g3(a) □1−ā(u) ≡ t2 mod π2e−a

0 else
We now proceed by mild casework. The case of a < 0 is easily done by hand and does

not require our formulas. In this case

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=
∫︂
OK

ψ′
(︄
ux2

πa
+ tx

π(a+ā)/2

)︄
dx

=
∫︂
OK

ψ′
(︃

tx

π(a+ā)/2

)︃
dx = 1π(a+ā)/2OK

(t)
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This last condition is the same thing as

t2 ≡ 0 mod πmin(a+ā,2e−a+ā)

(Note that since a < 0, we used πmin(a+ā,2e−a+ā) = πa+ā.) Furthermore, since a+ ā ≤ 0,

we always have □1−ā(u) ≡ 0 mod πmin(a+ā,2e−a+ā). Hence the above condition is the

same as

□1−ā(u) ≡ t2 mod πmin(a+ā,2e−a+ā)

which proves the a < 0 case.

If 0 ≤ a ≤ e, then the formulas we proved tell us

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=

⎧⎨⎩1 □1−ā(u) ≡ t2 mod πa

0 else

Since a ≤ 2e − 1, two perfect squares are congruent mod πa iff they are congruent

mod πa+ā. Furthermore, for a ≤ e, min(a+ ā, 2e− a+ ā) = a+ ā, so we get

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=

⎧⎨⎩1 □1−ā(u) ≡ t2 mod πmin(a+ā,2e−a+ā)

0 else
= g1(a, u, t)

It is now straightforward to check this has the desired form.

If e ≤ a ≤ 2e+ 1, then the formulas we proved tell us

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=

⎧⎨⎩q
−(a−e)/2ψ′

(︂
α2

π2e+ā

(︂
□1−ā(u)−t2

u

)︂)︂
g3(a) □1−ā(u) ≡ t2 mod π2e−a

0 else

We apply similar reasoning to the previous case but this time using min(a+ ā, 2e−

a+ ā) = 2e− a+ ā to conclude that

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
= q−(a−e)/2ψ′

(︄
α2

π2e+ā

(︄
□1−ā(u) − t2

u

)︄)︄
g1(a, u, t)g3(a)

It is now straightforward to check this has the desired form. Note that in the case

a = e we have indeed gotten a different result for g2(e, u, t). There is also the presence

of a g3 term, although g3(e) = 1 so we may ignore it in the case a = e. Since the

value of the Gauss sum cannot depend on how we calculate it, it follows that if the
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two possible forms of g2(e, u, t) disagree, we must have g1(a, u, t) = 0 to avoid a

contradiction.

Finally, if a ≥ 2e+ 2, let t′ be such that t′/πa−e = t/π(a+ā)/2. Then we have

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=

⎧⎨⎩0 t′ /∈ OK

q−(a−ā−2e)/2ψ′
(︂

−α2t′2

πau

)︂
γ′
(︂

u
π2e+ā

)︂
t′ ∈ OK

We now substitute in the value of γ′
(︂

u
π2e+ā

)︂
, which gives

γ′
(︃
u

πa
,

t

π(a+ā)/2

)︃
=

⎧⎨⎩0 t′ /∈ OK

q−(a−e)/2ψ′
(︂

−α2t′2

πau

)︂
ψ′
(︂

α2

π2e+ā

(︂
□1−ā(u)

u

)︂)︂
g3(a) t′ ∈ OK

Since t′ = t/πe+(−a+ā)/2, it is now easy to check that

ψ′
(︄

−α2t′2

πau

)︄
ψ′
(︄

α2

π2e+ā

(︄
□1−ā(u)

u

)︄)︄
= ψ′

(︄
α2

π2e+ā
□1−ā(u) − t2

u

)︄

which gives the correct g2 term. Finally, the condition for γ′ to be nonzero can be

rewritten as t′2 ∈ OK , or that t2 ∈ π2e−a+āOK . Since a ≥ 2e+2, min(a+ā, 2e−a+ā) =

2e− a+ ā and this is the same as

t2 ≡ 0 mod πmin(a+ā,2e−a+ā)

Furthermore, we have 2e− a+ ā < 0 and so we always have

□1−ā(u) ≡ 0 mod πmin(a+ā,2e−a+ā)

which gives us the desired g1.

Remark 6.38. It takes a fair bit of extra work to determine the exact constant value

that g3 can take on, and said work feels rather orthogonal to the rest of the computation.

Also of note is that for many of the calculations I have done using this formula, the

value of g3 always finds a way to cancel out in the end. Perhaps there is some sort of

symmetry to the computations that is lacked by g3 that causes this to happen.
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6.5.3 Gauss Sum Identities

We now prove two very useful identities - the Gauss reflection formula and the blurring

lemma.

Looking at the above formulas, one may notice some interesting symmetries if one

reflects a across the value a = e. This is described more explicitly in the following

“reflection formula". Here, we will take t = 0, although it is not difficult to describe a

formula for nonzero t.

Proposition 6.39. For ANY integer a and unit u we have

γ′
(︃

u

π2e+ā

)︃
γ′
(︃
u

πa

)︃
= q−(a+ā)/2γ′

(︃
u

π2e−a

)︃

In particular, since negating the input to a Gauss sum conjugates the output value,

this is equivalent to

γ′
(︃

u

π2e+ā

)︃
γ′
(︃−u
πa

)︃
= q−(a+ā)/2γ′

(︃
u

π2e−a

)︃

Proof. By the above corollary, we must verify the equality

q−(e+ā)/2g2(2e+ ā, u, 0)g3(2e+ ā) · q−max(0,a−e)/2g1(a, u, 0)g2(a, u, 0)g3(a) =

q−(a+ā)/2 · q−max(0,e−a)/2g1(2e− a, u, 0)g2(2e− a, u, 0)g3(2e− a)

First, we check that the powers of q cancel out. That is, we want to check

q−(e+ā)/2q−max(0,a−e)/2 = q−(a+ā)/2q−max(0,e−a)/2

This is equivalent to verifying

(e+ ā) +max(0, a− e) = (a+ ā) +max(0, e− a)

which follows from the general identity (for all x ∈ R)

x+max(−x, 0) = max(0, x)
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It follows that the desired statement reduces to checking that

g2(2e+ā, u, 0)g3(2e+ā)·g1(a, u, 0)g2(a, u, 0)g3(a) = g1(2e−a, u, 0)g2(2e−a, u, 0)g3(2e−a)

We now check that the g3 terms on each side are equal. That is, we check that

g3(2e+ ā)g3(a) = g3(2e− a) ↔ g3(2e+ ā) = g3(a)g3(2e− a)

If a = e then all three g3 terms are 1 and the equation is true. If a ̸= e then note

that the equation is symmetric under a ↦→ 2e− a and so wlog assume a > e. In this

case, the desired equation becomes g3(2e+ ā) = g3(a) but this is now obvious from

the definition of g3. Thus the proof will be complete if we can verify the equation

g2(2e+ ā, u, 0)g1(a, u, 0)g2(a, u, 0) = g1(2e− a, u, 0)g2(2e− a, u, 0)

Note that the g1 terms on each side are clearly equal since g1(a, u, 0) = g1(2e− a, u, 0).

However, we cannot cancel them since g1 may be zero. Regardless, rearrange the

equation to get

g2(2e+ ā, u, 0)g1(a, u, 0) = g1(a, u, 0)g2(a, u, 0)g2(2e− a, u, 0)

Without loss of generality we will only prove this equation in the case a ≥ e since the

equation is unchanged if we switch a for 2e− a. By remark 6.36, this equation may

be rewritten as

g2(2e+ ā, u, 0)g1(a, u, 0) = g1(a, u, 0)galt2 (a, u, 0)g2(2e− a, u, 0)

Since a ≥ e, we have g2(2e− a, u, 0) = 1. Furthermore, it is straightfoward to check

from the definitions that for a ≥ e we have g2(2e+ ā, u, 0) = galt2 (a, u, 0). Hence the

equation has been verified.

Corollary 6.40. (i) For any a ≥ e and unit u, γ′
(︂

u
πa+2

)︂
= q−1γ′

(︂
u
πa

)︂
, as long as

both Gauss sums are nonzero. In particular, both Gauss sums are nonzero as long as

a ≥ 2e.
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(ii) If γ′
(︂
u
πe

)︂
̸= 0 and a ≡ e mod 2, then

γ′
(︃
u

πa

)︃
=

⎧⎨⎩1 a ≤ e

q−(a−e)/2 a ≥ e

Proof. To prove (i), it suffices to show that the two Gauss sums differ by a positive

real factor. That the factor is q−1 then would follow easily, since corollary 6.35 tells us

the magnitudes of the Gauss sums. In order to actually prove they differ by a positive

real factor, we instead show that γ′
(︂
u
πa

)︂
and γ′

(︂
u

π2e+ā

)︂
differ by a positive real factor.

The same argument will also show that γ′
(︂

u
πa+2

)︂
and γ′

(︂
u

π2e+ā

)︂
differ by a positive

real factor. Let us do this now.

The Gauss reflection formula tells us that

γ′
(︃

u

π2e+ā

)︃
γ′
(︃
u

πa

)︃
= q−(a+ā)/2γ′

(︃
u

π2e−a

)︃

Swapping a for 2e− a gives us

γ′
(︃

u

π2e+ā

)︃
γ′
(︃

u

π2e−a

)︃
= q−(2e−a+ā)/2γ′

(︃
u

πa

)︃

In the case a ≥ e, we can use corollary 6.35 to see that γ′
(︂

u
π2e−a

)︂
is a positive real

number (it cannot be 0 since we assume γ′
(︂
u
πa

)︂
≠ 0) and the result follows. Finally,

the last comment about the Gauss sums being nonzero when a ≥ 2e is just a quick

application of 6.35.

To prove (ii), if γ′
(︂
u
πe

)︂
≠ 0, then corollary 6.35 tells us that γ′

(︂
u
πe

)︂
= 1. The

result now follows by repeated application of (i).

Part (i) of the above corollary does not work for all choices of a ∈ Z. The following

“blurring lemma" gives a generalization that holds for all choices of a.

Lemma 6.41. For a unit u and integer a ≥ 3,

∫︂
y∈OK

γ′
(︄
u(1 + πa−2y)

πa

)︄
= q−1γ′

(︃
u

πa−2

)︃
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We may think of this lemma as follows. If we take a Gauss sum with exponent a,

then obviously the Gauss sum can only see the value of u mod πa. If we then take

the Gauss sum and blur the value of u by averaging its value over u + πa−2OK , we

end up with something that can only see the value of u mod πa−2. In fact, we will get

precisely another Gauss sum with exponent a− 2.

The primary use of the blurring lemma will be to actually raise the exponent in

the denominator of our Gauss sum. When doing explicit calculations, the g1 term in

the Gauss sum causes lots of problems. Since it is effectively a characteristic function,

it ends up changing our nice regions of integration (such as OK) into very unwieldy

sets. By raising the exponent a sufficiently high, the g1 term will become identically 1

and this will no longer be a problem.

The proof of this lemma is very easy, requiring only writing out the Gauss sum as

an integral and then interchanging the two integrals. We may stretch the statement

quite a bit while maintaining the same simple proof. First of all, we may consider

averaging u over different sets (for example, consider replacing the a− 2 term with

a − 4 in the statement above). Second, we may consider Gauss sums that contain

more than just a quadratic term. The resulting more general blurring lemma is not

quite as pretty, but will be useful later on.

Lemma 6.42. Let c2, c1, c0 ∈ K. Let k ≥ 1 be an integer such that all three of

πkc2, π
kc1, π

kc0 lie in OK. Then, we have (rather trivially)

qk
∫︂
y∈1+πkOK

∫︂
x∈OK

ψ′
(︂
yc2x

2 + yc1x+ yc0
)︂
dxdy =

∫︂
x∈OK

ψ′
(︂
c2x

2 + c1x+ c0
)︂
dx

On the other hand, if exactly two of πkc2, π
kc1, π

kc0 lie in OK , let j ∈ {0, 1, 2} denote

which of the three is non-integral. Further, let v = −vπ(πkcj) be a positive integer
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telling us how non-integral this term is. Then we have

qk
∫︂
y∈1+πkOK

∫︂
x∈OK

ψ′
(︂
yc2x

2 + yc1x+ yc0
)︂
dxdy =⎧⎪⎪⎨⎪⎪⎩

0 j = 0
q−v ∫︁

x∈OK
ψ′ (π2vc2x

2 + πvc1x+ c0) dx j = 1
q−⌈v/2⌉ ∫︁

x∈OK
ψ′
(︂
π2⌈v/2⌉c2x

2 + π⌈v/2⌉c1x+ c0
)︂
dx j = 2

(6.43)

Proof. In any case, substitute yold = 1 + πkynew to get

∫︂
y∈OK

∫︂
x∈OK

ψ′
(︂
c2x

2 + c1x+ c0
)︂
ψ′
(︂
yπkc2x

2 + yπkc1x+ yπkc0
)︂
dxdy

Swapping order of integration, this becomes

∫︂
x∈OK

ψ′
(︂
c2x

2 + c1x+ c0
)︂ ∫︂

y∈OK

ψ′
(︂
yπkc2x

2 + yπkc1x+ yπkc0
)︂
dydx

If all three of πkc0, π
kc1, π

kc2 lie in OK , then the inner integral is identically 1 and

the result follows trivially. Now, we proceed with the remaining cases, performing

casework on j.

Case 0: j = 0

In this case, we have

∫︂
x∈OK

ψ′
(︂
c2x

2 + c1x+ c0
)︂ ∫︂

y∈OK

ψ′
(︂
yπkc0

)︂
dydx

By assumption, pikc0 is non-integral and so the inner integral vanishes.

Case 1: j = 1

In this case, we have

∫︂
x∈OK

ψ′
(︂
c2x

2 + c1x+ c0
)︂ ∫︂

y∈OK

ψ′
(︂
yπkc1x

)︂
dydx

The inner integral evaluates to the indicator function 1OK
(πkc1x), and hence asserts

that x ∈ πvOK . We get

∫︂
x∈πvOK

ψ′
(︂
c2x

2 + c1x+ c0
)︂
dx = q−v

∫︂
x∈OK

ψ′
(︂
π2vc2x

2 + πvc1x+ c0
)︂
dx
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Case 2: j = 2

In this case, we have

∫︂
x∈OK

ψ′
(︂
c2x

2 + c1x+ c0
)︂ ∫︂

y∈OK

ψ′
(︂
yπkc2x

2
)︂
dydx

The inner integral evaluates to the indicator function 1OK
(πkc2x

2), and hence asserts

that x2 ∈ πvOK . This is equivalent to x ∈ π⌈v/2⌉OK . We get

∫︂
x∈π⌈v/2⌉OK

ψ′
(︂
c2x

2 + c1x+ c0
)︂
dx = q−⌈v/2⌉

∫︂
x∈OK

ψ′
(︂
π2⌈v/2⌉c2x

2 + π⌈v/2⌉c1x+ c0
)︂
dx

Remark 6.44. We may obtain the earlier blurring lemma from this more powerful

version by setting c2 = u/πa, c1 = c0 = 0, and taking k = a− 2.

This choice of parameters gives j = 2 and v = 2 and we get exactly the desired

result. Note that we need to take a ≥ 3 so that we have the k ≥ 1 hypothesis.

6.6 Classification of γ

The goal of this section is to determine some character-like properties possessed by

γa(u), and eventually give a classification of said function.

6.6.1 Computational Lemmas

The main term in the formula for γu(a) was given as

g2(a, u) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 a ≤ e

ψ′
(︂

1
4π

□0(u)
u

)︂
a odd

ψ′
(︂

1
4
□1(u)
u

)︂
a even

Excluding the a ≤ e case where g2 = 1, there is a close relation between the possibilities

when a is even or odd. In fact, the two functions differ by a quadratic character of u.

We will refer to this as the “parity shifting lemma".
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Lemma 6.45.

ψ′
(︄

1
4π

□0(u)
u

)︄
= ψ′

(︄
1
4
□1(u)
u

)︄
ζf8χK[

√
π](u),

where ζ8 = e(2πi)/8 and χK[
√
π](u) is the quadratic character returning ±1 depending

on whether u is a norm from K[
√
π].

Proof. We immediately get

ψ′
(︄

1
4π

□0(u) − π□1(u)
u

)︄
= ψ′

(︄
1

4π
u(1 + π2eδ(u))

u

)︄
= ψ′

(︃ 1
4π

)︃
ψ′
(︄
α2δ(u)
π

)︄

The first multiplicand is

ψ′
(︃ 1

4π

)︃
= ψ∗

(︃
τ

4π

)︃
= exp

(︃
2πitrKQ2

(︃
τ

4πr+1

)︃)︃
= exp

(︃
2πitrK0

Q2

(︃1
8

)︃)︃
= ζf8

Recalling δ0 ∈ K0, the second term satisfies

ψ′
(︄
α2δ(u)
π

)︄
= ψ∗

(︄
τα2δ(u)

π

)︄
= exp

(︄
2πitrKQ2

(︄
τα2δ(u)
πr+1

)︄)︄
= exp

(︄
2πitrK0

Q2

(︄
α2δ(u)

2

)︄)︄

By proposition 9, we know δ0 is characterized by

trK0
Q2

(︄
α2δ(u)

2

)︄
≡ 1 mod 2

Hence, we have

exp
(︄

2πitrK0
Q2

(︄
α2δ(u)

2

)︄)︄
= χK[

√
π](u),

Remark 6.46. During the computation above we calculated

ψ′
(︃ 1

4π

)︃
= ζf8 ,

which will be useful to note for later.

The parity shifting lemma can also apply directly to Gauss sums. We choose to

leave the formula in terms of the function g3 from the explicit formula for the Gauss

sum (corollary 6.35).
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Corollary 6.47.

γ′
(︃

u

π2e+1

)︃
= γ′

(︃
u

π2e

)︃
q−1/2g3(2e+ 1)ζf8χK[

√
π](u)

Proof. Follows immediately from the explicit formula for the Gauss sum.

Corollary 6.48. Let a > e and assume γa(u) ̸= 0. Then(︄
γa(u)
|γa(u)|

)︄4

= −1n,

where n = ef is just the degree of the field extension.

Proof. This can likely be proven using a quaternion argument, but we will instead do

casework using the formulas we have built up. We know γa(u)
|γa(u)| = g1(a, u)g2(a, u)g3(a),

so we can consider each factor in turn. g1(a, u) is always 0 or 1, so we may ignore it.

It is clear ψ′
(︂

1
4
□1(u)
u

)︂4
= 1, so the above lemma tells us

g2(a, u)4 =

⎧⎪⎪⎨⎪⎪⎩
1 a ≤ e

(−1)f a odd
1 a even

It is also clear that

g3(a)4 =

⎧⎪⎪⎨⎪⎪⎩
1 a ≤ e

1 a ≡ e mod 2
(−1)f a ̸≡ e mod 2

Since we assume a > e, we may write g2(a, u)4 = (−1)af and g3(a)4 = (−1)(a−e)f .

Hence, under our assumptions,(︄
γa(u)
|γa(u)|

)︄4

= (−1)af (−1)(a−e)f = (−1)n

In fact, the parity shifting lemma isn’t the only interesting character-related

identity satisfied by γa(u). We will build up to another identity through a series of

lemmas.
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Lemma 6.49. For any two units u, u′, we have

δ(u)+δ(u′) ≡ δ(uu′) mod π, (1+δ(u)π2e)(1+δ(u′)π2e) ≡ (1+δ(uu′)π2e) mod π2e+1

Proof. Immediate from the definition of δ.

Lemma 6.50. Recall that □0 and π□1 are functions defined mod π2e+1. For arbitrarily

chosen squareroots, we have

□0(uu′) = □0(u)□0(u′) + 2π
√︂
□0(u)□0(u′)□1(u)□1(u′) + π2□1(u)□1(u′)

□1(uu′) = □0(u)□1(u′) + 2
√︂
□0(u)□0(u′)□1(u)□1(u′) + □0(u′)□1(u)

Proof. From the definitions, we have

uu′(1 + δ(u)π2e)(1 + δ(u′)π2e) ≡ (□0(u) − π□1(u))(□0(u′) − π□1(u′)) mod π2e+1

We simultaneously rewrite both sides of the equation. We use the previous lemma on

the left side and recognize the terms on the right as norms from K[
√
π]. Note that we

arbitrarily choose the squareroots when doing this. We get

uu′(1 + δ(uu′)π2e) ≡

N
(︃√︂

□0(u) +
√
π
√︂
□1(u)

)︃
N
(︃√︂

□0(u′) +
√
π
√︂
□1(u′)

)︃
mod π2e+1 (6.51)

Combining the norms on the right yields

uu′(1 + δ(uu′)π2e) ≡

N
(︃(︃√︂

□0(u)□0(u′) + π
√︂
□1(u)□1(u′)

)︃
+ π

(︃√︂
□0(u)□1(u′) +

√︂
□0(u′)□1(u)

)︃)︃
mod π2e+1

(6.52)

The result follows from the definition of □0 and □1.

Lemma 6.53. For any units u, u′, we have

□0(uu′)
uu′ ≡ −1 + □0(u)

u
+ □0(u′)

u′ mod πe+1
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□1(uu′)
uu′ ≡ □1(u)

u
+ □1(u′)

u′ mod πe√︂
□0(uu′)□1(uu′)

uu′ ≡

√︂
□0(u)□1(u)

u
+

√︂
□0(u′)□1(u′)

u′ mod πe

Proof. By lemma 6.50, we have

□0(uu′)
uu′ ≡ □0(u)□0(u′) + π2□1(u)□1(u′)

uu′ mod πe+1

Using u ≡ □0(u) − π□1(u) − π2euδ(u) mod π2e+1, we get

□0(uu′)
uu′ ≡ (u+ π□1(u))(u′ + π□1(u′)) + π2□1(u)□1(u′)

uu′ mod πe

We may expand to get

□0(uu′)
uu′ ≡ 1 + π□1(u)

u
+ π□1(u′)

u′ mod πe+1

Finally, another application of u ≡ □0(u) − π□1(u) − π2euδ(u) mod π2e+1 gives

□0(uu′)
uu′ ≡ −1 + □0(u)

u
+ □0(u′)

u′ mod πe+1

The proof of the second identity is extremely similar.

□1(uu′)
uu′ ≡ □0(u)□1(u′) + □0(u′)□1(u)

uu′ ≡

(u+ π□1(u))□1(u′) + (u′ + π□1(u′))□1(u)
uu′ mod πe (6.54)

The result now follows by expanding out the numerator.

For the final identity, we again start with the previous lemma to get√︂
□0(uu′)□1(uu′)

uu′ ≡(︂√︂
□0(u)□0(u′) + π

√︂
□1(u)□1(u′)

)︂ (︂√︂
□0(u)□1(u′) +

√︂
□0(u′)□1(u)

)︂
uu′ mod πe (6.55)

Note because we are taking squareroots of □1, which is only defined mod π2e, these

equations are only defined mod πe. Expanding and recollecting the terms yields√︂
□0(uu′)□1(uu′)

uu′ ≡√︂
□0(u)□1(u)(□0(u′) + π□1(u′)) +

√︂
□0(u′)□1(u′)(□0(u) + π□1(u))

uu′ mod πe (6.56)
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The result now follows immediately. (Note π□1(u′) ≡ −π□1(u′) mod πe+1.)

The next proposition is an improvement of the previous lemma. It cannot be

further improved since □0 and □1 are only defined mod π2e+1 and π2e.

Proposition 6.57. For any units u, u′, we have

□0(uu′)
uu′ ≡

−1+□0(u)
u

+□0(u′)
u′ +2π

√︂
□0(u)□1(u)

u

√︂
□0(u′)□1(u′)

u′ +2π2□1(u)
u

□1(u′)
u′ mod π2e+1

(6.58)

□1(uu′)
uu′ ≡ □1(u)

u
+□1(u′)

u′ +2

√︂
□0(u)□1(u)

u

√︂
□0(u′)□1(u′)

u′ +2π□1(u)
u

□1(u′)
u′ mod π2e

Proof. By lemma 6.50, we have

□1(uu′)
uu′ ≡

□0(u)□1(u′) + 2
√︂
□0(u)□0(u′)□1(u)□1(u′) + □0(u′)□1(u)

uu′ mod π2e

Using u ≡ □0(u) − π□1(u) − π2euδ(u) mod π2e+1, rewrite this as

□1(uu′)
uu′ ≡

(u+ π□1(u))□1(u′) + 2
√︂
□0(u)□0(u′)□1(u)□1(u′) + (u′ + π□1(u′))□1(u)

uu′ mod π2e

(6.59)

The formula for □1 then follows immediately.

To get the corresponding formula for □0, we use three applications of π□1(u) ≡

−u+ □0(u) − π2euδ(u) mod π2e+1 to get

π□1(uu′)
uu′ − π□1(u)

u
− π□1(u′)

u′ ≡

1 + □0(uu′)
uu′ − □0(u)

u
− □0(u′)

u′ − π2e(δ(uu′) − δ(u) − δ(u′)) mod π2e+1 (6.60)

By lemma 6.49, the δ terms cancel, yielding

π□1(uu′)
uu′ − π□1(u)

u
− π□1(u′)

u′ ≡ 1 + □0(uu′)
uu′ − □0(u)

u
− □0(u′)

u′ mod π2e+1
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Taking the half of the proposition we already proved and multiplying by π, we see

π□1(uu′)
uu′ ≡

π□1(u)
u

+ π□1(u′)
u′ + 2π

√︂
□0(u)□1(u)

u

√︂
□0(u′)□1(u′)

u′ + 2π2□1(u)
u

□1(u′)
u′ mod π2e+1

(6.61)

The result now follows immediately.

6.6.2 The Gauss Sum as a Quadratic Form

As stated previously, when a > e is even, the main term g2 is ψ′
(︂

1
4
□1(u)
u

)︂
. We may

rewrite it as

ψ′
(︄

1
4
□1(u)
u

)︄
= exp

(︄
2πi trKQ2

(︄
τ

πr
1
4
□1(u)
u

)︄)︄
= exp

(︄
πi

2 trKQ2

(︄
τ

πr
□1(u)
u

)︄)︄
= iq(u),

where

q : OK → Z/4, q(u) ≡ trKQ2

(︄
τ

πr
□1(u)
u

)︄
mod 4

From remark 6.22, we know that q only depends on u ∈ (OK/π
2e)×

(OK/π2e)×2 . There is a group

isomorphism ϕ from the additive group (Z/2)n to the multiplicative group (OK/π
2e)×

(OK/π2e)×2 .

Hence, we have a function

q̄ = q ◦ ϕ : (Z/2)n → Z/4

Letting u = ϕ(v), u′ = ϕ(v′), we have

q̄(v + v′) ≡ trKQ2

(︄
τ

πr
□1(uu′)
uu′

)︄
mod 4

By the above proposition 6.57, we get

q̄(v + v′) ≡ trKQ2

(︄
τ

πr

(︄
□1(u)
u

+ □1(u′)
u′ +

2

√︂
□0(u)□1(u)

u

√︂
□0(u′)□1(u′)

u′ + 2π□1(u)
u

□1(u′)
u′

)︄)︄
mod 4 (6.62)
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So,

q̄(v + v′) = q̄(v) + q̄(v′) + 2Bq(v, v′), (6.63)

where

Bq(v, v′) ≡ trKQ2

⎛⎝ τ

πr

⎛⎝
√︂
□0(u)□1(u)

u

√︂
□0(u′)□1(u′)

u′ + π
□1(u)
u

□1(u′)
u′

⎞⎠⎞⎠ mod 2

We will often abuse notation and allow Bq to directly act on elements of OK , simply

via the above formula.

Lemma 6.57 states that Bq(v, v′) is a bilinear function.6 This is precisely the

condition for q̄ to be a quadratic form mod 4 in the sense of Brown (and hence also

q(v) by abuse of notation). See [Woo93] for more details and [Woo93] section 2 for the

definition. In particular, we may take v = v′ = 0 to see that q̄(0) = 0, although this

can also been seen via direct computation. Before moving to classify the quadratic

form q, we quickly note down the defining property of Bq in terms of Gauss sums,

something which will be useful later.

Proposition 6.64.

γ′
(︄
uu′

π2e

)︄
= qe/2γ′

(︃
u

π2e

)︃
γ′
(︄
u′

π2e

)︄
eπiBq(u,u′)

Now we classify q. By the section 3 theorem of [Woo93], a mod 4 quadratic form

with nondegenerate Bq is completely classified by the three things: the dimension of

its domain, whether or not Bq is alternating, and the Brown σ invariant which takes

a value in Z/8. We will look at each of these properties of q in turn.

Lemma 6.65. For z ∈ OK, The set of solutions to x2 ≡ z mod π2e is either empty

or is a unique equivalence class mod πe. The solutions to x2 ≡ z mod π2e−1 is either

empty or is again a unique equivalence class mod πe.

Proof. It suffices to prove two statements:

x1 ≡ x2 mod πe =⇒ x2
1 ≡ x2

2 mod π2e and x1 ̸≡ x2 mod πe =⇒ x2
1 ̸≡ x2

2 mod π2e−1

6This function is closely related to the local Hilbert symbol, possibly equal to it.
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The first statement shows that it suffices to consider congruence classes mod πe. The

second shows that each such class goes to a unique value mod π2e−1 (and hence also a

unique value mod π2e), and so the result would follow.

To prove the first statement, if x1 ≡ x2 mod πe then we may write x2 = x1 + uπa

for u ∈ O×
K and a ≥ e. Then we have

(x1 + uπa)2 = x2
1 + 2uπa + u2π2a ≡ x2

1 mod π2e

For the second statement, if x1 ̸≡ x2 mod πe then we may write x2 = x1 + uπa for

u ∈ O×
K and 0 ≤ a < e. Then we have

(x1 + uπa)2 = x2
1 + 2uπa + u2π2a

So, we must show 2uπa + u2π2a ̸≡ 0 mod π2e−1. To do this, note vπ(2uπa) = e + a

and vπ(u2π2a) = 2a < e+ a. Hence, we have vπ(2uπa + u2π2a) = 2a ≤ 2e− 2 and so

2uπa + u2π2a ̸≡ 0 mod π2e−1.

Proposition 6.66. Bq is nonsingular.

Proof. To show nonsingularity, take a = 2e, so that

γ2e(u) = q−e/2g3(a)g2(a, u) = q−e/2g3(a)iq̃(ϕ−1(u))

If v0 were an element in the kernel of Bq, then we would have q(v0 + v) = q(v0) + q(v)

for all v. The above formula then would imply that for u0 = ϕ(v0), we would have

γ2e(u0u) = iq̃(v0)γ2e(u)

for all units u. For convenience, we will let c = iq̃(v0), since it is just some constant

fourth root of unity.

We may rewrite the above equation as (for all u ∈ O×
K)

c−1 = γ2e(u)γ2e(u0u)−1 =
∫︂
OK

ψ′
(︄
ux2

π2e

)︄
dx

(︄∫︂
OK

ψ′
(︄
u0uy

2

π2e

)︄
dy

)︄−1
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The key to proceeding is to note that the Gauss sum we are taking the reciprocal of

has complex norm q−e/2. Hence, we may write

c−1 = qe
∫︂
OK

ψ′
(︄
ux2

π2e

)︄
dx

∫︂
OK

ψ′

(︄
u0uy2

π2e

)︄
dy

We may distribute the conjugation across the integral and combine the integrals to get

c−1 = qe
∫︂
OK

ψ′
(︄
ux2

π2e

)︄
dx

∫︂
OK

ψ′
(︄

−u0uy
2

π2e

)︄
dy = qe

∫︂
OK

∫︂
OK

ψ′
(︄
u(x2 − u0y

2)
π2e

)︄
dxdy

Now, integrate both sides over u ∈ O×
K . We get

c−1
(︄

1 − 1
q

)︄
= qe

∫︂
OK

∫︂
OK

∫︂
O×

K

ψ′
(︄
u(x2 − u0y

2)
π2e

)︄
dudxdy

Let’s look at the innermost integral more closely. We have
∫︂
O×

K

ψ′
(︄
u(x2 − u0y

2)
π2e

)︄
du =

∫︂
OK

ψ′
(︄
u(x2 − u0y

2)
π2e

)︄
du−

∫︂
πOK

ψ′
(︄
u(x2 − u0y

2)
π2e

)︄
du

=
∫︂
OK

ψ′
(︄
u(x2 − u0y

2)
π2e

)︄
du− 1

q

∫︂
OK

ψ′
(︄
u(x2 − u0y

2)
π2e−1

)︄
du

The first integral is a characteristic function for u0 ≡ (x/y)2 mod π2e, whereas the

second is a characteristic function for u0 ≡ (x/y)2 mod π2e−1. Plugging this back into

the triple integral, we can write out the result using measures of certain sets:

c−1
(︄

1 − 1
q

)︄
=

qe
(︄

meas({(x, y)|x2 ≡ u0y
2 mod π2e}) − 1

q
meas({(x, y)|x2 ≡ u0y

2 mod π2e−1})
)︄

(6.67)

It is clear that since c is a fourth root of unity, and all other terms above are real,

c = ±1. First we show c = −1 is impossible. By the lemma, for each choice of y, there

are at most measure q−e choices of x so that x2 ≡ u0y
2 mod π2e−1. Hence,

1
q

meas({(x, y)|x2 ≡ u0y
2 mod π2e−1}) ≤ 1

q
q−e ≤

(︄
1 − 1

q

)︄
q−e

However,

meas({(x, y)|x2 ≡ u0y
2 mod π2e}) > 0,
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since there are solutions whenever x ≡ y ≡ 0 mod π2e. Therefore, we have

meas({(x, y)|x2 ≡ u0y
2 mod π2e}) − 1

q
meas({(x, y)|x2 ≡ u0y

2 mod π2e−1})

> 0 −
(︄

1 − 1
q

)︄
q−e, (6.68)

so this quantity can never be negative enough for c = −1 to work. Therefore, any

solution must use c = 1. We have

meas({(x, y)|x2 ≡ u0y
2 mod π2e}) − 1

q
meas({(x, y)|x2 ≡ u0y

2 mod π2e−1})

≤
(︄

1 − 1
q

)︄
meas({(x, y)|x2 ≡ u0y

2 mod π2e}) ≤
(︄

1 − 1
q

)︄
q−e,

where the last step is our (lemma).

Therefore, for c = 1 to occur, we must have the equality case in the above

inequalities. In particular, x2 ≡ u0y
2 mod π2e must have a solution for some unit

value of y. Hence, u0 must be a square mod π2e. This is equivalent to saying

v0 = ϕ−1(u0) = 0, which concludes the proof that Bq is nonsingular.

Proposition 6.69. Bq is alternating (that is, Bq(v, v) is identically 0) iff x2 ≡ −1

mod π2e has any solutions.

Proof. Start from the equation

q̄(v + v) = q̄(v) + q̄(v) + 2Bq(v, v)

We know q̄(2v) = q̄(0) = 0, so this implies q̄(v) ≡ Bq(v, v) mod 2. Thus, it suffices to

ask whether q̄(v) is identically 0 mod 2 instead.

To continue, we again use the equation

γ2e(u) = q−e/2g3(a)iq̃(ϕ−1(u))

In particular, if we square this equation, we get

γ2e(u)2 = q−eg3(a)2(−1)q̃(ϕ−1(u))
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We may rewrite the left side to get∫︂
OK

∫︂
OK

ψ′
(︄
u(x2 − (−1)y2)

π2e

)︄
dxdy = q−eg3(a)2(−1)q̃(ϕ−1(u))

Now the left side is exactly the function we studied in the proof of the previous

proposition, with u0 = −1. In particular, if x2 ≡ −1 mod π2e has no solutions, then

we know that said function is non-constant. This implies that the right hand side is

non-constant, and so q̄(v) is not identically 0 mod 2.

On the other hand, if x2 ≡ −1 mod π2e has a solution x0, then write

γ2e(u)2 =
∫︂
OK

ψ′
(︄
ux2

π2e

)︄
dx

∫︂
OK

ψ′
(︄
uy2

π2e

)︄
dy

We may change variables ynew = x0yold to get

γ2e(u)2 =
∫︂
OK

ψ′
(︄
ux2

π2e

)︄
dx

∫︂
OK

ψ′
(︄

−uy2

π2e

)︄
dy = |γ2e(u)|2 = q−e

Hence, γ2e(u)2 = q−eg3(a)2(−1)q̃(ϕ−1(u)) is a constant function, so q̃(v) is constant mod

2. We know q̃(0) = 0, so it must be identically 0 mod 2.

Corollary 6.70. If Bq is alternating, then e is even.

Proof. We know x2 ≡ −1 mod π2e has a solution. Write

x2 = −1 + 4a+ π2e+1b

where a is a root of unity or 0, and b ∈ OK .

Since every member of U2e+1 is a perfect square, we may assume without loss of

generality that b = 0. We get

x2 + 1 − 4a = 0

Now, letting x = y + 1, so we get

y2 + 2y + 2 − 4a = 0

Hence, y is a root of an Eisenstein polynomial over K0 and so K0[y] has even ramifi-

cation index. It follows that K ⊃ K0[y] also has even ramification index.
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Finally, we look into the σ invariant. Per Brown’s theorem (as quoted in [Woo93]

section 2), σ is given by the formula

∑︂
v∈(Z/2)n

iq̄(v) = qe/2ζσ8

We may rewrite this equation as

g3(2e)−1q−e/2 ∑︂
v∈(Z/2)n

γ2e(ϕ(v)) = ζσ8

As u varies in O×
K , it represents each possible value of v equally. Hence, we see that

for some positive real constant c,
∫︂
u∈O×

K

γ2e(u) du = c
∑︂

v∈(Z/2)n

γ2e(ϕ(v))

Therefore, for some different positive constant c, we have

g3(2e)−1
∫︂
O×

K

γ2e(u) du = cζσ8

Expanding out the definition of γ, we get

g3(2e)−1
∫︂
O×

K

∫︂
OK

ψ′
(︄
ux2

π2e

)︄
dx du = cζσ8

We change the order of integration to get

g3(2e)−1
∫︂
OK

∫︂
O×

K

ψ′
(︄
ux2

π2e

)︄
du dx = cζσ8

As we have calculated many times so far, we may write
∫︂
O×

K

ψ′
(︄
ux2

π2e

)︄
du =

∫︂
OK

ψ′
(︄
ux2

π2e

)︄
du− 1

q

∫︂
OK

ψ′
(︄
ux2

π2e−1

)︄
du

so that we get

g3(2e)−1
(︄

meas({x|x2 ≡ 0 mod π2e}) − 1
q

meas({x|x2 ≡ 0 mod π2e−1})
)︄

= cζσ8

These conditions are both equivalent to x ≡ 0 mod πe, so we get

g3(2e)−1
(︄

1 − 1
q

)︄
q−e = cζσ8
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from which we conclude

g3(2e)−1 = ζσ8

Writing this out more explicitly (and since a = 2e),

ζσ8 =

⎧⎨⎩1 e ≡ 0 mod 2
ψ0
(︂

1
4
□1(α0)
α0

)︂ (︂
−e2πi 5

8f
)︂

e ≡ 1 mod 2

Therefore,

σ =

⎧⎨⎩0 e ≡ 0 mod 2
2trK0

Q2

(︂
□1(α0)
α0

)︂
+ 4 + 5f mod 8 e ≡ 1 mod 2

We now put everything together into a single proposition.

Proposition 6.71. Let v be the element of (Z/2)n corresponding to u ∈ OK. Then,

we have

g2(a, u) =

⎧⎪⎪⎨⎪⎪⎩
1 a ≤ e

iq̄(v)ζf8χK[
√
π](u) a odd

iq̄(v) a even

where q̄ : (Z/2)n → Z/4 is a quadratic form.

If x2 ≡ −1 mod π2e has a solution, then q̄ is equivalent under basechange to

n/2∑︂
i=1

2x2i−1x2i

Otherwise, q̄ is equivalent under basechange to

n∑︂
i=1

±x2
i ,

Let pq be the number of positive coefficients. Then pq is only well defined mod 4 and

given by

pq ≡ σ + n

2 ≡

⎧⎨⎩n/2 e ≡ 0 mod 2
trK0
Q2

(︂
□1(α0)
α0

)︂
+ 2 + 1

2(5 + e)f e ≡ 1 mod 2

Proof. We have already checked everything except for the basechange results. In the

first case, Bq is alternating, so by corollary 6.70 e is even. In this case, σ = 0 and

it follows by part 7 of Brown’s theorem that the associated Arf invariant is 0. This

implies that q has the desired form.
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If Bq is not alternating, then [Woo93] tells again tells us q̄ has the desired form

and further tells us pq ≡ σ+n
2 mod 4. It also provides a basechange that turns four +1

coefficients into -1 coefficients or vice-versa, so pq is only well defined mod 4.

6.6.3 The Squareness Operator

Concluding our calculation of various properties of Bq, we will give some examples of

subspaces that are orthogonal compliments. This particular calculation will be used

in the computation of the character Gauss sum.

Definition 6.72. Given u ∈ O×
K , we define the squareness of u, denoted sq(u). sq(u)

will be the smallest positive integer k such that u is congruent to a square mod πk. If

u is a perfect square in O×
K, then we let sq(u) = ∞.

For example, taking e = 20, we have sq(1 + π2 + π4 + π5 + π7) = 5.

For later applications, it will be convenient to define squareness for all x ∈ K. To

do this, let u be a unit, k be any integer and then define sq(uπ2k) := sq(u). This

defines squareness for any even valuation x ∈ K. For x with odd valuation, define

sq(x) = 0.

Remark 6.73. For any unit u, sq(u) ∈ {1, 3, . . . , 2e− 1, 2e,∞}. That is, it is either

an odd number from 1 to 2e− 1, or it is 2e or ∞.

Remark 6.74. For any x, y ∈ K, we have sq(xy2) = sq(x). We will not need this

fact, but it is a nice property.

Remark 6.75. An alternate description of squareness which holds for all x ∈ K is as

the valuation

sq(x) = vπ(□1(x)) − vπ(x) + 1.

For even k satisfying 0 ≤ k ≤ 2e, let Wk denote the f(e − k/2) dimensional

subspace of (OK/π
2e)×

(OK/π2e)×2 consisting of elements that can be represented by units of the
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form 1 +∑︁∞
i=k+1 aiπ

i. To use the just introduced terminology, these are all u such that

sq(u) ≥ k+1. By the remark above, this is the same as units such that vπ(□1(u)) ≥ k.

Lemma 6.76. W⊥
k = W2e−k

Proof. We will show that < Wk,W2e−k >= 0. Since our inner product is non-

degenerate and the dimensions of the two spaces add up to fe = n, the claim will

immediately follow.

It will not hurt to recall the definition of Bq:

Bq(v, v′) ≡ trKQ2

⎛⎝ τ

πr

⎛⎝
√︂
□0(u)□1(u)

u

√︂
□0(u′)□1(u′)

u′ + π
□1(u)
u

□1(u′)
u′

⎞⎠⎞⎠ mod 2

If v ∈ Wk and v′ ∈ W2e−k, we know that □1(u) ∈ πkOK and □1(u′) ∈ π2e−kOK . It

immediately follows that the out of the two terms being summed in the definition of

Bq, the first is a multiple of πe = 2 and the second is a multiple of π2e = 4. It follows

that the inner product is 0.

6.7 Computing Quadratic Character Gauss Sums

We know #O×
K/O

×2
K

∼= (Z/2)n+1, a power of the two element cyclic group. It follows

that O×
K has precisely 2n+1 quadratic characters.

Let χu0(u) = eπiBq(u,u0) denote a quadratic character. It is clear from the definitions

that χu0χu1 = χu0u1 . Since Bq is non-degenerate, we know that as u0 varies, we get

2n distinct quadratic characters of this form.

Lemma 6.77. The conductor of χu0 is given by

conductor(χu0) =

⎧⎨⎩0 u0 ∈ (OK/π
2e)×2

2e+ 1 − sq(u0) u0 /∈ (OK/π
2e)×2

In particular, the conductor of any such character is always even.

Proof. The first case is easy since u0 ∈ (OK/π
2e)×2 is exactly the condition for the

χu0 to be the trivial character.
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Otherwise, we know that u0 is not a square mod π2e and hence sq(u0) must be

an odd number from 1 to 2e− 1. Following the notation at the end of the previous

section, we know that u0 ∈ Wsq(u0)−1. Hence, by the proposition there, we know that

Bq(u0,W2e+1−sq(u0)) = 0. It follows that χu0 is trivial on 1 + π2e+2−sq(u0)OK . However,

2e+ 2 − sq(u0) is an odd number. Since our character is trivial on squares it follows

that in fact χu0 is trivial on 1 + π2e+1−sq(u0)OK . Hence, the conductor is at most

2e+ 1 − sq(u0).

Reversing the argument shows that the conductor can be no smaller than this.

After all, if χ were trivial on the larger set 1 + π2e−sq(u0) then we would have

Bq(u0,W2e−1−sq(u0)) = 0. From this, it would follow from the proposition that

u0 ∈ Wsq(u0)+1, and hence has squareness at least sq(u0) + 2, a contradiction.

We know of another quadratic character on O×
K , namely χK[

√
π] from the earlier

section on the classification of γ. This character has conductor 2e + 1, and hence

isn’t any of our 2n earlier characters. This lets us expand our collection of characters.

Namely, for i ∈ {0, 1} let χiu0(u) := χu0(u) ∗ (χK[
√
π](u))i.

Corollary 6.78. For some choice of χiu0, let cχ denote its conductor. Then,

cχ =

⎧⎪⎪⎨⎪⎪⎩
0 u0 ∈ (OK/π

2e)×2, i = 0
2e+ 1 − sq(u0) u0 /∈ (OK/π

2e)×2, i = 0
2e+ 1 i = 1

The next proposition now describes all characters of O×
K .

Proposition 6.79. Given any quadratic character χ of O×
K, there is a unique choice

of u0 ∈ (OK/π
2e)×

(OK/π2e)×2 and i ∈ {0, 1} such that χiu0 = χ.

Proof. This just comes down to verifying that the 2n+1 possibilities for χiu0(u) are all

distinct. However, this is obviously true since this collection of characters is a group

and only one of the characters has conductor 0 (and hence is trivial). Since we know

O×
K has exactly 2n+1 quadratic characters, this must be all of them.

153



We now begin our evaluation of quadratic character Gauss sums. We start with a

lemma in which we calculate an easier integral. We then use the lemma to calculate

an important intermediate quantity which we will end up needing again later. Finally,

we specify what we mean by “quadratic character Gauss sum" and give our formula in

a final proposition. Our convention will be for a nontrivial multiplicative character

χiu0(u) to be zero on πOK and for the trivial character to be 1 everywhere (including

on πOK).

Lemma 6.80. Let k ≥ 0 be an integer. Then

∫︂
x∈O×

K

γ′
(︃
x

πk

)︃
dx =

⎧⎨⎩(1 − q−1)q−k/2 k even
0 k odd

Proof. Although possible without, we opt to change the order of integration because

it is much faster in this case. First, write the Gauss sum back out as an integral.

∫︂
x∈O×

K

∫︂
y∈OK

ψ′
(︄
xy2

πk

)︄
dydx

In the case k = 0, the integrand is identically 1 and the result follows, so we will now

assume k > 0. Since the domain of integration is compact, we may interchange the

order of integration. Additionally rewriting the domain of x, we get

∫︂
y∈OK

(︄∫︂
x∈OK

ψ′
(︄
xy2

πk

)︄
dx−

∫︂
x∈πOK

ψ′
(︄
xy2

πk

)︄
dx

)︄
dy

A very slight change of variables yields

∫︂
y∈OK

(︄∫︂
x∈OK

ψ′
(︄
xy2

πk

)︄
dx− q−1

∫︂
x∈OK

ψ′
(︄
xy2

πk−1

)︄
dx

)︄
dy

The integrals give us indicator functions.

∫︂
y∈OK

(︂
1πkOK

(y2) − q−1
1πk−1OK

(y2)
)︂
dy

In the case of k even, both indicator functions are equivalent to asking y ∈ πk/2OK

and we get
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#(πk/2OK) − q−1#(πk/2OK) = (1 − q−1)q−k/2, where # indicates the measure of the

set.

In the case of k odd, the first indicator function asks that y ∈ π(k+1)/2OK , whereas

the second asks that y ∈ π(k−1)/2OK . This time, the calculation yields q−(k+1)/2 −

q−1q−(k−1)/2 = 0.

We now calculate the aforementioned intermediate quantity. If multiple conditions

are met in the piecewise function, only use the formula for the first condition that

holds.

Proposition 6.81. Let a be an integer and u, u0 be units. Assume a is non-negative.7

Then,

∫︂
x∈O×

K

χiu0(x)γ′
(︃
ux

πa

)︃
dx =

(1 − q−1)q−(a−e)/2χiu0(u)
(︂
ζf8 g3(2e+ 1)

)︂i
γ′
(︃
u0

π2e

)︃
·

⎧⎪⎪⎨⎪⎪⎩
0 a < cχ

0 a ̸≡ cχ mod 2
1 a ≡ cχ mod 2

(6.82)

In the case the integral is nonzero, our expression may alternately be written

(1 − q−1)q−(a−e−i)/2χiu0(u)χK[
√
π](u0)

(︂
ζf8 g3(2e+ 1)

)︂2i
γ′
(︃

u0

π2e+i

)︃

Proof. A quick change of variables xnew = uxold allows one to factor a copy of χiu0(u)

out of the integral. This reduces the problem to verifying our formula in the case

u = 1, which we assume from here on out. We proceed by lots of casework.

Case 1: We start with the case of trivial χiu0 (which happens when u0 = 1, i = 0).

In this case, our integral becomes exactly the one from the previous lemma and hence

equals ⎧⎨⎩(1 − q−1)q−a/2 a even
0 a odd

7a < 0 gives the same result as taking a = 0 in the integral, so the formula does handle the case
of negative a. The assumption a ≥ 0 is mainly just for a cleaner right hand side.
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On the other hand, since by assumption we can’t have a < cχ in this case, the right

hand side is just

(1 − q−1)q−(a−e)/2 γ′
(︃ 1
π2e

)︃
·

⎧⎨⎩0 a ̸≡ 0 mod 2
1 a ≡ 0 mod 2

It is clear these two expressions are equal upon observing

γ′
(︃ 1
π2e

)︃
= q−e/2ψ′

(︄
□1(1)

1

)︄
= q−e/2ψ′(0) = q−e/2

Case 2: Now we assume χiu0 is nontrivial. Writing out the Gauss sum, we want

to calculate ∫︂
x∈O×

K

χiu0(x)
∫︂
t∈OK

ψ′
(︄
xt2

πa

)︄
dtdx

For some integer k > 0 to be chosen, we can use the integration lemma 6.10 to rewrite

this as ∫︂
x∈O×

K

qk
∫︂
y∈1+πkOK

χiu0(xy)
∫︂
t∈OK

ψ′
(︄
xyt2

πa

)︄
dtdydx

Case 2a: a < cχ

In this case, take k = cχ − 1 so the integral becomes

∫︂
x∈O×

K

qk
∫︂
y∈1+πkOK

χiu0(xy)dy
∫︂
t∈OK

ψ′
(︄
xt2

πa

)︄
dtdx

The integral over y is clearly 0, and so the entire expression is just 0.

Case 2b: a > cχ

In this case, we take k = cχ and the integral becomes

∫︂
x∈O×

K

χiu0(x)qk
∫︂
y∈1+πkOK

∫︂
t∈OK

ψ′
(︄
xyt2

πa

)︄
dtdydx

Apply the blurring lemma 6.42 with parameters (c0, c1, c2, j, v) = (0, 0, x/πa, 2, a− cχ)

to get

q−⌈(a−cχ)/2⌉
∫︂
x∈O×

K

χiu0(x)
∫︂
t∈OK

ψ′
(︄

xt2

πa−2⌈(a−cχ)/2⌉

)︄
dtdx
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If a ̸≡ cχ mod 2 then this new integral is handled by case 2a and is equal to 0. If

a ≡ cχ mod 2 then the integral becomes

q−(a−cχ)/2
∫︂
x∈O×

K

χiu0(x)
∫︂
t∈OK

ψ′
(︄
xt2

πcχ

)︄
dtdx

It is easy to check that this formula reduces things to the case a = cχ. So, we just

need to handle that case and we are done.

Case 2ci: a = cχ, i = 1

In this case, cχ = 2e+ 1. Apply the parity shifting lemma 6.47 to get
∫︂
x∈O×

K

χu0(x)χK[
√
π](x)γ′

(︃
x

π2e+1

)︃
dx = q−1/2ζf8 g3(2e+ 1)

∫︂
x∈O×

K

χu0(x)γ′
(︃
x

π2e

)︃
dx

Taking a moment to recall χu0(x) = eπiBq(u0,x), the defining property of Bq, proposition

6.63 tells us

γ′
(︃
u0x

π2e

)︃
= qe/2γ′

(︃
u0

π2e

)︃
γ′
(︃
x

π2e

)︃
χu0(x)

Since
⃓⃓⃓
γ′
(︂
u0
π2e

)︂⃓⃓⃓2
= q−e, we may multiply both sides by γ′

(︂
u0
π2e

)︂
to see

γ′
(︃
u0

π2e

)︃
γ′
(︃
u0x

π2e

)︃
= q−e/2γ′

(︃
x

π2e

)︃
χu0(x)

Applying this to the integral at hand gives

q(e−1)/2ζf8 g3(2e+ 1)γ′
(︃
u0

π2e

)︃ ∫︂
x∈O×

K

γ′
(︃
u0x

π2e

)︃
dx

And after the easy change of variables xnew = u0xold, we get

q(e−1)/2ζf8 g3(2e+ 1)γ′
(︃
u0

π2e

)︃ ∫︂
x∈O×

K

γ′
(︃
x

π2e

)︃
dx

This last integral is just (1 − q−1)q−e by the previous lemma, and we get

(1 − q−1)q−(e+1)/2ζf8 g3(2e+ 1)γ′
(︃
u0

π2e

)︃

Invoking the parity shifting lemma 6.47 one more time, we may choose to rewrite this

as

(1 − q−1)q−e/2ζ2f
8 g3(2e+ 1)2χK[

√
π](u0)γ′

(︃
u0

π2e+1

)︃
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Case 2cii: a = cχ, i = 0, and χiu0 is nontrivial

In this case, cχ = 2e+ 1 − sq(u0) is an even number from 2 to 2e, inclusive. We

have to compute
1

1 − q−1

∫︂
x∈O×

K

χu0(x)γ′
(︃

x

π2e+1−sq(u0)

)︃
dx

The first step is to apply the blurring lemma 6.42 to go from the even exponent

2e+ 1 − sq(u0) to the even exponent 2e. Recalling what the blurring lemma says, we

have

q2e+1−sq(u0)
∫︂
y∈1+π2e+1−sq(u0)OK

γ′
(︃
xy

π2e

)︃
dy = q−(sq(u0)−1)/2γ′

(︃
x

π2e+1−sq(u0)

)︃

However, instead of applying this as is, we may take advantage of the floor functions

in the statement of the blurring lemma to get the slightly stronger statement

q2e+2−sq(u0)
∫︂
y∈1+π2e+2−sq(u0)OK

γ′
(︃
xy

π2e

)︃
dy = q−(sq(u0)−1)/2γ′

(︃
x

π2e+1−sq(u0)

)︃

Using this, we see our original integral equals

1
1 − q−1

∫︂
x∈O×

K

χu0(x)q(sq(u0)−1)/2q2e+2−sq(u0)
∫︂
y∈1+π2e+2−sq(u0)OK

γ′
(︃
xy

π2e

)︃
dydx

We may rearrange the terms to get

q(sq(u0)−1)/2q2e+2−sq(u0)

1 − q−1

∫︂
x∈O×

K

∫︂
y∈1+π2e+2−sq(u0)OK

χu0(x)γ′
(︃
xy

π2e

)︃
dydx

I now claim that for any y ∈ 1 + π2e+2−sq(u0)OK , we have χu0(y) = 1. The reason for

this is that u0 ∈ Wsq(u0)−1 and y ∈ W2e+1−sq(u0), which are orthogonal with respect to

Bq. Hence, we may rewrite the integral as

q(sq(u0)−1)/2q2e+2−sq(u0)

1 − q−1

∫︂
x∈O×

K

∫︂
y∈1+π2e+2−sq(u0)OK

χu0(xy)γ′
(︃
xy

π2e

)︃
dydx

Using the same reasoning as in case 1, we may use the defining property of Bq to

rewrite the integral as

qe/2q(sq(u0)−1)/2q2e+2−sq(u0)

1 − q−1 γ′
(︃
u0

π2e

)︃ ∫︂
x∈O×

K

∫︂
y∈1+π2e+2−sq(u0)OK

γ′
(︃
u0xy

π2e

)︃
dydx
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Using the integration lemma 6.10, the integral over x absorbs the integral over y and

we get
qe/2q(sq(u0)−1)/2

1 − q−1 γ′
(︃
u0

π2e

)︃ ∫︂
x∈O×

K

γ′
(︃
u0x

π2e

)︃
dydx

This is again (1 − q−1)q−e by the previous lemma. We get a final answer of

q(sq(u0)−e−1)/2γ′
(︃
u0

π2e

)︃

This concludes the casework.

Proposition 6.83. Let cχ denote the conductor of χiu0. For units u0, u and any

integer a, the quadratic character Gauss sum is given by

γ′
(︃
χiu0 ,

u

πa

)︃
: =

∫︂
x∈OK

χiu0(x)ψ′
(︃
ux

πa

)︃
dx

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 max(0, a) ̸= cχ

χiu0(u)q(sq(u0)−e−1)/2γ′
(︂
u0
π2e

)︂
i = 0

χiu0(u)q−(e+1)/2ζf8 g3(2e+ 1)γ′
(︂
u0
π2e

)︂
i = 1

Note that in the latter two cases, we have
⃓⃓⃓⃓
γ′
(︃
χiu0 ,

u

πa

)︃⃓⃓⃓⃓
= q−conductor(χi

u0 )/2

A quick remark before the proof:

Remark 6.84. The i = 1 case can also be written in the alternate form

χiu0(u)q−e/2ζ2f
8 g3(2e+ 1)2χK[

√
π](u0)γ′

(︃
u0

π2e+1

)︃

When defining the character χiu0, the value of u0 only matters mod π2e, hence we

may always choose u0 so that χK[
√
π](u0) = 1. This explains remark 6.14, where the

constant we alluded to is ζ2f
8 g3(2e+ 1)2.

Proof. Note that max(0, a) is just the conductor of the additive character ψ′(ux/πa).

The fact that the conductors of the additive and multiplicative characters must match

in order to get a nonzero result is a well known fact.This handles the first case.
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We next tackle the case of a trivial character, which can be easily checked by

hand. This case happens when u0 = 1, i = 0 and entirely boils down to the single

computation

γ′
(︃ 1
π2e

)︃
= q−e/2ψ′

(︄
□1(1)

4

)︄
= q−e/2ψ′ (0) = q−e/2

From here on out we assume that χ is nontrivial. We could also assume that a = cχ.

However, we will hold off from making this second assumption and continue for the

moment with general a. By substituting xnew = uxold, we get∫︂
x∈O×

K

χiu0(x)ψ′
(︃
ux

πa

)︃
dx =

∫︂
x∈O×

K

χiu0(u−1x)ψ′
(︃
x

πa

)︃
dx

= χiu0(u−1)
∫︂
x∈O×

K

χiu0(x)ψ′
(︃
x

πa

)︃
dx

Since χiu0 is quadratic, we have χiu0(u−1) = χiu0(u). We may now pull out this leading

factor and focus on the rest of the integral. The first step is to change the domain of

the integral using the integration lemma 6.10. We get

∫︂
x∈O×

K

χiu0(x)ψ′
(︃
x

πa

)︃
dx = 1

#O×2
K

∫︂
x∈O×

K

∫︂
y∈O×2

K

χiu0(xy)ψ′
(︃
xy

πa

)︃
dydx

The multiplicative character is invariant to squares and so, we get

∫︂
x∈O×

K

χiu0(x) 1
#O×2

K

∫︂
y∈O×2

K

ψ′
(︃
xy

πa

)︃
dydx

Applying the integration lemma 6.11, we get

∫︂
x∈O×

K

χiu0(x) 1
1 − q−1

∫︂
y∈O×

K

ψ′
(︄
xy2

πa

)︄
dydx

Since this holds for general a, we know by our earlier work that the above integral

vanishes whenever a < cχ.8 As such, we may write

∫︂
x∈O×

K

χiu0(x) 1
1 − q−1

∫︂
y∈O×

K

ψ′
(︄
xy2

πcχ

)︄
dydx

= 1
1 − q−1

∫︂
x∈O×

K

χiu0(x)
∫︂
y∈O×

K

ψ′
(︄
xy2

πcχ

)︄
+ q−1ψ′

(︄
xy2

πcχ−2

)︄
+ q−2ψ′

(︄
xy2

πcχ−4

)︄
+ . . . dydx

8We need χ to be nontrivial for this to be true!
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Collecting terms yields an integral of y over all of OK and not just O×
K .

= 1
1 − q−1

∫︂
x∈O×

K

χiu0(x)
∫︂
y∈OK

ψ′
(︄
xy2

πcχ

)︄
dydx = 1

1 − q−1

∫︂
x∈O×

K

χiu0(x)γ′
(︃
x

πcχ

)︃
dx

This last integral is just the one given by the previous proposition. Plugging in its

value completes the proof.

161



Chapter 7

Computing the Local Whittaker
Function at Finite Places

We resume letting K denote a totally real number field of degree n > 1. Throughout

this section, we will take dim(V ) = 1, where V is the vector space defining El,µ. We

identify V ∼= Kp by selecting some basis B. In this basis, the quadratic form on V

will take on the form Q(x) = κx2. The character χV will then be precisely ⟨x, 2κ⟩A,

so we see that this use of κ is consistent with our previous usage. Our goal for this

chapter will be to evaluate the local Whittaker functions Wm,p(s,Φp) at finite primes.

We will do this by first reducing the integral IW (µ,m,∆s) to a related integral I∗ that

has no dependence on κ. We will then evaluate I∗ directly.

7.1 Reducing IW to I∗

Fix a finite place p, which may be even or odd. Extend the definition of e to odd

primes by in general setting e = vp(2). That is, e = 0 for all odd primes. Recall that

we had the integral

IW (µ,m,∆s) =
∫︂
y∈Kp

∫︂
x⃗∈(µ+OKp )×O2∆s

Kp

ψ′(y(κx2
0 +

∑︂
i

xix
′
i −m))dx⃗dy
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where x⃗ = (x0, x1, x
′
1, . . . x∆s, x

′
∆s) and the measures are chosen so that the integral

over OKp ×O2∆s+1
Kp

is 1. By remark 5.41, we may also write this as

IW (µ,m,∆s) = lim
k→∞

∫︂
y∈(1/πk)OKp

∫︂
x⃗∈(µ+OKp )×O2∆s

Kp

ψ′(y(κx2
0 +

∑︂
i

xix
′
i −m))dx⃗dy

The following lemma will help remove most of the coordinates of integration.

Lemma 7.1. ∫︂
x,y∈O2

Kp

ψ′(txy) dydx = qmin(0,vπ(t))

Proof. Integrating over y, we get an indicator function.
∫︂
x∈OKp

1OKp
(tx) dx = measure({x ∈ OKp|tx ∈ OKp})

It is now easy to directly check that the measure in question is exactly qmin(0,vπ(t)).

To use this lemma, first break up the outer integral by valuation and get

IW (µ,m,∆s) =
∫︂
y∈OKp

∫︂
x⃗∈(µ+OKp )×O2∆s

Kp

ψ′(y(κx2
0 +

∑︂
i

xix
′
i −m))dx⃗dy

+
∞∑︂
k=1

∫︂
y∈(1/πk)O×

Kp

∫︂
x⃗∈(µ+OKp )×O2∆s

Kp

ψ′(y(κx2
0 +

∑︂
i

xix
′
i −m))dx⃗dy

Applying the lemma to this yields

=
∫︂
y∈OKp

∫︂
x0∈µ+OKp

ψ′(y(κx2
0 −m))dxdy+

∞∑︂
k=1

q−k∆s
∫︂
y∈(1/πk)O×

Kp

∫︂
x0∈µ+OKp

ψ′(y(κx2
0 −m))dxdy (7.2)

We see that ∆s now only shows up in the exponent, and so we will make the

substitution X = q−∆s. This will reframe the computation as computing some power

series in X. Specifically, we are computing

IW (µ,m,∆s) =
∫︂
y∈OKp

∫︂
x∈µ+OKp

ψ′(y(κx2 −m))dxdy+
∞∑︂
k=1

Xk
∫︂
y∈(1/πk)O×

Kp

∫︂
x∈µ+OKp

ψ′(y(κx2 −m))dxdy (7.3)
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We will let Ik(µ,m, κ), (0 ≤ k) denote the coefficient of Xk in the above series. Since

we are in the dim(V ) = 1 case, these integrals only depend on 4 parameters, so we

chose to unsuppress the dependence on κ.

We define a related integral that is independent of κ. For k ∈ Z, let

I∗
k(µ,m) =

∫︂
y∈(1/πk)O×

Kp

∫︂
x∈µ+OKp

ψ′(y(x2 −m))dxdy

I∗ will be easier to evaluate, since the lack of κ will cut down on the necessary casework.

Knowing the value of I∗ will also suffice, as the following proposition shows.

Proposition 7.4. (i) For k > 0

Ik(µ,m, κ) = |κ|−1
p I∗

k−vπ(κ)(µ,m/κ)

(ii) For κ ∈ OKp

I0(µ,m, κ) =

⎧⎨⎩1OKp
(κµ2 −m) 2κµ ∈ OKp

|2κµ|−1
p 1OKp

(︂
κµ2−m

2κµ

)︂
2κµ /∈ OKp

(iii) For κ /∈ OKp

I0(µ,m, κ) =

⎧⎨⎩|κ|−1
p 1OKp

(µ2 −m/κ) 2µ ∈ OKp

|2κµ|−1
p 1OKp

(︂
κµ2−m

2κµ

)︂
2µ /∈ OKp

+ |κ|−1
p

−vπ(κ)∑︂
k=1

I∗
k(µ,m/κ)

Proof. For (i), simply substitute ynew = κyold.

For (ii), apply the substitution xold = µ+ xnew to get
∫︂
y∈OKp

∫︂
x∈µ+OKp

ψ′(y(κx2−m))dxdy =
∫︂
y∈OKp

∫︂
x∈OKp

ψ′(y(κx2+2κµx+κµ2−m))dxdy

Since κyx2 ∈ OKp , that summand doesn’t affect the value of ψ′. This gives us

I0(µ,m, κ) =
∫︂
y∈OKp

∫︂
x∈OKp

ψ′(2κµxy + κµ2y −my)dxdy

Integrating over x yields the indicator function 1OKp
(2κµy). If 2κµ ∈ OKp , the integral

becomes ∫︂
y∈OKp

ψ′(κµ2y −my)dy = 1OKp
(κµ2 −m)
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Otherwise, if 2κµ /∈ OKp , the integral becomes∫︂
y∈(2κµ)−1OKp

ψ′(κµ2y −my)dy = |2κµ|−1
p 1OKp

(︄
κµ2 −m

2κµ

)︄

as desired.

For (iii), again substitute ynew = κyold to get

I0(µ,m, κ) = |κ|−1
p

∫︂
y∈κOKp

∫︂
x∈µ+OKp

ψ′(y(x2 −m/κ))dxdy

Part (ii) applied to the expression I0(µ,m/κ, 1) tells us∫︂
y∈OKp

∫︂
x∈µ+OKp

ψ′(y(x2 −m/κ))dxdy =

⎧⎨⎩1OKp
(µ2 −m/κ) 2µ ∈ OKp

|2µ|−1
p 1OKp

(︂
µ2−m/κ

2µ

)︂
2µ /∈ OKp

from which the result quickly follows.

Corollary 7.5. If κ is an integral unit, then we have

(i) For k > 0

Ik(µ,m, κ) = I∗
k(µ,m/κ)

(ii) For k = 0

I0(µ,m, κ) =

⎧⎨⎩1OKp
(κµ2 −m) 2µ ∈ OKp

|2µ|−1
p 1OKp

(︂
κµ2−m

2µ

)︂
2µ /∈ OKp

7.2 Computing I∗

For k ∈ Z, we will compute the value of the integral

I∗
k(µ,m) =

∫︂
y∈(1/πk)O×

Kp

∫︂
x∈µ+OKp

ψ′(y(x2 −m))dxdy

Remark 7.6. The nature of this computation changes quite wildly depending on

whether one chooses to swap the order of integration. In the current order, this

requires an involved Gauss sum computation. However, if one reverses the order, it

becomes a measure problem. Namely, one can see that

I∗
k(µ,m) = qkmeas({x ∈ µ+OKp|x2 ∈ m+ πkOKp})

− qk−1meas({x ∈ µ+OKp|x2 ∈ m+ πk−1OKp}) (7.7)
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This can be evaluated directly, although even with clever use of symmetry, one still

must perform similarly tedious computation. We avoid the measure approach because

it seems to generalize poorly. Notably, [KY10] were able to generalize the Gauss sum

approach to the case of dim(V ) > 1 when K = Q in theorems 4.3 and 4.4. On the

other hand, if one uses the measure approach, one will need to replace the quadratic

form x2 in the measures above with some arbitrary multivariable quadratic form Q.

The easiest case is when k ≤ 0. This can be done via the measure theory approach,

since in this case the calculations reduce to linear equations (and the answer looks just

like equation (7.7)). However, we opt to repeat part of the argument from proposition

7.4 instead.

Proposition 7.8. If k ≤ 0 then

I∗
k(µ,m) =

⎧⎨⎩q
k
1πkOKp

(µ2 −m) − qk−1
1πk−1OKp

(µ2 −m) k ≤ vπ(2µ)
0 k > vπ(2µ)

Proof. Substitute xold = µ+ xnew to get

I∗
k(µ,m) =

∫︂
y∈π−kO×

Kp

∫︂
x∈OKp

ψ′(yx2 + 2µxy + µ2y −my))dxdy

yx2 will always be integral, so we may drop it, yielding

I∗
k(µ,m) =

∫︂
y∈π−kO×

Kp

∫︂
x∈OKp

ψ′(2µxy + µ2y −my))dxdy

Integrating over x yields the indicator function 1OKp
(2µy). In the case 2µπ−k /∈ OKp ,

this condition can never hold for any y and we get 0. Otherwise, it holds for all y and

we get

I∗
k(µ,m) =

∫︂
y∈π−kO×

Kp

ψ′(µ2y −my))dxdy

We now turn our attention to I∗
k for k > 0. The following relative of the blurring

lemma 6.42 will show that our calculation is rather uninteresting when µ /∈ 1
2OKp .
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Proposition 7.9. Let c2, c1, c0 ∈ K. Assume that at least one of the ci is non-integral

and that at least one of vπ(c1) < vπ(c2) or vπ(c0) < vπ(c2) holds. Then
∫︂
u∈O×

Kp

∫︂
x∈OKp

ψ′(uc2x
2 + uc1x+ uc0) dxdu =

⎧⎨⎩−q−1 c2, c1 ∈ OKp , vπ(c0) = −1
0 otherwise

Proof. We proceed by casework on j.

Case 1: vπ(c0) < vπ(c1)

Case 1a: vπ(c0) = −1

Then, our hypotheses tell us we are in the particular case c2, c1 ∈ OKp , vπ(c0) = −1.

We may calculate
∫︂
u∈O×

Kp

∫︂
x∈OKp

ψ′(uc0) dxdu =
∫︂
u∈O×

Kp

ψ′
(︃
u

π

)︃
du = −

∫︂
u∈πOKp

ψ′
(︃
u

π

)︃
du = −q−1

Case 1b: vπ(c0) < −1

Using integration lemma 6.10, rewrite the integral as
∫︂
u∈O×

Kp

q−vπ(c0)−1
∫︂
u′∈1+π−vπ(c0)−1OKp

∫︂
x∈OKp

ψ′(u′uc2x
2 + u′uc1x+ u′uc0) dxdu′du

We may then apply the blurring lemma 6.42 to the inner two integrals. Specifically,

if we set the parameters in the blurring lemma called (c2, c1, c0, j, v) to the values

(uc2, uc1, uc0, 0, 1), it tells us that

q−vπ(c0)−1
∫︂
u′∈1+π−vπ(c0)−1OKp

∫︂
x∈OKp

ψ′(u′uc2x
2 + u′uc1x+ u′uc0) dxdu′ = 0

which concludes this case.

Case 1: vπ(c1) ≤ vπ(c0)

Set v = −vπ(c1). We proceed by induction on v for v ≥ 1.

For the base case, if v = 1, then by hypothesis c2 must be integral. Thus, we have
∫︂
u∈O×

Kp

∫︂
x∈OKp

ψ′(uc1x+ uc0) dxdu

The inner integral gives us the indicator function 1OKp
(u/π), which asserts that

u ∈ πOK . However, this never happens since u is a unit, and hence the integral is 0.
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For the inductive step, let v > 1. First we show that we may assume vπ(c1) < vπ(c0)

by replacing our integral with an appropriate equivalent integral if necessary. Indeed,

if vπ(c1) = vπ(c0), then let u0 denote the unit c0
c1

. Then make the substitution

xold = xnew − u0. This yields

∫︂
u∈O×

Kp

∫︂
x∈OKp

ψ′(uc2x
2 + uc1x+ uc0) dxdu =∫︂
u∈O×

Kp

∫︂
x∈OKp

ψ(uc2x
2 + u(c1 − 2c2u0)x+ uc2u

2
0) dxdu (7.10)

By our assumptions, vπ(c1) = vπ(c0) < vπ(c2). It follows that vπ(c1−2c2u0) = vπ(c1) <

vπ(c2) and so the new integral suffices.

Now that we may assume vπ(c1) < vπ(c0), we follow a similar argument to case 1b.

Apply lemma 6.10 to rewrite our integral as

∫︂
u∈O×

Kp

qv−1
∫︂
u′∈1+πv−1OKp

∫︂
x∈OKp

ψ′(u′uc2x
2 + u′uc1x+ u′uc0) dxdu′du

The blurring lemma with parameters (c2, c1, c0, j, v) = (uc2, uc1, uc0, 0, 1) tells us that

qv−1
∫︂
u′∈1+πv−1OKp

∫︂
x∈OKp

ψ′(u′uc2x
2 + u′uc1x+ u′uc0) dxdu′ =

q−1
∫︂
x∈OKp

ψ(π2uc2x
2 + πuc1x+ uc0) dx (7.11)

Plugging this in shows that

∫︂
u∈O×

Kp

∫︂
x∈OKp

ψ′(uc2x
2 + uc1x+ uc0) dxdu =

q−1
∫︂
u∈O×

Kp

∫︂
x∈OKp

ψ(π2uc2x
2 + πuc1x+ uc0) dxdu (7.12)

Since we had vπ(c1) < vπ(c0), it follows that vπ(πc1) ≤ vπ(c0) and so this integral is 0

by the inductive hypothesis.

Corollary 7.13. Let k > 0. If either µ /∈ 1
2OKp or µ2 −m /∈ OKp then

I∗
k(µ,m) = 0
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Proof. By definition,

I∗
k(µ,m) =

∫︂
y∈(1/πk)O×

Kp

∫︂
x∈µ+OKp

ψ′(y(x2 −m))dxdy

For fixed y, write y = uy/π
k for a unit uy. For this particular y, the inner integral

then takes on the form

∫︂
x∈OKp

ψ′
(︃
uy
πk
x2 + 2µuy

πk
x+ uy

πk
(µ2 −m)

)︃
dx

The result now follows immediately from the previous proposition.

7.3 Computing I∗ part 2

We will now tackle the remaining case where k > 0, µ ∈ 1
2OKp , and µ2 −m ∈ OKp .

7.3.1 A Reduction Formula

This case will be the most involved. The next proposition notes that I∗ can be written

as the integral of a Gauss sum against an additive character. Additionally, (as long as

µ obeys the assumptions of this section) the value of this integral does not depend on

the specific value of µ.

Proposition 7.14.

I∗
k(µ,m) = qk+e

∫︂
y∈O×

Kp

γ′
(︃

y

π2e+k

)︃
ψ′
(︃

−my

πk

)︃
dy (7.15)

In the case p is even, this is the same as

q(k+2e)/2ζfk̄8 g3(2e+ k̄)
∫︂
y∈O×

Kp

(χK[
√
π](y))k̄γ′

(︃
y

π2e

)︃
ψ′
(︃

−my

πk

)︃
dy

Proof. First recall the definition

I∗
k(µ,m) =

∫︂
y∈(1/πk)O×

Kp

∫︂
x∈µ+OKp

ψ′(y(x2 −m))dxdy
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Changing variables yields

qk
∫︂
y∈O×

Kp

∫︂
x∈µ+OKp

ψ′
(︃
y

πk
(x2 −m)

)︃
dxdy

We perform casework depending on whether p is an odd or even prime.

Case 1: p is odd.

This is quite straightforward. By assumption, µ will be integral and so µ+OKp =

OKp , which immediately yields the desired relation.

Case 2: p is even.

This is more difficult. First perform another change of variables to get

qk
∫︂
y∈O×

Kp

∫︂
x∈OKp

ψ′
(︃
y

πk
(x2 + 2µx+ µ2 −m)

)︃
dxdy

The key to proceeding will be to use the blurring lemma 6.42 to greatly increase the

exponent k in the denominator. The idea here is that for d sufficiently large, the

g1 term in the Gauss sum formula will be trivial, making further work significantly

easier. To this end, for any integer d > 1, we may apply the blurring lemma with

parameters (c2, c1, c0, j, v) equal to (y/πk+2d, 2yµ/πk+d, y(µ2 − m)/πk, 2, 2d). This

yields the integral

qk
∫︂
y∈O×

Kp

qdqk
∫︂
y′∈1+πkOK

∫︂
x∈OKp

ψ′
(︄
yy′x2

πk+2d + 2yy′µx

πk+d + yy′(µ2 −m)
πk

)︄
dxdy′dy

Then apply the integration lemma 6.10 to get

qkqd
∫︂
y∈O×

Kp

∫︂
x∈OKp

ψ′
(︄
yx2

πk+2d + 2yµx
πk+d + y(µ2 −m)

πk

)︄
dxdy

Rewriting using our definition of γ′ gives

qkqd
∫︂
y∈O×

Kp

ψ′
(︄
y(µ2 −m)

πk

)︄
γ′
(︃

y

πk+2d ,
2yµ
πk+d

)︃
dy

The general formula for the Gauss sum then tells us

qkqdq−(k+2d−e)/2
∫︂
y∈O×

Kp

ψ′
(︄
y(µ2 −m)

πk

)︄
g1(a, u, t)g2(a, u, t)g3(a)dy
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where a = k + 2d, u = y, t = 2yµ/π(k−k̄)/2. (k̄ ∈ {0, 1} is the value of k mod 2.) Let

us now go through each gi to see what it contributes to the integral.

Recalling the formula for g1, we have

g1 =

⎧⎨⎩1 □1−k̄(y) ≡ 4y2µ2

πk−k̄ mod πmin(2d+k+k̄,2e−2d−k+k̄)

0 else

As long as d is sufficiently large (d ≥ e/2 suffices), we can see that the first condition will

be taken mod π2e−2d−k+k̄. However, we clearly have □1−k̄(y) ≡ 4y2µ2

πk−k̄ ≡ 0 mod π−k+k̄.

(Since under current assumptions k ≥ 0, y ∈ O×
Kp

⊂ OKp , and 2µ ∈ OKp .) Thus, as

long as d ≥ e, the condition will be met and g1 will be identically 1, regardless of y.

From now on, we assume d ≥ e so that this is the case. Though, we will not need

to remember this for long, as all occurrences of d in the formula are about to cancel

out. Recalling the formula for g2, we now get

qkqdq−(k+2d−e)/2
∫︂
y∈O×

Kp

ψ′
(︄
y(µ2 −m)

πk

)︄
ψ′

⎛⎝ 1
4πk̄

□1−k̄(y) − 4y2µ2

πk−k̄

y

⎞⎠ g3(k + 2d)dy

This simplifies to

q(k+e)/2
∫︂
y∈O×

Kp

ψ′
(︄
y(µ2 −m)

πk

)︄
ψ′
(︄

1
4πk̄

□1−k̄(y)
y

)︄
ψ′
(︄

−yµ2

πk

)︄
g3(k + 2d)dy

Things now further simplify drastically. We see that all occurrences of µ cancel out,

and thus that this integral does not depend on µ. We may also remove the final

occurrence of d from the formula. In particular, since d ≥ e, it follows that k+2d ≥ 2e.

Hence, g3 only cares about the parity of k + 2d and we have g3(k + 2d) = g3(2e+ k̄).

Thus, our formula reduces to

q(k+e)/2g3(2e+ k̄)
∫︂
y∈O×

Kp

ψ′
(︄

1
4πk̄

□1−k̄(y)
y

)︄
ψ′
(︃

−my

πk

)︃
dy

There are two ways we can clean up this formula. The first possibility is to apply the

formula for the Gauss sum to the quantity γ′
(︂

y
π2e+k

)︂
. This yields the quantity

qk+e
∫︂
y∈O×

Kp

γ′
(︃

y

π2e+k

)︃
ψ′
(︃

−my

πk

)︃
dy
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The other option is to apply either parity shifting lemma 6.45 to get

q(k+e)/2ζfk̄8 g3(2e+ k̄)
∫︂
y∈O×

Kp

(χK[
√
π](y))k̄ψ′

(︄
1
4
□1(y)
y

− my

πk

)︄
dy

Then apply the formula for the Gauss sum to the quantity γ′
(︂

y
π2e

)︂
to get

q(k+2e)/2ζfk̄8 g3(2e+ k̄)
∫︂
y∈O×

Kp

(χK[
√
π](y))k̄γ′

(︃
y

π2e

)︃
ψ′
(︃

−my

πk

)︃
dy

7.3.2 Two Important Functions

We will evaluate the integral in proposition 7.14 momentarily. First we must introduce

two functions that will show up in the computation and are defined in [Su16] section

2. The first is a character
(︂
m
p

)︂
and the second is a function f. We start with the

character.(︂
m
p

)︂
is the character giving the behavior of p in the extension K[

√
m]. Explicitly,

(︄
m

p

)︄
=

⎧⎪⎪⎨⎪⎪⎩
1 p is split
−1 p is inert
0 p is ramified

The behavior of the prime p in such an extension is given explicitly by the following

proposition. We label the case Kp[
√
m] = Kp as split in analogy with the global case.

Proposition 7.16. If p is an odd prime

Kp[
√
m] is

⎧⎪⎪⎨⎪⎪⎩
ramified vπ(m) is odd
inert um mod π is nonsquare
split um mod π is square

If p is an even prime

Kp[
√
m] is

⎧⎪⎪⎨⎪⎪⎩
ramified sq(um) < 2e or vπ(m) is odd
inert sq(um) = 2e
split sq(um) = ∞
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Proof. Case 1: p is odd.

This case is kind of trivial, but we go over the motions anyway.

The assertion for odd vπ(m) is obvious, so restrict attention to when vπ(m) is even.

In this case Kp[
√
m] = Kp[

√
um].

If um mod π is square, then um is square and the extension is split.

Finally, if um mod π is nonsquare, then um is nonsquare. Any two such um differ

by a square factor and hence all generate the same extension. K has at least one inert

extension, so this must be it.

Case 2: p is even.

The assertion for odd vπ(m) is obvious, so consider the case where vπ(m) is even.

In this case, Kp[
√
m] = Kp[

√
um]. It is clear that the extension splits iff um is already

a perfect square, which is to say sq(um) = ∞.

In the case that sq(um) < 2e, the squareness will be odd. We may choose to multiply

um by a perfect square so that it’s π-adic expansion starts um = 1+asq(um)π
sq(um) + . . .,

since doing so will affect neither the squareness of um nor the type of extension of

Kp we are generating. We can then consider the pair of conjugates √
um + 1 and

√
um − 1. They must have the same valuation in Kp[

√
um] and furthermore their

product is (√um + 1)(√um − 1) = um − 1 = asq(um)π
sq(um) + . . . It follows that (for π

a uniformizer of Kp) vπ((√um + 1)(√um − 1)) = sq(um) is odd. Hence, our extension

is ramified.

Finally, any two units um of squareness 2e differ by a square unit factor and hence

generate the same extension. Thus, there is exactly one extension unaccounted for

above. Since we know Kp has at least one inert extension, this must be it.

Definition 7.17. Let f(m) be given by the equation

2f(m) = vπ(m) + 2e− η(m)
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where η(m) is given in terms of a relative discriminant.

η(m) = vπ
(︂
Disc(Kp[

√
m]/Kp)

)︂

If m = 0, then take f(m) = ∞. If Kp[
√
m] = Kp, take the discriminant to be 1.

Lemma 7.18. The valuation of the relative discriminant is given by

η(m) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 p is odd and vπ(m) is odd
0 p is odd and vπ(m) is even
2e+ 1 − sq(m) p is even and sq(m) < 2e
0 p is even and sq(m) ∈ {2e,∞}

The right hand side of the equation defining f is always even, so that f(m) is an integer.

Furthermore, if µ ∈ (1/2)OKp and m ∈ −µ2 +OKp, then f(−m) is non-negative.

Proof. We start by calculating η. Note that for this step we only care about the value

of m up to a square factor. Temporarily let L = Kp[
√
m]. Let πL denote a uniformizer

(to be chosen) of L. Continue to let π with no subscript denote a uniformizer of Kp.

Case 1: p is odd

If vπ(m) is even then by the previous proposition either Kp[
√
m] = Kp and

Disc(L/Kp) = 1 =⇒ η = 0 or the extension is inert (and in particular unramified)

so η = 0.

If vπ(m) is odd wlog take vπ(m) = 1. Then πL =
√
m is a valid choice of uniformizer.

Hence OL has basis 1,
√
m and from the formula for discriminant we have

Disc(L/Kp) =
⃓⃓⃓⃓
⃓1

√
m

1 −
√
m

⃓⃓⃓⃓
⃓
2

= 4m

Since we took vπ(m) = 1, we have η = 1.

Case 2: p is even

If sq(m) ∈ {2e,∞}, then similarly to the last case we see L/Kp is unramified and

so η = 0.
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If sq(m) = 0, then vπ(m) is odd so wlog vπ(m) = 1. The argument then proceeds

in exactly the same manner as the last case except that at the end we get η(m) =

vπ(4m) = 2e+ 1.

Finally, if 1 ≤ sq(m) ≤ 2e − 1, then sq(m) is odd by remark 6.73. In this

case the previous proposition tells us the extension is ramified and from its proof

we know that (up to choice of an equivalent m) we may choose the uniformizer

πL = (√um + 1)/π(sq(m)−1)/2. The discriminant formula then gives

Disc(L/Kp) =
⃓⃓⃓⃓
⃓1 (√um + 1)/π(sq(m)−1)/2

1 (−√
um + 1)/π(sq(m)−1)/2

⃓⃓⃓⃓
⃓
2

= 4um/πsq(m)−1

So, η(m) = vπ(4um/πsq(m)−1) = 2e+ 1 − sq(m).

We next check the evenness claim, although we only do it in the case p is even and sq(m) <

2e, since the other cases are trivial to check. In this case, if vπ(m) is odd, then by

definition sq(m) = 0 and we are done. If vπ(m) is even, then remark 6.73 tells us

sq(m) will be odd and we are done.

Finally, for the non-negativity claim, our assumption is equivalent to vπ(m) ≥ −2e.

We proceed by casework.

Case 1: p is odd

In this case, we have e = 0 so vπ(−m) ≥ 0. If vπ(−m) is even, then 2f(−m) =

vπ(−m) ≥ 0 and we are done. If vπ(−m) is odd, then we must have vπ(−m) ≥ 1. We

then see that 2f(−m) = vπ(−m) − 1 ≥ 0 and we are done.

Case 2: p is even, sq(−m) ∈ {2e,∞}

In this case we have 2f(−m) = vπ(−m) + 2e ≥ 0 and we are done.

Case 3: p is even, sq(−m) = 0

This is the case of vπ(−m) odd, and we must have µ ∈ OK since otherwise we

would have vπ(−m) = 2vπ(µ) which is even. It follows that vπ(−m) ≥ 1. Then we

have 2f(−m) = vπ(−m) + 2e− (2e+ 1) ≥ 0.
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Case 4: p is even, 0 < sq(−m) < 2e, −m ∈ OKp

In this case

2f(−m) = vπ(−m) + 2e− (2e+ 1 − sq(−m)) = vπ(−m) + (sq(−m) − 1)

Both summands are nonnegative by assumption and we are done.

Case 5: p is even, 0 < sq(−m) < 2e, −m /∈ OKp

In this case, we have −m = µ2 + OKp for µ /∈ OKp . Let µ = uµπ
vπ(µ). Then we

have sq(−m) = sq(u2
µ + π−2vπ(µ)x) for some x ∈ OKp . In particular, this immediately

implies sq(−m) ≥ −2vπ(µ) = −vπ(m). Since the squareness must be odd, we have

the stronger statement sq(−m) ≥ −vπ(m) + 1. We now write

2f(−m) = vπ(−m) + 2e− (2e+ 1 − sq(−m)) = vπ(−m) + (sq(−m) − 1) ≥ 0

Remark 7.19. Given some m in the global field K, one may consider the value of f

at varying finite places p, which we denote by fp(m). Then, one will have f(m) = 0 at

almost all finite places.

Proof. At almost all places, we will have p odd and vπ(m) = 0. Plugging this into the

above formulas gives the desired fact.

Remark 7.20. Define an ideal If = ∏︁
p<∞ pfp(m). Then, this ideal has the property

(4m) = Disc(K[
√
m]/K)I2

f . This shows that If is the ideal showing up in the definition

of Hurwitz class number.

Recall equation (7.15), which says

I∗
k(µ,m) = qk+e

∫︂
y∈O×

Kp

γ′
(︃

y

π2e+k

)︃
ψ′
(︃

−my

πk

)︃
dy
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7.3.3 Finishing the Calculation

We can now give an explicit formula for I∗
k(µ,m) by evaluating this integral. The

output expressions are slightly unnatural for the sake of unifying all cases into a single

formula.

Proposition 7.21. Continue to assume that k > 0, µ ∈ 1
2OKp, and µ2 −m ∈ OKp.

If k > 0 is even, then

I∗
k(µ,m) = qk/2

⎧⎪⎪⎨⎪⎪⎩
1 − q−1 k ≤ 2f(m)
−q−1

(︂
1 −

⃓⃓⃓(︂
m
p

)︂⃓⃓⃓)︂
k = 2f(m) + 2

0 k ≥ 2f(m) + 4

If k is odd, then

I∗
k(µ,m) = qk/2

⎧⎨⎩q
f(m)

(︂
m
p

)︂
k = 2f(m) + 1

0 k ̸= 2f(m) + 1

In the case m = 0, we have f(m) = ∞ and these formulas reduce to

I∗
k(µ, 0) = qk/2

⎧⎨⎩1 − q−1 k even
0 k odd

Proof. We proceed via extensive casework. The case m = 0 is handled first via an

earlier lemma. All other cases implicitly assume m ̸= 0.

Case 0: m = 0

We have

I∗
k(µ, 0) = qk+e

∫︂
y∈O×

Kp

γ′
(︃

y

π2e+k

)︃
dy

Applying lemma 6.80 yields

I∗
k(µ, 0) = qk+eq−(2e+k)/2

⎧⎨⎩1 − q−1 k even
0 k odd

which is the desired result.

Case 1a: p is odd and k is even.

Since p is odd, we know that

2f(m) = vπ(m) −

⎧⎨⎩1 p is odd and vπ(m) is odd
0 p is odd and vπ(m) is even
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From the formula for the Gauss sum, we have

qk+e
∫︂
y∈O×

Kp

γ′
(︃

y

π2e+k

)︃
ψ′
(︃

−my

πk

)︃
dy = qk/2

∫︂
y∈O×

Kp

ψ′
(︃

−my

πk

)︃
dy

= qk/2
∫︂
y∈O×

Kp

ψ′
(︃

− umy

πk−vπ(m)

)︃
dy (7.22)

We can then do further casework off to evaluate this latest integral.

If k ≤ 2f(m), then in particular we have k − vπ(m) ≤ −η(m) ≤ 0, and so the

integrand is identically 1. Thus, we get 1 − q−1.

If k = 2f(m) + 2, the integral becomes

qk/2
∫︂
y∈O×

Kp

ψ′
(︃

− umy

π2−η(m)

)︃
dy =

⎧⎨⎩0 η(m) = 0
−q−1 η(m) = 1

The integral vanishes when η(m) = 0, which is exactly when vπ(m) is even. This is

equivalent to asking
⃓⃓⃓(︂
m
p

)︂⃓⃓⃓
= 1.

Finally, if k ≥ 2f(m) + 4, then we have k − vπ(m) ≥ 4 − η(m) ≥ 3, and so the

integral vanishes.

Case 1b: p is odd and k is odd.

From the formula for the Gauss sum, we have

qk+e
∫︂
y∈O×

Kp

γ′
(︃

y

π2e+k

)︃
ψ′
(︃

−my

πk

)︃
dy = q(k+1)/2

∫︂
y∈O×

Kp

(︄
y

p

)︄
γ′
(︃ 1
π

)︃
ψ′
(︃

−my

πk

)︃
dy

If we pull the γ′
(︂

1
π

)︂
out of the integral, what remains is a character Gauss sum and

so we get

q(k+1)/2γ′
(︃ 1
π

)︃
γ′
(︄(︄

·
p

)︄
,
−m
πk

)︄
= q(k+1)/2γ′

(︃ 1
π

)︃
γ′
(︄(︄

·
p

)︄
,

−um
πk−vπ(m)

)︄

By proposition 6.12, the Gauss sum is zero unless k − vπ(m) = 1. Since k is odd,

this can only happen if vπ(m) is even. However, this would imply η(m) = 0, and so

2f(m) = vπ(m). Hence, our condition is k = vπ(m) + 1 = 2f(m) + 1. Now that we

know when a nonzero value can occur, a particularly slick way to proceed is to use
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the fact

γ′
(︂(︂

·
p

)︂
, −um

π

)︂
=
(︂

−um

p

)︂
γ′
(︂(︂

·
p

)︂
, 1
π

)︂
and the formula in remark 6.14 to write

q(vπ(m)+2)/2γ′
(︃ 1
π

)︃
γ′
(︄(︄

·
p

)︄
,
−um
π

)︄
= q(vπ(m)+2)/2γ′

(︃ 1
π

)︃2 (︄−um
p

)︄

By proposition 6.13, this becomes

qvπ(m)/2

⎧⎨⎩1 p ≡ 1 mod 4
(−1)f p ≡ 3 mod 4

·
(︄

−um
p

)︄

Now, we remark that(︄
−1
p

)︄
= (−1)

pf −1
2 =

⎧⎨⎩1 p ≡ 1 mod 4
(−1)f p ≡ 3 mod 4

where the second equality is just checked manually. Hence, the piecewise function

cancels and we are left with

qvπ(m)/2
(︄
um
p

)︄

To convert this to the desired expression, note that since vπ(m) is even, we have(︂
um

p

)︂
=
(︂
m
p

)︂
.

Case 2: p is even.

By proposition 7.14, it suffices to evaluate the formula

q(k+2e)/2ζfk̄8 g3(2e+ k̄)
∫︂
y∈O×

Kp

(χK[
√
π](y))k̄γ′

(︃
y

π2e

)︃
ψ′
(︃

−my

πk

)︃
dy

To proceed from here, we will use a procedure very similar to that used to evaluate

the character Gauss sums.1 Write m = umπ
vπ(m) and substitute ynew = umyold to get

q(k+2e)/2ζfk̄8 g3(2e+ k̄)
∫︂
y∈O×

Kp

(χK[
√
π](y/um))k̄γ′

(︄
y/um
π2e

)︄
ψ′
(︃

− y

πk−vπ(m)

)︃
dy

We can move the um terms from denominator to numerator to make things look

prettier. This is possible because χ is quadratic and the fact that from the definition
1The reason for the similar procedure is that our integrand is roughly of the form

e(1/2)πiq(y)ψ(my/πk), whereas the integrand for the character Gauss sum is eπiBq(u0,y)ψ(my/πk).
That is, both are an exponential of something related to the quadratic form q times a standard
exponential in y.
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of Gauss sum, it is clear γ′(u2x) = γ′(x) for any unit u and any x ∈ K. We get

q(k+2e)/2ζfk̄8 g3(2e+ k̄)
∫︂
y∈O×

Kp

(χK[
√
π](umy))k̄γ′

(︃
umy

π2e

)︃
ψ′
(︃

− y

πk−vπ(m)

)︃
dy

As before, the trick to evaluating this integral is to apply our integration lemmas. By

lemma 6.10, we get

q(k+2e)/2ζfk̄8 g3(2e+ k̄)·∫︂
y∈O×

Kp

1
#O×2

Kp

∫︂
x∈O×2

Kp

(χK[
√
π](umyx))k̄γ′

(︃
umyx

π2e

)︃
ψ′
(︃

− yx

πk−vπ(m)

)︃
dxdy (7.23)

The first two factors of the integrand are unaffected by square unit x and so we get

q(k+2e)/2ζfk̄8 g3(2e+ k̄)·∫︂
y∈O×

Kp

(χK[
√
π](umy))k̄γ′

(︃
umy

π2e

)︃ 1
#O×2

Kp

∫︂
x∈O×2

Kp

ψ′
(︃

− yx

πk−vπ(m)

)︃
dxdy (7.24)

By lemma 6.11, this is the same as

q(k+2e)/2

1 − q−1 ζ
fk̄
8 g3(2e+ k̄)

∫︂
y∈O×

Kp

(χK[
√
π](umy))k̄γ′

(︃
umy

π2e

)︃ ∫︂
x∈O×

Kp

ψ′
(︄

− yx2

πk−vπ(m)

)︄
dxdy

The inner integral looks very much like a Gauss sum and may easily be realized in

terms of such by re-expressing it as an integral over OK minus an integral over πOK .

This gives us

q(k+2e)/2

1 − q−1 ζ
fk̄
8 g3(2e+ k̄)·∫︂

y∈O×
Kp

(χK[
√
π](umy))k̄γ′

(︃
umy

π2e

)︃(︄
γ′
(︃ −y
πk−vπ(m)

)︃
− 1
q
γ′
(︃ −y
πk−vπ(m)−2

)︃)︄
dy (7.25)

We may expand γ′
(︂
umy
π2e

)︂
using the definition of Bq. In particular, we know that

γ′
(︃
umy

π2e

)︃
= γ′

(︃
um
π2e

)︃
γ′
(︃
y

π2e

)︃
χum(y)

Using this and rearranging a few terms, our integral becomes

q(k+3e)/2

1 − q−1 ζ
fk̄
8 g3(2e+ k̄)(χK[

√
π](um))k̄γ′

(︃
um
π2e

)︃
·∫︂

y∈O×
Kp

χk̄um
(y)γ′

(︃
y

π2e

)︃(︄
γ′
(︃ −y
πk−vπ(m)

)︃
− 1
q
γ′
(︃ −y
πk−vπ(m)−2

)︃)︄
dy (7.26)
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By the parity shifting lemma 6.47, this equals

q(k−vπ(m))/2 q
(k+3e)/2

1 − q−1 ζ
f(k̄−k−vπ(m))
8

g3(2e+ k̄)
g3(2e+ k − vπ(m))

(χK[
√
π](um))k̄γ′

(︃
um
π2e

)︃
·

∫︂
y∈O×

Kp

χvπ(m)
um

(y)γ′
(︃

y

π2e+k−vπ(m)

)︃(︄
γ′
(︃ −y
πk−vπ(m)

)︃
− 1
q
γ′
(︃ −y
πk−vπ(m)−2

)︃)︄
dy

By the reflection formula (proposition 6.39), this equals

q(vπ(m)+3e)/2

1 − q−1 ζ
f(k̄−k−vπ(m))
8

g3(2e+ k̄)
g3(2e+ k − vπ(m))

(χK[
√
π](um))k̄γ′

(︃
um
π2e

)︃
·

∫︂
y∈O×

Kp

χvπ(m)
um

(y)
(︃
γ′
(︃

y

π2e−k+vπ(m)

)︃
− γ′

(︃
y

π2e−k+vπ(m)+2

)︃)︃
dy

We may now evaluate this in subcases. However, instead of doing k even and odd we

will perform casework on the value of
(︂
m
p

)︂
. Also note that since p is even, we have

2f(m) = vπ(m) + 2e−

⎧⎨⎩2e+ 1 − sq(m) sq(m) < 2e
0 sq(m) ∈ {2e,∞}

Case 2a:
(︂
m
p

)︂
= 0.

In this case, either vπ(m) is odd or sq(um) < 2e. As such, this case is equivalent

to χvπ(m)
um

being a nontrivial character. In either case, we have cχ = 2e + 1 − sq(m)

and 2f(m) = vπ(m) + sq(m) − 1.

From proposition 6.81, (since χ is nontrivial) if we want a nonzero result we must

have 2e − k + vπ(m) ≡ cχ mod 2. However, it is easy to chcek that in this case

cχ ≡ vπ(m) mod 2, so at very minimum we need k to be even. This reduces our

integral to

q(vπ(m)+3e)/2

1 − q−1
ζ

−f(vπ(m))
8

g3(2e+ vπ(m))
γ′
(︃
um
π2e

)︃
·∫︂

y∈O×
Kp

χvπ(m)
um

(y)
(︃
γ′
(︃

y

π2e−k+vπ(m)

)︃
− γ′

(︃
y

π2e−k+vπ(m)+2

)︃)︃
dy (7.27)
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Applying proposition 6.81, we see that

∫︂
y∈O×

Kp

χvπ(m)
um

(y)
(︃
γ′
(︃

y

π2e−k+vπ(m)

)︃
− γ′

(︃
y

π2e−k+vπ(m)+2

)︃)︃
dy =

(1−q−1)γ′
(︃
um
π2e

)︃
ζ
f(vπ(m))
8 g3(2e+vπ(m))

(︄
q−(e−k+vπ(m))/2

⎧⎨⎩1 k ≤ vπ(m) + sq(m) − 1
0 otherwise

− q−(e+2−k+vπ(m))/2

⎧⎨⎩1 k ≤ vπ(m) + sq(m) + 1
0 otherwise

)︄
(7.28)

Plugging this in, most terms cancel (don’t forget
⃓⃓⃓
γ′
(︂
um

π2e

)︂⃓⃓⃓2
= q−e) and we are left

with

qk/2

⎛⎝⎧⎨⎩1 k ≤ vπ(m) + sq(m) − 1
0 otherwise

− q−1

⎧⎨⎩1 k ≤ vπ(m) + sq(m) + 1
0 otherwise

⎞⎠
Light rearrangement yields (for k even)

qk/2

⎧⎪⎪⎨⎪⎪⎩
1 − q−1 k ≤ vπ(m) + sq(m) − 1
−q−1 k = vπ(m) + sq(m) + 1
0 k ≥ vπ(m) + sq(m) + 3

which is the desired formula.

Case 2b:
(︂
m
p

)︂
̸= 0.

In this case, we have 2f(m) = vπ(m) + 2e. We also know vπ(m) is even and so a

handful of terms cancel right away, leaving

q(vπ(m)+3e)/2

1 − q−1 (χK[
√
π](um))k̄γ′

(︃
um
π2e

)︃
·
∫︂
y∈O×

Kp

(︃
γ′
(︃

y

π2e−k+vπ(m)

)︃
− γ′

(︃
y

π2e−k+vπ(m)+2

)︃)︃
dy

By proposition 6.81, we have the following expression for the above equation, which

we have rewritten using f(m).

q(vπ(m)+e)/2(χK[
√
π](um))k̄·⎛⎜⎜⎝

⎧⎪⎪⎨⎪⎪⎩
0 2f(m) > k is odd
q−(e−k+vπ(m))/2 2f(m) > k is even
qe/2 2f(m) ≤ k

−

⎧⎪⎪⎨⎪⎪⎩
0 2f(m) + 2 > k is odd
q−(e+2−k+vπ(m))/2 2f(m) + 2 > k is even
qe/2 2f(m) + 2 ≤ k

⎞⎟⎟⎠
(7.29)
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(Here, the conditions are referring to the parity of k.)

The only way an odd value of k can give a nonzero result here is when k = 2f(m)+1,2

in which case we get

qf(m)χK[
√
π](um) = qf(m)

(︄
m

p

)︄

Now take k to be even for the remainder of this case so that we have

qk/2

⎛⎝⎧⎨⎩1 2f(m) > k

q(2e−k+vπ(m))/2 2f(m) ≤ k
− q−1

⎧⎨⎩1 2f(m) + 2 > k

q(2e+2−k+vπ(m))/2 2f(m) + 2 ≤ k

⎞⎠
By light casework, this is the same as

qk/2

⎧⎨⎩1 − q−1 k ≤ 2f(m)
0 k > 2f(m)

This matches the desired formula as long as 0 = −q−1
(︂
1 −

⃓⃓⃓(︂
m
p

)︂⃓⃓⃓)︂
. However, this is

true by the definition of case 2b.

7.4 Putting it all together

The above calculations give us everything we need to compute the local Whittaker

function. First, I∗
k(µ,m) is given in all cases by propositions 7.8, 7.13, and 7.21.

Proposition 7.4 then tells us how to use I∗
k(µ,m) to compute the value of Ik(µ,m, κ).

Finally, we obtain IW (µ,m,∆s) as a power series whose coefficients are the Ik(µ,m, κ).

We collect these results together in one large proposition so that they are all in one

place.

Proposition 7.30.

(a)

IW (µ,m,∆s) =
∞∑︂
k=0

Ik(µ,m, κ)Xk

2If k is larger, the piecewise functions evaluate to qe/2 − qe/2 = 0, whereas if k is smaller they
evaluate to 0 − 0 = 0.
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where X = q−∆s. Furthermore,

(bi) For k > 0

Ik(µ,m, κ) = |κ|−1
p I∗

k−vπ(κ)(µ,m/κ)

(bii) For κ ∈ OKp

I0(µ,m, κ) =

⎧⎨⎩1OKp
(κµ2 −m) 2κµ ∈ OKp

|2κµ|−1
p 1OKp

(︂
κµ2−m

2κµ

)︂
2κµ /∈ OKp

(biii) For κ /∈ OKp

I0(µ,m, κ) =

⎧⎨⎩|κ|−1
p 1OKp

(µ2 −m/κ) 2µ ∈ OKp

|2κµ|−1
p 1OKp

(︂
κµ2−m

2κµ

)︂
2µ /∈ OKp

+ |κ|−1
p

−vπ(κ)∑︂
k=1

I∗
k(µ,m/κ)

Finally,

(ci) If k ≤ 0 then

I∗
k(µ,m) =

⎧⎨⎩q
k
1πkOKp

(µ2 −m) − qk−1
1πk−1OKp

(µ2 −m) k ≤ vπ(2µ)
0 k > vπ(2µ)

(cii) Let k > 0. If either µ /∈ 1
2OKp or µ2 −m /∈ OKp then

I∗
k(µ,m) = 0

(ciii) If k > 0 is even, µ ∈ 1
2OKp, and µ2 −m ∈ OKp, then

I∗
k(µ,m) = qk/2

⎧⎪⎪⎨⎪⎪⎩
1 − q−1 k ≤ 2f(m)
−q−1

(︂
1 −

⃓⃓⃓(︂
m
p

)︂⃓⃓⃓)︂
k = 2f(m) + 2

0 k ≥ 2f(m) + 4

(civ) If k > 0 is odd, µ ∈ 1
2OKp, and µ2 −m ∈ OKp, then

I∗
k(µ,m) = qk/2

⎧⎨⎩q
f(m)

(︂
m
p

)︂
k = 2f(m) + 1

0 k ̸= 2f(m) + 1

(cv) If k > 0, µ ∈ 1
2OKp, and µ2 −m ∈ OKp but m = 0, the above formulas aren’t well

defined. However, we still have

I∗
k(µ, 0) = qk/2

⎧⎨⎩1 − q−1 k even
0 k odd
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Although this marks the calculation of IW (µ,m,∆s) complete, we are still not

quite able to conclude the value of Wm,p (s,Φp,µ). This is because ∆s must be a

non-negative integer in the defining relation for IW . Plugging in dim(V ) = 1 into

lemma 5.40, we have

Wm,p (s0 + ∆s,Φp,µ) = γ(V ) |detB(V )|1/2
p

V olB(L)1/2 q
r(1/2−∆s)IW (µ,m,∆s)

We will get around this by using the power series ∑︁∞
k=0 Ik(µ,m, κ)Xk to define the

function IW (µ,m,∆s) for all s ∈ C, which will the give the value of Wm,p (s,Φp,µ) for

all s.

Proposition 7.31. The power series ∑︁∞
k=0 Ik(µ,m, κ)Xk converges absolutely for

all s ∈ C with Re(s) > 1 and admits a meromorphic extension to all of C. For

Re(s0 + ∆s) > 1 we have the equality

Wm,p (s0 + ∆s,Φp,µ) = γ(V ) |detB(V )|1/2
p

V olB(L)1/2 q
r(1/2−∆s)IW (µ,m,∆s)

which gives a meromorphic extension of Wm,p to all s.

Proof. The analytic properties of our power series follow directly from the calculations

summarized in proposition 7.30. If m ≠ 0, then parts (cii),(ciii),(civ) tell us that

I∗
k(µ,m) vanishes for sufficiently large k. Part (bi) then lets us conclude that the

power series is in fact polynomial.

On the other hand, if m = 0, parts (cii) and (cv) let us conclude that for k > 0,

I∗
k(µ,m) is either identically 0 or given by the formula

I∗
k(µ, 0) = qk/2

⎧⎨⎩1 − q−1 k even
0 k odd

Hence, the tail of our power series is a geometric series of common ratio qX2 = q1−2∆s.

This clearly has the desired analytic properties (and even a slightly larger region of

convergence).
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In order to conclude the second claim of this proposition, first recall lemma 5.7,

which tells us that (fixing all parameters besides s), there is a meromorphic function

f on the open disc of radius 1/q such that for Re(s) > 1

Wm,p (s,Φp,µ) = f(q−s)

It is clear from this that for Re(s0 + ∆s) > 1 we may write

Wm,p (s0 + ∆s,Φp,µ) = f(q−s0q−∆s) = f2(q−∆s)

for some meromorphic function f2 defined on the open disc of radius qs0/q.

On the other hand, through part 1 of this proposition, we know that there is a

meromorphic function g on the disc of radius 1/q such that

γ(V ) |detB(V )|1/2
p

V olB(L)1/2 q
r(1/2−∆s)IW (µ,m,∆s) = g(q−∆s)

Finally, by definition of IW (µ,m,∆s), we know for ∆s ∈ N sufficiently large3 that

Wm,p (s0 + ∆s,Φp,µ) = γ(V ) |detB(V )|1/2
p

V olB(L)1/2 q
r(1/2−∆s)IW (µ,m,∆s)

does hold. Hence, we have

f2(q−∆s) = g(q−∆s)

for a sequence of q−∆s that approaches 0. We may then apply analytic continuation

to conclude that f2 = g.

For our specific case of interest, we will want to compute the Whittaker function

for κ = −1. The following proposition condenses proposition 7.30 down into a single

formula for IW (µ,m,∆s) in the case κ is a unit. This proposition is based on equation

(2.16) of [KY10] and is also closely related to the work on page 14 of [Su16].

Proposition 7.32. Assume κ ∈ O×
Kp

. Let m′ = m/κ and also assume f(m′) ≥ 0.

Then IW (µ,m,∆s) only depends on m and κ through their ratio m′, and it is given by

two cases.
3Just large enough so we don’t have to worry when Wm,p (s0 + ∆s,Φp,µ) is well defined.
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If µ /∈ 1
2OKp, then I(µ,m,∆s) is independent of ∆s and is given by

IW (µ,m,∆s) = |2µ|−1
p 1OKp

(︄
µ2 −m′

2µ

)︄

If µ ∈ 1
2OKp, then

IW (µ,m,∆s) = 1OKp
(µ2 −m′)

⎛⎝ 1 −X2

1 −
(︂
m′

p

)︂
X

⎞⎠ ρp
where

ρp =
1 −

(︂
m′

p

)︂
X +

(︂
m′

p

)︂
qf(m

′)X2f(m′)+1 − qf(m
′)+1X2f(m′)+2

1 − qX2

Proof. This makes heavy use of the various parts of proposition 7.30. Parts (bi) and

(bii) tell us that

IW (µ,m,∆s) =

⎧⎨⎩1OKp
(µ2 −m′) 2µ ∈ OKp

|2µ|−1
p 1OKp

(︂
µ2−m′

2µ

)︂
2µ /∈ OKp

+
∞∑︂
k=1

I∗
k(µ,m′)Xk

In the case that µ /∈ 1
2OKp , part (cii) lets us conclude all the non-constant terms

vanish, from which the desired result follows.

We now tackle the case µ ∈ 1
2OKp . Part (cii) makes it clear IW vanishes as long as

µ2 −m′ /∈ OKp , so from here out assume µ2 −m′ ∈ OKp .

By (ciii), the even degree terms of I(m,µ, r) sum to

1 +
f(m′)∑︂
k=1

qk(1 − q−1)X2k −
(︄

1 −
⃓⃓⃓⃓
⃓
(︄
m′

p

)︄⃓⃓⃓⃓
⃓
)︄
qf(m

′)+1q−1X2f(m′)+2

On the other hand, by (civ) the sum of the odd degree terms contains at most one

element and is given by (︄
m

p

)︄
qf(m

′)X2f(m′)+1

Putting it all together we get

I(m,µ, r) =

1+
f(m′)∑︂
k=1

qk(1−q−1)X2k−qf(m′)X2f(m′)+2+
⃓⃓⃓⃓
⃓
(︄
m′

p

)︄⃓⃓⃓⃓
⃓ qf(m′)X2f(m′)+2+

(︄
m′

p

)︄
qf(m

′)X2f(m′)+1

(7.33)
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Focusing on all but the last two terms, we may regroup them to get

1 +
f(m′)∑︂
k=1

qk(1 − q−1)X2k − qf(m
′)X2f(m′)+2 =⎛⎝1 +

f(m′)∑︂
k=1

qkX2k

⎞⎠−

⎛⎝f(m′)∑︂
k=1

qk−1X2k + qf(m
′)X2f(m′)+2

⎞⎠ =
f(m′)∑︂
k=0

qkX2k −
f(m′)∑︂
k=0

qkX2k+2

= (1 −X2)
f(m′)∑︂
k=0

qkX2k = (1 −X2)1 − qf(m
′)+1X2f(m′)+2

1 − qX2 (7.34)

Plugging this in, we have

I(m,µ, r) = (1−X2)1 − qf(m
′)+1X2f(m′)+2

1 − qX2 +
⃓⃓⃓⃓
⃓
(︄
m′

p

)︄⃓⃓⃓⃓
⃓ qf(m′)X2f(m′)+2+

(︄
m′

p

)︄
qf(m

′)X2f(m′)+1

It is easy to check this expression equals the desired one if
(︂
m′

p

)︂
= 0, so now we turn

our attention to when
(︂
m′

p

)︂
= ±1. We get

(1 −X2)1 − qf(m
′)+1X2f(m′)+2

1 − qX2 + qf(m
′)X2f(m′)+2 +

(︄
m′

p

)︄
qf(m

′)X2f(m′)+1

Factoring out a copy of 1 +
(︂
m′

p

)︂
X, we get(︄

1 +
(︄
m′

p

)︄
X

)︄(︄(︄
1 −

(︄
m′

p

)︄
X

)︄
1 − qf(m

′)+1X2f(m′)+2

1 − qX2 +
(︄
m′

p

)︄
qf(m

′)X2f(m′)+1
)︄

The second (and larger) of these two factors simplifies if we put everything over a

common denominator of 1 − qx2. It becomes

1 −
(︂
m′

p

)︂
X − qf(m

′)+1X2f(m′)+2 +
(︂
m′

p

)︂
qf(m

′)+1X2f(m′)+3

1 − qX2

+

(︂
m′

p

)︂
qf(m

′)X2f(m′)+1 −
(︂
m′

p

)︂
qf(m

′)+1X2f(m′)+3

1 − qX2 (7.35)

These terms then recombine to form

1 −
(︂
m′

p

)︂
X +

(︂
m′

p

)︂
qf(m

′)X2f(m′)+1 − qf(m
′)+1X2f(m′)+2

1 − qX2

Plugging this computation in, we get(︄
1 +

(︄
m′

p

)︄
X

)︄⎛⎝1 −
(︂
m′

p

)︂
X +

(︂
m′

p

)︂
qf(m

′)X2f(m′)+1 − qf(m
′)+1X2f(m′)+2

1 − qX2

⎞⎠
which is equal to the desired quantity.
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7.5 The cases of interest

We will be constructing El,µ in the case of half-integral l, κ = (−1)κ−1/2 (and hence

χ(x) = ⟨x, 2κ⟩A). Our main restriction will come from setting V = K, Q(x) = κx2

(hence (x, y)Q = 2κxy), and L = OK , in which case we must take µ ∈ OK/2. Although

trivial, we remark that we will take the basis {1} of K (and of the completions Kp).

This ensures that the measure dy in IW,p(µ,m,∆s) is simply the one such that the set

of integral elements has measure 1 (and so lines up with what we have been using this

entire time). We also have detB(V ) = 2κ and V olB(L) = 1. All of the calculations in

this section except for the calculation of level are directly based on those performed

in the proofs of [KY10] theorems 6.1, 6.3, 6.5.

7.5.1 General l

By proposition 7.31 together with proposition 7.32, we get for all finite p

Wm,p (s0 + ∆s,Φp,µ) = γp(V )|2|1/2
p q

rp(1/2−∆s)
p 1OKp

(µ2 − κm)
⎛⎝ 1 −X2

1 −
(︂
κm
p

)︂
X

⎞⎠ ρp
Proposition 7.36. At almost all finite places we have ρp = 1. Let ρ = ∏︁

p<∞ ρp.

Furthermore, let

κ2 =

⎧⎨⎩4 κ = 1
1 κ = −1

Then,

∏︂
p<∞

Wm,p (s0 + ∆s,Φp,µ) = (−i)nκ22−n/2|Disc(K)|1/2−∆s
1OK

(µ2 − κm)
L
(︂(︂

κm
·

)︂
,∆s

)︂
ζK(2∆s) ρ

Proof. How one arrives at the indicator function, L function, and ζ should be clear,

so we will now handle the remaining terms one at a time.

ρp = 1 whenever f(m) = 0, which happens at almost all places by remark 7.19.

This proves the claim about ρp.

For the |2|1/2
p terms, the fact that

∏︂
p≤∞

|2|1/2
p = 1

189



lets us infer that ∏︂
p<∞

|2|1/2
p =

∏︂
p|∞

|2|−1/2
p = 2−n/2

For the qr terms, we have

∏︂
p<∞

q
rp(1/2−∆s)
p =

∏︂
p<∞

|πrp(1/2−∆s)
p |−1

p =
⎛⎝∏︂

p<∞
|∂p|−1

p

⎞⎠1/2−∆s

where ∂p is the local different and we used the definition of r being the exponent of

the different ideal. However, this last product is the product of the local discriminants,

which is the absolute value of the global discriminant.

Finally, for the local factors γp(V ), recall from proposition 5.33 that

γp(V ) = γw,p

(︃
−1

2det(V )
)︃
γw,p

(︃1
2

)︃2−dim(V )
hp(V ) = γw,p (−κ) γw,p

(︃1
2

)︃

where the Hasse invariant vanishes because dim(V ) = 1. The product formula for the

Weil constant then implies ∏︂
p≤∞

γp(V ) = 1

so that ∏︂
p<∞

γp(V ) =
∏︂
p|∞

γp(V )−1 =
∏︂
p|∞

γw,p (−κ)−1 γw,p

(︃1
2

)︃−1

Quick casework and fact 3.4 then tell us that this product is just (−i)nκ2 .

We finally plug back into equation (5.10) to get (for s0 + ∆s = s > 1)

Em(τ⃗ , s,Φ3/2,µ) = δmv
−l/2Φl,µ(g′

τ⃗ , s)+

(−i)nκ22−n/2|Disc(K)|−∆s
1OK

(µ2 − κm)
L
(︂(︂

κm
·

)︂
,∆s

)︂
ζK(2∆s) ρ

∏︂
p|∞

Wm,p(τ, s,Φl
p) (7.37)

Since we calculated the Archimedean local Whittaker functions in lemma 5.29, this

marks a complicated but reasonable to evaluate formula for the Fourier series of

El,µ. Although El,µ is only defined for s > 1, we may still define its Fourier series

at other values of s using equation (7.37) and gives an analytic continuation for
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Em(τ⃗ , s,Φ3/2,µ). We will now try to simplify the formula in the case s = l − 1 (and so

since s0 = dim(V )/2 − 1 = −1/2 then ∆s = l − 1/2).

We need to be careful since some of the terms can sometimes be 0 or ∞. The

following lemma recalls some well known details and tells us what to expect.

Lemma 7.38. For K ⊋ Q totally real, ζK(0) is a zero of degree n− 1 > 0, ζK(1) is a

simple pole, and ζK(z) is finite nonzero for integers z ≥ 2.

For L = K[
√
α] a nontrivial extension of K ⊋ Q, let n+ denote the number

of Archimedean places of K where α is positive. Then ζL(0) has a zero of degree

n− 1 + n+ > 0. ζL(1) is a simple pole, and ζL(z) is finite nonzero for integers z ≥ 2.

In the case κm is a perfect square, then L
(︂(︂

κm
·

)︂
, z
)︂

= ζK(z) and is described as

above. Otherwise, L
(︂(︂

κm
·

)︂
, 0
)︂

is a zero of order n+. L
(︂(︂

κm
·

)︂
, z
)︂

is finite and nonzero

for all integers z ≥ 1.

Wm,p(τ, l − 1,Φl
p) is zero for mp ≤ 0 and is finite/nonzero for mp > 0.

Proof. The facts about ζK are well known. The properties at z = 0 come from the

fact that the degree of the zero is the rank of the unit group.

The facts about the L function are just from the formula

L

(︄(︄
κm

·

)︄
, z

)︄
=
ζK[

√
κm](z)

ζK(z)

The properties of Wm,p are from proposition 5.29.

As one can tell from the above proposition, the cases l = 1/2, 3/2 require the

most care since one will potentially have to cancel zeros and poles. In particular, for

s = l − 1, one should define the quantity Em(τ⃗ , s,Φ3/2,µ) for l = 1/2, 3/2 as the limit

as l approaches this value.

Definition 7.39. Define

Em(τ⃗ , 1/2,Φ3/2,µ) := lim
s→1/2

Em(τ, s,Φ3/2,µ)
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where Em(τ⃗ , s,Φ3/2,µ) is defined by equation (7.37). One may alternately write this as

Em(τ⃗ , 1/2,Φ3/2,µ) := lim
∆s→1

Em(τ⃗ ,−1/2 + ∆s,Φ3/2,µ)

However, for the most part we will only use limit notation when necessary since

it should generally be clear how things would need to be rewritten. Additionally,

although it wouldn’t be much more work to discuss the general case that generalizes

Cohen’s modular forms of arbitrary half-integral weight, we will stick to l = 1/2, 3/2.

Lemma 7.40.

v−l/2Φl,µ(g′
τ⃗ , l − 1) = 1OK

(µ)

Proof. Start by recalling some notation. Write τ⃗ = (τ1, . . . , τn) and let τj = uj + ivj.

We let v denote ∏︁j vj and g′
τ⃗ = [gτ⃗ , 1]g, where gτ⃗ is the identity matrix at all finite

places and n(uj)m(√vj) at the jth Archimedean place. Plugging this notation into

equation (4.11), we arrive at

v−l/2 ∏︂
p<∞

Φp,µ([I, 1]L, l − 1)
n∏︂
j=1

Φ3/2([n(uj)m(√vj), 1]L, l − 1)

(Note that since n(uj)m(√vj) is upper triangular, there is no difference between using

Leray or normalized coordinates here.) Evaluating the finite places is easy. Since

our sections are standard, we have Φp,µ([I, 1]L, l − 1) = Φp,µ([I, 1]L, s0). Recalling

definition 4.13, the λ mapping then gives

Φp,µ(g′, s0) =
(︄
g′ ↦→ (ωV (g′)ϕµ(t))|t=0

)︄

Since ϕµ is the characteristic function of µ+OKp , we immediately get Φp,µ([I, 1]L, s0) =

1µ+OKp
(0). It follows that the term we are evaluating is just

1OK
(µ)v−l/2

n∏︂
j=1

Φl([n(uj)m(√vj), 1]L, l − 1)

For the jth Archimedean place p, we use the definition of section (equation (4.3)) to

get

Φl([n(uj)m(√vj), 1]L, l−1) = ⟨√vj, 2κ⟩p|
√
vj|lpΦl([I, 1]L, l−1) = v

l/2
j Φ3/2([I, 1]L, l−1)
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However, we have by definition Φl([I, 1]L, l − 1) = 1. Hence, we get

1OK
(µ)v−l/2

n∏︂
j=1

v
l/2
j = 1OK

(µ)

7.5.2 The Case l = 1/2

Proposition 7.41. In the case l = 1/2, κ = 1, s = −1/2, we have

E1/2,µ(4τ⃗ ,−1/2) =
∑︂

m∈2µ+2OK

e2πim2⃗ ·τ⃗

Therefore, ∑︂
µ∈ 1

2OK/OK

E1/2,µ(4τ⃗ ,−1/2) = θK(τ⃗)

Proof. In the case l = 1/2, κ = 1, we have ∆s = 0. Because of this, the 1/ζK(2∆s)

term introduces a pole of order n−1 which could cause havoc if it doesn’t get canceled

out. In the case m is not a perfect square, the above lemma tells us that the L

function contributes a zero of order n+. On the other hand, at least n− = n− n+ of

the Whittaker functions will also be zero (although of unspecified orders). Hence, we

will have a zero of order at least n and so Em = 0 in such cases.

We now consider the case where m is a perfect square. In the case m = 0, every

local Whittaker function will have a zero, which will again overpower the 1/ζK(2∆s)

term. We get

E0(τ⃗ ,−1/2,Φ1/2,µ) = v−1/4Φ1/2,µ(g′
τ⃗ ,−1/2) = 1OK

(µ)

If m ̸= 0, write m = k2. In this case, we have

lim
∆s→0

L
(︂(︂

κm
·

)︂
,∆s

)︂
ζK(2∆s) = lim

∆s→0

ζK(∆s)
ζK(2∆s) = 1

2n−1

where the last step is because ζK has a zero of order n− 1. We also have from lemma

5.29
∏︂
p|∞

Wm,p(τ, s,Φl
p) =

∏︂
p|∞

(2π)l(−i)l−1/2

Γ(l) ml−1
p qmp =

∏︂
p|∞

√
2|k−1

p |qk2
p = 2n/2|N(k)|−1e2πik2⃗·τ⃗
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Finally, since ∆s = 0, we have X = q−∆s = 1 and so

ρp =
1 −

(︂
m
p

)︂
X +

(︂
m
p

)︂
qf(m)X2f(m)+1 − qf(m)+1X2f(m)+2

1 − qX2 =
1 −

(︂
m
p

)︂
+
(︂
m
p

)︂
qf(m) − qf(m)+1

1 − q

Since m is a square, the “quadratic symbols" are 1 and by definition 7.17 we have

f(m) = vπ(m)/2 + e. We get ρp = qvπ(m)/2+ep . So,

ρ =
∏︂
p<∞

ρp = 2n
√︂

|N(m)| = 2n|N(k)|

From this, we can plug into equation (7.37) (and use κ2 = 1) to get

Ek2(τ⃗ ,−1/2,Φ1/2,µ) = 2−n/2
1OK

(µ2 − k2) 1
2n−1 2n|N(k)|2n/2|N(k)|−1e2πik2⃗·τ⃗

which simplifies to

Ek2(τ⃗ ,−1/2,Φ1/2,µ) = 21OK
(µ2 − k2)e2πik2⃗·τ⃗

Set µ′ = 2µ ∈ OK and k′ = 2k so we get

Ek2(4τ⃗ ,−1/2,Φ1/2,µ) = 214OK
(µ′2 − k′2)e2πik′2⃗ ·τ⃗

The indicator function is equivalent to the condition k′ ∈ µ′ + 2OK (see the next

lemma), so we get

Ek2(4τ⃗ ,−1/2,Φ1/2,µ) = 212OK
(µ′ − k′)e2πik′2⃗ ·τ⃗

which proves the result.

Lemma 7.42. For integral x, y, x ∈ y + 2OK iff x2 ∈ y2 + 4OK.

Proof. The forward implication is trivial since x = y + 2d =⇒ x2 = y2 + 4yd+ 4d2.

For the reverse, if x2 − y2 = 4d, then (x+ y)(x− y) = 4d. Hence, at least one of the

two factors is divisible by 2. In either case, we get the desired result.
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7.5.3 The Case l = 3/2

We now move onto the case l = 3/2, κ = −1. In this case ∆s = 1. This will be similar

to the previous case, but it require a bit more work so we break up the steps into a series

of propositions. Whenever κm is a perfect square, we have L
(︂(︂

κm
·

)︂
,∆s

)︂
= ζK(1),

which introduces a pole to the formula. However, this pole will always cancel with a

zero in the Archimedean local Whittaker functions.

Proposition 7.43. Em(τ⃗ , 1/2,Φ3/2,µ) vanishes unless either m = 0 or m ≫ 0. In the

case m = 0,

E0(τ⃗ , 1/2,Φ3/2,µ) = 1OK
(µ)

In the case m ≫ 0,

Em(τ⃗ , 1/2,Φ3/2,µ) = 1OK
(µ2+m)·(−1)n22nπn

√︂
N(m)|Disc(K)|−1L

(︂(︂
−m

·

)︂
, 1
)︂

ζK(2) ρe2πim⃗·τ⃗

Proof. To show that Em vanishes, it suffices to show that

lim
∆s→1

L

(︄(︄
−m

·

)︄
,∆s

)︄∏︂
p|∞

Wm,p(τ, s,Φl
p) = 0

We will do this by first considering the possible impact of the L function. In comparison

to the Whittaker functions, the L function has a limited ability to contribute to this

limit - whenever −m is not a perfect square in K, it will take on a finite, nonzero

value. This follows by writing

lim
∆s→1

L

(︄(︄
−m

·

)︄
,∆s

)︄
= lim

∆s→1

ζK[
√

−m](∆s)
ζK(∆s)

and noting that each zeta function has a simple pole at 1. On the other hand, it −m

is a perfect square in K, then we will have L
(︂(︂

−m
·

)︂
,∆s

)︂
= ζK(∆s), and so there will

be a simple pole at ∆s = 1. Note that in order for −m to be a perfect square, we

must have m ≪ 0.

The vanishing of Em now follows by casework. First, assume that m ̸= 0 and m is

neither totally positive nor totally negative. Since m is not totally negative, the L
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function will take on a finite, nonzero value. On the other hand, since m is not totally

positive, there will be some Archimedean place so that mp < 0. Then, lemma 5.29

tells us that the local Whittaker function at that place vanishes and so

lim
∆s→1

L

(︄(︄
−m

·

)︄
,∆s

)︄∏︂
p|∞

Wm,p(τ, s,Φl
p) = 0

On the other hand, if m ≪ 0, then the L function has a simple pole. However, every

single local Whittaker function will have a simple zero. Since we are assuming K ̸= Q,

there will be more than one Archimedean place and the result is a net zero.4

The case m = 0 is handled by lemma 7.40.

Finally, we deal with the case m ≫ 0. In this case, we are evaluating the expression

(−i)n2−n/2|Disc(K)|−1
1OK

(µ2 +m)
L
(︂(︂

−m
·

)︂
, 1
)︂

ζK(2) ρ
∏︂
p|∞

Wm,p(τ, 1/2,Φ3/2
p )

Since m ≫ 0, the L function will not have a pole, so we have simply plugged in

s = 1/2. Lemma 5.29 part (iv) tells us that for l = 3/2, s = l − 1 = 1/2, we have

Wm,p(τ, 1/2,Φ3/2
p ) = (2π)3/2(−i)

Γ(3/2) m1/2
p e2πimpτ

Since Γ(3/2) =
√
π/2, we see that

∏︂
p|∞

Wm,p(τ, 1/2,Φ3/2
p ) = (−i)n25n/2πn

√︂
N(m)e2πim⃗·τ⃗

Plugging this in, we get

1OK
(µ2 +m) · (−1)n22nπn

√︂
N(m)|Disc(K)|−1L

(︂(︂
−m

·

)︂
, 1
)︂

ζK(2) ρe2πim⃗·τ⃗

which is the desired expression.

There is still some room to clean up the expression when m ≫ 0. We also finally

get to see the appearance of the Hurwitz class numbers.
4In the case K = Q, one has precisely one zero and one pole, which cancel each other out. In

this case, one would end up with additional terms for each negative square number. For example, in
Zagier’s weight 3/2 modular form, these are precisely the non-holomorphic summands.
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Lemma 7.44. Let ρh(K[
√

−m]) denote the “Hurwitification" factor defined earlier.

In the case s = 1/2, we have

ρh(K[
√

−m]) = 2n
√︂

|N(m)| |disc(K)|√︂
|disc(K[

√
−m])|

ρ

Proof. When s = 1/2, we have ∆s = 1 and so X = q−∆s = q−1. In this case, we have

ρ =
∏︂
p<∞

1 −
(︂

−m
p

)︂
q−1
p +

(︂
−m
p

)︂
q

−f(−m)−1
p − q

−f(−m)−1
p

1 − q−1
p

Working from the other side, we have the definition

ρh(K[
√

−m]) =
∑︂
c|If

N(c)
∏︂
p|c

(︄
1 −

(︄
−m
p

)︄
N(p)−1

)︄

where c runs over integral divisors of the integral ideal If and p runs over prime divisors

of c. We rewrite this formula as

ρh(K[
√

−m]) =
∑︂
c|If

∏︂
p|c

(︄
N(p)vp(c) −

(︄
−m
p

)︄
N(p)vp(c)−1

)︄

which may again be rewritten as

ρh(K[
√

−m]) =
∑︂
c|If

∏︂
p|If

⎧⎨⎩N(p)vp(c) −
(︂

−m
p

)︂
N(p)vp(c)−1 p|c

1 p ∤ c

This factors as

ρh(K[
√

−m]) =
∏︂
p|If

fp(−m)∑︂
jp=0

⎧⎨⎩1 jp = 0
N(p)jp −

(︂
−m
p

)︂
N(p)jp−1 jp > 0

This identity is not the easiest to see, so it may help to note that going in the opposite

direction is just the distributive law. The inner sums may now be evaluated as

geometric series. We also swap out N(p) = qp, yielding

ρh(K[
√

−m]) =
∏︂
p|If

⎛⎝1 + qp − q
fp(−m)+1
p

1 − qp
−
(︄

−m
p

)︄
qp − q

fp(−m)
p

1 − qp

⎞⎠
Combining under a common denominator yields

ρh(K[
√

−m]) =
∏︂
p|If

⎛⎝1 −
(︂

−m
p

)︂
qp +

(︂
−m
p

)︂
q
fp(−m)
p − q

fp(−m)+1
p

1 − qp

⎞⎠
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It should now be clear that

ρh(K[
√

−m])
ρ

=
∏︂
p<∞

−qfp(−m)+1
p

−qp
=
∏︂
p<∞

q
fp(−m)
p = N(If)

To convert N(If) to the desired expression, we can use the relation

(−4m) = Disc(K[
√

−m]/K)I2
f , which nets us

N(If) = 2n
√︂

|N(m)| 1√︂
|N(Disc(K[

√
m]/K))|

The formula Disc(K[
√
m]) = Disc(K)2N(Disc(K[

√
m]/K)) then gives us the desired

result.

Lemma 7.45. The reflection formula for ζK tells us

1
ζK(2) = |Disc(K)|3/2

(−2π2)n
1

ζK(−1)

and
L
(︂(︂

−m
·

)︂
, 0
)︂

L
(︂(︂

−m
·

)︂
, 1
)︂ = π−n

√︂
|Disc(K[

√
−m])/Disc(K)|

Proof. This is just an arrangement of the well known reflection formula, so the proof

is omitted. However, we mention that the reflection formula for the L function was

obtained from the zeta reflection formula via

L

(︄(︄
−m

·

)︄
, s

)︄
=
ζK[

√
−m](s)

ζK(s)

Corollary 7.46. Em(τ⃗ , 1/2,Φ3/2,µ) vanishes unless either m = 0 or m ≫ 0. In the

case m = 0,

E0(τ⃗ , 1/2,Φ3/2,µ) = 1OK
(µ)

In the case m ≫ 0,

Em(τ⃗ , 1/2,Φ3/2,µ) = 1OK
(µ2 +m) · 1

ζK(−1)
2n−1

QK[
√

−m]

H(m)
hK

e2πim⃗·τ⃗
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for some Q−m ∈ {1, 2} that will be determined later. This may alternately be written

as

Em(τ⃗ , 1/2,Φ3/2,µ) = 1OK
(µ2 +m) ·

L
(︂(︂

−m
·

)︂
, 0
)︂

ζK(−1) ρh(K[
√

−m])e2πim⃗·τ⃗

Proof. We pick up where proposition 7.43 left off. Take m ≫ 0 and assume m ∈

−µ2 +OK . We will continue to simplify the quantity

(−1)n22nπn
√︂
N(m)|Disc(K)|−1L

(︂(︂
−m

·

)︂
, 1
)︂

ζK(2) ρe2πim⃗·τ⃗

By lemmas 7.44 and 7.45, this quantity is equal to
(︄

|Disc(K)|3/2

(−2π2)n

)︄⎛⎝
√︂

|disc(K[
√

−m])|
2n
√︂

|N(m)||disc(K)|

⎞⎠ ·

(−1)n22nπn
√︂
N(m)|Disc(K)|−1L

(︂(︂
−m

·

)︂
, 1
)︂

ζK(−1) ρh(K[
√

−m])e2πim⃗·τ⃗ (7.47)

A whole bunch of cancellation later and we have

π−n|Disc(K)|−1/2|disc(K[
√

−m])|1/2L
(︂(︂

−m
·

)︂
, 1
)︂

ζK(−1) ρh(K[
√

−m])e2πim⃗·τ⃗

An application of lemma 7.45 gives the alternate formulation mentioned above. To get

the first formulation, we instead write the L function as a ratio of two zeta functions

and apply the class number formula. Writing this out, we have

L

(︄(︄
−m

·

)︄
, 1
)︄

= lim
t→1

ζK[
√

−m](t)
ζK(t) =

⎛⎝ (2π)nReg(K[
√

−m])hK[
√

−m]

#wK[
√

−m]

√︂
|Disc(K[

√
−m])|

⎞⎠⎛⎝2nReg(K)hK
2
√︂

|Disc(K)|

⎞⎠−1

Plugging this in and canceling gives

1
ζK(−1)

H(m)
hK

Reg(K[
√

−m])
Reg(K)

[Was97] Proposition 4.16 and Theorem 4.12 tell us that the ratio of regulators is of the

form 2n−1/QK[
√

−m] for some QK[
√

−m] ∈ {1, 2}, which gives us the desired result.

Corollary 7.48. Take V = K with Q = −x2. Take µ ∈ (1/2)OK. Then we get

E3/2,µ(τ⃗ , 1/2) = 1 + 1
ζK(−1)

2n−1

hK

∑︂
m≫0

m∈−µ2+OK

H(m)
QK[

√
−m]

e2πim⃗·τ⃗
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If we plug in 4τ⃗ and let µ′ = 2µ and m′ = 4m, we may define a version of the series

where these parameters are integral. For µ′ ∈ OK, we have

E3/2,µ′/2(4τ⃗ , 1/2) = 1 + 1
ζK(−1)

2n−1

hK

∑︂
m′≫0

m′∈−µ′2+4OK

H(m)
QK[

√
−m′]

e2πim′⃗ ·τ⃗

We may now give our form an explicit level structure. We recall the statement of

proposition 5.19, since we will be evaluating the formula therein. Let Γ = SL2(K) ∩

(Γf × SL2(R)n) for the group Γf guaranteed by proposition 5.12. For γ0 ∈ Γ,

El,µ(γ0τ⃗ , s) = ϵµ([γ0,p, ϵ(γ0)−1])
∏︂
p|∞

βp(γ0,p) · j̃∞([γ0,∞, 1]R, τ⃗)2lEl,µ(τ⃗ , s) (7.49)

where ϵ is the character giving the splitting of SL2(K) given in proposition 3.42, ϵϕµ,p is

the character given by proposition 4.16 (and its argument is in Leray coordinates for p

even and normalized coordinates for p odd), and βp(g) = γw (x(g), 1/2)−1 γw(1/2)−j(g)

is from definition 3.22.

Proposition 7.50. 7.5.4 Finding the Level

Let

Γµ =
{︄(︄

a b
c d

)︄
∈ SL2(K)

⃓⃓⃓⃓
⃓ a, d ∈ O×

K , b ∈ 1
4∂

−1, c ∈ 4∂, (a− 1)µ ∈ OK

}︄

(i) Consider the case l = 1/2, κ = 1 (and hence χ(x) = ⟨x, 2⟩A), V = K, Q(x) = x2

(hence (x, y)Q = 2xy), and L = OK (in which case we must take µ ∈ OK/2). Then,

E1/2,µ(4τ⃗ , s) transforms as in equation (7.49) with Γ = Γµ. E1/2,µ(4τ⃗ , s) transforms

like a modular form of parallel weight 1/2 and level Γµ ∩ K0(4)).

(ii) Consider the case l = 3/2, κ = −1 (and hence χ(x) = ⟨x,−2⟩A), V = K,

Q(x) = −x2 (hence (x, y)Q = −2xy), and L = OK (in which case we must take

µ ∈ OK/2). Then, E3/2,µ(4τ⃗ , s) transforms as in equation (7.49) with Γ = Γµ.

E3/2,µ(4τ⃗ , s) times the theta function θK transforms like a modular form of parallel

weight 2 and level Γµ ∩ K0(4).
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In either case, it is not difficult to determine the automorphy factor on all of Γµ by

considering how the action of a matrix n(b) with b ∈ 1
4∂

−1 affects the Fourier series.

Proof. In either case (i) or (ii), since µ ∈ OK/2, proposition 4.15 tells us the set of

places with nonspherical Φµ,p is a subset of the even places. However, since even places

cannot be spherical (by definition), it follows that the nonspherical places are exactly

the even places. So, we get

El,µ(γ0τ⃗ , s) = ϵ(γ0)
∏︂
p|2
ϵϕµ,p([γ0,p, 1]L)

∏︂
p|∞

βp(γ0,p) · j̃∞([γ0,∞, 1]R, τ⃗)2lEl,µ(τ⃗ , s)

Our next step is to determine the group Γ as a function of µ. Looking at proposition

4.16, we will need to determine for an even place p which elements of k′ ∈ K′
0,p(4) take

ϕµ,p as an eigenfunction. We now proceed by casework.

Case 1: (i)

The Weil representation is given by

ωV ([g, z]L)ϕ(t) = z⟨x(g), 2⟩p γw
(︃1

2

)︃j(g)
γw (1)−j(g) rV (g)ϕ(t)

rV (g)ϕ(t) =
∫︂
y∈cV

ψ
(︂
abt2 + 2bcty + cdy2

)︂
ϕ (at+ cy) dgy

To check whether ϕ is an eigenfunction under ωV (k′), it suffices to check whether

it is an eigenfunction under rV (k). Let k =
(︄
a b
c d

)︄
∈ K0,p(4). (Recall this means

a, d ∈ O×
Kp

, b ∈ ∂−1, and c ∈ 4∂.) Plugging in ϕµ we have

rV (k)ϕµ(t) =
∫︂
y∈cV

ψ
(︂
abt2 + 2bcty + cdy2

)︂
ϕµ (at+ cy) dgy

Case 1a: c = 0

In this case,

rV (k)ϕµ(t) = ψ
(︂
abt2

)︂
ϕµ (at)µ(g)

for some positive real µ(g) (unrelated to the variable µ) to make the operation unitary.

We may ignore the µ(g) since if ϕµ is an eigenfunction, then µ(g) will only serve to
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make sure the eigenvalue is in T. As such, once we compute an eigenvalue we can

always normalize it to unit length at the end.

It is clear we must have ϕµ (at) = ϕµ (t), which is equivalent to asking aµ ≡

µ mod OKp , or alternatively (a− 1)µ ∈ OKp . We also need the ψ term to be constant

on µ+OKp . Writing t = µ+x for x ∈ OKp , we get ψ(abt2) = ψ(abµ2)ψ(2µabx+abx2).

Since 2µ ∈ OKp and ab ∈ ∂−1, we get ψ(abt2) = ψ(abµ2), so ψ will always be constant.

It follows that in this case ϕµ is an eigenfunction iff a ≡ 1 mod πvµ and the eigenvalue

under rV (k) will be ψ(abµ2).

Case 1b: c ̸= 0

In this case, change variables to ynew = at+ cyold to get

rV (k)ϕµ(t) =
∫︂
y∈µ+OKp

ψ

(︄
abt2 + 2bt(y − at) + d

c
(y − at)2

)︄
dgy

where we absorbed the Jacobian into dgy. This simplifies to
∫︂
y∈µ+OKp

ψ

(︄(︄
ab− 2ab+ a2d

c

)︄
t2 + 2

(︄
b− ad

c

)︄
ty + d

c
y2
)︄
dgy

=
∫︂
y∈µ+OKp

ψ

(︄
a

c
t2 − 2

c
ty + d

c
y2
)︄
dgy (7.51)

A further change of variables yold = µ+ ynew gives the following where to save space,

we will use C to denote the ψ term out front.

ψ

(︄
a

c
t2 − 2

c
tµ+ d

c
µ2
)︄∫︂

y∈OKp

ψ

(︄
d

c
y2 + 2µd− t

c
y

)︄
dgy

= C
∫︂
y∈OKp

ψ

(︄
d

c
y2 + 2µd− t

c
y

)︄
dgy (7.52)

We know that c ∈ 4∂, so if we define c′ = cτ/(4πr), we will have c′ ∈ OK . We may

rewrite the above quantity as

C
∫︂
y∈OKp

ψ

(︄
τd

4πrc′y
2 + τ(µd− t)

2πrc′ y

)︄
dgy

Change variables via yold = ynew/α and rewrite using ψ′ to get

C
∫︂
y∈OKp

ψ′
(︄

d

π2ec′y
2 + µd− t

πec′ y

)︄
dgy
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Now let c′ = uc′πvπ(c′) to get

C
∫︂
y∈OKp

ψ′
(︄

d

π2e+vπ(c′)uc′
y2 + µd− t

πe+vπ(c′)uc′
y

)︄
dgy

We may evaluate this using corollary 6.35. In the notation of that formula, we have

the parameters

(a, u, t) =
(︄

2e+ vπ(c′), d

uc′
,

µd− t

π(vπ(c′)−vπ(c′))/2uc′

)︄

We ignore the g0 term since we can always normalize at the end (as noted in case 1a).

The g1 term is given by⎧⎪⎨⎪⎩
1 □1−vπ(c′)(d/uc′) ≡ (µd−t)2

πvπ(c′)−vπ(c′)u2
c′

mod π−vπ(c′)+vπ(c′)

0 else

If we multiply through by u2
c′πvπ(c′)−vπ(c′), the condition becomes

□1(c′d) ≡ (µd− t)2 mod OKp

The left hand side is in OKp , and so we get the condition t ≡ µd mod OKp . Since

we want to get the characteristic function ϕµ back out at the end, we must have

µ ≡ µd mod OKp , or (d − 1)µ ∈ OKp . (Note that this is equivalent to the earlier

condition (a− 1)µ ∈ OKp !)

In the case this condition does hold, we can plug in the rest of the terms and get

Cψ′

⎛⎝ 1
4πvπ(c′)

□1−vπ(c′)(d/uc′) − (µd− t)2/(πvπ(c′)−vπ(c′)u2
c′)

d/uc′

⎞⎠ g3(2e+ vπ(c′))

Multiplying top and bottom by u2
c′πvπ(c′)−vπ(c′) gives

Cψ′
(︄

1
4
□1(dc′) − (µd− t)2

dc′

)︄
g3(2e+ vπ(c′))

We must now determine when the above function is constant for t ∈ µ + OKp . By

assumption, this is the same as t ∈ µd + OKp , so write t = µd + x for x ∈ OKp and

plug back in for C to get

ψ

(︄
a

c
(µd+ x)2 − 2

c
(µd+ x)µ+ d

c
µ2
)︄
g3(2e+ vπ(c′))ψ′

(︄
1
4
□1(dc′)
dc′

)︄
ψ′
(︄

−x2

4dc′

)︄
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We can rewrite the last term to ψ(−x2/cd). Rearranging then gives

g3(2e+ vπ(c′))ψ′
(︄

1
4
□1(dc′)
dc′

)︄
ψ
(︂
bdµ2

)︂
ψ

(︄(︃
a

c
− 1
cd

)︃
x2 + 2

(︄
ad

c
− 1
c

)︄
µx

)︄

This simplifies to

g3(2e+ vπ(c′))ψ′
(︄

1
4
□1(dc′)
dc′

)︄
ψ
(︂
bdµ2

)︂
ψ

(︄
b

d
x2 + 2bµx

)︄

= g3(2e+ vπ(c′))ψ′
(︄

1
4
□1(dc′)
dc′

)︄
ψ
(︂
bdµ2

)︂
(7.53)

where the last term is 1 since b/d ∈ ∂−1 and 2bµ ∈ ∂−1. Rewrite this one more time as

= g3(2e+ vπ(c′))ψ′
(︄

1
4
□1−vπ(c′)(d/uc′)

d/uc′

)︄
ψ
(︂
bdµ2

)︂
We may now recognize the product of the first two terms as a Gauss sum γ′(d/(π2ec′))

(while still disregarding the factor γ0 since we will normalize at the end). This gives us

= γ′
(︄

d

π2ec′

)︄
ψ
(︂
bdµ2

)︂
= γ

(︄
d

4c

)︄
ψ
(︂
bdµ2

)︂
This proves that we may take Γ = Γµ in equation (7.49). If one wishes, one may

explicitly determine the characters ϵϕµ,p from the calculation above.

We will now show that the automorphy factors for the E1/2,µ are the same as that

of the theta function θK . We know that θK(τ⃗) = ∑︁
µ∈(1/2)OK/OK

E1/2,µ(4τ⃗ ,−1/2). The

crucial point here is that the entire process wherein one takes a Schwartz function,

forms a section and builds a modular form out of it is linear. In particular, this implies

that if we start with Schwartz functions ϕp = 1(1/2)OKp
and let Φf denote the product

of their associated sections, then E(4τ⃗ , s,Φf × Φl
∞) = θK(τ⃗).

We now write θK(τ⃗) = E1/2,µ(4τ⃗ ,−1/2) + (θK(τ⃗) − E1/2,µ(4τ⃗ ,−1/2)). So that we

have written θK(τ⃗) as a sum of two functions. All three functions obey equation

(7.49) under the group Γµ ∩ K0(4) and at the level of Schwartz functions, this sum

corresponds to the disjoint sum 1(1/2)OKp
= 1µ+OKp

+ (1(1/2)OKp
− 1µ+OKp

).

Given an element γ0 ∈ Γµ ∩ K0(4), it will act on the Schwartz functions of

E1/2,µ(4τ⃗ ,−1/2) and θK(τ⃗) with some eigenvalue, and hence from the disjointness of
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the sum the eigenvalues must be the same. It follows that we get the same factor of

automorphy in equation (5.12).

Case 2: (ii)

In this case,

rV (g)ϕ(t) =
∫︂
y∈cV

ψ
(︂
−(abt2 + 2bcty + cdy2)

)︂
ϕ (at+ cy) dgy

so we can see that rV (k)ϕµ(t) will be exactly the complex conjugate of whatever we

got in case (i). Hence, the conditions on Γ are the same and so we can still take

Γ = Γµ.

To argue how they vary under Γµ ∩ K0(4), it suffices to prove the result for∑︁
µ∈(1/2)OK/OK

E3/2,µ(4τ⃗ , 1/2), since the rest will follow from the same “disjoint Schwartz

functions" argument as above. However, this level is provided by [Su16]. See page

3 where he sets Γ = K0(4), page 23 for the statement that the modular forms E he

computes are in a set M3/2(Γ). [Su16] Theorem 10.3 with trivial twisting character χ′

gives exactly the Fourier series for ∑︁µ∈(1/2)OK/OK
E3/2,µ(4τ⃗ , 1/2), showing it is indeed

part of M3/2(Γ). Finally, a look at pages 1 and 2 makes it clear that elements of

M3/2(Γ) have the desired transformation property. (One should be careful since Ren’s

j1/2 is our jθ.)

7.6 Computing QK[
√

−m]

Finally, given m ∈ OK , m ≫ 0, we determine a formula for QK[
√

−m]. Let L =

K[
√

−m]. By our setup, L/K is a degree 2 extension where K is totally real but L

has no real embeddings. This is known as a CM extension. Every CM extension arises

in this way, and so we are essentially computing the value of QK[
√

−m] (and hence the

ratio of regulators) for an arbitrary CM extension.

We start by collecting some useful observations.
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Lemma 7.54. (i) QK[
√

−m] = QK[
√

−mx2] for any x ∈ OK so m only matters up to a

square factor.

(ii) If K[
√
a] = K[

√
b] then a = bx2 for some x ∈ K.

(iii) L contains a root of unity of order divisible by 4 iff L = K[i].

(iv) Let d be the largest integer so that L contains the cyclotomic field Q(ζ2d). Let

ζ ∈ L be some root of unity. Then there exists a root of unity ζ ′ ∈ L so that ζζ ′2 is

either 1 or a primitive 2dth root of unity. In particular, if L ̸= K[i] then ζζ ′2 = ±1.

Proof. (i) and (iii) are trivial. (ii) is mostly trivial - if
√
b ∈ K[

√
a], then we may write

√
b = y

√
a+ z for some y, z ∈ K. Then we have b = z2 + ay2 + 2yz

√
a from which it

follows yz = 0. Hence either b = z2 or b = ay2 and some trivial casework finishes the

proof.

For (iv), first observe that µ(L) ∼= Z/n for some n. Let H = Z/n. We may

decompose H = Z/2d × Z/n′ where n′ is some odd integer. It then follows that

H/2H ∼= Z/2 and that the two congruence classes have representatives of the desired

forms.

In the case that L ̸= K[i], we have d = 1 and this part of the claim follows

easily.

The following theorem is [Was97] theorem 4.12 and gets us most of the way to an

answer. It says that Q is given by a particular index and that this index is always

either 1 or 2.

Theorem 7.55. For a CM extension L = K[
√

−m]/K, one has

QK[
√

−m] = [O×
L : µ(L)O×

K ] ∈ {1, 2}

where µ(L) is the group of roots of unity of L.

We now give conditions for when Q takes on each possible value. In the case m

is not a perfect square (that is, when L ̸= K[i]), the conditions are clean and easy
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to use. If L = K[i], one can still write down an interesting condition, although it is

much more complicated to verify. Fortunately, this is only a single extension where

the more difficult condition needs to be checked. We start with the easier cases.

Proposition 7.56. Continue to let K be totally real and m ≫ 0.

(i) If m cannot be written in the form m = ux2 for some unit u, then QK[
√

−m] = 1.

(ii) If we can write m = ux2 for a unit u and u is not itself a perfect square, then

QK[
√

−m] = 2.

Proof. We prove (i) by contrapositive. In the case that [O×
L : µ(L)O×

K ] = 2, let u′

denote some unit in O×
L − µ(L)O×

K . Since the index is 2, we can write u′2 = ζu for

some root of unity ζ and some unit u ∈ O×
K .

Let d be the largest integer so that L contains a 2dth root of unity. Using part

(iv) of the lemma, we may assume our choice of u′ is such that either ζ = 1 or ζ is a

primitive 2dth root of unity.

Case 1: ζ = 1

Let us consider the case that for our chosen u′ we have ζ = 1. Then, we have

u′2 = u for u ∈ O×
K and it follows that L = K[

√
u]. By part (ii) of the lemma, we

know−m = ux2. Hence, m = (−u)x2 and so m may be written as a unit times a

square.

Case 2: ζ is a primitive 2dth root of unity

If d ≥ 2 then part (iii) of the lemma tells us L = K[
√

−1]. Part (ii) of the lemma

allows us to conclude this case in the same way as the last one. On the other hand if

d = 1, then L = K[
√

−u] and the argument again concludes in the same way.

Now we prove (ii). In this case we have m = ux2 for a totally positive unit u and

u, x ∈ OK . It follows that L = K[
√

−m] = K[
√

−u]. Since u is assumed nonsquare,

we know that L ̸= K[i]. Our plan is to show that
√

−u ∈ O×
L − µ(L)O×

K , so that

[O×
L : µ(L)O×

K ] ̸= 1 and then we will be done by theorem 7.55.
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Since it is already obviously a unit of L, to prove
√

−u /∈ µ(L)O×
K , assume for

contradiction that we may write
√

−u = ζu′ for ζ ∈ µ(L) and u′ ∈ O×
K . Then we have

−u = ζ2u′2 and it follows that ζ2 ∈ K. Since by assumption L ̸= K[i], we have ζ = ±1.

However, this tells us that
√

−u = ζu′ = ±u′ ∈ K which is a contradiction.

For the case L = K[i], we will need some lemmas.

Lemma 7.57. If we can write u′2 = ζu for u′ ∈ O×
L (we do not exclude u′ ∈ µ(L)O×

K !),

ζ ∈ µ(L), and u ∈ O×
K then one of ±u is totally positive. (And in particular we may

take u totally positive by swapping ζ for −ζ.)

Proof. In the proof of [Was97] Theorem 4.12, it is shown that for a CM extension L/K

and any unit u′ ∈ O×
L , u′/u′̄ ∈ µ(L). Write u′ = ζ ′u′̄ so that ζ ′u′u′̄ = u′2 = ζu. It then

follows that u = |u′|2ζ ′ζ−1. Writing u′ = x+iy for x, y ∈ OK , we see u = (x2+y2)ζ ′ζ−1.

It follows that ζ ′ζ−1 ∈ K and hence is ±1. Since x2 + y2 is totally positive, the result

follows.

Lemma 7.58. Let n ≥ 2 be an integer. There is an element α ∈ Q(ζ2n) such that

α = βζ2n+1 where β, ζ2n+1 ∈ Q(ζ2n+1), β is totally real and ζ2n+1 is a 2n+1st root of

unity. In particular, we may take β = cos(2π/2n+1)−1.

Proof. By the tangent half angle formula,

tan(2π/2n+1) = sin(2π/2n)
1 + cos(2π/2n) ∈ Q(ζ2n)

and so we take α = 1 + i tan(2π/2n+1). The desired factorization is given by

α = cos(2π/2n+1)−1(cos(2π/2n+1) + i sin(2π/2n+1)) with β = cos(2π/2n+1)−1 being

totally real. (Note n = 1 does not work since cos(2π/2n+1)−1 would be undefined.)

Let Q(ζ2n)+ denote the maximal totally real subfield of Q(ζ2n). We introduce

the notation v2(x) as a type of 2-adic valuation of an element x ∈ K. In particular,

v2(x) = n will mean that vp(x) = n ∗ vp(2) for every even place p. In any other case
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v2(x) is undefined. Finally, we will use the notation x ∼ 21/n to denote the equality of

ideals (x)n = (2). In particular this is equivalent to v2(x) = 1/n and vp(x) = 0 for all

odd places. As such one could refer to such an element as a valuational nth root of 2.

Lemma 7.59. Let n ≥ 2 be an integer. Then cos2(2π/2n+1) ∈ Q(ζ2n)+ and

4 cos2(2π/2n+1) ∼ 21/2n−2

Proof. That cos2(2π/2n+1) ∈ Q(ζ2n)+ is just the double angle formula. To prove the

ideal equality, define

f+(n) = 2 +
√︃

2 +
√︂

2 + . . .+
√

2, f−(n) = 2 −
√︃

2 +
√︂

2 + . . .+
√

2

where there are n 2s in each expression and all signs are + except for a single - at the

start of f−. We use the formula

4 cos2(2π/2n+1) = f+(n− 1)

This formula may be proven by observing the n = 2 case to be 4 cos2(2π/8) = 2

and then inducting using the half angle formula 2 cos(θ) =
√︂

2 + 2 cos(2θ) =⇒

4 cos2(θ) = 2 +
√︂

4 cos2(2θ). By direct calculation one may also observe the equations

f+(n) + f−(n) = 4 and f+(n)f−(n) = f−(n− 1).

Since f−(1) = 2 and all f±(n) are integral, the relation f+(n)f−(n) = f−(n −

1) implies that f+(n′ − 1) = 4 cos2(2π/2n′+1) divides 2 for any n′ ≥ 2. It fol-

lows 4 cos2(2π/2n+1) is not divisible by any odd primes, so if we can prove that

v2(4 cos2(2π/2n+1)) = 1/2n−2 then we will be done.

Observe that f±(2) = 2 ±
√

2 =
√

2(
√

2 ± 1). Since (
√

2 ± 1) are units, we have

v2(f±(2)) = 1/2.

For any even prime p, let a, b such that vp(f+(3)) = avp(2) and vp(f−(3)) = bvp(2).

Since all f±(n) are integral, we know a, b ≥ 0. Since f+(3)f−(3) = f−(2), we have

a+ b = 1/2. However, f+(3) + f−(3) = 4, so we must have a = b = 1/4. (This is true
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since if a ̸= b then vp(f+(3)+f−(3)) = min(vp(f+(3)), vp(f−(3))) ≤ 1/2vp(2). However,

we know vp(f+(3) + f−(3)) = vp(4) = 2vp(2).) Hence, v2(f±(3)) = 1/4. Repeating this

argument shows that v2(f±(n)) = 1/2n−1. It follows v2(4 cos2(2π/2n+1) = f+(n−1)) =

1/2n−2.

Proposition 7.60. If m is a perfect square (in other words, if L = K[i]) let Q(ζ2d)

be the largest power-of-2 cyclotomic field contained in K[i]. Then, QK[
√

−m] = 2 iff K

contains an element x such that x ∼ 21/2d−1.

Remark 7.61. By lemma 7.59, K always contains an element x ∼ 21/2d−2 and so

v2(x) = 1/2d−2. A rather loose phrasing of the above condition is that we are looking

for “a valuational diadic root of 2 that does not come from the cyclotomic field".

Proof. Since L = K[i] we have d ≥ 2. Let us start with the forward implication.

Assume [O×
L : µ(L)O×

K ] = 2. Let u′ ∈ O×
L − µ(L)O×

K and since the index is 2 write

u′2 = ζu with ζ ∈ µ(L) and u ∈ O×
K . Just as in the proof of proposition 7.56, we may

use lemma 7.54 part (iv) make such a choice of u′ ∈ O×
L −µ(L)O×

K so that either ζ = 1

or ζ is a primitive 2dth root of unity. We may further use lemma 7.57 to take u ≫ 0.

The case ζ = 1 is impossible - in this case u′2 = u. However, they only way an

element u′ = x+ iy ∈ K[i] can square into K is if x or y is zero. In either case, we

would have u′ ∈ µ(L)O×
K .

So, we have u′2 = ζu for ζ a primitive 2dth root of unity. By lemma 7.58, there exists

an α ∈ Q(ζ2d) ⊂ L so that α = cos(2π/2d+1)−1√ζ where cos(2π/2d+1)−1 ∈ Q(ζ2d+1) is

totally real and
√
ζ is a 2d+1st root of unity. Let x′ = u′/α ∈ L so that we get

x′2/ cos2(2π/2d+1) = u =⇒ (2x′)2 = 4 cos2(2π/2d+1)u

Since cos(2π/2d+1) is totally real, it follows that cos2(2π/2d+1) ∈ L is totally positive.

We also know u ≫ 0, and so we see that (2x′)2 ≫ 0. It follows that 2x′ is totally real and

210



lies in L, so it therefore lies in K. Lemma 7.59 tells us that 4 cos2(2π/2d+1)u ∼ 21/2d−2 ,

and so it follows that 2x′ ∼ 21/2d−1 is the element we were looking for.

For the reverse implication, assume there exists some element 2x′ ∈ K such that

2x′ ∼ 21/2d−1 . Then, (2x′)2/(4 cos2(2π/2d+1)) ∼ 20 and is also an element of K (note

that the cos2 term is in K since it is totally real and in L). Hence, it must be some

unit u ∈ O×
K . Letting u′ = αx′, we get u′2 = ζu. Since the right hand side is a unit,

so is the left hand side and u′ ∈ O×
L .

For the sake of contradiction, assume that we can write u′ = ζ ′u2 for ζ ′ ∈ µ(L)

and u2 ∈ O×
K . Then we get ζ ′2u2

2 = ζu. It follows that ζζ ′−2 ∈ K and hence ζ ′2 = ±ζ.

However, this is impossible since this would imply that ζ ′2 is a primitive 2dth root of

unity.

Corollary 7.62. If K has narrow class number 1, then QK[
√

−m] = 1 always.

Proof. This is actually a corollary to lemma 7.57. As we have done before, since

[O×
L : µ(L)O×

K ] ∈ {1, 2}, any u′ ∈ O×
L satisfies u′2 = ζu for ζ ∈ µ(L) and u ∈ O×

K .

By lemma 7.57, we may choose u totally positive. By the narrow class number 1

assumption, it follows that u is a perfect square and so we write u = v2 giving u′2 = ζv2.

Rearranging yields (u′/v)2 = ζ and so u′/v is some root of unity ζ ′. Hence u′ = vζ ′

and u′ ∈ µ(L)O×
K .

211



References

[BS20] Ajit Bhand and Ranveer Kumar Singh, Zagier’s weight 3/2 mock modular form,
arXiv preprint arXiv:2012.00539 (2020).

[Coh75] Henri Cohen, Sums involving the values at negative integers of l-functions of
quadratic characters, Mathematische Annalen 217 (1975), 271–285.

[Fre90] Eberhard Freitag, Hilbert modular forms, Springer, 1990.
[Gel06] Stephen S Gelbart, Weil’s representation and the spectrum of the metaplectic group,

vol. 530, Springer, 2006.
[HI13] Kaoru Hiraga and Tamotsu Ikeda, On the kohnen plus space for hilbert modular

forms of half-integral weight i, Compositio Mathematica 149 (2013), no. 12,
1963–2010.

[HZ76] Friedrich Hirzebruch and Don Zagier, Intersection numbers of curves on hilbert
modular surfaces and modular forms of nebentypus, Inventiones mathematicae 36
(1976), 57–113.

[KRY04] Stephen S Kudla, Michael Rapoport, and Tonghai Yang, Derivatives of eisenstein
series and faltings heights, Compositio Mathematica 140 (2004), no. 4, 887–951.

[KRY06] , Modular forms and special cycles on shimura curves.(am-161), vol. 161,
Princeton university press, 2006.

[Kud96] Stephen Kudla, Notes on the local theta correspondence, unpublished notes, avail-
able online (1996).

[Kud97] Stephen S Kudla, Central derivatives of eisenstein series and height pairings,
Annals of mathematics (1997), 545–646.

[KY10] Stephen S Kudla and TongHai Yang, Eisenstein series for sl (2), Science China
Mathematics 53 (2010), 2275–2316.

[LSL65] Nikolai Nikolaevich Lebedev, Richard A Silverman, and DB Livhtenberg, Special
functions and their applications, American Institute of Physics, 1965.

[Miz84] Shin-Ichiro Mizumoto, On the second l-functions attached to hilbert modular forms,
Mathematische Annalen 269 (1984), 191–216.

[RR93] R Ranga Rao, On some explicit formulas in the theory of weil representation,
Pacific Journal of Mathematics 157 (1993), no. 2, 335–371.

[Shi82] Goro Shimura, Confluent hypergeometric functions on tube domains, Mathematis-
che Annalen 260 (1982), no. 3, 269–302.

[Shi85] , On eisenstein series of half-integral weight.

212



[Shi87] , On hilbert modular forms of half-integral weight.
[Su16] Ren-He Su, Eisenstein series in the kohnen plus space for hilbert modular forms,

International Journal of Number Theory 12 (2016), no. 03, 691–723.
[W+64] André Weil et al., Sur certains groupes d’opérateurs unitaires, Acta math 111

(1964), no. 143-211, 14.
[Was97] Lawrence C Washington, Introduction to cyclotomic fields, volume 83 of, Graduate

Texts in Mathematics (1997), 104.
[Woo93] Jay A Wood, Witt’s extension theorem for mod four valued quadratic forms,

Transactions of the American Mathematical Society 336 (1993), no. 1, 445–461.

213


	Abstract
	Acknowledgements
	Contents
	Introduction
	Notation and Setup
	Notation
	Modular Forms

	The Metaplectic Group
	Motivation
	Important functions
	The Hilbert Symbol
	The Weil Constant
	Local Factors
	j and x

	The Local Metaplectic Group and Coordinate Change
	Rao Coordinates
	The Weil Representation
	Normalized Coordinates for Odd Primes
	The Even Case
	The Global Metaplectic Group

	Sections
	General Properties
	Preliminaries
	Types of Sections

	The λ mapping
	Properties of λ
	Symmetries of Schwartz Functions

	The Archimedean Section Φl

	Eisenstein Series
	The Series E(Φ)
	Constructing El,µ
	Level Structure of El,µ
	Archimedean Local Whittaker Functions
	Simplifying Wm,p for Finite Places

	Evaluating the Gauss Sum
	Review
	Tracechanging
	The Odd Case
	Integration Lemmas
	Evaluating the Odd Gauss Sums

	0, 1, and δ
	Computing the Gauss Sum
	The Main Computation
	Cleaning up the Formula
	Gauss Sum Identities

	Classification of γ
	Computational Lemmas
	The Gauss Sum as a Quadratic Form
	The Squareness Operator

	Computing Quadratic Character Gauss Sums

	Computing the Local Whittaker Function at Finite Places
	Reducing IW to I*
	Computing I*
	Computing I* part 2
	A Reduction Formula
	Two Important Functions
	Finishing the Calculation

	Putting it all together
	The cases of interest
	General l
	The Case l=1/2
	The Case l=3/2
	Finding the Level

	Computing QK[-m]

	References

