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ABSTRACT 

We investigated the impact of Kaniadakis statistics on thermodynamic properties for a square magnetic 

grid. We used the Ising model. We reported numerical results for a two-dimensional magnetic network 

in a thermal bath. We calculated the probabilities of transition between states using 𝜅-statistics, the 

Metropolis dynamics for stochastic processes of the finite-sized magnetic network, considering that the 

system interacts with a thermal reservoir. We investigated the behavior of various thermodynamic 

properties. We observed typical measurements of magnetization, energy and specific heat. Increasing 

the 𝜅 parameter reduces the critical temperature. We observed by the measurements of the fourth order 

Binder cumulative of magnetization, that for different network sizes and different values of the 

parameter 𝜅, the system transition temperature magnetic decreases as κ increases. 

 

Keywords: 𝜅-exponential, Ising model, phase transitions. 

 

RESUMO 

Investigamos o impacto das estatísticas Kaniadakis nas propriedades termodinâmicas de uma grade 

magnética quadrada. Utilizamos o modelo de Ising. Relatamos resultados numéricos para uma rede 

magnética bidimensional em banho termal. Calculamos as probabilidades de transição entre estados 

usando a estatística k, a dinâmica Metropolis para processos estocásticos da rede magnética de tamanho 

finito, considerando que o sistema interage com um reservatório térmico. Investigamos o 

comportamento de várias propriedades termodinâmicas. Observamos medidas típicas de magnetização, 

energia e calor específico. Aumentar o parâmetro κ reduz a temperatura crítica. Observamos pelas 

medições do Fichário de quarta ordem cumulativo de magnetização, que para diferentes tamanhos de 

rede e diferentes valores do parâmetro κ, a temperatura de transição do sistema magnético diminui à 

medida que κ aumenta. 

 

Palavras-chave: κ-exponencial, modelo de Ising, transições de fase. 

 

 

1 INTRODUCTION 

The area of phase transitions and critical phenomena is one of the central themes in Physics. This 

type of study is carried out in several physical systems: fluids, liquid crystals, metal alloys, spin glasses, 

magnetic materials, piezoelectric, ferroelectric materials, biological systems, etc. Magnetic systems are 

of particular interest for the potential of biomedical applications in magnetic hyperthermia and for the 

construction of new technological devices such as: magnetic memories, nano-antennas, magnetic 

tunneling junctions, etc. [1-8] The Ising model is a prototype model, proposed to provide an explanation 

of the phase transition of a magnetic system. The Ising model consists of 𝑁 spins, subjected to short-

range interactions, spread over the sites of a two-dimensional network. 
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Since Gibbs proposed the first generalization of Maxwell-Boltzmann's entropy, many other 

generalizations, whether classical or quantum, have emerged within the context of Statistical Mechanics, 

among these several we mentioned Tsalis [9] and Kaniadakis [10], [11]. A common point between these 

new entropies is the fact that these distributions, which form the basis of such generalizations, depend 

on some deforming parameter. 

In 2001, G. Kaniadakis proposed a new statistic, the κ-statistic, which generalizes the Maxwell-

Boltzmann-Gibbs statistic by varying the deformation parameter 𝜅. The theory is guided by the principle 

of kinetic interaction (PKI). According to PKI, the temporal evolution of the function of distribution of 

identical particles subject to binary collisions leads us to a functional that is always increasing over time, 

satisfying the statement of the irreversibility of the second law of Thermodynamics. Kaniadakis 

concluded that such a function was related to a type of entropy defined as: 

 

                             𝑆𝜅 = −⟨𝑙𝑛𝜅[𝑓(𝑥)]⟩ = −∫𝑑𝑥 𝑓(𝑥)𝑙𝑛𝜅[𝑓(𝑥)]                            (1) 

 

in which 𝑓(𝑥) is the velocity distribution of the particles and 𝑙𝑛𝜅 is the logarithm deformed by the 

parameter 𝜅. The 𝑙𝑛𝜅 is a real and decreasing function ∀𝑥 ∈ 𝑅 given by: 

 

                                             𝑙𝑛𝜅(𝑥) =
𝑥𝜅−𝑥−𝜅

2𝜅
                                                 (2) 

 

its inverse function is called 𝜅-exponential [12]. It is quantified by 

 

                                                      𝑒𝑥𝑝𝜅(±𝑥) = (√1 + 𝜅2𝑥2 ± 𝜅𝑥)
1

𝜅                                 (3) 

 

which is set for the interval 0 ⩽ 𝑥 < 1. When we take the limit of 𝜅 → 0, the function that is 𝜅-

exponential becomes an ordinary exponential. 

 

                                                       𝑙𝑖𝑚
𝜅→0

𝑒𝑥𝑝𝜅 (±𝑥) = 𝑒𝑥𝑝(±𝑥)                                           (4) 

 

2 THE THEORETICAL MODEL 

The model deals with a network of short-range interactions between spins, described by the 

following Hamiltonian 
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                     𝐸 = −𝐽∑ ∑ 𝜎𝑖 ∙ 𝜎𝑗𝑗𝑖 + �⃗⃗� . ∑ 𝜎𝑗𝑗                  (5) 

 

𝐽 is the exchange constant, �⃗⃗�  the applied magnetic field and { 𝜎 = ±1 } is the set of spins in the network. 

The first term of equation (5) describes how the exchange interaction occurs between adjacent spins, the 

pair ⟨𝑖, 𝑗⟩. The second term of equation (5) Zeeman energy, where �⃗⃗� = 𝐻𝑥 �̂� is the magnetic field applied 

along the axis 𝑥.  

 Magnetization is defined as the sum of all spins in the network, 

 

                      ⟨𝑀⟩ =
1

𝑁
∑ 𝜎𝑖

𝑁
𝑖=1                            (6) 

 

 Deforming the Boltzmann distribution function in terms of 𝜅-statistics, the probability that a 

given specific state will occur in our model is 

 

    𝑊𝜅(𝛼) =
1

𝑍
𝑒𝑥𝑝𝜅(−𝛽𝐸𝛼)                           (7) 

 

in which 𝛽 =
1

𝐾𝐵𝑇
 and 𝑍 is the system partition function, which can be written as 

 

                 𝑍 = ∑ 𝑒𝑥𝑝𝜅
𝑁
𝑖=1 (𝛽𝐸𝑖)                             (8) 

 

in which 𝐾𝐵 is the Boltzmann constant and 𝑇 is the absolute temperature. 

 

2.1 NUMERICAL EXPERIMENTATIONS 

 We proceeded with numerical experiments to obtain the measurements of the physical 

observables. We estimated the observables concerning the solutions of the master equation. The master 

equation is 

 

            
𝑑𝑃(𝑖,𝑗)

𝑑𝑡
= ∑ {𝑊(𝑖, 𝑗)𝑃(𝑗, 𝑡) − 𝑊(𝑗, 𝑖)𝑃(𝑖, 𝑡)}𝑖≠𝑗      (9) 

 

in which 𝑊(𝑖, 𝑗) is the state's probability transition rate 𝑖 for 𝑗 and 𝑃(𝑗, 𝑡) is the state probability 𝑗 in the 

instant of time: 𝑡. Given the transition rates, we found the stationary solution that satisfies the condition: 

 

   ∑ {𝑊(𝑖, 𝑗)𝑃(𝑗, 𝑡) − 𝑊(𝑗, 𝑖)𝑃(𝑖, 𝑡)}𝑖≠𝑗 = 0                  (10) 
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The numerical solution of the master equation for the equilibrium state equation (10) served as 

the basis for the development of the Metropolis algorithm [13].  

 

 The Metropolis algorithm is summarized as follows: 

 

1. Configure an initial 𝑗 configuration for the system; 

2. Generate tentative configuration of the j-th simulation cell; 

3. If 𝛥𝐸𝑗,𝑖 = 𝐸𝑗 − 𝐸𝑖 < 0, the configuration 𝑖 is accepted; 

4. Otherwise, a random number is generated 𝛿 ∈ (0,1). If 𝛿 < 𝑃(𝛥𝐸𝑗,𝑖) ∝ 𝑒𝑥𝑝𝜅(𝛥𝐸𝑖,𝑗 𝐾𝐵⁄ 𝑇) the 

new configuration is accepted. 

5. Otherwise, the 𝑗 configuration remains. 

 

To obtain our numerical results we worked with reduced constants 𝐽 = 1 and 𝐾𝐵 = 1.  The 

exchange interaction occurs between the first neighbors of a variable on a network site. Naturally, the 

so-called edge effect arises, a problem that we overcome with the use of periodic boundary conditions, 

where a variable contained in one edge interacts, according to equation (5), with another located in an 

opposite edge. We defined the initial state of the magnetic grid with all spins aligned in the same 

direction, for instance, they are coupled ferromagnetically. This type of coupling is characteristic of 

materials in the ferromagnetic state. Starting from this initial network, we implemented the Metropolis 

algorithm, we will not describe the algorithm here, but the interested reader can consult the reference 

[14]. For the quantities ⟨𝐸⟩ and ⟨𝑚⟩ we have the following relationships: 

 

                      ⟨𝐸⟩ =
1

𝑁
∑ 𝐸𝑖

𝑁
𝑖=1                           (11) 

 

                                ⟨𝑚⟩ =
1

𝑁
∑ 𝑀𝑖

𝑁
𝑖=1                              (12) 

 

 Specific heat at a constant volume, 𝐶𝑣, is proportional to the energy variance. According to 

reference [15], we have: 

 

          𝐶𝑣 =
1

𝑁𝐾𝐵𝑇2
[⟨𝐸2⟩ − ⟨𝐸⟩2]               (13) 
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Besides, we measured the fourth order Binder cumulative of magnetization [14]. 

 

               𝑈4(𝑀) = 1 −
⟨𝑀4⟩

3⟨𝑀2⟩2
                  (14) 

 

3 RESULTS 

We carried out numerical experiments on networks with lateral dimensions of the order of 

equivalent to 𝐿 = 4,8,14,16 and 24, using 106 Monte Carlo steps. We discarded 2.5𝑥104, starting the 

accounting of physical observables after reaching statistical stability. In figure 1, we presented typical 

measurements of magnetization and Helmholtz free κenergy. 

We observed that the average magnetization reaches the transition temperature more quickly with 

increasing 𝜅. The expected value of energy reaches its saturation point, more quickly, the higher the 

quantitative values of 𝜅. 

 

 

Figure 1 - In (a) we have the average magnetization per particle. In (b) the average energy per particle. In both, we observed 

that as 𝜅 increases, the phase transition occurs at an increasingly lower temperature. The curve for 𝜅 = 10−9 in the two 

graphs, confirm that at the limit: 𝜅 → 0 our model falls back to the classic Ising model. 

 

In figure 2, we show the results of the specific heat for different values of 𝜅. We noted that as 𝜅 

grows, the second derivative of energy, has maximums closer to 𝑇 = 0. The results shown in figures 1 

and 2, show the shift in transition temperature 𝑇𝐶 as 𝜅 increases. 
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Figure 2 - In (a) we observed the presence of peaks occurring around a region close to 𝑇 = 0. In (b) observed that in other 

region there are other minor peaks, which in turn are related to 𝑇𝐶  described by the Binder Cumulative 𝑈4(𝑀).  

 

Figure 3 shows typical Binder Cumulative measurements for 𝜅 = 10−9 and 𝜅 = 0.9, with 

different network sizes, depending on the temperature. Square side nets were used 𝐿 = 4,8,14,16 and 

24. Throughout the cumulant measurements, the region where the lines cross is the critical point 

measurement region, which is 𝑇𝐶 = 2.27 for 𝜅 = 10−9  and 𝑇𝐶 = 1.07 for 𝜅 = 0.9. 

 

 

Figure 3 - Typical measurements of the fourth order Binder Cumulative for magnetization 𝑈4(𝑀) as a function of temperature 

T for different network sizes, in (a) with 𝜅 = 10−9, we observed that 𝑇𝐶 = 2.27, in (b) we observed that with the increase of 

the parameter, it has a reduction in 𝑇𝐶  , because taking 𝜅 = 0.9 we observed 𝑇𝐶 = 1.07.  

 

4 CONCLUSION 

We studied a magnetic system, square network, in thermal bath, with the Hamiltonian of Ising. 

We used 𝜅-exponential distribution, generalization of Boltzmann statistics, to measure typical physical 

observables. We analyzed the effect of the disturbance caused by the parameter 𝜅 on the system, we 
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observed that with the reduction of𝜅 our model tries to fall back on the classic Ising model. Still, we 

obtained that with the increase of the parameter𝜅, 𝑇𝐶 is reduced, leading to the transition between the 

ferromagnetic and paramagnetic phases occurring at lower temperatures. We estimated the critical point 

related to each value of the parameter𝜅, using the fourth order Binder Cumulative for magnetization 

𝑈4(𝑀).  

 

For future contributions we intended to investigate, through the study of critical exponents, the 

class of universality of our model. 
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