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ABSTRACT 

The vegetation index (VI) generated from orbital images are essential tools to identify the spatial 

variability of the crops. The objective of this study was to evaluate the spatial variability of sugarcane 

fields using imagery data. Also, to explore the ideal period to correlate the Normalized Difference 

Vegetation Index (NDVI), Normalized Difference Red-Edge Index (NDRE) and Wide Dynamic Range 

Vegetation Index (WDRVI) with sugarcane yield. Four fields were selected in the state of São Paulo 

(56.37 ha) during the 2017/2018 and 2018/2019 growing seasons, as well as five fields in the state of 

Goiás (86.86 ha) during the 2019/2020 growing season. The VIs were calculated using orbital images 

from Sentinel-2 (spatial resolution of 10 m). The yield data were generated by a commercial sensor-

system installed on the harvesters with a resolution of 0.20 Hz. Yield data were filtered and interpolated 

using the same resolution of the orbital images. Pearson's correlation was calculated between the yield 

and the VIs for each orbital image. The considered VIs were able to identify the spatial variability of 

sugarcane fields with coefficients of correlation of 0.95 and 0.96. The sugarcane stalks growth was the 

best period to correlate the VIs and the yield maps among the analyzed fields. 

 

Keywords: precision agriculture, remote sensing, vegetation indexes, yield. 

 

RESUMO 

 Os índices de vegetação (IV) gerados a partir de imagens orbitais são ferramentas essenciais para 

identificar a variabilidade espacial das culturas. O objetivo deste estudo foi avaliar a variabilidade 

espacial de lavouras de cana-de-açúcar por meio de imagens orbitais. Assim como, explorar o período 

ideal para correlacionar Normalized Difference Vegetation Index (NDVI), Normalized Difference Red-

Edge Index (NDRE) e Wide Dynamic Range Vegetation Index (WDRVI) com a produtividade da cana-

de-açúcar. Foram selecionados quatro talhões no estado de São Paulo (56,37 ha) durante as safras 

2017/2018 e 2018/2019, bem como cinco talhões no estado de Goiás (86,86 ha) durante a safra 

2019/2020. Os IVs foram calculados utilizando imagens orbitais do Sentinel-2 (resolução espacial de 

10 m). Os dados de produtividade foram gerados por meio de sensores comerciais instalados nas 

colhedoras com resolução de 0,20 Hz. Os dados de produtividade foram filtrados e interpolados com a 

mesma resolução das imagens orbitais. A correlação de Pearson foi calculada entre a produtividade e 

os IVs para cada imagem orbital. Os IVs avaliados foram capazes de identificar a variabilidade espacial 

dos canaviais com coeficientes de correlação de 0,95 e 0,96. O período de crescimento dos colmos da 

cana-de-açúcar foi considerado como sendo o melhor para correlacionar os IVs com os mapas de 

produtividade nos talhões analisados. 

 

Palavras-Chave: agricultura de precisão, sensoriamento remoto, índices de vegetação, produtividade. 

 

 

 

1 INTRODUCTION 

Brazil is the world's major producer of sugarcane followed by India and China (FAO, 2018). 

The first production forecast of 2020/2021 season is about 642.07 million tons of sugarcane 

(Saccharum officinarum L.) with an average yield of 76.35 t ha-1 (CONAB, 2020). The sugarcane 

development cycle is divided in sprouting, tillering, stalk growth and maturation stages. The first phase, 

sprouting, lasts about 30 days after cutting (DAC); the tillering occurs since 30 up to 120 DAC; the 
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stalk growth starts at 120 DAC and can achieve until 270 DAC; the last phase before harvester, 

maturation, occurs between 270 and 360 DAC (DIOLA and SANTOS, 2010). 

 The sugarcane vegetative growth is irregular over the production fields (AMARAL et al., 

2015a). This is variability enables the use of precision agriculture (PA) practices, based on monitoring 

the spatial and temporal variability looking for management strategies to maximize profitability and 

minimize negative environmental impacts with the rational use of agricultural inputs (MOLIN et al., 

2015). However, the sugarcane producers yet do not use yield maps (AMARAL et al., 2015b), which 

is the most important data in crop management, as it is the response of the crop to the management 

carried out. Traditionally, a low data density has been used for the decision-making process, not useful 

for PA applications, which needs a dense and spatialized data. Bramley (2009) states that the 

identification of the spatial variability of fields and the measurement of agricultural production can be 

performed by indirect methods, such as remote sensing (RS) techniques. 

The correct use of orbital images can improve the traditional methods of crop monitoring and 

together with other data sources; it can be used to predict crop yields (RAHMAN and ROBSON, 2016; 

DALLA MARTA et al., 2013; LIAQAT et al., 2017; NAGY et al., 2018). The acquisition of orbital 

images during the production phase and over the production years, allows the temporal evaluation of 

the biomass variability of agricultural crops (MOREL et al., 2014). Kayad et al. (2018) used Sentinel-

2 images and machine learning techniques to assess corn yield variability at field scale. Moreover, 

temporal RS data, combined with yield and soil characteristics, can be used to identify different 

management zones (MZ) within the fields (MULLA, 2013). 

Fernandes et al. (2017) showed that VIs calculated from orbital images could infer about 

sugarcane yield. NDVI has been one of the most common VI to estimate plants biomass; however, this 

VI is susceptible to the saturation effect, which intensifies with the increase in the leaf area index and 

with large biomass production, like sugarcane (RAHMAN and ROBSON, 2016). Amaral et al. (2015b) 

found that NDRE is less susceptible to saturation effect than NDVI because it normally reaches the 

maximum value at a more advanced sugarcane stage. The NDVI is a benchmark for the development 

of new VIs (HATFIELD et al., 2008) with specific changes in the weight of some spectral bands, such 

as the WDRVI (SAKAMOTO et al., 2011; SAKAMOTO et al., 2013). However, there are limited 

studies in the literature relating sugarcane canopy reflectance, and high-resolution spatial yield data 

(ABDEL-RAHMAN and AHMED, 2008). The objective of this study was to explore the best period, 

within the development cycle of sugarcane, to correlate the VIs generated from high-resolution imagery 

data with yield data. 
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2 MATERIAL AND METHODS 

Four fields (56.37 ha) were selected in São Manuel, São Paulo, Brazil. The climate is classified 

as Cfa according to the Köppen's climate classification (ALVARES et al., 2013). Also, five fields 

(86.86 ha) were selected in Chapadão do Céu, Goiás, Brazil. According to Alvares et al. (2013) the 

climate is classified as Am. Both commercial areas were mechanically harvested, and the row spacing 

adopted was 1.50 m. The 2017/2018 (São Manuel, São Paulo), 2018/2019 (São Manuel, São Paulo), 

and 2019/2020 (Chapadão do Céu, Goiás) growing seasons were named as scenarios A, B, and C, 

respectively. Table 1 describes the characteristics of the selected sugarcane fields. 

 
Table 1. Study scenarios and characteristics of the selected sugarcane fields 

¹Date of reference considered to calculate the days after cutting for each orbital image 

 

The spatiotemporal analyses of the VIs were performed considering the 12-month cycle of the 

crop, identifying each period by the DAC, according to the classification of Diola and Santos (2010). 

The Sentinel-2 data was downloaded from EarthExplorer website (https://earthexplorer.usgs.gov/) 

selecting low cloud cover (<1%) of the areas of interest. There were used 30, 33 and 15 orbital images 

in scenarios A, B, and C, respectively. Each field was delimited by a polygon, removing data from 

borders of internal roads (internal buffer of 5.0 m). Table 2 describes the spectral bands used in the 

study and the respective resolutions. The radiometric correction of the images was performed with the 

free Semi-Automatic Classification plugin (CONGEDO, 2016) in QGIS 3.4 (Open Source Geospatial 

Foundation, Beaverton, USA) which provides tools for atmospheric/radiometric correction to the 

original orbital images. 

 

 

 

Scenario Field Area (ha) Variety Ratoon Harvest date¹ 
Geographical 

coordinates 

A 

F1 13.97 

SP-832847 4th 10/14/2017 
22° 41’ 25.48” S; 
48° 16’ 42.89” W 

F2 11.70 
F3 12.65 

F4 18.05 

B 

F1 13.97 

SP-832847 5th 11/11/2018 
22° 41’ 25.48” S; 

48° 16’ 42.89” W  

F2 11.70 

F3 12.65 

F4 18.05 

C 

F1 10.77 

RB-55156 4th 05/31/2019 
18° 01’ 37.96” S; 

52° 39’ 10.94” W 

F2 5.26 

F3 22.02 

F4 18.26 

F5 30.55 



Brazilian Journal of Development 
 

     Braz. J. of  Develop., Curitiba, v. 6, n.12, p.100266-100280   dec. 2020.               ISSN 2525-8761 

 
 

100270  

Table 2. Spectral bands resolution of Sentinel-2 

 Resolution 

Spectral 

Bands 

Central wavelength 

(nm) 
Spatial (m) Temporal (days) Radiometric (bits) 

B4 - Red 665 
10 

5 12 B8 - NIR 842 

B5 - Red-edge 705 20 

Red = reflectance in the red region; Red-edge = reflectance in the transition region between red and near infrared; NIR = 

reflectance in the near infrared region 
 

 

The NDVI (ROUSE et al., 1974), NDRE (BARNES et al., 2000), and WDRVI (GITELSON, 2004) were 

calculated according to equations 1, 2 and 3, respectively, for all orbital images. 

 

 

where: Red = reflectance in the red region (~ 665 nm); Red-edge = reflectance in the transition region 

between red and near infrared (~ 705 nm); NIR = reflectance in the near infrared region (~ 842 nm). 

Gitelson (2004) recommended the weighting coefficient (a) between 0.10 and 0.20 for WDRVI 

calculation. Maresma et al. (2016) stated that the most appropriate weighting coefficient to estimate 

the nitrogen dose and corn yield was 0.10. Therefore, the value of 0.10 was assumed for the weighting 

coefficient of WDRVI. 

The yield data was generated by a commercial sensor-system (Solinftec, Araçatuba, São Paulo, 

Brazil) installed on the harvesters. The data was georeferenced by a GNSS- RTK (Real Time 

Kinematic) receiver. The frequency of data acquisition was 0.20 Hz, and the travel speed of the 

harvester was about 1.25 m s-1. The original yield data were filtered to eliminate the outliers using the 

methodology described by Maldaner and Molin (2020), and the interpolation was performed using 

Vesper 1.6 software (MINASNY et al., 2006) considering the kriging method, which considers the 

spatial dependence between the points. The semivariogram model adopted was that with the lowest 

Root Mean Square Error (RMSE). The spatial resolution of the generated yield maps was 10 m, the 

same spatial resolution of the orbital images. The pixel by pixel correlation between the yield and VIs 

maps was calculated using Pearson's correlation coefficient (r) using the software RStudio (Integrated 

Development for R, Boston, USA). 
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3 RESULTS AND DISCUSSION 

The descriptive statistics of the yield maps for scenarios A, B and C are shown in Table 3. The 

average yield of the scenario A was 64.04 t ha-1, and in scenario B was 70.47 t ha-1. For the scenario C 

was 94.95 t ha-1. The difference between the average yield of the scenarios A and B was 6.43 t ha-1 (the 

same production environment). The yield difference between the scenarios A and C was 30.91 t ha -1, 

and between the scenarios B and C was 24.48 t ha-1. Thus, it is noted that scenario C had higher average 

values of yield than scenarios A and B. 

  
Table 3. Descriptive statistics of sugarcane yield data for each field from different scenarios 

  Yield (t ha-1) 

Scenarios  Field 1 Field 2 Field 3 Field 4 Field 5 

A 

n 1,369 1,138 1,245 1,779 - 

Mean 63.99 64.26 65.07 62.84 - 

Median 65.24 64.54 64.82 63.00 - 

Minimum 42.74 50.02 46.28 49.19 - 

Maximum 79.46 76.51 81.97 75.21 - 

SD 6.61 4.95 6.68 4.56 - 

CV (%) 10.33 7.71 10.26 7.26 - 

B 

N 1,399 1,165 1,267 1,807 - 

Mean 72.28 75.76 71.69 62.14 - 

Median 71.57 76.61 74.30 62.96 - 

Minimum 10.28 0 15.89 0 - 
Maximum 95.27 110.65 102.02 93.31 - 

SD 7.54 14.21 14.19 9.57 - 

CV (%) 10.43 18.76 19.79 15.41 - 

C 

n 1,074 526 2,203 1,827 3,056 

Mean 95.16 95.62 95.66 97.49 90.81 

Median 95.63 95.66 96.94 98.40 91.58 

Minimum 87.04 89.79 81.90 86.17 79.17 

Maximum 99.80 99.53 105.22 105.64 105.04 

SD 2.66 1.50 4.59 4.58 4.90 

CV (%) 2.80 1.57 4.80 4.69 5.39 

n: number of samples; SD: standard deviation; CV: coefficient of variation 

 

  

The coefficient of variation (CV) is an indicative of variability. The yield data variability was 

low, according to Pimentel-Gomes and Garcia (2002) criteria, in Fields 2 and 4, and moderate for 

Fields 1 and 3 in the scenario A; moderate in all fields of scenario B and low in all fields of scenario 

C, where also the difference between the average yield was relatively low, varying between 90.81 t ha-

1 and 97.49 t ha-1. 

The semivariogram model for yield data was the exponential in scenario A, with the lowest 

RMSE (0.83 t ha-1), and in scenario B with an RMSE of 6.44 t ha-1. For the scenario C, the spherical 

model showed the lowest RMSE (0.19 t ha-1). The geostatistical analysis showed the yield was spatially 
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more dependent in scenarios A and C than in B, due to the lower variation of the nugget effect (KARP, 

2018). Table 4 shows the semivariogram parameters obtained for yield data from three study scenarios. 

  
Table 4. Semivariogram parameters for interpolation of sugarcane yield data 

Scenarios Model Nugget RMSE (t ha-1) Sill Range (m) 

A Exponential 10.48 0.83 53.00 55.57 

B Exponential 540.60 6.44 929.20 19.31 

C Spherical 26.04 0.19 50.59 233.40 

RMSE: root mean square error 

 Figures 1, 2 and 3 show the average values of NDVI, NDRE and WDRVI as a function of DAC 

of the analyzed fields, as well the coefficients of correlation between the VIs and the sugarcane yield 

data for scenarios A, B and C, respectively. 

 

Figure 1. Average values of the VIs and coefficients of correlation for field 1 (a); field 2 (b); field 3 (c); field 4 (d) in the 

study scenario A 
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Figure 2. Average values of the VIs and coefficients of correlation for field 1 (a); field 2 (b); field 3 (c); field 4 (d) in the 

study scenario B 

 

 

Figure 3. Average values of the VIs and coefficients of correlation for field 1 (a); field 2 (b); field 3 (c); field 4 (d); field 5 

(e) in the study scenario C 

 



Brazilian Journal of Development 
 

     Braz. J. of  Develop., Curitiba, v. 6, n.12, p.100266-100280   dec. 2020.               ISSN 2525-8761 

 
 

100274  

High correlation values between the VIs and the sugarcane yield during the sugarcane stalks 

growth, and at the beginning of maturation stage, were observed. For scenario C, in addition to the 

stalk growth stage and in the initial stage of maturation, there was a high correlation during the tillering 

crop stage. Therefore, the sugarcane stalks growth was the best correlation period found, since it was 

repeated in the three scenarios among the results. 

NDVI shows greater reflectance values than NDRE. According to Lucas and Schuler (2007) 

the highest average values of NDVI occur during the sugarcane vegetative period, from 120 to 270 

DAC. A decrease for average values of the VI during the maturation stage, from 270 DAC, was 

observed. The VI showed the best correlations with yield predominantly in the period of growth of 

sugarcane stalks in all the study scenarios and fields. Amaral et al. (2015b) obtained reasonable 

correlation (r = 0.81) for both NDVI and NDRE from canopy sensors and biomass when the sugarcane 

stalk height was 0.5 m. Rocha et al. (2019) identified that NDRE associated with the number and height 

of the sugarcane stalks, can assist in the prediction of biomass in the early stages of the crop. 

Sugarcane yield maps; NDVI at 133, 158, 193 and 273 DAC (Fields 3, 1, 2 and 4 respectively); 

NDRE at 153, 158, 248 and 278 DAC (Fields 3, 1, 2 and 4 respectively); and WDRVI at 133, 158, 193 

and 273 DAC (Fields 3, 1, 2 and 4 respectively) in the study scenario A are shown in Figure 4 (variables 

with the highest correlation with sugarcane yield data). 

Figure 4. Sugarcane yield maps (a); the VIs maps as a function of DAC in the study scenario A for NDVI (b); NDRE (c); 

WDRVI (d) 
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Sugarcane yield maps; NDVI at 225, 225, 240 and 240 DAC (Fields 2, 4, 1 and 3 respectively); 

NDRE at 160, 165, 225 and 240 DAC (Fields 1, 4, 2 and 3 respectively); and WDRVI at 175, 225, 240 

and 240 DAC (Fields 4, 2, 1 and 3 respectively) in the study scenario B are shown in Figure 5 (variables 

with the highest correlation). 

 
Figure 5. Sugarcane yield maps (a); The VIs maps as a function of DAC in the study scenario B for NDVI (b); NDRE (c); 

WDRVI (d)  

 
 

  

Sugarcane yield maps; NDVI at 75, 125, 155, 285 and 300 DAC (Fields 4, 5, 1, 3 and 2 

respectively); NDRE at 105, 110, 125, 125 and 285 DAC (Fields 4, 2, 1, 5 and 3 respectively); and 

WDRVI at 105, 125, 175, 230 and 285 DAC (Fields 4, 2, 1, 5 and 3 respectively) in the study scenario 

C are shown in Figure 6 (variables with the highest correlation). 
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Figure 6. Sugarcane yield maps (a); The VIs maps as a function of DAC in the study scenario C for NDVI (b); NDRE (c); 

WDRVI (d) 

 

The VIs had potential to identify the spatial variability of sugarcane fields, since the yield was 

acquired using data in high-resolution (about 200 final points ha-1). One of the reasons is the time slot 

between the last reasonable reflectance data from canopy and harvest, normally under dry conditions, 

what makes it challenging to predict yield with good accuracy, but it has already been useful to identify 

spatial variability of the sugarcane fields. 

From the VIs maps it is possible to identify the spatial variability inherent to the fields, 

demonstrating that the sugarcane yield and the crop vigor were not uniform. The presence of locals 

with higher or lower yield can be caused by different agronomic factors (soil, weather, etc.), which 

need further investigation. Spatial variability can be explored by developing management strategies at 

low resolution, such as considering the range values of yield, with regions of the field separated into 

MZ, or by a pixel resolution, with different amounts of inputs and other treatments (ADAMCHUK et 

al., 2004). The VIs also can be useful to outline MZ because they identify different spectral behaviors 

of the crop development over the season (ZHANG et al., 2010; CHANG et al., 2014). 
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The results of this study indicate that the real yield data is necessary to relate it with RS 

information and more investigation is necessary to identify the potential of high-resolution images for 

estimating sugarcane yield. In parallel, agronomic investigations are requirement to identify factors 

that cause spatial variability of crop yield to support in decision-making process for optimizing 

sugarcane production. 

 

4 CONCLUSION 

 The spatial variability of sugarcane fields was verified qualitatively from the VIs generated 

based on orbital images from Sentinel-2. The level of the spatial variability on sugarcane fields was 

determined considering the sugarcane yield and the VIs maps for different scenarios. The best period 

to correlate sugarcane yield and VIs was during the sugarcane growth stalks stage. NDVI was that 

demonstrated the highest spatial correlation values. 
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