

Gamma Spectrometry results for the ¹³⁴Cs nuclear parameters

Resultados de espectrometria gama para os parâmetros nucleares ¹³⁴Cs

DOI:10.34117/bjdv8n5-116

Recebimento dos originais: 21/03/2022 Aceitação para publicação: 29/04/2022

Maria Candida Moreira de Almeida

Doutorado Instituição: Instituto de Radioproteção e Dosimetria Endereço: Av. Salvador Allende 3773_Barra da Tijuca - RJ, CEP: 22780-160 E-mail: marcandida@yahoo.com.br

José Ubiratan Delgado

Doutorado Instituição: Instituto de Radioproteção e Dosimetria Endereço: Av. Salvador Allende 3773_Barra da Tijuca - RJ, CEP: 22780-160 E-mail: jose.delgado@ird.gov.br

Ronaldo Lins e Silva

Doutorado Instituição: Instituto de Radioproteção e Dosimetria Endereço: Av. Salvador Allende 3773_Barra da Tijuca - RJ, CEP: 22780-160 E-mail: ronaldo.silva@ird.gov.br

Roberto Poledna

Engenheiro Instituição: Instituto de Radioproteção e Dosimetria Endereço: Av. Salvador Allende 3773_Barra da Tijuca - RJ, CEP: 22780-160 E-mail: jose.delgado@ird.gov.br

ABSTRACT

 134 Cs is produced directly as a fission product (low yield) and too obtained by neutron capture from 133 Cs non-radioactive . The National Laboratory for Ionizing Radiation Metrology (LNMRI/IRD/CNEN) of Rio de Janeiro performed standardization of this radionuclide . A solution of 134 Cs radionuclide was purchased from commercial supplier to nuclear parameters determination such as activity and emission probabilities of some of its energies. 134 Cs is a beta gamma emitter with 754 days of half-life. This radionuclide is used as standard in environmental, water and food control. It is also important to germanium detector calibration The gamma emission probabilities were determined mainly for some energies of the 134 Cs by efficiency curve method and the mostly uncertainties obtained were around 1.5 %.

Keywords: gamma emission probability, ¹³⁴cs, hpge, efficiency curve.

ABSTRACT

¹³⁴Cs é produzido directamente como um produto de fissão (baixo rendimento) e também obtido por captura de neutrões a partir de 133Cs não radioactivos. O Laboratório Nacional de Metrologia das Radiações Ionizantes (LNMRI/IRD/CNEN) do Rio de Janeiro realizou a padronização deste radionuclídeo . Foi adquirida uma solução de radionuclídeo 134Cs de fornecedor comercial para determinação de parâmetros nucleares tais como actividade e probabilidades de emissão de algumas das suas energias. O 134Cs é um emissor gama beta com 754 dias de meia-vida. Este radionuclídeo é utilizado como padrão no controlo ambiental, hídrico e alimentar. É também importante para a calibração do detector de germânio As probabilidades de emissão gama foram determinadas principalmente para algumas energias dos 134C pelo método da curva de eficiência e as maiores incertezas obtidas foram cerca de 1,5 %.

Palavras-chave: probabilidade de emissão gama, ¹³⁴cs, hpge, curva de eficiência.

1 INTRODUCTION

¹³⁴Cs is a radioisotope of extreme importance for the calibration of HPGe spectrometers, among others. The determination of nuclear parameters beyond the absolute supply activity should be considered as a factor of relevance. The determination of the gamma emission probabilities, for example, allows improvements in the characterization of this radioisotope depending on the accuracy of the measured values and serves as quality indicator of the spectrometry system and the methodology used in the determination of this parameter. Another factor that highlights the use of ¹³⁴Cs is that through the determination of efficiency one can use this radioisotope as a plotter to measure ¹³⁷Cs.

¹³⁴Cs has a radioactive half-life of 2.06 years and it has two mechanisms by which it can disintegrate. One mode is by β- emission which is the most likely occurrence option being responsible for 99.9997% of the disintegrations. Only 0.0003% of the disintegrations occur by electronic capture and positron emission (β +).

In the event of a nuclear accident, such as the leakage or explosion of a reactor as happened in 1986 in Chernobyl, Ukraine, some radioisotopes produced in the ²³⁵U nuclear fission reaction are released into the atmosphere, such as ¹³¹I, ¹³⁷Cs, ¹³⁴Cs and ⁹⁰Sr [1]. After this accident, Brazil worried about the importation of foods that could have the presence of radioisotopes ¹³⁷Cs, ¹³⁴Cs and ⁹⁰Sr. These radioisotopes are absorbed by the plants that are consumed by the animals resulting in the possible contamination of imported beef and milk. [2]. The ¹³⁴Cs and ¹³⁷Cs ratio determination is important to failed fuel exposure estimation [3].

2 METHODOLOGY

2.1 RELATIVE EFFICIENCY CURVE METHOD

The efficiency curve was obtained using various radionuclidic standardized sources such as: ^{166m}Ho, ¹⁵²Eu, ¹³⁷Cs, ¹³⁴Cs, ²⁴¹Am, ⁶⁵Zn totaling 59 energy points and the graphic can be observed in Figure 1. The HPGe spectrometric system has been calibrated in efficiency through the use of standard point sources [4]. The range of energy was established between 48 keV and 1427 keV originally. Then a cut was made considering only the energies above 300 keV since the low energy region was not necessary for the purpose of the calibration. The efficiency curve fitting was performed by a 5th degree polynomial.

Figure 1. Efficiency curve with ^{166m}Ho, ¹⁵²Eu, ¹³³Ba, ¹³⁷Cs, ²⁴¹Am, ⁵⁴Mn and ⁶⁵Zn radionuclidic standards

2.2 GAMMA-RAY EMISSION PROBABILITY MEASUREMENTS

In order to associate the main peaks of the spectrum to the radionuclide, the energy-channel relation of a spectrometer needs to be obtained. Afterwards, the total absorption efficiency curve is determined, as a function of energy, and the radionuclide activity may be calculated from region of interest. The expression that represents an activity area is:

$$\frac{CPS_{corrected}}{P_{\gamma}\varepsilon_{\gamma}} \tag{1}$$

where: $CPS_{corrected}$ is the count rate of full energy peak; ε_{γ} is the full energy peak efficiency for specific gamma energy; and P_{γ} is the emission probability for specific gamma energy.

However, as the source activity is known , P_{γ} was calculated for ranges of 475 keV, 563 keV, 569 keV, 604 keV, 796 keV, 802 keV, 1039 keV, 1168 keV and 1365 to ¹³⁴Cs by means of the following expression, taking into account the corrections as decay, background and positioning:

$$P_{\gamma} = \frac{CPS_{corrected}}{\varepsilon_{\gamma}.A} \tag{2}$$

where A is the absolute activity. The P_{γ} determination depends on the precision achieved in efficiency curve.

2.3 SOURCE PREPARATION AND MEASUREMENTS

¹³⁴Cs point source was prepared by means of the pycnometer technique, depositing drops of radionuclide solution in a polystyrene film, with a thickness of 0.05 mm, set in one acrylic ring. The ring has an external diameter of 25 mm, inner diameter of 4 mm and a thickness of 1 mm. Once dried, the source was covered with the same polystyrene film.

The spectrometry system used consist of HPGe detector type a planar with beryllium window with 20% of relative efficiency (d3gem). Some appropriate electronics composed basically of the elements: High voltage supply, signal amplifier and a multichannel analyzer. The multichannel analyzer associated with the data acquisition program is responsible for subtracting background beyond managing dead time.

The conditions of ¹³⁴Cs source measurements are : HPGe detector position- d3 gemp4 (20cm); source activity : 2820.71 Bq at 12:00h of date 20170601.

3 RESULTS

	I		0
Energy (keV)	Area	Uncertainty ua (area)	CPS _{corrected} (Bq/s)
475	16538	322	0.0476
563	82224	421	0.2366
569	149331	499	0.4297
604	854624	965	2.4591
796	630766	811	1.8149
802	62050	268	0.1785
1039	5796	92	0.0166
1168	9681	105	0.0279
1365	14951	123	0.0430

TABLE 1. Counts per second to the different energies of 134 Cs

	TABLE 2.	Results of	gamma	emission	probabilities	to ¹	³⁴ Cs e	nergies
--	----------	------------	-------	----------	---------------	-----------------	--------------------	---------

Energy (keV)	Gamma Efficiency	Ργ	Ργ (%)
475	0.001278	0.150948	1.5095
563	0.001135	0.084462	8.4462
569	0.001115	0.156248	15.6248
604	0.001034	0.964063	96.4063
796	0.000861	0.854779	85.4779
802	0.000857	0.084399	8.4399
1039	0.000673	0.100392	1.0039
1168	0.000618	0.018273	1.8273
1365	0.000579	0.030132	3.0132

TABLE 3. LNHB [5] data of the gamma emission probabilities (P_{γ}) to ¹³⁴Cs energies

Energy (keV)	Ργ
475	1.479 (7)
563	8.342 (15)
569	15.368 (21)
604	97.63 (8)
796	85.47 (9)
802	8.694 (16)
1039	0.9909 (33)
1168	1.791 (5)
1365	3.019 (8)

The gamma spectrometry system was stable throughout the measurement. During ¹³⁴Cs spectrum acquisition some problems can occur when considering the peaks of 563 keV and 569 keV that overlap over the 605 keV peak when using a NaI (Tl) type detector

but in this case the use of the HPGe detector stands out for such use because it has a much greater resolution power and facilitates the separation of these peaks with greater ease.

The results of gamma emission probabilities to ¹³⁴Cs energies are near with the LNHB results [5]. The mean deviation for the 9 energies studied was 1.41 %.

4 CONCLUSION

The efficiency curve method is widely used for radioisotopes whose half-life is not long as in the case of the ¹³⁴Cs and the efficiency curve was well adjusted providing success in analysis. Satisfactory results were obtained for the activity and for the gamma emission probabilities .

REFERENCES

- [1] Gazal S and Prange H 2005 Radioprotection, Suppl.1. 40 S747
- [2] Pawel J and Kalita S J 2010 Nukleonika 55 (2) 143
- [3] Chiang R T 2018 Indonesian Journal of Physics and Nuclear Applications . 3 (3) 76
- [4] Dabb H M 2015 Arab Journal of Nuclear Science and Applications 48 (4) 53
- [5] LNE-LNHB/CEA 2012 Table de Radionucleides : www.nucleide.or/Cs-134-tables