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RESUMO 

O trabalho expõe um estudo do modelo matemático não linear de crescimento tumoral, proposto por 

Kolev e Zubik-kowal (2011). O modelo é descrito por um sistema composto de quatro equações 

diferenciais parciais que representam a evolução da densidade de células cancerígenas, densidade da 

matriz extracelular (MEC), concentração de enzima degradativa da matriz (EDM) e concentração dos 

inibidores teciduais de metaloproteinases. Para fins de simulações numéricas utiliza-se o método de 

diferenças finitas, em que os termos temporais das equações são discretizados utilizando um método 

de dois estágios. Nos termos espaciais, são utilizadas diferenças finitas centrais. Apresenta-se um 

estudo de convergência numérica para o esquema proposto, utilizando soluções analíticas fabricadas 

em uma geometria retangular. Por fim, realiza-se simulações do modelo de crescimento tumoral, 

utilizando uma malha não regular que representa a geometria de uma mama feminina. Para simular o 

modelo na geometria não regular, emprega-se a técnica que consiste em aproximar o contorno do 

domínio físico por segmentos de malha. As simulações demonstraram que o modelo apresenta 

características importantes das interações entre as células tumorais e o tecido circundante. 

 

Palavras-chave: malha, geometria da mama feminina, extracelular, câncer. 

 

ABSTRACT 

The work presents a study of the non-linear mathematical model of tumor growth, proposed by Kolev 

and Zubik-Kowal (2011). The model is described by a system composed of four partial differential 

equations that represent the evolution of the density of cancer cells, density of the extracellular matrix 

(ECM), concentration of matrix-degrading enzyme (MDE) and concentration of tissue 

metalloproteinase inhibitors. For numerical simulations, the finite difference method is used, in which 

the temporal terms of the equations are discretized using a two-stage method. In spatial terms, finite 

central differences are used. A study of numerical convergence for the proposed scheme is presented, 

using analytical solutions manufactured in a rectangular geometry. Finally, simulations of the tumor 

growth model are performed, using a non-regular mesh that represents the geometry of a female breast. 

To simulate the model in non-regular geometry, the technique used is to approximate the contour of 

the physical domain by mesh segments. The simulations showed that the model has important 

characteristics of the interactions between tumor cells and the surrounding tissue. 

 

Keywords: mesh, geometry of a female breast, extracelular, cancer.  
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1 INTRODUCTION 

Cancer is considered a worldwide public health problem. For the year 2030, the World Health 

Organization (WHO) estimates that there will be 27 million new cases, 17 million cancer deaths and 

75 million people living with the disease. Therefore, understanding the mechanisms that work is 

increasingly important for the prevention and treatment of the disease (INCA, 2019). 

The human body is made up of trillions of living cells. Normal cells grow, multiply through a 

process called cell division, and die in an orderly fashion. Under normal conditions, this process is 

controlled and is responsible for the formation, growth and regeneration of healthy body tissues. On 

the other hand, there are situations, such as DNA mutations that can disrupt processes, in which these 

cells undergo a change and lose the ability to limit and control their growth, and then multiply very 

quickly and without any control. The uncontrolled growth and proliferation of cells are called cancer, 

a set of more than one hundred diseases that leads to the formation of abnormal tissue, determining the 

formation of the tumor (ONCOGUIA, 2017). 

According to Byrne (1999), initially solid tumors are avascular, that is, they do not have their 

blood supply, they rely on the diffusion of nearby vessels to supply oxygen, nutrients and to remove 

waste. As the tumor grows, the demand for nutrients increases, but since the flow of nutrients is small 

to supply the entire mass of cells, the size of the growth of the tumor becomes limited. Growth can be 

resumed only if the tumor becomes vascularized, that is if it is permeated by a network of capillaries. 

In this phase, tumor fragments that invade the blood supply are transported to other parts of the body 

where, if conditions are favorable, they establish secondary tumors or metastases.   

To make the transition from avascular to vascular growth, the tumor undergoes a process known 

as angiogenesis.  

Local invasion and the development of metastases are directly associated with the extracellular 

matrix (ECM), which is the environment in the space between cells, in which it offers adequate 

conditions for their growth and differentiation. ECM serves as a support, where cells can move, and it 

also assists the attachment of cells to tissues. Its structure consists of fibers, proteins and collagen. 

The degradation of ECM becomes essential for the growth of malignant tumors, invasion, 

metastasis and angiogenesis. This degradation occurs through the action of matrix-degrading enzymes 

(MDEs), such as metalloproteinases (MMPs), which work by disorganizing the matrix, through 

processes that alter cell-cell and cell-matrix interactions (PEREIRA et al, 2005). In contrast, MMPs 

tissue inhibitors (TIMPs) have the main function of inhibiting enzymes, which can neutralize EDMs. 

Changes in homeostasis between MMPs and TIMPs have been identified in diseases associated with 

uncontrolled ECM renewal, such as cancer and cardiovascular diseases (AZAMBUJA et al, 2008). 
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According to Rodrigues, Pinho and Mancera (2012), due to the complexity of cancer, the 

construction of mathe-matical models of the disease remains a major challenge. On the other hand, it 

is through the development and evolution of mathematical models that describe different aspects of 

tumor growth and the application of computational techniques for simulation, that some characteristics 

and details of tumor evolution can be described, as well as effectively used in clinical laboratories. 

To detect tumor progression in a relatively short time without the enormous cost of laboratory 

experiments, several models have been proposed in the literature. 

The mathematical models that describe the invasion of cell tissue by cancer cells using systems 

of partial differential equations can be found in the literature, see (KOLEV; ZUBIK-KOWAL, 2011; 

ANDERSON et al, 2000; CHAPLAIN; LOLAS, 2005; GATENBY, GAWLINSKI, 1996). 

The model used in this work was presented by Kolev and Zubik-Kowal (2011), described by a 

system of partial differential equations, with four variables involved in the tumor cell invasion process, 

resulting in the description and evolution of the density of cancer cells, the density of the extracellular 

matrix (ECM), the concentration of matrix-degrading enzymes (EDM) and tissue inhibitors of 

metalloproteinases (TIMP). 

In this work, the finite difference method is used to discretize the Kolev and Zubik-Kowal 

(2011) model, in which the temporal terms are discretized by a two-stage method and the spatial terms, 

central differences. As for the nonlinear terms involved in the model, they are linearized using the 

Taylor series expansion. 

 

2 MATHEMATICAL MODEL   

 The mathematical model developed in Kolev and Zubik-Kowal (2011), describes the growth of 

solid tumors in the avascular stage, intending to analyze the interactions between the tumor and the 

surrounding tissue. The model presents four partial differential equations with the following variables: 

density of tumor cells, the density of ECM, concentration of EDM and concentration of endogenous 

inhibitor TIMP, denoted by n, f, m and u, respectively. 

In this work, results will be exposed considering the two-dimensional evolution in space  (𝑥, 𝑦) 

and time t. The model presented by the variables n(x, y, t), f(x, y, t), m(x, y, t)  and  u(x, y, t), is given 

by 

 
𝜕𝑛

𝜕𝑡
= 𝑑𝑛∇

2𝑛⏟  
diffusion

− 𝛾∇. (𝑛∇𝑓)⏟      
haptotaxis

+ 𝜇1𝑛(1 − 𝑛 − 𝑓)⏟          
proliferation

 ,      
(1) 
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𝜕𝑓

𝜕𝑡
= − 𝜂𝑚𝑓⏟

degradation

+ 𝜇2𝑓(1 − 𝑛 − 𝑓) ⏟          
renovation

 , 
(2) 

 

 

 
∂𝑚

∂𝑡
= 𝑑𝑚∇

2𝑚⏟    
diffusion

+ α𝑛⏟
production

− θ𝑢𝑚⏟
neutralization

− β𝑚⏟
decay

 
(3) 

 

  
∂𝑢

∂𝑡
= 𝑑𝑢∇

2𝑢⏟  
diffusion

+ ξ𝑓⏟
inhibits production

− θ𝑢𝑚⏟
neutralization

− ρ𝑢⏟
decay

. 
(4) 

 

Furthermore, the model establishes that the migration of tumor cells creates spatial gradients 

that direct the migration of invasive cells by a mechanism called haptotaxis, represented by γ. The 

constants 𝑑𝑛,  𝑑𝑚  and   𝑑𝑢 are the diffusion constants of the density of cancer cells, EDM and inhibitor, 

respectively. The rate of tumor cell proliferation and the growth rate of  ECM are represented by  μ1  

and  μ2, while  η ,  α,   θ,  β,  ξ  and  ρ  are positive constants. 

 

3 NUMERICAL MODEL   

The discretization of the differential equations in terms of the model equations (1)-(4), is 

obtained using the finite difference method (FDM), which consists of replacing the derivatives present 

in the differential equations with finite difference approximations, in which the approximation formula 

is obtained from the Taylor series expansion of the derived function. 

To discretize the temporal terms a two-stage method is used, introducing an intermediate time 

level between the levels k and k + 1 (DONEA et al., 2000). The two-stage technique results in an 

explicit and implicit stage. The first and second-order spatial terms are discretized using central finite 

differences. 

Considering the discretizations at the time level k at a point (i, j), there is the explicit stage, 

described by 

 

𝑛|𝑖,𝑗
𝑘+1/2

= 𝑛|𝑖,𝑗
𝑘 +

Δ𝑡

2
(𝑑𝑛Δ𝑛|𝑖,𝑗

𝑘 − γ∇(𝑛|𝑖,𝑗
𝑘 ∇𝑓|𝑖,𝑗

𝑘 ) + μ1𝑛|𝑖,𝑗
𝑘 (1 − 𝑛|𝑖,𝑗

𝑘 − 𝑓|𝑖,𝑗
𝑘 )), 

 

𝑓|𝑖,𝑗
𝑘+1/2

= 𝑓|𝑖,𝑗
𝑘 +

Δ𝑡

2
(−η𝑚|𝑖,𝑗

𝑘  𝑓|𝑖,𝑗
𝑘 + μ2 𝑓|𝑖,𝑗

𝑘 (1 − 𝑛|𝑖,𝑗
𝑘 − 𝑓|𝑖,𝑗

𝑘 )), 

 

𝑚|𝑖,𝑗
𝑘+1/2

 = 𝑚|𝑖,𝑗
𝑘 +

Δ𝑡

2
(𝑑𝑚 Δ𝑚|𝑖,𝑗

𝑘 + α 𝑛|𝑖,𝑗
𝑘 − θ𝑢|𝑖,𝑗

𝑘  𝑚|𝑖,𝑗
𝑘 − β 𝑚|𝑖,𝑗

𝑘 ), 

 

𝑛|𝑖,𝑗
𝑘+1/2

  =  𝑛|𝑖,𝑗
𝑘   +  

Δt

2
 (𝑑𝑢Δ𝑛|𝑖,𝑗

𝑘   + ξ𝑓 |𝑖,𝑗
𝑘   − θ 𝑢|𝑖,𝑗

𝑘  𝑚|𝑖,𝑗
𝑘   −  ρ 𝑢|𝑖,𝑗

𝑘 ). 
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𝑢|𝑖,𝑗
𝑘+1/2

= 𝑢|𝑖,𝑗
𝑘 +

Δ𝑡

2
(𝑑𝑢Δ𝑢|𝑖,𝑗

𝑘 + ξ𝑓|𝑖,𝑗
𝑘 − θ𝑢|𝑖,𝑗

𝑘 𝑚|𝑖,𝑗
𝑘 − ρ𝑢|𝑖,𝑗

𝑘 ). 

 

The scheme resulting from the discretization of the n  and  f  equations, respectively, results in 

an implicit system at the time level  k + 1  with quadratic terms. To avoid the need to solve the nonlinear 

system of equations, in each step of time, a numerical technique was applied by expanding the Taylor 

(SHEU; LIN, 2004) series in which the terms of the system are linearized. 

Considering the time level k +1 at a point (i, j), there is the implicit stage of the method with 

the linearized terms, given by, 

 

𝑛|𝑖,𝑗
𝑘+1 = 𝑛|

𝑖,𝑗

𝑘+
1

2 +
Δ𝑡

2
(𝑑𝑛Δ𝑛|𝑖,𝑗

𝑘+1 − 𝛾∇(𝑛|𝑖,𝑗
𝑘+1∇𝑓|𝑖,𝑗

𝑘+1)       

     + 
Δ𝑡

2
𝜇1 (𝑛|𝑖,𝑗

𝑘+1(1 − 𝑓|𝑖,𝑗
𝑘+1) − 2𝑛|𝑖,𝑗

𝑘+1/2
𝑛|𝑖,𝑗
𝑘+1 + 𝑛

2|𝑖,𝑗
𝑘+1/2

),     

𝑚|𝑖,𝑗
𝑘+1 = 𝑚|𝑖,𝑗

𝑘+1/2
+
Δ𝑡

2
(𝑑𝑚Δ𝑚|𝑖,𝑗

𝑘+1 + α𝑛|𝑖,𝑗
𝑘+1 − θ𝑢|𝑖,𝑗

𝑘+1𝑚|𝑖,𝑗
𝑘+1 − β𝑚|𝑖,𝑗

𝑘+1), 

𝑢|𝑖,𝑗
𝑘+1 = 𝑢|𝑖,𝑗

𝑘+1/2
+
Δ𝑡

2
(𝑑𝑢Δ𝑢|𝑖,𝑗

𝑘+1 + ξ𝑓|𝑖,𝑗
𝑘+1 − θ𝑢|𝑖,𝑗

𝑘+1𝑚|𝑖,𝑗
𝑘+1 − ρ𝑢|𝑖,𝑗

𝑘+1). 

 

To solve the systems of equations, the Gauss-Seidel method was used. More details can be see 

in Maganin (2020). 

 

4 NUMERICAL SIMULATIONS 

The numerical simulations for the equation model (1)-(4) are performed in the rectangular 

domain [𝒙𝟎, 𝒙𝒇] × [𝒚𝟎, 𝒚𝒇]. To solve the system numerically, the dimensionless partial differential 

equations are considered, as described in Anderson et al. (2000), Capelão and Lolas (2005), 

Chaplain, Anderson and Preziosi (2003) and Ganesan and Lingeshwaran (2017).   

 

4.1 VERIFICATION USING THE METHOD OF MANUFACTURED SOLUTIONS 

According to Vargas (2013), due to the existence of analytical solutions only for models 

involving simpler equations, the main difficulty in evaluating the discretization error is to find a way 

to estimate the analytical solution for EDP's and thus obtain greater reliability in the analyzes. 

One technique that can help to verify the implementation of the computational code, through 

the convergence analysis by refinement, is the Method of Manufactured Solutions (MMS). 

Thus, a study of the convergence of (1)-(4) is presented, using the norm of the relative error 𝐿2, 

found in Lima (2010). Exact solutions are considered as reference solutions as presented in Ganesan 

and Lingeshwaran (2017).  So, we have the tumor growth model, coupled with the source terms  
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𝜕𝑛

𝜕𝑡
− 𝑑𝑛∇

2𝑛 + 𝛾∇. (𝑛∇𝑓) − 𝜇1𝑛(1 − 𝑛 − 𝑓) = 𝑓𝑛 ,        
(5) 

 

 
𝜕𝑓

𝜕𝑡
+ 𝜂𝑚𝑓 − 𝜇2𝑓(1 − 𝑛 − 𝑓) = 𝑓𝑓 , 

(6) 

 

 
∂𝑚

∂𝑡
− 𝑑𝑚∇

2𝑚 − α𝑛 + θ𝑢𝑚 + β𝑚 = 𝑓𝑚, 
(7) 

 

 
∂𝑢

∂𝑡
− 𝑑𝑢∇

2𝑢 − ξ𝑓 + θ𝑢𝑚 + ρ𝑢 = 𝑓𝑢. 
(8) 

 

The source terms  𝑓𝑛,  𝑓𝑓,  𝑓𝑚  and  𝑓𝑢  are obtained so that the equations (5)-(8) satisfy the 

analytical solutions 𝑛(𝑥, 𝑦, 𝑡) = 𝑚(𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡)𝑒𝑡 sin(2𝜋𝑥) sin(2𝜋𝑦)   and  𝑓(𝑥, 𝑦, 𝑡) =

𝑒−𝑡 sin(2π𝑥) sin(2π𝑦). This procedure, characterizes the process of manufactured solutions. 

For the analysis of the convergence study, a domain is considered Ω = [0.1] × [0.1], with final 

time  𝑡𝑓 = 0.25  and dimensionless parameters 𝑑𝑛 = 0.001 ,  𝑑𝑚 = 0.001   and 𝑑𝑢 = 0.001 ,    γ =

 0.01,  μ1 = 0.5,  η = 10,  μ2 = 0.1,  α =  0.1,  β =  0.07,  θ =  0.05, ξ = 0.03  and    ρ =  0.07, 

found in Lopez, Ruiz and Castaño (2018). Initial and boundary conditions are obtained using the 

analytical solutions of n, f, m and u. 

 The results obtained, using the norm of the relative error 𝐿2, are presented in Table  1, where 

different refinements are evaluated, both in time and space. 

 

Table 1 - Relative error of the norm 𝐿2  for  𝑡𝑓 = 0.25. 

𝑴𝒕 Erro n Erro f Erro m Erro u 

 𝑴𝒙 = 𝑴𝒚 = 𝟐𝟎 

20 2.5713x10-2 5.1190x10-4 3.9675x10-4 8.2419x10-5 

40 2.4724x10-2 3.6709x10-4 3.3785x10-4 3.8769x10-5 

80 2.4245x10-2 2.8345x10-4 3.0949x10-4 1.7887x10-5 

160 2.4008x10-2 2.3901x10-4 2.9557x10-4 7.6797x10-6 

320 2.3891x10-2 2.1616x10-4 2.8869x10-4 2.6343x10-6 

 𝑴𝒙 = 𝑴𝒚 = 𝟒𝟎 

20 1.7346x10-2 2.4236x10-4 2.7762x10-4 7.3674x10-5 

40 1.6492x10-2 1.4556x10-4 2.2726x10-4 3.5525x10-5 

80 1.6085x10-2 8.9821x10-5 2.0307x10-4 1.7255x10-5 

160 1.5886x10-2 6.0241x10-5 1.9122x10-4 8.3198x10-6 

320 1.5788x10-2 4.5038x10-5 1.8536x10-4 3.9019x10-6 

 𝑴𝒙 = 𝑴𝒚 = 𝟖𝟎 

20 9.9788x10-3 1.5260x10-4 1.8815x10-4 8.0794x10-5 

40 9.0420x10-3 8.5080x10-5 1.3525x10-4 3.9212x10-5 

80 8.6061x10-3 4.6238x10-5 1.0992x10-4 1.9265x10-5 

160 8.3962x10-3 2.5632x10-5 9.7546x10-5 9.5023x10-6 

320 8.2932x10-3 1.5043x10-5 9.1427x10-5 4.6732x10-6 
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It is observed, in Table 1, that the error order of n, f, m and u decreased when refining the mesh, 

both spatial and temporal, where was considered 𝑀𝑡 = 2
𝑛 × 20, 𝑛 =  0, … ,4 , 𝑀𝑥 = 𝑀𝑦 = 2

𝑚 × 20, 

𝑚 =  0,1,2 and 𝑡𝑓 = 0.25. 

Still, the results of the table show that the order of the relative error, norm  𝐿2, when considering 

the refinements 𝑀𝑡 = 160  and 𝑀𝑡 = 360  remained the same, in all the analyzed variables, not 

requiring a high refinement and consequently reducing computational costs. Also, on spatial 

refinement,  𝑀𝑥 = 𝑀𝑦  from 40 to 80, it is observed that for u, there was a small increase, but 

maintained the same order of convergence. Finally, through the results obtained, it can be said that the 

two-stage method and the linearization of the quadratic terms used in the model (1)-(4), are satisfactory 

when compared with analytical solutions through error analysis. Therefore, it appears that the 

implementation of the code, through the manufactured solution, proved to be efficient. 

 

4.2 BREAST TUMOR SIMULATIONS 

The objective of this work is in the simulation and analysis of the tumor growth model in a non-

regular mesh, which represents the geometry of a female breast, simulating a problem close to reality. 

The breast geometry to be used is illustrated in Foucher, Ibrahim and Saad (2018). This 

geometry is used to present an analysis of tumor development in the model proposed in this work. 

The points of the contour of the breast geometry were collected using the program 

WebPlotDigitizer 4.3 (ROHATGI, 2020). The contour is illustrated in Figure1. Mesh refinement  𝑀𝑥 =

𝑀𝑦    =  100  is considered for a breast approximately 14 cm wide by 18 cm high. It is observed that 

the points of the geometry in the first column of Figure 1, given outline, blue color, are not part of the 

mesh, therefore, the technique that consists of approximating the contour of the domain by mesh 

segments is employed, seen in Cuminato and Meneguette (2013).  

The comparison of the approximate contour, red color, and given, blue color, is found in the 

second column of Figure 1, it can be seen better with the zoom. In the third column, the approximate 

outline is shown with the internal points of the mesh, green color, for simulation. 

To approximate the domain contour by mesh segments, a code was developed that locates the 

points closest to the vertex in the mesh about the given contour point, resulting in coordinates of the 

vertices in the mesh scale, generating the approximate contour. To obtain the approximate contour, the 

code was divided into parts, where: 

i) Determine in which part of the figure the point is located, right, left, above or below 

the   given contour point; 

ii) All points near the approximate contour are located; 
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iii) There is a variation between the approximate contour point and the given one, 

iv) Points are calculated between two vertices with variations in the directions  x  and y. 

 Thus, the model starts to be solved considering the new domain, in which it is assumed that the 

boundary conditions apply under the new boundary. In this way, the model (1)-(4) will be solved at the 

internal points of the geometry, illustrated by the green color in the last column of Figure 1. 

 

Figure 1: Contour given and approximate of a breast. 

 
 

To solve the model within the breast geometry, the initial conditions described in (9)-(12), 

where it is initially assumed that there is a nodule of cells present where the initial tumor density in 

two dimensions is at point (6.88, 4.39), that is, the tumor has degraded some of its surrounding tissues 

and, therefore, the initial conditions are given by Chaplain, Anderson and Preziosi (2003) and by Kolev 

and Zubik-Kowal (2011), 

 

𝑛(𝑥, 𝑦, 0) = 𝑒𝑥𝑝 (−
𝑟2

𝜖
), 

(9) 

  

𝑓(𝑥, 𝑦, 0) = 1 − 0.5 𝑛(𝑥, 𝑦, 0), (10) 

 

𝑚(𝑥, 𝑦, 0) = 0.5 𝑛(𝑥, 𝑦, 0), (11) 

 

𝑢(𝑥, 𝑦, 0) = 0, (12) 

 

 

being (𝑥, 𝑦) ∈ Ω and r is defined by 𝑟 = √(𝑥 − 6.88)2 + (𝑦 − 4.39)2.   

 

The model (1)-(4) is simulated at the internal points of the breast geometry, with the 

dimensionless parameters mentioned, seen in Lopez, Ruiz and Castaño (2018), with  ϵ =  0.07. The 

choice of the value of  𝜖 =  0.07 describes an initial tumor with 1 centimeter in diameter at  𝑡 =  0, 
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because according to INCA (2019), it is the minimum tumor size that the self- breast exam or clinical 

examination, performed by the doctor can detect. In the simulations, the tumor growth is evaluated up 

to  5  centimeters, since from this size the tumor may present metastases and, the mathematical model 

does not describe tumors in the vascular stage. 

Figure 2 shows the initial tumor condition of the variables  n,  f ,  m  and  u, in  a,  b,  c  and d, 

respectively, centered at approximately (6.88, 4.39). The tumor in the breast geometry is approximately 

1 centimeter in diameter, in the mesh with 𝑀𝑥 = 𝑀𝑦 = 100 and 𝑀𝑡 = 1280. 

As for the boundary conditions, only Dirichlet-type conditions are considered, in such a way 

that it has null values for n, m  and u The values of the points in the contour for f were considered equal 

to 1. 

It is observed in Figure 2, that the initial conditions of the model variables, present the presence 

of tumor cells, resulting in a loss of extra-cellular matrix density and the appearance of matrix 

degradative enzymes. Only the variable 𝑢(𝑥, 𝑦, 𝑡), which represents endogenous inhibitors, does not 

contain concentration when 𝑡 = 0. 

 

Figure 2: Initial condition of variables n,  f,  m  and  u. 

 
 

To analyze the growth of the tumor, it is found in Lee et al. (2016), a study that evaluated the 

tumor growth rate of breast cancer. Through this study, the authors presented the rate of tumor growth, 

per day, where tumors with aggressive molecular subtypes have a growth rate of $1.003 % d-1. This 

rate will be considered in this work, to analyze the tumor growth model, in days, in the breast geometry. 

It is observed that with the growth rate of  1.003 % per day, the tumor reaches 5 cm in diameter in 

approximately 161 days. 

Figure 3 shows the evolution of the growth of tumor cells n, consequently the loss of density of 

the extracellular matrix f, MED m and endogenous inhibitors u for time 𝑡 = 40, that using the tumor 

growth rate equivalent to 1.003 %, corresponds approximately to 161 days. 
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Figure 3: Behavior of the variables n,  f,  m  and  u in 𝑡 = 40. 

 
 

It can be observed, Figure 3, that the model describes the interactions predicted in the modeling, 

that is, the evolution of the growth of the tumor cells implies the loss of the density of the extracellular 

matrix. 

As a second test, the analysis for the model is presented, in which it is assumed that the tumor 

was detected near the outline of the breast geometry, centred on (2.2208; 8.8396), Figure 4. 

 

Figure 4: Initial condition of variables n,  f,  m  and  u in position closest to the contour. 

 
 

In Figure 5, we have the results of the evolution of the four variables analyzed, in the position 

close to the breast contour, in 𝑡 =  40. 
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Figure 5: Behavior of the variables n,  f,  m  and  u in position closest to the contour 

 
 

Considering the position of the tumor closest to the left contour, it became possible to verify 

how the distribution of the density of cancer cells, the density of MEC, concentration of EDM and 

TIMP is found. It is observed that with the growth of these variables, for 𝑡 =  40, the circular shape is 

lost since the boundary condition is null at the border and there is no presence of tumor cells outside 

the breast region. 

 

5 CONCLUSIONS 

The purpose of this work was to conduct a study of the mathematical model of tumor growth 

by Kolev and Zubik-Kowal (2011). The simulations showed that the model has important 

characteristics of the interactions between tumor cells and the surrounding tissue, since, as there is an 

increase in cancer cells, the loss of extracellular matrix occurs, which is responsible for cell adhesion, 

cell-a communication -cell and differentiation. In addition, the simulations present the concentration 

of degradative enzymes, which has the role of assisting tumor cells in the process of degradation of the 

ECM. 
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