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ABSTRACT 

Detecting the early stages of failures is an old concern of petroleum industry. In order to 

tackle this problem, a novel sensor analysis methodology is proposed. The assessment of 

production sensors' behavior, individually or in a group, leads to a better understanding 

of failure modes during oil and gas production. Thus, Principal Components Analysis and 

Logistic Regression are incorporated as multivariate statistical modeling for studying the 

impact of different anomalies in production sensors. Therefore, a deep statistical analysis 

of these sensors can strengthen assumptions for supporting the modeling process of early 

fault detection systems. Based on a reliable public data set containing data from real wells, 

the application of the PCA approach combined with a Logistic Regression resulted in 

better visualization and understanding of some failures that occurred during petroleum 

production, such as the abrupt increase in BSW (Basic sediment and water), spurious 

closure of DHSV (Down hole Safety Valve), severe slugging, flow instability, 

productivity loss, quick restriction in PCK (production choke), scaling in PCK and 

hydrate formation in production lines. The two statistical approaches were used as a 

combined method to provide useful information regarding the failure modes in the 

dataset. Also, the dataset presented two classes that are important for anomaly detection 

in oil wells: “normal” and “abnormal”, which allow detecting when production is outside 

its normal condition. Then, using the production sensors analysis with failure data can 

help to formulate better detection algorithms. By using PCA and Logistic Regression it 

was possible to identify which set of variables is better for detecting a specific type of 

problem. The application of these techniques boosts the modeling of early detection 

systems in oil and gas production. Besides, the assumptions led to conclusions about how 

to put groups of sensors and abnormalities together and how much time a well stands in 

a steady normal condition. Other conclusions showed the significance of transient 

information for fault detection modeling and the need for individual wells analyses. 

Hence, using PCA for treating and transforming the data brings important contributions 

for early fault detection modeling, once it allowed insight into how sensors and abnormal 

events can be related. Consequentially, the present paper has significant novelty 

contribution: it raises important assumptions that help to build solid knowledge about the 

anomalies behavior and help researchers to implement a better modeling strategy. 

 

Keywords: PCA, Production sensors, Logistic Regression. 

 

RESUMO 

Detectar os estágios iniciais das falhas é uma preocupação antiga da indústria petrolífera. 

A fim de resolver este problema, uma nova metodologia de análise de sensores é proposta. 
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A avaliação do comportamento dos sensores de produção, individualmente ou em grupo, 

leva a uma melhor compreensão dos modos de falha durante a produção de petróleo e 

gás. Assim, a Análise de Componentes Principais e Regressão Logística são incorporadas 

como modelos estatísticos multivariados para estudar o impacto de diferentes anomalias 

nos sensores de produção. Portanto, uma análise estatística profunda desses sensores pode 

reforçar as suposições para apoiar o processo de modelagem de sistemas de detecção 

precoce de falhas. Com base em um conjunto de dados públicos confiáveis contendo 

dados de poços reais, a aplicação da abordagem PCA combinada com uma Regressão 

Logística resultou em melhor visualização e compreensão de algumas falhas ocorridas 

durante a produção de petróleo, como o aumento abrupto do BSW (Sedimento básico e 

água), fechamento espúrio do DHSV (Válvula de Segurança Down hole Safety Valve), 

graves slugging, instabilidade do fluxo, perda de produtividade, restrição rápida no PCK 

(estrangulamento da produção), escalonamento no PCK e formação de hidratos nas linhas 

de produção. As duas abordagens estatísticas foram usadas como um método combinado 

para fornecer informações úteis a respeito dos modos de falha no conjunto de dados. Além 

disso, o conjunto de dados apresentou duas classes que são importantes para a detecção 

de anomalias em poços de petróleo: "normal" e "anormal", que permitem detectar quando 

a produção está fora de seu estado normal. Então, usando a análise dos sensores de 

produção com dados de falha pode ajudar a formular melhores algoritmos de detecção. 

Usando PCA e Regressão Logística, foi possível identificar qual conjunto de variáveis é 

melhor para detectar um tipo específico de problema. A aplicação destas técnicas 

impulsiona a modelagem de sistemas de detecção precoce na produção de petróleo e gás. 

Além disso, as suposições levaram a conclusões sobre como colocar grupos de sensores 

e anormalidades juntos e quanto tempo um poço está em condição normal e estável. 

Outras conclusões mostraram a importância de informações transitórias para a 

modelagem da detecção de falhas e a necessidade de análises individuais dos poços. 

Assim, o uso do PCA para tratar e transformar os dados traz importantes contribuições 

para a modelagem precoce da detecção de falhas, uma vez que permitiu uma visão de 

como os sensores e os eventos anormais podem ser relacionados. Conseqüentemente, o 

presente documento tem uma contribuição inovadora significativa: ele levanta 

importantes suposições que ajudam a construir um conhecimento sólido sobre o 

comportamento das anomalias e ajudam os pesquisadores a implementar uma melhor 

estratégia de modelagem. 

 

Palavras-Chave: PCA, Sensores de produção, Regressão logística. 

 

 

1 INTRODUCTION 

Preventing failures in oil and gas systems is a big interest for many companies. 

Detection systems and algorithms can be built to identify when something in the process 

or equipment is getting away from normal behavior. An effort to improve failure detection 

with machine learning and artificial intelligence approach is being done through the last 

decade; the digital evolution of oil fields offers more ways to gather information in real-

time (Zang, et al, 2014).  
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Pressure gauges and temperature sensors are a key part when developing control 

and optimizing strategies. Data provided by these sensors gives important information 

about downhole, subsea, or topside conditions, depending on their location (Li and Zhu, 

2011). Therefore, linking the output data from pressure and temperature sensors, among 

others available, with machine learning and artificial intelligence techniques could result 

in effective detection systems. 

Also, oil and gas production requires a good functioning production system. Some 

failures can occur during this phase, such as flow assurance issues and mechanical 

problems. Flow instability, severe slug, scaling and hydrate formation are flow assurance 

concerned, for example. Spurious closure of DHSV and quick restriction in production 

choke can be caused by mechanical or hydraulic reasons. These anomalies occurrence 

impact the oil and gas production rate, in more severe cases they can lead to a production 

shutdown (Luna-Ortiz et al, 2008). So, preventing these failures to happen can save 

money and time from well intervention and workover operations. One way to preventing 

a failure is understanding the failure mechanisms and the variables that are most impacted 

while an anomaly situation.  

Information regarding faults and anomalies keeps monitoring and maintenance 

personal better informed and more capable of taking good plans to solve problems during 

production operations. The literature shows that sensor data are used to enhance detection 

systems (Cai et al., 2021; Giro et al., 2021). However, most sensor data are used to 

diagnose sensor and process faults only, as proposed by Salahshoor, Mosallaei, and Bayat 

(2008).  

Therefore, the present work aims to provide an analysis of production pressure 

and temperature sensors under fault and normal conditions. The novelty proposed is 

analyzing subsea and topside sensors' data under production anomalies occurrences to 

detect when an offshore well leaves its normal production condition and starts to get into 

a failure mode. In order to improve monitoring systems using information from 

production sensors, a mixed application of PCA and logistic regression is proposed to 

study the production sensors' behavior when the production system is under failure mode. 

Thus, the sensor analysis can support detection algorithms. Combining these two 

techniques for different types of failures that occur during oil production can provide 

useful insights about sensors' performance and normal condition identification. The 

outcomes of the study will help well operations, IT specialists, and oil & gas operations 
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managers to design a system capable of alarming early signs of anomalous behavior is 

challenging. 

 

2 PRINCIPLES AND METHODOLOGY 

2.1 PRINCIPAL COMPONENTS ANALYSIS (PCA) 

PCA is an important tool for extracting features from a dataset and combined with 

classification methods it can perform pattern recognition and detection tasks (Zhou et al, 

2014). PCA also enhances classifier algorithm accuracy, being a very useful technique to 

be applied with machine learning classifiers (Zhu et al, 2019). Furthermore, PCA was 

applied in this work to improve visualization and understanding of the data by reducing 

the variable’s dimension. Instead of using all sensors together, they were also combined 

in subgroups of topside and subsea sensors. In this work, up to 8 production variables 

were available depending on the type of anomaly studied. The PCA reduced these 

variables in 2 main variables, combining different sensors. Also, using PCA features it is 

possible to identify correlations between the data from different sensors.  

PCA captures dimensions that present high variance and turn them into fewer 

dimensions (Yang et al, 2019). At the same time, PCA handles the useless and redundant 

data from the dataset (Poornima and Paramasivan, 2020). The originals variables that 

belong to a shaft system X with p dimension are transformed into a new shaft system Z, 

which is a linear combination of the variables in X as represented by the equation 1 

(Matloff, 2017):  

 

Zi=ai1X1+ai2X2+...+aipXp(X,X) …………………………………………………………..(1) 

 

The principal components of shaft system Z are obtained from the eigenvalues of 

a covariance sample matrix. The covariance matrix is symmetric and is described as 

follow: 

 

𝐶 = [

𝑐11 𝑐12 ⋯ 𝑐1𝑝
𝑐21
⋮

𝑐22 …

⋮ ⋱

𝑐2𝑝
⋮

𝑐𝑛1 𝑐𝑛2 … 𝑐𝑛𝑝

] 
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Where the Cjj elements on the main diagonal are the variance of Xi (var(Xi)) and 

the Cij on the secondary diagonal represent the covariance between variables Xi and Xj 

(cov (Xi, Xj)). 

The PCA simplified the dataset visualization. The abnormalities under study can 

be developed over time, such as scaling and hydrate production, or they can be 

spontaneous like spurious closure of DHSV. Flow instabilities and severe slugging 

depend on the flow conditions. An abrupt increase in BSW occurs when the injection 

water reaches the production well or when the aquifer reaches the pay zone. Well 

production depends on many factors, such as reservoir static pressure, BSW content, fluid 

viscosity, production tubing and flowline diameter, and so on (Devold, 2013). Therefore, 

alterations in these properties can lead to a lower flow rate and even to a production 

shutdown.  

 

2.2 REGRESSION LOGISTIC 

Another statistical approach often used in classification problems is Logistic 

Regression (LR), once it can be used for determining probability and for classification 

purposes (Zhou et al, 2014). The LR aims to explain the occurrence of events when the 

output variable is binary such as “male” and “female”, “yes” and “no” or “high” and 

“low” (Nardi et al., 2019). The "normal" and "abnormal" classification are adopted in the 

present paper by checking the probability of an event occurrence using a logistic function. 

The predictive variable takes values between 0 and 1, representing which class one unit 

belongs to. For any Z value between −∞ and +∞, the logistic function shows what is the 

probability of one unit be part of class 0 (normal) or 1 (abnormal), as shown in Figure 1.  

 
Fig. 1— Classes distribution in a Logistic Regression 
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2.3 METHODOLOGICAL APPROACH 

Statistical tools as PCA and logistic regression were applied in a dataset published 

by Vargas et al (2019) which contains real data from offshore oil wells and is divided by 

anomaly type. There are seven types of anomalies; abrupt increase in BSW (Basic 

Sediments and Water), spurious closure of the Downhole Safety Valve (DHSV), severe 

slugging, flow instability, rapid production loss, quick restriction in the production choke, 

scaling in the production choke and hydrate in production line; in addition, there is also a 

file with normal condition data for the different wells available in the dataset. Moreover, 

depending on the type of anomaly, different sensors could be arranged to better identify 

the change from normal production condition to an abnormal regime. 

Thus, using a single file concatenating all wells with the same type of anomaly  

were carried out. The experiments also focused on the difference between subsea and 

topside sensors, transient data evaluation, and well behavior under specific failure modes. 

After that, according to the best sensor's combination based on PCA and logistic 

regression algorithms, some assumptions were raised and tested relating to how much 

time a well stands in a steady normal condition and how wells that contain the same type 

of anomaly works together. Then, the benefits of using PCA and Logistic Regression for 

increasing detection capability are discussed. Here, the main goal is understanding when 

and how pressure and temperature sensors indicate that a well is not producing in its 

normal condition. For this reason, the transient condition is also regarded as a fault 

condition because it shows early signals that sensors are out of their normal behavior. The 

following chart displays the methodological structure of this paper. Using the dataset 

published by Vargas et al (2019), two sets of experiments were fulfilled. The first regards 

PCA application and the second combines PCA and Logistic Regression. 

The experiments were divided into: sensors analysis, transient data evaluation, 

analysis of how different wells behavior under the same abnormality type, normal 

condition validation, and logistic regression application. Starting with sensor analysis, it 

is shown that there is a possibility of an existing difference between topside and subsea 

sensors' timing to perceive some anomalies. The evaluation of transient data meant to 

identify the significance of the transition stage between the normal and abnormal situation 

in an attempt to identify if there is typical transient behavior for each failure mode. After 

a better understanding of variables and the influence of transient data, the study proceeded 

with the analysis about wells’ behavior considering each type of anomaly. And, to finish 

the experiments, an R script executed the logistic regression in the dataset considering all 
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classes (normal and not normal behavior) to better detect when the system goes outside 

the normal situation region.  

 
Fig. 2— Methodological flowchart 

 
 

3 DATA ORGANIZATION 

All data used to run an analysis with the Statistica software are from the work of 

Vargas et al (2019). The paper brought a realistic dataset with rare undesirable real events 

that happen during the production of oil wells. Vargas et al. (2019) generated a dataset 

for applications in machine learning algorithms, providing more data available for 

abnormal events management. 

The variables are measured in sensors located in the production tubing (P-PDG), 

on the subsea Christmas tree (P-TPT and T-TPT), production line (P-MON-CKP and T-

JUS-CKP), and gas lift line (P-JUS-CKGL, T-JUS-CKGL, and QGL). These variables 

correspond to pressure at the Pressure Downhole Gauge, pressure and temperature at 

Temperature and Pressure Transducer, pressure upstream the PCK, temperature 

downstream the PCK, pressure downstream gas lift choke, temperature downstream, and 

gas lift flow, respectively. The authors published a dataset about 8 rare undesirable events 

that occur in oil wells such as abrupt increase of BSW, spurious closure of DHSV, severe 

slugging, flow instability, rapid productivity loss, quick restriction in PCK, scaling in 

PCK, and hydrate in a production line. The total number is 21 of real and 939 for 

simulated wells from OLGA considering that a different simulation needs to be done for 

each problem (Vargas et al., 2019).  
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4 EXPERIMENTS 

As shown in Figure 2, the experiments carried out were designed to test the 

following hypotheses:1- Are subsea sensors able to detect anomalies, such as hydrate 

formation, first than topside sensors? 2- Does the transient information, data between 

normal and abnormal status, provide useful knowledge about the anomaly that is taking 

place? 3- How different wells behavior when presenting the same type of anomaly? 4- 

The normal condition stays valid for how much time?. Then, the Logistic Regression was 

applied in the PCA dataset with both topside and subsea sensors. In the attempt to improve 

the result obtained by the model, subsea and topside sensors combined by PCA were also 

used separately. 

 

5 RESULTS 

The results obtained by following the workflow shown in Figure 2 are displayed 

in the next five sections. The first section addresses the analysis of subsea and topside 

sensor’s reaction time using logistic regression. The second section shows the usefulness 

of transient data, it presents a PCA application for two wells with hydrate formation 

problem. In the next section, using datasets composed by different wells with the same 

production anomaly, it verified if these wells will present close clusters of data, showing 

then similarities, that would enable to characterize the type of failure based on well 

information. Moreover, in order to check how much the well’s normal standard changes 

during the production time, one section discussing the validity period of the normal 

condition data for a given well is also presented. Furthermore, combining the datasets 

transformed by PCA and applying the logistic regression algorithm, the results show the 

impact in logistic regression classification using all sensors mixed and separating them in 

groups. 

 

5.1 SENSOR’S ANALYSIS 

The sensors studied by this work are from topside sensors (QGL, P-MON-CKP, 

T-JUS-CKP, P-JUS-CKGL, T-JUS-CKGL) and subsea sensor (PDG, P-TPT, T-TPT). 

For hydrate formation problems, the accumulation of crystals occurs in low temperature 

and high-pressure environments. During offshore oil and gas production, hydrate 

formation is observed in the subsea region. Then, applying LR in the complete dataset it 

is possible to check when the initials signs of hydrate blockage are detected. Figure 3 

shows the data variability for topside and subsea sensors applied in logistic regression, 
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the vertical label presents the empirical probability of an input data belongs to normal (0) 

or abnormal (1) conditions. In the temporal manner, the firsts evidences of hydrate 

formation are registered by the subsea sensors as depicted by the first graphically 

anomaly. The second anomaly represents the impact of hydrate blockage in topside 

sensors. The logistic regression model in red is mostly overlayed by the data itself. 

Initially, the model identify the well normal condition and, after an anomaly is registered 

in the subsea sensors, the LR model assigns the remaining data as abnormal condition. 

 
Fig 3– Subsea and topside variables behavior with time from hydrate formation data. The y-axis represents 

the empirical probability provided by logistic regression, while the x-axis shows the time recording. 

 
 

5.2 TRANSIENT DATA EVALUATION 

Splitting sensors in topside and subsea groups or using all variables together, 

according to each type of abnormality, it is possible to evaluate the influence of transient 

data.  Figure 4 relates the transient data of wells 20 and 21, two wells containing hydrate 

formation, with all variables (QGL, P-MON-CKP, T-JUS-CKP, P-JUS-CKGL, T-JUS-

CKGL, PDG, P-TPT, T-TPT) put together. The figure axes display factors 1 and 2 from 

the PCA combination of variables, these two factors are responsible for explaining most 

of the data variability. As it is shown, the transient data do not display a pattern. The same 

result can be seen while separating subsea and topside variables from these two wells. 

Also, it can be implied that well 20 shows more variability than well 21. The scale for 

these two wells is very different, some hypotheses are that they have different geometry, 

production fluid, production time or they are in different reservoirs. However, the dataset 

published by Vargas et al (2019) does not include specific information about the wells 

used. 
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Fig. 4 -Transient data comparison between two wells containing hydrate problem with all sensors data 

together. The axes display factor 1 and 2 from PCA combination of variables. 

 
 

5.3 DIFFERENT WELLS UNDER THE SAME ABNORMALITY 

For the analysis of different wells with the same type of problem, it was considered 

just the "abnormal" class denominated by the problem number. The scaling in PCK 

dataset did not have the "abnormal" class, just "normal" and "transient" for more than one 

well, so it is not possible to compare two wells under this condition. Excluding the 

problem of scaling in PCK, six experiments showed that even for different wells, 

disregarding the normal condition for each of them, the abnormal class does not vary 

significantly as displayed in Figure 5. On the left side, it shows seven wells, represented 

by the blue cluster, with flow instability issues, and, on the right, six wells showing 

problems in the DHSV. 

 
Fig. 5 – Seven different wells with flow instability problem (left) and six different wells with a problem on 

the DHSV (right) 
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5.4 NORMAL CONDITION VALIDATION 

Oil and gas reservoirs change their pressure and production rate during production 

time. With more fluids out the reservoir less static pressure it presents, decreasing the 

production rate (Rosa et al, 2009). Because of this change in pressure level, it is important 

to update periodically the normal condition status. Figure 6 shows how the normal 

condition changes in months of production. The first plot shows the same well with data 

from almost one month apart, clusters blue (reference) and red, presenting modification 

in its normal condition. The second plot adds more data from another month. As the x-

axis indicates the difference between these three clusters of the normal condition is 

growing apart in distance.  

 
Fig.6 – Normal condition shifting through production time. 

 
 

5.5 LOGISTIC REGRESSION APPLICATION RESULTS 

The scope of this work is to present assumptions that can improve significantly 

the modeling strategy for anomaly detection in oil wells. The dataset used here includes 

three classes “normal”, “transient” and “abnormal”. The main goal of a detection 

algorithm must be alarm when the data step out of the normal condition of a given 

operation. Therefore, the "transient" and "abnormal" classes were mixture together, 

leaving the algorithm to detect everything that is not a "normal" class. The Logistic 

Regression is a technique applied for binary classification as shown in figure 1; it provides 

the probability of a given point being part of a specific cluster or category. The categories 

for our analyses, after combining "transient" and "abnormal" classes in one are "normal" 

and "abnormal". Logistic regression was applied to each abnormality that presents the 

classes of interest.  
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5.6 LOGISTIC REGRESSION APPLIED TO PCA: SUBSEA AND TOPSIDE 

SENSORS EXPERIMENT 

The variables combined by PCA were used as an input into the Logistic 

Regression model. Figure 7 shows three variables factor maps regarding hydrate 

problems. These maps provide a projection view of the observed variables into the plane 

spanned by the first two principal components. The projection view highlights the 

structural relationship between variables and the components; it allows one to read 

directly from the map the correlation between the variable and the component. The first 

map (Fig7.A) takes all variables available and plots their correlation with the first two 

components. Thus, one can see that the first principal component explains about 67% of 

the total variation, and the second principal component an additional 23%. The first two 

principal components explain about 90% of the total variance.  The first component 

correlates almost perfectly with the variables P.PDG and P.TPT. Meanwhile, the second 

component correlates directly with Q.GL and inversely with P.JUS.PCK; suggesting that 

there is a correlation with these groups of variables. Then, after splitting the variables, 

one set of subsea variables was plotted in a variables factor map, as shown in Figure 7.B. 

The new variable set resulted in a different combination of components, now the first 

component explains around 94% and the second component explains about 5%, totaling 

99%. This shows that using this new set of variables covers better the data variability than 

using all data available. On the other hand, figure 7.C presents the group of topside 

variables and the correlation of the principal components. The total variance explained 

was about 96%, also a better performance than using all variables together. 

 
Fig. 7- PCA Variables map for; (A) all variables, (B) subsea variables, and (C) topside variables regarding 

hydrate formation 
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After the PCA analysis, the variables were tested with logistic regression to see if 

splitting variables in groups would impact the classification. The use of all variables 

combined by PCA did not improve the model, indicating that at least one sensor is not 

contributing positively in the modelling. Indeed, using all sensor together caused 

undesirable fluctuation. The model created by combining all sensors showed when the 

normal condition is over and starts to achieve the abnormal level, as displayed in Fig. 1, 

however, at some short and nonconsecutive intervals, it states the operation is under 

normal condition while it is showing failures evidence. This behavior in a detection 

system generates false negative alarms. Therefore, a dataset separating subsea sensors 

from topside sensors were used in an attempt to improve the modelling. When using just 

subsea sensors, the model classifies better normal and abnormal conditions, without false 

negative intervals, for hydrate problems. Furthermore, splitting the variables into topside 

and subsea variables can be an interesting strategy for building fault detection systems 

regarding hydrates problems, for example. The workflow presented in Figure 2 regarding 

the LR application can be tested for others anomalies and verify whether combining every 

sensor available will increase the model accuracy or not. Moreover, testes separating 

smaller groups of sensors can be also carried out to isolate sensor causing undesirable 

disturbances. 

Considering just topside variables, the model does not show two distinct levels, 

normal and failure, with false positive or negative intervals, it presents random behavior. 

This suggests that the topside variables included in the PCA dataset may have a factor 

that disturbs the classification. Splitting topside variables in pars and testing the LR 

model, the gas lift rate and pressure shown to be good variables for the classification 

model. Other tests have shown that P.MON.CKP is not a good variable for hydrate 

detection, maybe it presents an erratic behavior because of unstable flow conditions 

through the sensor. 

Different outcomes were observed when applying the same methodology for high 

BSW and DHSV failure data. The PCA variables map for BSW shows a different 

correlation between the variables available. In this case, there is no direct correlation 

within subsea or topside variables that suggest they should be break into two groups. The 

first component combines subsea and topside sensors of temperature and pressure, 

explaining 68% of the total variance, while the P.JUS.CKGL stands alone for the second 

component which explains 20% of data variability. Then, using the LR to classify BSW 

failures with the PCA variables as input presented good results. Similar to Fig. 1, the 
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normal region migrated to the fault region without disturbance. For the BSW case, it was 

also tested the possibility to work with subsea and topside variables apart, the results 

exhibit that even using sub-groups of subsea or topside variables or mixing them the LR 

classification still shows good performance. Also, for DHSV failure data variables from 

topside and subsea sensors worked together in the LR model. PCA variables' map for this 

type of anomaly has shown that the first principal component takes pressure and 

temperature variables from both locations and the second component accounts only for 

temperature in the production choke. 

 

6 DISCUSSION 

According to Figure 3, the change in data status for subsea sensors occur first than 

the topside sensors for hydrate formation problems, as represented by the first drawdown. 

This fact can be related to the physical nature of the abnormality, some of them can take 

place near the subsea ground condition and subsea sensor can get them first. For this 

reason, further analyses were carried out dividing the dataset into topside and subsea 

variables and testing the impact on using two groups of sensors. Subsea and topside 

variables drift in time; depending on the anomaly type, it can be first sensed in one set of 

variables and after some time the other set would get the fault's signal. Therefore, for 

hydrate detection would be interesting to build a warning system with two independent 

approaches: an alarm based on subsea variables and another based on topside variables to 

complement each other. 

In Fig.4, the data variability is plotted by time does not go in a single direction. 

The curve plotted goes forwards and backward in an unpredictable matter. Because of 

this behavior, it is not easy to predict which abnormality is going to take place during the 

oil production just using the transient data from wells. 

Different wells under the same type of problem present similarities, shown by the 

distance between each cluster printed in Figure 5. It displays low variability between 

several wells; the distance between clusters is very low compared to the scale seeing 

before. Also, all the other abnormalities show the same behavior. The maximum 

variability can be observed at the production loss problem; however, this distance is just 

a few units higher than presented in Fig. 5.  

To build a model for anomaly detection it necessary to know what is the normal 

behavior of a given well. Suppose the model used to detect anomalies has not to update 

on well normal condition, the clusters of the normal condition can be shifted and, then, 
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mistaken with an anomaly occurrence, when the case is that the well has new normal 

condition parameters, as pressure and temperature levels. Updating the well’s normal 

condition within the model means keeping its ability to identify failures at any time of 

well production life. 

After testing the hypotheses above, Logistic Regression was applied to each type 

of anomaly that presents the classes of interest. As output, the model detected, whether 

the system was in normal condition or it was showing signs of abnormal behavior. The 

first step to implement LR model was to understand how topside and subsea variables 

were connected in each case by using the PCA variables' map. For hydrate formation 

problems, the best approach was splitting the dataset to improve LR classification. For 

BSW and DHSV problems, for example, the use of both groups did not interfere in LR 

outcome. 

 

7 CONCLUSIONS 

The methodology presented in this paper showed that PCA can be used to 

determine distances from real-time data to a specific failure cluster. In some real cases, 

clusters with failure data may not be available. Mostly because some wells will take a 

long time until developing an anomaly, scaling for example, or for new wells there will 

be no failure information available to train models. To overcome this obstacle, it is 

recommended to train models with the normal class only. For every well, engineers and 

operators will have in hands information about the well normal condition. Also, it is 

important to update this cluster periodically, once normal conditions in a well can change 

with reservoir depletion.   

The PCA coupled with Logistic Regression can provide an outlook about which 

is the best set of variables for detection and classification purposes. For BSW and DHSV 

failures it showed that subsea and topside variables could work together without 

disturbing the LR outcome. On the other hand, for hydrate formation cases PCA showed 

correlations within subsea topside variables, endorsing that working with these two 

groups apart could be a better alternative. In this case, an advantage of using the separated 

alarm for the subsea and topside variables is that mature and new wells will both have at 

least topside variables. For old wells, subsea variables will not be reliable or available in 

some cases. On the other hand, the drawback is that instead of just a model, the operator 

will have two models to update, training and test. 
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