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ABSTRACT 

In this paper, the influence of single equal channel angular pressing, ECAPressing, pass 

and processing temperature on crystallinity evolution and mechanical behaviour of the 

polymers polypropylene, PP, and high-density polyethylene, HDPE was investigated. 

ECAPressing tests were performed at the temperatures of 25, 50, 75 and 100°C for HPDE 

and 25, 90 and 120ºC for PP. The materials mechanical behaviour before and after 
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ECAPressing tests was evaluated from room temperature compression tests while their 

crystallinity changings were analyzed through differential scanning calorimetry, DSC, 

experiments. In terms of strengthening and by comparison with as-received materials, it 

was observed an interesting efficiency of ECAPressing performed at 100°C for HDPE 

and 120°C for PP. In relation to crystallinity evolution, the results obtained from DSC 

tests showed its considerable increasing for higher pressing temperatures also by 

comparing either to as-received conditions or after single pass of equal channel angular 

pressing at room temperature. 

 

Keywords: equal channel angular pressing, polypropylene, high-density polyethylene. 

 

RESUMO 

Neste trabalho, foi investigada a influência da prensagem angular de canal único igual, 

ECAPressing, pass e temperatura de processamento na evolução da cristalinidade e 

comportamento mecânico dos polímeros polipropileno, PP e polietileno de alta 

densidade, HDPE. Os testes de ECAPressing foram realizados às temperaturas de 25, 50, 

75 e 100°C para HPDE e 25, 90 e 120°C para PP. O comportamento mecânico dos 

materiais antes e depois dos testes de ECAPressing foi avaliado a partir de testes de 

compressão de temperatura ambiente enquanto suas alterações de cristalinidade foram 

analisadas através de calorimetria diferencial de varredura, DSC, experimentos. Em 

termos de reforço e em comparação com os materiais recebidos, foi observada uma 

eficiência interessante do ECAPressing realizado a 100°C para o PEAD e 120°C para o 

PP. Em relação à evolução da cristalinidade, os resultados obtidos nos testes de DSC 

mostraram seu considerável aumento para temperaturas de prensagem mais altas também 

por comparação com as condições no estado de recepção ou após uma única passagem de 

prensagem angular de canal igual à temperatura ambiente. 

 

Palavras-chave: prensagem angular de canal igual, polipropileno, polietileno de alta 

densidade. 

 

 

1 INTRODUCTION 

Equal channel angular pressing technique, ECAPressing, is a very interesting 

severe plastic deformation, SPD, process in order to provide bulk ultra-fine grained 

materials with improved mechanical properties [1,2]. Following ECAPressing technique, 

a well lubricated billet with a constant squared or round cross-sections is forced to pass 

through a die designed with identical channels by the action of a plunger. Also, this SPD 

method can be repetitively performed by processing routes that attribute higher 

accumulative plastic strain levels to the deformed materials [3-5]. 

Actually, effect of die geometry, tribology and processing conditions are widely 

investigated during ECAPressing on crystalline materials (especially metals) through 

either physical simulations or mathematical modelling [5-10]. However, the mechanical 

behaviour of other materials, like polymers for example, when deformed by the equal 
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channel angular pressing technique started to play a significant role in the last two decades 

[11-15]. In this way, semicrystalline polymers as polypropylene, PP, and high-density 

polyethylene, HDPE, represent an interesting choice to analyze the relationship between 

ECAPressing and improve of mechanical properties once they are characterized by a 

considerable crystallinity. For these two materials deformed by ECAPressing, the 

literature reports works that evolves the analysis of tooling and processing conditions and 

even multiple pressing passes on their work hardening [16-20]. After this review, we see 

that ECAPressing has an important role on the crystallinity evolution of these materials 

and it is directly correlate to their strengthening capability. Thus, the present work aims 

to investigate crystallinity and mechanical behaviour changings of both PP and HDPE 

polymers after single pass of ECAPressing at distinct temperatures, in comparison to as-

received materials, from differential scanning calorimetry and compression tests.  

 

2 MATERIALS AND METHODS 

2.1 MATERIAL 

In this work, rectangular plates of polypropylene, PP, and high-density 

polyethylene, HDPE, polymers were purchased from Grupo Macedo Plásticos Comércio 

de Acrílicos e Plásticos de Engenharia LTDA - EPP with 291 mm (height), 210 mm 

(width) and 10 mm (thickness) to obtain samples for equal channel angular pressing tests. 

From these as-received materials, workpieces with squared cross-sections were machined 

into dimensions of 10 mm x 10 mm x 50 mm, see Fig.1. Also, all samples were cut along 

the height (or length) of the original plates to prevent any possible effect of planar 

anisotropy [13]. 

 

Figure 1: Dimensions of ECAPressing samples used in the present work. 

 
 

2.2 METHODS 

Equal channel angular pressing, ECAPressing, experiments were performed by 
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using the H13 tool steel sharp die with two square cross-section channels detailed in Fig. 

2a. As one can observe, there is no fillet radii at channels intersection and it denotes one 

of the most severe geometrical condition to deform materials by ECAPressing technique. 

Also, two cylindrical holes were machined close to die inlet channel in order to insert 

cartridge-type electrical resistances to perform tests at elevated temperatures. In addition, 

a H13 tool steel plunger with square cross section of 10 mm x 10mm and 110 mm in long 

was used to deform the workpieces inside the die channels. 

ECAPressing experiments were performed, either at cold or warm, in an EMIC 

universal test machine with a load cell of 600 kN, at a constant ram speed of 1 mm/min 

that corresponds to nominal strain rate of 3.33·10-4 s-1. Samples and die channels were 

lubricated with silicone grease before each pressing. Test temperatures of 25, 50, 75 and 

100°C were considered to high-density polyethylene while for polypropylene were 

assumed the values of 25, 90 and 120ºC. Thus, for both polymers, temperature range 

permitted to evaluate their crystallinity evolution from room to maximum values that 

correspond up to 90% of their melting points. Heating control was realized through 

thermal controller Omega CN740, operating at on-off mode, in which two Ibrel cartridge-

type electrical resistances with diameter of 12 mm, 150 mm of length and power of 650W 

that leads to upper temperature ~ 900°C were installed. By mean of this thermal 

apparatus, ECAPressing tests, except in the case of room temperature, were performed at 

a rate of 2ºC/min once polymers crystallinity is highly sensible to heating velocity. Details 

of tooling assemblage are presented in Fig 2b. 

 

Figure 2: Mechanical apparatus for ECAPressing tests: (a) dies with detail to electrical resistances and                

(b) close view of tooling. 

 
 

Crystallinity increasing, here termed as crystallinity degree, for both HDPE and 

PP polymers, in the as-received condition and after single pass of ECAPressing, was 
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estimated from Differential Scanning Calorimetry tests based on standards ASTM D3417 

[21] and ASTM D3418 [22] to calculate melting and crystallization enthalpies. Also, 

glass transition, TG, melting, TM, temperatures and DSC curves were obtained. For that, 

a Netzsch DSC 204 F1 Phoenix calorimeter, with temperature range between -180°C and 

700°C was used together with liquid nitrogen to assure higher precision for the results. 

Samples of HDPE and PP with 5.81 mg and 5.45 mg, respectively, were undergone to 

two heating stages. The first one, was performed from 20°C to 280°C with heating rate 

equal to 20°C/min in order to eliminate the previous materials thermomechanical 

behavior, especially after ECAPressing. During this experiment, fusion enthalpies, DHF, 

were calculated in J/g to polypropylene and high-density polyethylene before and after 

pressing. Second heating level was realized in order to determine melting and 

crystallization enthalpies without any influence of either thermal or deformation effects 

imposed on the materials. 

Crystallinity degree, X, for both HDPE and PP polymers was calculated by 

comparing the respective melting enthalpies, obtained from DSC tests, those by 

hypothetically assumed fully crystalline materials, that is, 

 

X =  
∆HF

∆HF
0

 100%
 

(1) 

 

where ∆HF
0 d denotes melting enthalpy for fully crystalline polymers, in J/g. It was assumed the values of         

293 J/g and 195 J/g to HDPE and PP, respectively. [23] 

 

Compression tests, following ASTM D695 standard, were performed in order to 

evaluate the effect of single ECAPressing pass on the mechanical behavior of both HDPE 

and PP polymers in comparison to starting conditions. For that, compression bar-type 

samples with square cross sections of 100 mm2 and 15 mm in-long were used. For the 

as-received condition, these samples were machined from material original plates 

following an analogous procedure that those previously discussed in Section 2.1 Material. 

On the other hand, after ECAPressing, compression samples were machined from 

materials deformed surface that experienced simple shear, which is called homogeneous 

plastic strain region, as presented in Fig. 3. All compression tests were performed at room 

temperature by using an EMIC universal test machine with a load cell of 20 kN, at a 

constant ram speed of 1 mm/min, that is, at a nominal strain rate of 1.11·10-3 s-1. Thus, 

true stress-strain curves were obtained and compared before and after ECAPressing for 
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HDPE and PP polymers. Also, the effect of processing temperature on the materials 

mechanical behaviour yield stress could be investigated in terms of their yield stresses. 

 

Figure 3: Scheme to machining of compression test samples. 

 
 

3 RESULTS AND DISCUSSION 

Figure 4 shows true stress-strain curves obtained during compression tests on 

HDPE and PP polymers in the as-received condition. In general words, these polymers 

revealed considerable deformation capability. However, due to its higher molar mass and 

mechanical strength, polypropylene provided a superior yield stress (close to 22 MPa) 

value in comparison to high-density polyethylene that was ~ 14 MPa. 

 

Figure 4: Compression true stress and strain curves to PP and HDPE in the as-received condition. 

 
 

Figure 5 presents DSC curves for HDPE and PP polymers and their respective 

melting temperatures, TM, and fusion enthalpies, DHF. Specifically in terms of DHF, 

higher prediction was observed to high-density polyethylene (180.9 J/g) while a value of 

71.3 J/g was obtained to polypropylene. Increasing in DHF means higher crystallinity and, 

according to Eq. (1), it was calculated the values of 61.7% to high-density polyethylene 

and 36.6% to polypropylene. These results confirmed the direct influence of DHF on the 

crystallinity. 
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Figure 5: DSC curves in the as-received condition to: (a) HDPE and (b) PP. 

 

 

 Figure 6 shows force vs displacements curves obtained during ECAPressing tests 

on HDPE and PP polymers at the temperatures considered in the present work. In fact 

and as expected, increasing in the temperature continuously led to decreasing of the 

processing force need to deform the materials. It is due to the continuous softening of 

thermoplastic polymers at elevated temperatures, as in the case of both HDPE and PP 

ones. Also, at room temperature, maximum force to deform polypropylene was higher 

than high-density polyethylene. However, in the case of polymers, the strain-hardening 

peaks observed at the first 10 mm of displacement (for both HDPE and PP deformed 

samples), specially to temperatures higher than 25ºC, are strongly associated to increasing 

of crystallinity. The relationship between pressing temperature and crystallinity will be 

discussed later in Fig. 10. In addition, although at room temperature pressing force 

achieved maximum values for both investigated polymers, it was unfavourable to 

crystallinity evolution once the materials fusion enthalpies obtained from DSC tests, at 

this condition, provided the lower results in comparison those provided to most elevated 

temperatures (see discussions about Figs. 8-9). 

 

Figure 6: Force-displacement curves obtained during ECAPressing at distinct temperatures to: (a) HDPE 

and (b) PP. 

 
 

Figure 7 presents true stress vs total strain curves from cold compression tests on 

HDPE and PP polymers before and after single pass of ECAPressing at the interesting 
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temperatures considered in this work. It was evident the great influence of the pressing 

temperature on the mechanical strength of both polymers, that is, higher temperatures 

provided an increasing of the stress levels, for a given strain value. Also, as expected, 

most elevated stress predictions were observed to polypropylene in comparison to HDPE 

and it is coherent with the aspects previously discussed in relation to Fig. 4. Also, for both 

polymers ECAPressing at the maximum temperatures prevailed on as-received materials. 

 
Figure 7: Compression true stress and strain curves at distinct temperatures to: (a) HDPE and (b) PP. 

 
 

Figures 8 and 9 show DSC curves obtained, respectively, to HDPE and PP 

polymers at the considered temperatures. In fact, and as expected, at 25°C both polymers 

provided lowest values for fusion enthalpy and melting points once this condition only 

evolved the heat generation during ECAPressing as energy source. Increasing of 

processing temperature was responsible to higher predictions of fusion enthalpy and 

melting points. 

 
Figure 8: DSC curves after ECAPressing to HDPE: (a) 25°C; (b) 50°C; (c) 75°C and (d) 100°C. 
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Figure 9: DSC curves after ECAPressing to PP: (a) 25°C; (b) 90°C and (c) 120° 

 
 

In terms of the HDPE and PP crystallinity evolution presented in Fig. 10, when 

ECAPressing driving force was elevated, that is, deformation temperature, it was 

observed that the materials became more crystalline when deformed at temperatures close 

to their melting points. In this way, HDPE exhibited a crystallinity value ~ 55% during 

its processing at 25°C and close to 65% after ECAPressing at 100°C, that is, a crystallinity 

increasing of 18% associated to high deformation temperatures. In relation to 

polypropylene, ECAPressing at room temperature provided a crystallinity lever near to 

37% while at 120ºC this value was ~ 42% that means an increasing of 14%. Also, it is 

interesting to evaluate ECAPressing effectiveness at 25°C, in terms of crystallinity, by 

comparing the obtained results to as-received materials. In the case of HDPE, its 

crystallinity dropped from ~ 62% (as-received condition) to 56% after single pass of 

ECAPressing, i.e., a decreasing of almost 10%. For polypropylene, it was observed that 

ECAPressing was slightly benefit to crystallinity, that is, DSC tests revealed an increasing 

from 36.6% (as-received condition) to 37.02% after ECAPressing or an elevation of 

1.15%. Higher molar mass and molecular chains of propylene, when it was compared to 

high-density polyethylene, can explain the apparent stabilization of its crystallinity at 

room temperature, especially after processing by equal channel angular pressing 

technique. 
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Figure 10: Crystallinity versus ECAPressing temperature: (a) HDPE and (b) PP. 

 
 

4 CONCLUSIONS 

Influence of single pass of equal channel angular pressing on polypropylene, PP, 

and high-density polyethylene, HDPE, polymers was investigated, at distinct test 

temperatures, in terms of their mechanical behaviour and crystallinity evolution in 

comparison to as-received conditions. From the obtained results, the following 

conclusions can be outlined: 

1) Although force vs sample displacement curves obtained during ECAPressing 

confirmed the expected characteristic behaviour of load decreasing for higher 

temperatures due to materials softening, subsequent compression tests performed on PP 

and HDPE deformed workpieces showed their strengthening associated to warm 

processing. Also, by comparing with as-received materials it was verified that 

ECAPressing was interesting for maximum considered temperatures, that is, at the values 

of 100°C for HDPE and 120°C for PP. 

2) Crystallinity evolution obtained before and after ECAPressing by DSC tests 

showed a considerable increasing for both polymers when they were deformed at elevated 

temperatures in comparison to as-received conditions. It was clearly evidenced by fusion 

enthalpies also provided by DSC tests. 
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