
Brazilian Journal of Development 
ISSN: 2525-8761 

80834 

 

 

Brazilian Journal of Development, Curitiba, v.8, n.12, p. 80834-80864, dec., 2022 

 

Pollutants potential mobilization in Santos bay/Brazil: subsidies for the 

environmental management of a highly anthropized estuary 

 

Potencial de mobilização de poluentes na baía de Santos/Brasil: 

subsídios para a gestão ambiental de um estuário altamente 

antropizado 
 

DOI:10.34117/bjdv8n12-266 

 

Recebimento dos originais: 14/11/2022 

Aceitação para publicação: 23/12/2022 

 

Adriana Azevedo Netto 

MBA in People Management 

Institution: Universidade Federal Fluminense (UFF) 

Address: Av. Gal. Milton Tavares de Souza, S/Nº, Boa Viagem, Niterói – RJ,  

CEP: 24210-346 

E-mail: adriana.projetosuff@gmail.com 

 

Leonardo da Silva Lima 

PhD student in Ocean and Earth Dynamics 

Institution: Universidade Federal Fluminense (UFF) 

Address: Av. Gal. Milton Tavares de Souza, S/Nº, Boa Viagem, Niterói – RJ,  

CEP: 24210-346 

E-mail: leodslima@gmail.com 

 

Khauê Silva Vieira 

PhD in Ocean and Earth Dynamics 

Institution: Universidade Federal Fluminense (UFF) 

Address: Av. Gal. Milton Tavares de Souza, S/Nº, Boa Viagem, Niterói – RJ, 

 CEP: 24210-346 

E-mail: kvieira87@gmail.com 

 

Jessica de Freitas Delgado 

Master in Ocean and Earth Dynamics 

Institution: Universidade Federal Fluminense (UFF) 

Address: Av. Gal. Milton Tavares de Souza, S/Nº, Boa Viagem, Niterói – RJ,  

CEP: 24210-346 

E-mail: jessiicafdelgado@gmail.com 

 

Patricia Farias de Souza 

Master's degree from the Graduate Program in Ocean and Earth Dynamics 

Institution: Universidade Federal Fluminense (UFF) 

Address: Av. Gal. Milton Tavares de Souza, S/Nº, Boa Viagem, Niterói – RJ,  

CEP: 24210-346 

E-mail: patricia.projetosuff@gmail.com 

 

  



Brazilian Journal of Development 
ISSN: 2525-8761 

80835 

 

 

Brazilian Journal of Development, Curitiba, v.8, n.12, p. 80834-80864, dec., 2022 

 

Thulio Righetti Correa 

Master's degree from the Graduate Program in Ocean and Earth Dynamics  

Institution: Universidade Federal Fluminense (UFF) 

Address: Av. Gal. Milton Tavares de Souza, S/Nº, Boa Viagem, Niterói – RJ,  

CEP: 24210-346 

E-mail: thuliorigheti@hotmail.com 

 

José Antônio Baptista Neto 

PhD in Marine Geology 

Institution: Universidade Federal Fluminense (UFF) 

Address: Av. Gal. Milton Tavares de Souza, S/Nº, Boa Viagem, Niterói – RJ,  

CEP: 24210-346 

E-mail: jabneto@id.uff.br 

 

Christine C. Gaylarde 

PhD in Biotechnology 

Institution: Department of Microbiology and Plant Biology, Oklahoma University 

Address: 770 Van Vleet Oval, Norman, OK, 73019, USA 

E-mail: cgaylarde@googlemail.com 

 

Estefan Monteiro da Fonseca 

PhD in Marine Geology 

Institution: Universidade Federal Fluminense (UFF) 

Address: Av. Gal. Milton Tavares de Souza, S/Nº, Boa Viagem, Niterói – RJ,  

CEP: 24210-346 

E-mail: oceano25@hotmail.com 

 

ABSTRACT 

Understanding the dynamics and spatial variation of subaquatic sediment contamination 

in the Santos Estuarine System has been of interest to the scientific community and 

environmental managers; the hazardous contaminant compounds, either individually or 

synergistically, can affect the health of the local community. In the present study, water 

column salinity and sediment geochemical properties (calcium and organic matter 

content, grain size) of the Santos Estuarine System were correlated with heavy metal 

concentrations (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn and Fe) in order to elucidate the 

relationship between the toxic elements and the dynamics of water mixing. To assess the 

potential relationships, Spearman’s correlation test and Principal Component Analysis 

(PCA) between were applied. The heavy metal concentrations were also evaluated by 

calculating Contamination Factor, Geoaccumulation index and Enrichment Factor. 

Results revealed extremely heterogeneous particle sizes within the sampling stations. 

Most of the heavy metal concentrations were not at critical levels. The only exception 

was arsenic, which reached levels above the threshold effect. The statistical analysis 

allowed the influence of organic matter and grain size on the dynamics of heavy metal 

accumulation to be demonstrated. The values between these binding matrices and metals 

were mostly significant. Bottom water salinity, on the other hand, showed no apparent 

influence on the distribution of metals. However, the various pollution indices used were 

contradictory, with certain cases presenting critical results. The Geoaccumulation Index 

presented the Mn as highly polluting at all sampling stations and classified the 

environment as moderately polluted by Zn. The same pollution pattern was not found by 

the other contamination indexes. 
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RESUMO 

A compreensão da dinâmica e da variação espacial da contaminação dos sedimentos 

subaquáticos no Sistema Estuarino de Santos tem sido de interesse da comunidade 

científica e dos gestores ambientais; os compostos contaminantes perigosos, seja 

individualmente ou sinergicamente, podem afetar a saúde da comunidade local. No 

presente estudo, a salinidade da coluna de água e as propriedades geoquímicas do 

sedimento (teor de cálcio e matéria orgânica, tamanho dos grãos) do Sistema Estuarino 

de Santos foram correlacionadas com concentrações de metais pesados (As, Cd, Co, Cr, 

Cu, Mn, Ni, Pb, Zn e Fe) a fim de elucidar a relação entre os elementos tóxicos e a 

dinâmica da mistura da água. Para avaliar as relações potenciais, foram aplicados o teste 

de correlação de Spearman e a Análise de Componentes Principais (PCA) entre eles. As 

concentrações de metais pesados também foram avaliadas através do cálculo do Fator de 

Contaminação, índice de Geoacumulação e Fator de Enriquecimento. Os resultados 

revelaram tamanhos de partículas extremamente heterogêneos dentro das estações de 

amostragem. A maioria das concentrações de metais pesados não estavam em níveis 

críticos. A única exceção foi o arsênico, que atingiu níveis acima do efeito limiar. A 

análise estatística permitiu demonstrar a influência da matéria orgânica e do tamanho do 

grão na dinâmica do acúmulo de metais pesados. Os valores entre essas matrizes de 

ligação e os metais eram em sua maioria significativos. A salinidade da água de fundo, 

por outro lado, não mostrou influência aparente na distribuição dos metais. Entretanto, os 

vários índices de poluição utilizados eram contraditórios, com certos casos apresentando 

resultados críticos. O Índice de Geoacumulação apresentou o Mn como altamente 

poluente em todas as estações de amostragem e classificou o meio ambiente como 

moderadamente poluído por Zn. O mesmo padrão de poluição não foi encontrado pelos 

outros índices de contaminação. 

 

Palavras-chave: poluição, estuário, metais pesados, sedimento. 

 

 

1 INTRODUCTION 

Estuarine areas are considered gradational environments, resulting from the 

mixture of fluvial fresh and marine salt water. Riverine freshwater influx carries nutrients 

into these ecosystems, providing the substances necessary to maintain productivity and 

the special estuarine habitats of estuarine (Nixon et al. 2010). As a result, these 

ecosystems are able to support ecologically and economically important animal 

populations (Wallner-Kersanach et al. 2016). 

Chemical elements and compounds proceeding from fluvial drainage tend to be 

transported and transformed during their way along the estuarine water course (Regnier 

et al., 2013). The innermost estuarine areas receive a wide range of different chemical 

materials from the drainage basin. These compounds go through many chemical 

transformations under a pronounced aquatic physical-chemical gradient resulted from 
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water mixing (Mosley and Peter, 2019). Advective and diffusive fluxes, 

solubilization/precipitation changes and biological assimilation are some components of 

these transforming processes (Pritchard and Schubel, 1981). Additionally, the physical-

chemical transformations of water and molecular interactions are strongly impacted by 

salinity, resulting, for example, in organic matter mineralization (Telesh et al., 2010; 

Cloern et al., 2017). 

Ionic concentrations in the water column play a fundamental role in the chemical 

processes within the salinity gradient. One of the most frequent ways to calculate the ionic 

balance in estuarine environments is through the correlation of the levels of the chemical 

species of interest as a function of salinity. This allows the understanding of 

transformation spots across the mixing zones, (Brandini et al., 2016). 

The permanence of potential contaminants in subaquatic sediments results from 

complex physical and chemical mechanisms of absorption. Permanency is influenced by 

sediment characteristics such as composition, structure and properties, as well as by the 

properties of the contaminant compounds (Ghrefat and Yusuf, 2006). In other words, 

accumulation on the estuarine subaquatic bottom results from the transformation into the 

solid phase, through the mechanisms of ion exchange and complexation with organic 

acids, and adsorption reactions with sediment matrices like clay and other minerals, iron 

and manganese hydroxides (Sounthararajah et al., 2015). 

Sediments are important momentaneous deposits for various pollutants in the 

estuarine environment, including heavy metals. After they accumulate in the sediments, 

their potentially mobilizable fraction can be released into the water bodies and, 

consequently, taken up by living organisms, depending on the speciation of the metals 

and other factors such as organic matter (Shaheen and Rinklebe, 2014; Rinklebe and 

Shaheen2014). 

During the last decades, the coastal region of Santos (SE Brazil) has suffered the 

release of considerable domestic wastes and industrial effluents into the estuarine waters. 

These impacts are accelerating the contamination by toxic compounds such as metals and 

hydrocarbons. This region is considered to be one of the major examples of coastal 

degradation in Brazil for inorganic contamination (Casarini, 2010). The present work 

aimed to evaluate the potentially removable heavy metal fraction (PRF) in sediments of 

the Santos Estuarine System (SES) and the estuarine physical-chemical gradient, in order 

to evaluate the contaminant distribution dynamics and its relationship with the 

environment. 

about:blank
about:blank
about:blank
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2 STUDY SITE 

The Santos Estuarine System (SES) (Figure 1) consists of a coastal area subjected 

to a variety of potential contamination sources, being occupied by a complex industrial 

park, intensely populated and also with agricultural and livestock activities. The main 

sources of pollution have been concentrated in Cubatão industrial park, located in the 

Santos watershed basin. Currently, the region is influenced by irregular depositions of 

industrial solid waste, by port activities, sewage treatment stations, submarine outfall and 

clandestine discharges of domestic sewage and sanitary landfills. The system also has 

spots where potentially contaminated sediments from river dredging activities are 

discharged (Figure 1). The Port of Santos complex is the largest port in Latin America, 

with several terminals for product shipments. 

On the other hand, the region is the main tourist coastal area of São Paulo State; 

its metropolitan region comprises nine municipalities, with Santos and São Vicente being 

the most intensely populated (Muto et al., 2014). The most visited beaches in the cities of 

São Vicente and Santos are important tourism spots during the summer (Braga et al., 

2000). In addition, marine and estuarine fisheries are important economic activities in the 

area. Santos Bay has been intensely studied because of its economic, ecological and 

potentially polluting importance (Hortellani et al., 2008). 

 

3 MATERIALS AND METHODS 

Sampling was carried out in September of 2019. The sampling area (Figure 1) 

consisted of 20 stations characterizing the three main contributing rivers (Paçaguera, 

Perequê and Cubatão) and the Santos canal. Salinity was evaluated with a multiparameter 

Horiba U10 probe (Figure 1). Physico-chemical measurements were made at surface and 

bottom water depth, during the ebb and flow tides. 
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Figure 1. Santos estuarine complex and sampling stations 

 
 

Data from past monitoring were also used to increase the accuracy of the physical 

analysis of the waters. Two other data groups were used, corresponding to January and 

March in the same locations. The averages of the 3 data groups were compared with the 

heavy metal concentrations and other geochemical parameters. 

Sediment samples were collected at each site using a Van Veen grab. They were 

properly stored in cool-boxes for transport to the laboratory, where they were frozen (~-

20oC) until analysis. Sediment grain size, Total Organic Carbon (TOC) levels, Total 

Phosphorus content, Calcium content and Metals (As, Cd, Cr, Cu, Mn, Ni, Pb, Zn and Fe) 

and As were determined. First, inorganic carbon was removed by using 2N HCl with 

heating at 60oC. TOC levels were evaluated using a Perkin Elmer Series II CHNS/O 

analyzer, Model 2400. Total Phosphorus concentrations were obtained by ignition at 550 

°C for 12 hours followed by acidification of residual material with 1.0 M HCl with 

mixing. 

Samples for heavy metal analysis were stored in pre acidified plastic containers 

and transferred to the laboratory for analysis. They were first sifted for grain size 

evaluation. Then, the fine material (below 0.063mm) was evaluated for heavy metals. The 

heavy metals digestion approach followed USEPA Method 3050B (USEPA, 1992). First, 

concentrated HNO3 and concentrated H2O:HCl were used with heating in a microwave. 
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After cooling, the samples were centrifuged and diluted. Heavy metals (Pb, Cu, Co, Cr, 

Ni, Zn, Ca, Mn and Fe) were evaluated by Inductively Coupled Plasma-Atomic Emission 

Spectrometry, and Cd and As were analyzed by Inductively Coupled Plasma-Mass 

Spectrometry. A certified reference material was analyzed (CRM NIST 2782), and 

sample replicates were inserted in the analysis. The recovery rates for the heavy metals 

in the CRM NIST 2782 standard were higher than 82%. Mean recoveries were as follows: 

Pb, 92.0%; Cu, 95%; Co, 85%; Cd, 82%, As, 78%, Cr, 89.0%; Ni, 85%; Zn, 84%; Ca, 

87%, Mn, 85% and Fe, 92%. The detection limits of the method are respectively: Pb, 

0.4mg/Kg; Cu, 0.1mg.Kg-1; Co, 0.02mg.Kg-1; Cd, 0.1mg. Kg-1; As, 1mg.Kg-1; Cr, 

0.1mg.Kg-1; Ni, 0.4mg.Kg-1, Zn, 0.4mg.Kg-1; Ca, 0.006mg/Kg-1; Mn, 0.1mg/Kg-1 and 

Fe; 0.1mg/Kg-1. 

To evaluate the potential ecotoxicological impacts of the sediments, three sets of 

Sediment Quality Guidelines developed for marine and estuarine ecosystems (Persaud et 

al. 1993, CCME, 2002; MacDonald et al. 2000; NOAA, 2012) were applied: (a) the effect 

range—low (ERL)/ effect range—median (ERM); (b) the threshold effect level 

(TEL)/probable effect level (PEL) values; and (c) the Guidelines for Metals in sediments 

(LEL/SEL) for metals not included in the other indexes (Mn) (Figures 6 and 7). The 

residual metal phase from other references was used for comparison with the results 

obtained (Table 5). 

The normal distribution of the data was tested with the Shapiro-Wilk test. 

Spearman’s correlation was used to evaluate the relationship between heavy metals and 

the environmental parameters. Principal component analysis (PCA) was used to evaluate 

any synergy between all the parameters. Multivariate analysis was carried out using the 

software Past v.3. 

The evaluation of sediment metal enrichment was carried out using the 

contamination factor (CF), which is considered to be a simple and effective approach in 

monitoring the heavy metal pollution (Hakanson et al., 1980). CF was calculated through 

the following equation: 

 

𝐶𝐹𝑖 =  𝐶𝑖/𝐵𝑖 

 

Where Ci and Bi represent the analyzed levels and the background value of the 

metallic element i, respectively, based on Turekian and Wedepohl (1961) values. The CF 

establishes four levels of sediment quality  as shown in Table 1 (Hakanson, 1980). 

https://www.geoengineer.org/education/web-class-projects/cee-549-geoenvironmental-engineering-fall-2015/assignments/sediment-quality-guidelines-sqgs-a-review-and-their-use-in-practice
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6388221/table/ijerph-16-00336-t001/
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Table 1. Contamination Factor classes (CF) and potential ecological risk. 

CF Contamination Degree 

CFi < 1 Low 

1 ≤ CFi < 3 Moderate 

3 ≤ CFi < 6 Considerable 

CFi ≥ 6 Very high 

 

The second contamination index used in the present study, is the Geoaccumulation 

Index (Igeo), which was developed by Muller (1969) based on the evaluation of pollution 

by comparing the current levels of metal concentrations and the natural soil levels. This 

index is reached by the following equation: 

 

𝐼𝑔𝑒𝑜 = 𝑙𝑜𝑔2[
𝐶𝑛

1.5𝐵𝑛
] 

 

Where: 

Cn = Analyzed levels of the element in the studied area, and; 

Bn = Geochemical background value. 

The values suggested by Rudnick and Gao (2003) were used for the Geochemical 

background value. The constant 1.5 is applied to minimize the effect of potential 

fluctuation in the background values that may be linked to diagenetic variations in the 

soil or sediments. The classes established for Igeo are given (Muller, 1969 apud Fonseca 

et al., 2014) (Table 2): 

 

Table 2. Geoaccumulation Index (Igeo) classification according to Muller (1969) 

Geoaccumulation Index (Igeo) Classification 

< 0 practically unpolluted 

0 <Igeo< 1 unpolluted to moderated polluted 

1 <Igeo< 2 moderately polluted 

2<Igeo< 3 moderately to strongly polluted 

3<Igeo<4 strongly polluted 

4<Igeo<5 strongly to extremely polluted 

> 5 extremely polluted 

 

In this study, we calculated the Igeo index using grain fraction < 0.063 mm 

according to González-Macías et al. (2006). 

The enrichment factor (EF) was used to evaluate the level of pollutants and the 

potential anthropogenic impact in sediments of Santos Estuarine System. To verify 

anomalous metal levels and to access metal abundance, geochemical normalization of the 
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trace metal data to a conservative element (Fe) was used. According to Ergin et al (1991), 

the metal enrichment factor (EF) is defined as follows: 

 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡  𝐹𝑎𝑐𝑡𝑜𝑟  (𝐸𝐹)  =  
𝐶(𝑠𝑎𝑚𝑝𝑙𝑒)/𝐹𝑒(𝑠𝑎𝑚𝑝𝑙𝑒)

𝐶(𝑐𝑟𝑢𝑠𝑡/𝐹𝑒(𝑐𝑟𝑢𝑠𝑡)
 

 

Where: 

C(sample) = trace element concentration in the sample; 

C(crust) = trace element concentration in the continental crust; 

Fe(sample) = Fe content in the sample; 

Fe(crust) = Fe content in the continental crust (Taylor and McLennan, 1998). 

The background concentrations of metals for the EF calculation were taken from 

the average shale (Turekian and Wedepohl, 1961) to quantify the extent and degree of 

metal pollution (Table 3). EF values were interpreted as the levels of trace metal pollution 

as suggested by Birch and Olmos (2008) where: 

 

Table 3. Enrichment Factors (EF) interpretation (Birch and Olmos ,2008) 

Enrichment Factor Classification 

< 1 no enrichment 

< 3, is minor 

3 – 5 is moderate 

5 – 10 is moderately severe 

10 – 25 is severe 

25 – 50 is very severe 

> 50 is extremely severe 

 

4 RESULTS AND DISCUSSION 

The impact of salinity on metal transference dynamics has been studied in detail 

in estuaries (Van Eck, 1999; Gerringa et al., 2001; Du Laing et al., 2008; Acosta et al., 

2011; Wang et al., 2016). However, there is little information on the equivalent impact in 

subaquatic sediments. The salinity gradient is one of the main properties of any estuarine 

environment (Telesh and Khlebovich, 2010). Most of the time, the salinity decreases from 

the ocean toward the interior of the estuary due to freshwater dispersion. With respect to 

heavy metal mobility, the increase of salinity is proportional to the levels of enhancement 

of the major cation levels (e.g., Na, K, Ca, Mg). These, in turn, compete for the sorption 

sites with metallic elements, improving the mobility of trace metals (Zhang et al., 2014). 

In the present study the salinity increases seaward, being significantly minor in the river 

Cubatão (Figure 2), where the riverine flux seems to be more intense. Garcia et al. (2014) 
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confirmed this fact. The authors obtained low results, similar to the present study. Saline 

stratification in the water column, on the other hand, was clear at all sampling stations, 

suggesting the influence of seawater along the whole SES. 

 

Figure 2. Salinity variation along the Santos Estuarine System 

 
 

The accumulation and distribution of trace elements is greatly influenced by the 

physical and chemical characteristics of the sediment such as grain size (particularly fine 

fraction content) (Maslennikova et al., 2012), the organic carbon content (Zhang et al., 

2014), carbonates and other parameters (Zhang et al., 2014; Rzetala et al., 2019). These 

peculiarities influence sorption/precipitation patterns, also determining bioavailability 

and potential toxicity (Du Laing et al., 2008). Particle texture of estuarine sediments, in 

its turn, are determined by many environmental parameters, including source area 

composition, climatology, water flux intensity and redox conditions in the depositional 

ecosystem (Dickhudt et al. 2011). Many studies focus on grain size distribution to 

determine sources and hydrodynamic patterns of subaquatic sediments (Carranza-

Edwards et al. 2005; Senapathi et al., 2014; Venkatramanan et al., 2014; Wang et al., 

2020). Grain size variation is a function of the availability of different particles and the 

forces involved in the physical distribution dynamics in the area where the particles were 

deposited (Mansour et al., 2013). The results obtained in the present study are presented 

in Figure 3. 

  

about:blank
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Figure 3. Grain Size percentages 

 
 

The surface sediment grain sizes vary throughout the estuarine system from very 

fine silt to very coarse sand. The values in the interior sampling stations showed coarse 

grains, suggesting a more intense hydrodynamics, mainly in the Cubatão and Perequê 

rivers (Sampling stations 1, 2, 3 and 4). The same rivers were studied by Borrely et al. 

(2018), who confirmed the local coarser grain size. The change of mean grain size may 

reflect different erosions and accretions, as well as the influence of shell fragments (El 

Nemr et al., 2013). In the present study, however, the results suggest higher river flux 

intensity; the low concentrations of calcium in this area may inhibit the existence of 

biogenic material (Figure 4). The statistical analysis confirmed this statement, since Ca 

concentrations did not show an inverse correlation with the fine particle size fraction 

(Table 6). 

 

Figure 4. Calcium levels 

 



Brazilian Journal of Development 
ISSN: 2525-8761 

80845 

 

 

Brazilian Journal of Development, Curitiba, v.8, n.12, p. 80834-80864, dec., 2022 

 

Although various studies have focused on the dynamics of organic matter in 

estuaries, this is still a subject of debate (Krishna et al., 2013). Estuarine organic matter 

accumulations present both continental and marine origins. Their composition can vary 

drastically depending on the sources and fate (Graham et al., 2001; Lamb et al., 2006). 

The input of anthropogenic discharges can also contribute significantly to the organic 

matter concentrations in intertidal sediments (Rumolo et al., 2011; Pradhan et al., 2014). 

Deposition of these matrices follows the same rules as fine particles, with both tending to 

accumulate in low current zones (Dalia et al., 2014). Total organic carbon levels 

determined in the study range between 6.2mg/Kg at the River Cubatão and 50.5mg/Kg in 

Santos canal mouth (Figure 5). The low values recorded at some sampling stations may 

indicate that the oxidizing conditions are dominant as a result of the strong currents and 

low sedimentation rates (El Nemr et al., 2013). The results obtained in the present study 

were of the same scale as those in other areas along the Brazilian coast (Table 4). 

 

Figure 5. Total Organic Carbon percentages 

 
 

Table 4.  Total Organic Carbon sediment content along the Brazilian coast 

Author Study Site Total Organic Carbon Content 

(%) 

Present Study Santos Bay, Brazil 0.62 – 5.05 

Delgado et al., 2020 Harbor area São Marco Bay, Brazil 0.54–0.91 

Ribeiro et al., 2008 Guanabara Bay, Brazil 0.82–10.60 

Martins et al., 2018 NE Sector of Guanabara Bay, Brazil 1.0–6.1 

Vilela et al., 2003 Guanabara Bay, Brazil 0.05–6.13 

Rodrigues et al., 2017 Sepetiba Bay, Brazil 0.06–4.79 

Costa et al., 2011 Todos os Santos Bay, Brazil 0.95–2.7 

Venturini et al., 2004 Todos os Santos Bay, Brazil 0.12–3.5 

Burone et al., 2003 Ubatuba Bay, Brazil 0.10–2.86 

Alexandre et al., 2006 Babitonga Bay, Brazil 0.67–4.64 
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Over the last decades, global environments have become intensively impacted by 

high anthropogenic nutrient inputs, especially phosphorus (P) (Childers et al., 2011; Lu 

and Tian, 2017), mainly due to artificial enrichment for agriculture. Even the most 

positive future scenarios indicate an overall increased use of fertilizers worldwide (Van 

Vuuren et al., 2010). Yan et al. (2016) highlighted the fact that P seems to accumulate 

faster than N in aquatic systems, which means that even reduced P loads can still increase 

the P background within systems. The results of phosphorus measurements in the present 

study are presented in Figure 6. The total Phosphorus content ranged from 142.9mg/Kg 

at sampling station 2 to 2632.5mg/Kg at sampling station 8. 

 

Figure 6. Total Phosphorus content 

 
 

Spatial variability of metals in sediments can provide some clues about human 

activities and their impacts on the environment and allows us to assess the risks linked 

with discharge of human residues (Luo et al., 2010). The levels of the heavy metals 

detected in the surface sediments of the Santos Estuarine System are presented in Table 

5. 

Normally, most of the iron in the environment is associated with the carbonate 

fraction, probably sorbed on the surface of the particles or, more probably, substituting 

Ca in the mineral crystals (De Baar and De Jong, 2000). Wang et al. (2019) showed the 

influence of organic matter in scavenging this metal. In the present study, iron was 

detected in an amount that fluctuated between 6034.80 and 28039.30mg/Kg (Figure 7; 

Table 5). According to the statistical analysis, there is no direct relation between iron and 

the carbonate fraction in the studied area. Nevertheless, the influence of organic matter 

was proven by the high correlation in the Spearman test (Table 6). 
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Manganese, part of the composition of all living organisms, is an essential element 

necessary for some enzymatic processes (Sivaperumal et al., 2007). High levels of 

exposure, however, can cause disease (ATSDR, 2000). The manganese concentrations in 

sediments of the studied stations ranged between 63.064 mg/Kg at the estuarine Cubatão 

sampling station and 879.567mg/Kg at the outermost sampling station in Santos Bay 

(Table 5). The concentrations of Mn in some sediment samples were above the lowest 

effect level (LEL) (Persaud et al., 1993) (Figure 7). The highest values were obtained at 

the most external spots in Santos bay and may be associated with port activities. Other 

authors confirmed anomalous Mn values in environments potentially impacted by ports 

(Jahan and Strezov, 2019). Mn concentrations were shown to be closely linked to both 

salinity and the geochemical characteristics of the sediment (organic matter content and 

fine grain size) (Table 6). Zhao et al. (2013), on the other hand, suggested the chemical 

content of the sediment of Yangtze Estuary as the only influencer of Mn geochemistry. 

In the same way, Beck et al. (2010) highlighted the importance of organic matter in the 

Mn sediment retention process. 

Zinc is of basic importance in the generation of enzymes and proteins (Vallee, 

1978), having detoxifying effects on both cadmium and lead (Calabrese et al., 1985). 

Additionally, this element is widely present in the environment (Irwin et al., 1997). 

However, it is repeatedly recorded in industrial and mining disposal waste (Cameron, 

1992; Mulligan et al., 2001). In the present study, the concentrations of zinc showed 

values between 11.2 and 181.6mg/Kg. The average concentration of Zn in the present 

study was lower than the effect range medium (ERM), the effect range low (ERL), 

threshold effect level (TEL) and probable effect level (PEL) (NOAA, 2012; CCME, 2002, 

Mac Donald et al., 2000; Persaud et al., 1993). Only sampling station 7 presented a higher 

concentration (Figure 7), which may be related to the proximity of the source of this 

metal. With regard to statistical analysis, once again both the content of organic matter 

and the percentage of fines were directly related to the levels of metals found in the 

samples (Table 6). 
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Table 5. Potentially Remobilizable Fraction results available in the literature 

 
As  

(mg/Kg) 

Cd  

(mg/Kg) 

Cr  

(mg/Kg) 

Cu  

(mg/Kg)  

Mn  

(mg/Kg) 

Ni  

(mg/Kg) 

Pb  

(mg/Kg) 

Zn  

(mg/Kg) 

Fe  

(mg/Kg) 

Co  

(mg/Kg) 

Present Study 

min-max 

(mean) 

2.23 - 

14.30 

(9.07) 

N.D. - 

0.63 

(0.14) 

5.15 - 30.06 

(20.52) 

2.60 - 21.30 

(11.14) 

63.06 - 

879.56 

(360.00) 

2.00 - 

13.60 

(8.39) 

3.16 - 

37.53 

(15.55) 

11.20 - 

181.60 

(58.40) 

6034.80 - 

28039.30 

(17188.43) 

1.92 - 7.56 

(4.85) 

Guanabara 

Bay, 

Brazil1 

- - 86.6 – 234.6 45.3 - 123 301.6 - 821 
28.2 – 

44.2 

51.7 – 

101.8 

200.8 – 

424.9 

25451.0 – 

45379.0 
- 

Rodrigo de 

Freitas 

Lagoon, 

Brazil2 

- - 7.0 – 40.0 9.5 – 51.0 
26.0 – 

224.5 
8.5 – 29.0 

N.D. – 

45.0 

27.0 – 

438.0 

3050.0 – 

24415.0 
- 

Lagos Lagoon, 

Nigeria3 
- 18.51 33.55 - - 14.3 44.3 137.85 - - 

Pearl River 

Estuary, 

China4 

- - - 16,92 - 9.54 - 48.91 - 7.96 

Hugli River 

Estuary, 

India5 

22.16 9.74 210.0 212.5 339.9 56.4 121.5 345.4 8232.8 7.14 

Al Shabab 

Lagoon, Saudi 

Arabia6 

- 59.6 - 74.6 - - 67,2 64,5 - - 

Bestari Jaya, 

Malaysia7 

0.10 – 

0.22 
- 

12.53 – 

31.97 
3.7 – 14.29 - - 

11.81 – 

15,0 

17.59 – 

62.80 
- - 

Kolkata 

wetlands, 

India8 

- - 65.98 13.69 77,58 7.8 14.14 59.26 4031.41 - 

1 – Fonseca E.M. et al. (2009); 2 - Fonseca E.M. et al. (2014); 3 - Ladigbolu et al. (2014); 4 – Li et al. (2000); 5 – Sarkar et al. (2014); 6 – Turki A.J. (2007); 7 – Ashraf et al. 

(2012); 8 – Kumar et al., 2011 
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Table 6. Correlation of Spearman Classification (R) between metals, fine grains and geochemical variables. Significant correlations for p <0.05 were marked.  
Fe Cu Ni Zn Ca Cd Pb Cr Mn Co As FGS BWS SWS TOC P 

Fe 
                

Cu 0,70 
               

Ni 0,91 0,76 
              

Zn 0,92 0,83 0,92 
             

Ca -0,07 -0,29 -0,29 -0,29 
            

Cd 0,67 0,77 0,73 0,79 -0,55 
           

Pb 0,91 0,70 0,75 0,89 0,10 0,55 
          

Cr 0,98 0,75 0,93 0,93 -0,12 0,65 0,89 
         

Mn 0,48 0,17 0,24 0,37 0,53 -0,01 0,69 0,44 
        

Co 0,83 0,61 0,92 0,78 -0,14 0,48 0,68 0,87 0,35 
       

As 0,90 0,59 0,76 0,80 0,17 0,43 0,94 0,88 0,71 0,76 
      

FGS 0,80 0,55 0,75 0,68 0,12 0,45 0,67 0,77 0,50 0,77 0,72 
     

BWS -0,09 -0,15 -0,30 -0,13 0,75 -0,45 0,22 -0,10 0,62 -0,23 0,20 -0,01 
    

SWS -0,06 -0,11 -0,28 -0,12 0,81 -0,41 0,26 -0,08 0,56 -0,20 0,24 -0,04 0,92 
   

TOC 0,85 0,70 0,80 0,83 -0,03 0,52 0,87 0,88 0,56 0,76 0,88 0,71 0,15 0,13 
  

P 0,88 0,60 0,75 0,76 0,08 0,66 0,78 0,83 0,42 0,63 0,75 0,76 -0,02 0,02 0,71 
 

FGS -Fine Grain Size 

BWS - Bottom Water Salinity  

SWS - Surface Water Salinity  

TOC - Total Organic Carbon  
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As with Zn, Co has an essential role for living organisms (Underwood, 1977). In 

estuaries, sediment may release Co to the dissolved water compartment due to desorption 

of metals promoted by salinity fluctuations (Kraepiel et al., 1997). An increasing number 

of studies have demonstrated that Co sediment flux dynamics and sewage inputs can also 

affect Co distributions during estuarine mixing (Martino et al., 2002; Tovar-Sánchez et 

al., 2004; Audry et al., 2006; Santos-Echeandia et al., 2009). It has also been suggested 

that resuspension of metal-enriched sediment may be a significant source for Co during 

estuarine mixing (Chiffoleau et al., 1994; Martino et al., 2002). Thus, the potential for the 

desorption of Co is not entirely attributable to riverine suspended particulate matter. 

Sediments sampled in Santos bay recorded low Co concentrations, varying between 1.48 

and 7.56mg/Kg (Figure 7). With respect to the Co variation dynamics, statistical analysis 

suggested a direct relation between this metal and sediment features like fine grain size 

percentages and organic matter levels. Salinity variation, on the other hand, showed no 

relation (Table 6). 

Above 90% of the arsenic in aquatic ecosystems can remain in pools and sediment. 

It can be released in several ways, to the atmosphere, in liquid effluent discharges, as land 

surface runoff, and as leachates from various urban, industrial, and agricultural processes. 

According to Karageorgis et al. (2002), As accumulation can be higher in coastal semi-

enclosed water bodies, where exchange of water with the adjacent sea is restricted. In the 

present study, As concentrations varied between 2.22 and 14.29mg/Kg. In most sampling 

stations, As presented concentrations higher than the effect range low (ERL) and the 

threshold effect level (TEL) (NOAA, 2012; CCME, 2002) (Figure 8). Despite the rare 

studies on this metal that use the same extraction methodology, it appears that the values 

obtained here are environmentally significant. The statistical results reinforce the 

importance of organic matter and fine-grained particles in As distribution in the SES 

(Table 6). 
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Figure 7. Heavy metals concentrations (Zn, Fe, Co and Mn) 

 
 

Copper is necessary to living organisms; it participates in the production of 

hemoglobin (Liu et al., 2017) and is a fundamental constituent of several enzymes 

(Underwood, 1977). However, high assimilation rates of Cu can result in adverse health 

problems (Gorell et al., 1997). In the present study, Cu levels varied from 2.6 and 

21.3mg/Kg (Figure 8). The levels of Cu at all sampling spots were below the ERL, which 

means that biological effects are not likely. They were also lower than the threshold effect 

level (TEL) (CCME, 2002) and probable effect level (PEL)(CCME, 2002) (Figure 8). 

Comparing values available in the literature, the present study gave values below those 

in Guanabara Bay and the Rodrigo de Freitas Lagoon, both environments located in Brazil 

(Table 5). Even so, the values were significant in relation to other areas around the world. 

Once again, factors such as particle size and organic matter content were found to be 

decisive in the distribution of Cu in Santos bay (Table 6) 
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Figure 8. Heavy metal concentrations 

 
 

In contrast to the other metals in the present study, cadmium, lead, nickel and 

chromium are classified as toxic (EC, 2001; USFDA, 1993). The role of Cd in batteries, 

pigments, plating, and stabilizer industries reinforces the increasing dependency on Cd 

which are potential causes for its environmental impact (Lin et al., 2013). In the present 

study, the Cd concentrations were low. The levels in sediments may be attributed to the 

terrestrial source. Concentrations of this metal in all samples were below the ERL, 

suggesting that biological impacts would be rarely expected. They are also lower than the 

threshold effect level (TEL) and probable effect level (PEL) (CCME, 2002) (Figure 8). 

Although low when compared to other metals, Cd concentrations were influenced by the 

same factors. According to Laing et al. (2008), salinity enhances Cd mobility. In the 

present study, on the other hand, this was not apparently the case, since the correlation 

between both parameters was negative (Table 6). 
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Nowadays, chromium is produced by and used in industrial processes, including 

chrome plating, leather pigmentation and wood preserving (Lin et al., 2013). In natural 

environments, most of the chromium in surface waters may originate from rock 

degradation (ATSDR, 2000). According to Corbi et al. (2011), the natural concentrations 

in soils vary around 40mg.Kg-1 and no negative impacts are produced under 75 mg.kg-1. 

Leslie et al. (1999) suggested that higher chromium levels have a negative influence on 

aquatic organisms, decreasing diversity or even having sublethal effects on community 

members. In the current study, chromium was recorded in all the samples and ranged 

between 5.14 and 30.06mg/Kg, all below the ERL. The values obtained in the present 

study were relatively low in relation to values available in the literature (Table 5; Figure 

8). 

The natural source of lead is mainly rock degradation. However, Pb can 

accumulate through traffic exhaust fumes, lead–zinc smelting industries, dumps and other 

sites receiving industrial and household residues (Cameron, 1992). The Pb concentrations 

in the studied stations range between 3.61 and 37.53mg/Kg. Lead levels in all samples 

were below the ERL value, which means that biological effects would be rarely observed. 

The levels are also lower than the ERM, TEL and PEL (Figure 8). Like other metals, Pb 

distribution was directly related to particle size and organic matter content (Table 6). The 

literature confirms that adsorption on organic matter and clay minerals are processes that 

significantly remove lead from the water column and transfer it to the sediment (Irwin et 

al. 1997). 

The fundamental role of nickel as a component of enzymes (urease and 

hydrogenase) in most vegetables and some microorganisms is well known. On the other 

hand, nickel has a carcinogenic potential and overexposure to it can cause heart and liver 

diseases (Homady et al., 2002). The nickel levels in the current samples showed wide 

variation, the highest being detected in the estuarine area and the lowest at the mouth of 

the Santos canal. Proximity to port activity may be the cause of its high levels in the 

Santos channel. Nickel concentrations in all samples were below the ERL values as well 

as other indices (Figure 5). 
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Figure 9: Principal component analysis (PCA) of all metallic elements and geochemical parameters 

 
 

The PCA evaluation (Figure 9) showed a total variance of 70.39%, with 59.67% 

related to main component 1 and 19.72% to component 2 (the vertical axis). The 

interaction among metals and the sediment fine fraction and the organic content in the 

sediment was confirmed, and this explains more than half of the variation in the data set. 

Contamination indices are globally used as a powerful approach for the 

understanding of pollution levels. They can have a fundamental importance in the 

assessment of sediment quality and the prediction of future ecosystem sustainability 

(Kowalska et al., 2018). To understand the current status of the environment and the 

heavy metal contamination with respect to the natural environment in the Santos 

Estuarine System, Contamination Factor (CF) (Figure 10), Geoaccumulation index (Igeo) 

(Figure 11) and Enrichment Factor (EF) (Figure 12) were applied in this study. 

According to the CF, collection stations 5, 7, 8 and 9 presented moderate levels of 

Cd (Figure 10). The other metals presented low levels of contamination at all points along 

the estuarine system. 
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Figure 10. Contaminant Factors recorded in the present study 

 
 

Regarding the Geoaccumulation Index (Igeo), Mn was classified as highly 

polluting at all sampling stations (Figure 11). Zn could be classified as moderately 

polluting, mainly in the innermost points of the bay. The other metals were classified as 

"practically non-polluting" or "non-polluting". 

 

Figure 11. Geochemical Indices recorded in the present study 

 
 

Finally, according to the Enrichment Factor (Figure 12), Cd once again stood out 

as moderately enriched in the innermost points of the bay. This was followed by As and 

Pb, both classified as less enriched. 
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Figure 12. Enrichment Factors recorded in the present study 

 
 

5 CONCLUSIONS 

The present study indicated an extremely heterogeneous particle size among the 

sampling stations, varying mainly between silt and sand. Most of the heavy metal levels 

did not present critical values. The only exception was arsenic, which reached levels 

higher than the TEL. The statistical analysis clearly shows the influence of organic matter 

and granulometry on the dynamics of heavy metal deposition. The values between these 

binding matrices and metals were mostly significant. The same result was obtained in the 

PCA evaluation. Bottom water salinity, on the other hand, had no apparent influence on 

the distribution of metals. Finally, the various pollution indices applied were 

contradictory, with particular cases presenting critical results. The Geoaccumulation 

Index presented the Mn as highly polluting at all sampling stations and classified the 

environment as moderately polluted by Zn. The same pollution pattern was not found by 

the other contamination indexes. 
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