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ABSTRACT 

This work aims to find a procedure to obtain an alternative formulation that represents 

the first mode of vibration of slender steel poles considering the effect of geometric non-

linearity, using the Reyleigh-Ritz method, trigonometric formulations with optimization 

techniques and a finite element mathematical model. The application was on an existing 

polygonal steel pole. In order to consider the geometric non-linearity in the calculation of 

the natural frequencies of the respective structure, the concept of initial stiffness, 

geometric stiffness and effective stiffness, computed by the Rayleigh method for 

vibration problems in mechanical systems, was used. So, to optimize the computational 

time to obtain the modal response in dynamic analysis of the described structure, without 

neglecting the precision of the results of a rigorous analysis with sophisticated 

methodologies, alternative formulations to those described in NBR 6123 (1988) will 

bepresented in this work. 

 

Key-words: Dynamic Analysis, Vibration, Geometrical Non-Linearity, Vibration 

Mode, Rayleigh method. 

 

RESUMO 

Este trabalho visa encontrar um procedimento para obter uma formulação alternativa que 

represente o primeiro modo de vibração de postes de aço esbeltos considerando o efeito 
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da não-linearidade geométrica, utilizando o método Reyleigh-Ritz, formulações 

trigonométricas com técnicas de optimização e um modelo matemático de elementos 

finitos. A aplicação foi num pólo de aço poligonal existente. A fim de considerar a não-

linearidade geométrica no cálculo das frequências naturais da respectiva estrutura, foi 

utilizado o conceito de rigidez inicial, rigidez geométrica e rigidez efectiva, calculada 

pelo método de Rayleigh para problemas de vibração em sistemas mecânicos. Assim, 

para optimizar o tempo computacional para obter a resposta modal na análise dinâmica 

da estrutura descrita, sem negligenciar a precisão dos resultados de uma análise rigorosa 

com metodologias sofisticadas, serão apresentadas neste trabalho formulações 

alternativas às descritas na NBR 6123 (1988). 

 

Palavras-chave: Análise Dinâmica, Vibração, Não-Linearidade Geométrica, Modo de 

Vibração, Método Rayleigh. 

 

 

1 INTRODUÇÃO 

Steel poles with hollow cross-section have been developed for the implementation 

of telecommunication systems in reduced spaces and are usually designed with a height 

of up to 60 meters, support loads of up to 30 square meters of wind exposure area and 

have a better cost-benefit ratio when compared to other solutions on the market, they are 

manufactured with prismatic sections in a dodecagonal, octadecagon or circular shape. 

Due to the area of exposure to the wind, this type of structure presents considerable 

dynamic behavior as indicated by Brasil and Silva (2015), to obtaining its dynamic 

response is highly important to characterize the vibrant behavior of the structure. The 

analysis of the problem discussed here aims to present the procedure to obtain an 

alternative formulation that represents the first vibration mode of slender steel pole with 

geometric nonlinearity effect. The objective is to carry out a study with the Reyleigh-Ritz 

method, trigonometric formulations with optimization technique and a finite element 

mathematical model of a polygonal steel pole. To consider the geometric nonlinearity in 

calculating the frequencies of the respective structure, the concept of initial stiffness, 

geometric stiffness and effective stiffness given by the Rayleigh method for vibration 

problems in mechanical systems will be presented, with its formulation found in 

Wahrhaftig (2017). In this work, the theories for modal analysis were used in a polygonal 

metal pole of 50 meters high, top diameter of 0.45 meters and base diameter of 1.50 

meters, as shown in Figure 2 – Relationship between physical model and developed mathematical 

model. 

. 
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2 THEOETICAL BASIS AND RESULTS 

The studies by Brasil and Silva (2015), show that among the modes of the 

structural typology described here, more than 90% of the dynamic response is contained 

in the first vibration mode (φ1) presente in Figure 1 

 

Figure 1 - Typology of the studied vibration mode. 

 
 

Brasil and Silva (2015) and ABNT NBR 6123 (1988) indicate that tall structures 

with a reduced cross section, of high slenderness, usually present vibration modes with 

frequencies below 1Hz, showing the need for a dynamic analysis. The first vibration mode 

of the simplified dynamic model supported by ABNT NBR 6123 (1988), can be written 

as (1), where zi is the height of the mass, H is the total height of the structure and the 

exponente γ is given by Table 1 - Parameters for determining dynamic effects by ABNT NBR 6123 

(1988). 

. 

 

 
𝜑𝑖 = (

𝑧𝑖

𝐻
)

𝛾

. 
(1) 

 

 
   

Table 1 - Parameters for determining dynamic effects by ABNT NBR 6123 (1988). 

Type of constructions γ 

Concrete towers and chimneys, variable section 2,7 

Steel towers and chimneys, uniform section 1,7 

γ is the exponent of the function that represents the 

vibration mode; 
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Wahrhaftig (2017) reports “Once the effect of the axial compressive force is to 

reduce the stiffness of the members of the structure, the approach to aspects involving a 

concept of geometric stiffness is related, at the same time, to the analysis of the elastic 

stability of structural systems. Timoshenko (1985) presents problems of elastic instability 

of prismatic bars where it is possible to verify reduction of stiffness due to the presence 

of normal efforts. For the buckling load, the structure does not offer resistance to any 

disturbance that occurs on it and when such disturbance occurs, the displacements in the 

configuration continue to increase without the need to additional loads. This suggests that 

when this time is reached, the displacements of the structure, for the critical load, will 

grow indefinitely, meaning that, on the other hand, the rigidity of the structure has become 

null", so it is possible to write the rigidity of the structure by next difference. 

 

 [K] = [K0] − [Kg]. (2) 

 

Where K0 represents the elastic stiffness in a function of the mechanical properties 

of the structure and the term Kg it’s the geometric stiffness in function of mechanical 

properties and axial loading. Geometric stiffness can be calculated with the Rayleigh 

method based on the principle of energy conservation. Its formulation for continuous 

systems contains the form function ϕ, that represents the mode of vibration and its 

application requires that the modal mass of the structure be. 

 

 m = ∫ m̅ϕ2dz → m = ∑ m̅iϕi
2∆zi

n

i=1

H

0

. (3) 

 

the modal elastic stiffnes 

 

K0 = ∫ EI (
d2ϕ

dz2
)

2

m̅dz
H

0

→ K0 = ∑ EIi (
d2ϕi

dzi
2 )

2

∆zi

n

i=1

. 
(4) 

 

and modal geometric stiffness 
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Kg = ∫ N (
dϕ

dz
)

2

m̅dz
H

0

→ Kg = ∑ Ni (
dϕi

dzi
)

2

∆zi.

n

i=1

 
(5) 

wehre m̅ is the mass of the structure, dz is the infinitesimal length of the axis of the bar 

that represents the body of the structure and N axial force. 

The structure discussed has a behavior similar to a cantilever, so the shape 

functions must meet the boundary conditions, Wahrhaftig et. al (in press) indicate that in 

numerical solutions of differential equations by the technique of 'test functions or form 

functions', they have functions that are only approximations, or trials, and not exact 

solutions. Different functions, even meeting the boundary conditions of the problem, can 

lead to different results. Theoretically, in the Rayleigh method, it is enough to respect the 

conditions of the first type, those of Dirichlet, as visible in Figure 2 – Relationship between 

physical model and developed mathematical model. 

. 

 

Figure 2 – Relationship between physical model and developed mathematical model. 

 

 

To optimize the natural frequencies, the minimization of errors was performed 

with the Solver tool of Microsoft Exc. Brasil and Silva (2019) report that “Excel's Solver 

can be used to solve optimization problems where non-linear continuous problems, Solver 

uses a version of GRG (“Generalized Reduced Gradient”). Two shape functions were 

used for the first vibration mode, that meet the conditions imposed in the Figure 2 – 

Relationship between physical model and developed mathematical model. 
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 and that will be applied in the equations (3), (4) e (5) through a discretized model, 

as visible Figure 2 – Relationship between physical model and developed mathematical model. 

. The shape functions are (1) and the following trigonometric function with factors 

𝑎 an 𝑏. 

 

 𝜙𝑖(𝑧𝑖) = (1 − 𝑐𝑜𝑠 (
𝜋𝑧𝑖

2𝐻
)) (𝑎

𝑧𝑖

𝐻
+ 𝑏). (6) 

 

According to Wahrhaftig et. al (in press) the factors a and b can be obtained by 

optimizing the error, between their real values and imposed initial values, thus composing 

the vector {𝑐}. 

 

 {𝑐}𝑇 = [𝑎 𝑏]. (7) 

 

which must be determined in order to minimize the function 

 

 𝑓(𝑐) = 𝑟 ∑[𝜙𝑖( {𝑐}, 𝑧𝑖) − 𝜙𝑖𝑀𝐸𝐹
( 𝑧𝑖)]

2
.

𝑛

𝑖=1

 (8) 

 

or 

 

 𝑓(𝑐) = 𝑟 ∑[𝑓( 𝜙𝑖( {𝑐}, 𝑧𝑖)) − 𝑓𝑀𝐸𝐹( 𝜙𝑖𝑀𝐸𝐹
( 𝑧𝑖))]

2
.

𝑛

𝑖=1

 (9) 

 

where r is a penalty factor used to adjust the magnitude of errors. The values of 

ϕiFEM
( zi) until ϕnFEM

( zn), are the modes obtained at each coordinate discretized from 

the finite element model (FEM). The frequencies f and fFEM are provided by the proposed 

formulation and the frequency obtained with the finite element model. The restriction, 

described in Figure 2 – Relationship between physical model and developed mathematical model. 

, imposed to represent the first mode of vibration is 

 

 𝜙𝑛( {𝑐}, 𝐻) = 1. (10) 
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In order for this restriction to be satisfied, we start with the following values for 

the vector{𝑐} 

 

 {𝑐}𝑇 = [0 1]. (11) 

 

Similar to function (8) the function (12) and (34) were used to optimized 𝛾 in 

function (1) 

 

 𝑓(𝛾) = 𝑟 ∑[𝜙𝑖( 𝛾, 𝑧𝑖) − 𝜙𝑖𝑀𝐸𝐹
( 𝑧𝑖)]

2
.

𝑛

𝑖=1

 (12) 

 

or 

 

 𝑓(𝛾) = 𝑟 ∑[𝑓( 𝜙𝑖( 𝛾, 𝑧𝑖)) − 𝑓𝑀𝐸𝐹( 𝜙𝑖𝑀𝐸𝐹
( 𝑧𝑖))]

2
.

𝑛

𝑖=1

 (13) 

 

where its starting value is present in Table 1 - Parameters for determining dynamic effects 

by ABNT NBR 6123 (1988). 

. 

To apply the Rayleigh method it’s necessary to solve the first and second 

derivatives of the trial function in relation to vertical length, where the first and second 

derivatives for the function (1) are. 

 

 𝑑𝜙𝑖

𝑑𝑧𝑖
=

𝛾

𝐻𝛾
𝑧𝑖

𝛾−1;
𝑑2𝜙𝑖

𝑑𝑧𝑖
2 =

𝛾(𝛾 − 1)

𝐻𝛾
𝑧𝑖

𝛾−2. (14) 

 

Similarly, the first derivative of the function (6), is 

 

 𝑑𝜙𝑖

𝑑𝑧𝑖
=

𝜋

2𝐻
𝑠𝑖𝑛 (

𝜋𝑧𝑖

2𝐻
) (

𝑎𝑧𝑖

𝐻
+ 𝑏) + (1 − 𝑐𝑜𝑠 (

𝜋𝑧𝑖

2𝐻
))

𝑎

𝐻
.   (15) 

 

and the second 
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 𝑑2𝜙𝑖

𝑑𝑧𝑖
2 =

𝜋2

4𝐻2
𝑐𝑜𝑠 (

𝜋𝑧𝑖

2𝐻
) (

𝑎𝑧𝑖

𝐻
+ 𝑏) +

𝑎𝜋

𝐻2
𝑠𝑖𝑛 (

𝜋𝑧𝑖

2𝐻
).   (16) 

 

Numerically, the values of elastic stiffness, geometric stiffness, and modal mass 

for the 𝛾 in table 1 can be obtained for discussed structure, their values are shown in the 

Table 2. In the hypothesis of the trigonometric function (6) with coefficients in the 

equation (11), the dynamic parameters were obtained and are presented in  

 

 

Table 3 – Parameters obtained with the trigonometric function. 

. In table 4 are presented the modal parameters obtained with FEM model. In the 

hypothesis of considering geometric nonlinearity influenced frequencies and periods, the 

geometric nonlinearity was considered by multiplying the modulus of elasticity by the 

factor 0.97, which represents the ratio between the effective elastic stiffness K and the 

initial elastic stiffness K0 in the evaluated structure. According to Coutinho et. al (2021) 

The procedure for a computational modeling using the finite element method consists of 

some steps, and in one of those steps is geometry modeling. The geometry modeling was 

performed numerically with the mechanical properties of the cross section corresponding 

to each height considered in the FEM model. 

 
Table 2 – Parameters obtained for each coefficient given by NBR 6123 

γ = 2.700 γ = 1.700 

K0 (Nm²) 19161.896 K0 (Nm²) 23193.833 

Kg (Nm²) 582.729 Kg (Nm²) 662.508 

K (Nm²) 18579.167 K (Nm²) 22531.325 

K=K0-Kg 

ω1 (rad/s) 3.803 ω1 (rad/s) 3.436 

f1 (Hz) 0.605 f1 (Hz) 0.547 

T1 (s) 1.652 T1 (s) 1.828 

K=K0 

ω1 (rad/s) 3.862 ω1 (rad/s) 3.487 

f1 (Hz) 0.615 f1 (Hz) 0.555 

T1 (s) 1.627 T1 (s) 1.802 

 

 

 

Table 3 – Parameters obtained with the trigonometric function. 

K0 (Nm²) 24815.843 

Kg (Nm²) 680.434 

K (Nm²) 24135.409 
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K=K0-Kg 

ω1 (rad/s) 3.569 

f1 (Hz) 0.568 

T1 (s) 1.761 

K=K0 

ω1 (rad/s) 3.619 

f1 (Hz) 0.576 

T1 (s) 1.736 

 

 

Table 4 – Frequency and period obtained with FEM model (Finite Element Method). 

 

K=K0-Kg K=K0 

ω1 (rad/s) 3.245 ω1 (rad/s) 3.297 

f1 (Hz) 0.516 f1 (Hz) 0.525 

T1 (s) 1.937 T1 (s) 1.905 

 

In possession of dynamic parameters and vibration modes for the conditions of 

the Table 2,  

 

 

Table 3 – Parameters obtained with the trigonometric function. 

 and  

 

Table 4 – Frequency and period obtained with FEM model (Finite Element Method). 

 

 it’s possible to apply the optimization methods discussed later in this study. The 

optimization process adopted minimizes the errors between the mode or frequency, 

obtained between the finite element model and the modes or frequencies provided by the 

functions (1) and (6). 

 

Table 5 – Resume of errors between the frequencies obtained and those given by the MEF model 

Analysis of results Error  Error 

Criteria γ a b f1 para K=K0 (Hz) f1 para K=K0-KG (Hz) K0 K0-KG 

1 2.700 - - 0.615 0.605 17.12% 17.20% 

2 1.700 - - 0.555 0.547 5.74% 5.91% 

3 2.122 - - 0.554 0.546 5.65% 5.65% 

4 1.943 - - 0.550 0.541 4.78% 4.83% 
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5 - - - 0.576 0.568 9.74% 9.99% 

6 - 0.451 0.548 0.563 0.559 7.25% 8.27% 

7 - 0.300 0.700 0.562 0.555 7.10% 7.51% 

8 - - - 0.525 0.516 0.00% 0.00% 

 

Table 6 – Description of situations for each optimization. 

Criteria  Description 

1 First shape function of the NBR 6123 

2 Second shape function of the NBR 6123 

3 Optimization in ϕ1 regarding the shape function of the NBR 6123 

4 Optimization in f1 regarding the shape function of the NBR 6123 

5 Trigonometric function 

6 Optimization in ϕ1 by the trigonometric function with factors a and b 

7 Optimization in f1 by trigonometric with factors a and b 

8 FEM model 

 

The criteria 3, 4, 6 and 7 in  

Table 6 – Description of situations for each optimization. 

 were obtained with the help of the Solver tool of Microsoft Excel, where the 

mathematical representation of the optimization performed is present in the functions (8), 

(9), (12) and (13). The procedure performed has the vibration mode restriction necessarily 

provide the value 1 in the position corresponding to the top of the structure and the first 

derivative of the form function to provide the value of φ′(0) = 0 at the base of the 

structure. In criteria 3 and 6 the error reduction was performed directly in vibration mode, 

but in the criteria 4 and 7 the error reduction was in the frequencies. In Figure 3 all forms 

for the first mode of vibration studied in this work are presented. 

Figure 3 – List of shapes of the first studied modes of vibration. 
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3 CONCLUSIONS 

Based on the results shown, it is possible to conclude that the analyzed structure 

has a significant dynamic behavior, the vibration frequency for the first mode is in the 

order of 0.5 Hz. The effects due to geometric stiffness generated approximately 1% 

smaller differences in frequencies and, as expected, in the hypothesis of its consideration, 

a reduction in the stiffness of the structure is observed. This difference will be more 

accentuated with the increase of vertical actions, which cause normal efforts to the 

structure. 

It is possible to check through the Erro! Fonte de referência não encontrada. 

an error of approximately 17%, in relation to the FEM model, to obtain the first natural 

frequency of vibration of the respective structure when using 𝛾 = 2.7, given by NBR 

6123. This error decreases to 6% when used 𝛾 = 1.7, also given by the same standard. 

The use of the trigonometric function showed an error 10% with respect to FEM model. 

Using optimization techniques, the exponential function presented the smallest 

error for calculating the frequency, about 5%, with obtaining an optimized 𝛾 equal to 

1.943. For the trigonometric function, an error of 8% in relation to FEM model, obtaining 

the optimal values of 𝑎 = 0.3 and 𝑏 = 0.7. 

So, it is concluded that the use of optimization techniques has significantly 

improved, in the order of 20%, the calculation of the fundamental frequency of the 

structure. Thus, in simulations of very complex problems, which require a high 
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computational cost, the use of this method can be very useful to obtain values with very 

reasonable precision, without the need for all the formulation and computational time of 

the FEM. 

It is suggested for future studies a comparison between displacements and 

dynamic solicitation efforts obtained by the FEM model, in problems with several degrees 

of freedom, with those obtained with the aid of this simplified analysis, with only one 

degree of freedom, using the modes determined by optimization techniques. 
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