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ABSTRACT 

The increasing concerns about fossil fuel sources have generated growth in investment in renewable 

sources. The slow pyrolysis of lignocellulosic materials has become favourable because to 

producing energy and is capable of supplying products with high added value. Accordingly, through 

the application of artificial neural networks, this study evaluated the kinetics of the slow pyrolysis 

of the powder obtained from the fruit peel of Pachira aquatica Aubl. in natural and chemical 

modified form to determine the kinetic parameters using the Friedman, Kissinger and Ozawa 

isoconversion methods and introduction of Fraser-Suzuki deconvolution method to obtain the 

individual kinetic parameters for the pseudo-cellulose component. The results allowed the 

conclusion that the applied neural network was efficient in the prediction of the thermal data, 

obtaining similar thermogravimetric profiles to experimental ones and high determination values. 

The Friedman method was the best fit for the data, and the activation energies showed that the 

samples submitted to chemical treatment obtained lower activation energy, due to the modification 

of the components of the lignocellulosic matrix. 

 

Keywords: Biomass, Kinetic Parameters, Artificial Neural Network, Activation Energy, Chemical 

Treatment, Pyrolysis. 

 

RESUMO 

A crescente preocupação com as fontes de combustíveis fósseis gerou um crescimento no 

investimento em fontes renováveis. A lenta pirólise de materiais lignocelulósicos tornou-se 

favorável porque produz energia e é capaz de fornecer produtos com alto valor agregado. Assim, 

através da aplicação de redes neurais artificiais, este estudo avaliou a cinética da pirólise lenta do 

pó obtido a partir da casca da fruta de Pachira aquatica Aubl. de forma natural e química modificada 

para determinar os parâmetros cinéticos usando os métodos de isoconversão Friedman, Kissinger e 

Ozawa e a introdução do método de deconvolução Fraser-Suzuki para obter os parâmetros cinéticos 

individuais para o componente pseudo-celulósico. Os resultados permitiram concluir que a rede 

neural aplicada foi eficiente na predição dos dados térmicos, obtendo perfis termogravimétricos 

semelhantes aos experimentais e valores de determinação elevados. O método Friedman foi o mais 

adequado para os dados, e as energias de ativação mostraram que as amostras submetidas ao 

tratamento químico obtiveram menor energia de ativação, devido à modificação dos componentes 

da matriz lignocelulósica. 

 

Palavras-chave: Biomassa, Parâmetros Cinéticos, Rede Neural Artificial, Energia de Ativação, 

Tratamento Químico, Pirólise. 
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1 INTRODUCTION 

Non-renewable sources of energy, especially fossil fuels, still predominate in the world 

energy matrix, as well as in all countries individually. However, it is impossible to maintain this 

state due to the limits of available reserves and the environmental impacts, especially those 

concerningclimate change[1] competition for oil and regional conflicts[2, 3]. Renewable energies 

become favourable; in addition to being considered an inexhaustible reserve [4], its environmental 

impact is far lessthan that caused by the fossil energy sources, thus, reducingthe emission of 

greenhouse gases[5, 6]. In this sense, lignocellulosic biomassesarehighlighted as a possible 

alternative among other sources because it is widely available and is neutral in the production of 

carbon dioxide [7]. In addition, lignocellulosic biomasses produce not only energy, but also other 

products of high economic value [8–12]by the application of different technologies [11, 13, 14]. 

Among the technologies using inbiomass processing, pyrolysis [8, 15]has advanced in research 

because it is a thermochemical process of thermal decomposition in the absence of oxygen and can 

be classified as slow or fast, depending on the working temperature, providing liquid, gaseous and 

solid products [16]. Compared toother thermal methods, such as gasification and combustion, 

pyrolysis allows for the detailed characterization of thermal and kinetic behaviour, permitting the 

determination of the activation energy of the process, which is useful for other stages of the 

operation and comparative studies [17]. The use of artificial neural networks in these systems has 

increased significantly [18–21],and in this work, the multi-layer feed-forward neural network was 

implemented through MATLAB software with the objective of predicting the thermokinetic 

behaviour of the samples obtained from the fruit peel of Pachira aquatica Aubl. in its natural form 

(P) and chemically modified via treatment with 1.22 mol L-1C3H9N (PBO) or2.5 mol L-1 NaOH(PBI) 

by evaluating the TG/DTG curves atheating rates of 5, 10, 15 and 20ºC min-1. The Fraser-Suzuki 

deconvolution procedure was performed for the evaluation of kinetic parameters by the Friedman, 

Kissinger and Ozawa isoconversion methods. 

 
2 MATERIALS AND METHODS 

2.1 PREPARATION OF BIOMASSES 

2.1.1 Natural samples 

Samples were obtained following the procedure proposed by Carvalho and Virgens (2018) 

by washing the fruit peel of Pachira aquatica Aubl. with tap water to remove impurities. The shells 

were then washed with ultrapure water and decontaminated in a nitric acid bath, HNO3 (10% v v-1), 

for 10 min to eliminate any contaminants such pesticides. Thereafter, successive washes were 
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performed with ultrapure water. Thesampleswere dried using the conventional method in an SL100 

oven for 24 h at1.01 x 105Paand 378 K. The samples were ground in a knife mill and passed through 

an80-mesh sieve. The natural sample was referred to asP. 

 
2.1.2 Treatment of Pachira aquatica Aubl. samples 

The chemical treatment of the P sample was performed following the procedure proposed 

by Carvalho and Virgens (2018), where C3H9N (REATEC, 1.22 mol L-1) or NaOH (VETEC, 2.5 

mol L-1) solution were added at a ratio of 1:10 and stirred (NOVA ETHIC MOD.109) for 24 h at 

120 rpm. The samples were then filtered, and the solids obtained were dried in an air-circulating 

oven (SL100 model) at 378 K for 24 h. Subsequently, the solids were ground and passed through 

an 80-mesh sieve, generating the PBO and PBI, which were treated with C3H9N and NaOH, 

respectively [22]. 

 
2.2 MOISTURE CONTENT 

The moisture content was determined according to ASTM E1756-08, Method A [23]. For 

the analysis, 1g of natural (P) or modified (PBO orPBI) sample was weighed in a crucible and oven 

dried (105±3°C) for 2h. Then, the crucible containing the sample was cooled in a desiccator and 

weighed using an analytical balance. The moisture content was calculated according to Equation 1: 

 
%moisture   =

 𝑚1−𝑚2 𝑥100 (1) 
𝑚1 

 
 

where m1 is the mass of the wet sample (g) and m2 is the mass of the dry sample (g). 

 
 

2.3 THERMAL ANALYSIS 

The thermogravimetry (TG) of P, PBO and PBI samples were performed under atmospheric 

pressure using a TG/DTA analyser (Shimadzu model DTG 60). Approximately 8 mg of the sample 

was analysed in a dynamic nitrogen atmosphere (N2) with a constant flow of 50 mL min-1 using a 

platinum crucible atfour heating rates (5, 10, 15 or 20°C min-1). From the TG data, the 

analyserprovided the DTG results. 
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2.4 PYROLYTIC KINETIC MODELLING 

2.4.1 Kinetic model 

Generally, in TG the solid-state material is heated at a constant heating rate (β = dT/dt K s- 

1), under controlled conditions, which is characterized as a non-isothermal analysis: 

 
𝛽 

𝑑𝛼 
= 𝑓(𝛼)𝑘(𝑇) (2) 

𝑑𝑇 

 
 

The conversion form of the reaction rate according to Arrhenius law can be expressed as: 
 

 

𝑑𝛼 
 

 

𝑑𝑇 
= 

𝐴 

𝛽 
exp ( 

−𝐸 

𝑅𝑇 
)𝑓(𝛼) (3) 

 
 

where E denotes the apparent activation energy (J mol-1), A denotes the pre-exponential 

factor (s-1), T is absolute temperature (K), R is the ideal gas constant (8.3145 J mol-1 K-1),𝑓(α) 

denotes the mechanism model thatdepends on the conversion (α), which is known as the normalized 

mass(α∈ [0,1]) and is dimensionless. The conversion factor can be expressed as: 

 
𝛼  = 1 − 𝑥  = (𝑚0 − 𝑚𝑇)/(𝑚0 − 𝑚𝑓) (4) 

 

where𝑚0, 𝑚𝑇 and 𝑚𝑓 denotes the normalized mass of the sample at the initial temperature 

(T0), given temperature T and final temperature (Tf), respectively; 𝑥 denotes the normalized mass 

remaining. The integral of Equation3gives: 

 

𝑔(𝛼) = ∫
𝛼
 𝑑𝛼 𝐴    𝑇 −𝐸 

∫  exp ( ) 𝑑𝑇 (5) 
0 𝑓(𝛼) 𝛽 𝑇0 𝑅𝑇 

 
 

where g(α) is an integral form of the 𝑓(α), which is also dependent on the conversion factor, 

α. 

Several kinetic methods have been presented in the literature, but they can be classified into 

two main groups: fitting-model or model-free. Although model-free methods (also called iso- 

conversion methods) propose the determination of the activation energy without proposing any 

specific reaction mechanism or model for the transformation, it is believed to be accuratefor a single 

step. The E values at given α values, Eα, can be estimated by using 3–5 runs at different heating 

= 
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2 𝑠,𝑛 

rates without known 𝑓(α) or g(α) values. Although there are many iso-conversional methods, one 

of the most widely used is the Friedman method, which is expressed as: 

 
𝑑𝛼 

ln[[𝛽𝑖 (
𝑑𝑇

) ] = ln[𝐴𝛼𝑓(𝛼)] − 
𝐸𝑎 

𝑅𝑇𝛼,𝑖 
(6) 

 
 

where the subscript i means i-th heating rate,𝑇𝛼,𝑖 is the temperature corresponding to given α of i-th 

heating rate, (dα/dT)α,𝐸𝑎,𝐴𝛼 denotes differential α versus T, the apparent activation energy, pre- 

exponential factor of given α, respectively. In the linear fittings of 
𝑑𝛼 

ln[[𝛽𝑖 (
𝑑𝑇

) ] vs -1/Tα,i , Eα can 

be estimated from the slope Eα/R, and Aα can be calculated from the intercepts once the most suitable 

𝑓(α) is known. 

 
 

2.4.2 Fraser-Suzuki deconvolution procedure 

Sometimes due to the complexity of the reagents and the substantial number of simultaneous 

reactions, it is necessary to apply the deconvolution procedure of the global curves toindividual 

curves. The deconvolution method of the dα/dT signal for the n-th pseudo component as a Fraser- 

Suzuki (FSF) temperature function, such that: 

 

𝑑𝛼
|
 

𝑑𝑇  𝑛 

 

= 𝐻𝑝,𝑛 exp {− 𝑙𝑛(2) ln [1 + 2𝐴 
𝐴𝑠,𝑛 

𝑇−𝑇𝑝,𝑛 
2

 
] 

𝑞ℎ𝑓,𝑛 

 
} (7) 

 

 

where Tp, As, Hp and qhf indicate peak (K) temperature, curve asymmetry (dimensionless), 

curve height (K-1) and half-width (K) of dα/dT peak vs. n-th pseudo component, respectively. 

 
2.4.3 Calculation details 

For the FSF application, the Fityk software (distributed under the terms GNU General Public 

License) version 0.9.8 [36] was used, withthe Log-normal function defined as: 

 
 

𝑦 = ℎ exp {− 𝑙𝑛(2) [ 
𝑙𝑛 (1+2𝑏

 𝑥−𝑐
) 

2
 

𝑤 ] } 
 

(8) 
𝑏 

𝛼 

𝛼 
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where h is the parameter Hp, c is the parameter Tp, w is the parameter qhf, b is the parameter 

As. Withthese parameters, the same designations are also true as those outlined for the Fraser-Suzuki 

function presented in Equation 7. 

 
2.5 ARTIFICIAL NEURAL NETWORK 

In this paper, the Neural Network Toolbox from MATLAB software version R2017a was 

used to implement Artificial Neural Network’s (ANN) training, validation and test 

algorithms.Multilayer Feedforward Neural Network architecture, which presents one or more 

hidden layers, was applied to build the predictive model. Hyperbolic tangent sigmoid and linear 

transfer functions were used as input-to-hidden layer and hidden-to-output layer activation 

functions, respectively.The dataset was randomly distributed in three groups: 54% in training, 23% 

in validation and 23% in test. One input variable (temperature [ºC]) and two output variables (DTA 

[uV] and TG [mg]) were used for training, for which the Levemberg-Marquart algorithm was 

utilized. This way, 50 ANN were created, each one with one input layer, two hidden layers and one 

output layer, and a different number of hidden neurons (processing units) that varied from 5 to 54. 

Four ANNs, relative to four heating rates, were created for each sample (P, PBI and PBO). 

After training, the ANNs performances were evaluated through mean squared error (mse) 

and determination coefficient (R²) values, and the network that had the best values (low mse and R² 

value close to one) were selected for each case (sample and heating rate). Later, data prediction was 

done with preestablished inputs. 

 
3 RESULTSANDDISCUSSION 

The DTG curves at different heating rates are shown in Figure 1, while peak conversion 

temperatures and mass loss rates are shown in Table 1. 
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Figure 1.DTG profiles for samples P (a), PBO (b) and PBI (c) 

 

The first decomposition event related to the first peak present in the graph profile is generally 

attributed to the evaporation of volatile materials and physically adsorbed water present on the 

surface of the material [17, 24]. This higher variation to PBI samplecan be attributedto the 

incorporation of hydroxyl groups (-OH) on the surface of this solid [22]due to the network’s 

interaction with water molecules, thereby increasing its moisture content [25]. 

 
Table 1 Peak temperatures and weight loss of Pachira aquatica Aubl. nature (P) and modified (PBO and PBI). 

Heating 

Rate 

(°C/min) 

P  PBO  PBI  

Peak 

Temperature 

(°C) 

dW/dt 

(mg/min) 

Peak 

Temperature 

(°C) 

dW/dt 

(mg/min) 

Peak 

Temperature 

(°C) 

dW/dt 

(mg/min) 

5 
47,50 0,07 46,44 0,08 48,93 0,09 

299,49 0,26 304,50 0,30 281,27 0,22 

10 
53,65 0,14 55,36 0,18 55,09 0,22 

323,38 0,57 331,71 0,62 294,53 0,46 

15 
60,59 0,20 59,56 0,26 60,68 0,26 

331,05 0,88 327,79 0,89 301,13 0,71 

20 
62,80 0,22 60,84 0,20 72,80 0,51 

330,62 1,10 331,67 1,07 272,30 0,48 
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The PBO sample also had higher volatile and moisture content relative to the natural sample 

P because the chemical treatment step was performed with a highly volatile chemical substance, 

probably impregnated on the surface of the released material duringsample heating.Table 2 

compares the moisture content results with loss of mass in the first event for the samples, where 

evidence suggests that more than 50% of the loss of mass in the first event is associated with the 

presence of water molecules. 

 
Table 2 Moisture content and mass loss percentage of the first event for chemically treated and natural samples 

Sample Moisture content(%) Loss of mass first 

event (%) 

Reference 

Pine Wood 9,18 - (Hu et al., 2016) 

Bamboo 9,45 - (Hu et al., 2016) 

P 7,75 9,35 This work 

PBO 9,12 9,60 This work 

PBI 11,78 13,08 This work 

 

The second event, mostly related to the degradation of hemicellulose, cellulose and the onset 

of the decomposition of lignin, which is a component of the matrix of the material [13, 26, 27], 

extends from 200–500°C with higher degradation.ThePBI sample obtained lower mass variation in 

this region, due to the partial removal of lignin[28]by the inorganic base, with a loss of 42.40%, 

while the other samples had losses of 52.57% and 55.54% for P and PBO, respectively, indicating 

greater thermal stability in relation to the other samples in this temperature range.The influence of 

partial lignin removal can be observed in the DTG results (Figure 1), where the second peak related 

to the decomposition of the major lignocellulosic matrix components inthe PBI sample appears 

atlower temperatures. In fact, the alkaline treatment with sodium hydroxide modified the surface 

properties of the solid due to the partial removal of the components of the lignocellulosic matrix of 

the material, resulting in a higher crystallinity index, zero load point (pHpcz) and the polymorphic 

transition of cellulose [22, 29]. The main decomposition of lignocellulosic materials (240–350°C) 

includes the reduction of the degree of polymerization by the appearance of free radicals with the 

loss of water and the formation of CO, CO2 and residues such as coal[30]and lignin (280–500°C) 

starting in the second stage and extending to the third stage of decomposition[13].The first stage 

occurs at a temperature below 100°C, which is related to the loss of residual water.The third stage 

of mass loss, in which lignin degradation continued up to approximately 500°C, is characterized by 

a ‘pseudo-stationary’ stage, in which a gradual loss of mass occurs until reaching the limit 

temperature of the analysis (1000°C). 
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Figure 2 Comparison of experimental and ANN predicted thermal data at varying heating rates to P (a), PBO (b) and 

PBI (c) samples. 

 
 

 
Figure 2 compares the profiles of the mass loss events obtained by the experimental TG with 

the decomposition results predicted by the artificial neural network applied to the thermogravimetric 

data.Similar thermogravimetric profiles indicate that the application of the artificial neural network 

can satisfactorily describe the thermokinetic behaviour of the natural and chemically treated 

samples, presenting small low temperature deviation (b) by neural network extrapolations inherent 

to the intrinsic characteristics of the sample. This characteristic suggests that, despite the high 

performance indices, there is still an associated error, as seen in Table 3. 

 
Table 3 Determination index of the thermogravimetric profile predicted by the neural network 

β (°C min
-1

) 

Samples 5 10 15 20 

P 0,9999 0,9998 0,9991 0,9998 

PBO 0,9999 0,9999 0,9999 0,9999 

PBI 0,9999 0,9999 0,9999 0,9999 

 

3.1 FRASER- SUZUKI DECONVOLUTION RESULTS 

Due to the complexity and heterogeneity of the lignocellulosic samples, in the stages of 

decomposition the deconvolution procedure was performed usingthe Fraser-Suzuki method in order 

to determine the kinetic parameters of the individual pseudo-components [31], since the pyrolysis 
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of the lignocellulosic biomass can be considered a weighted sum of the pyrolysis of cellulose, 

hemicellulose and lignin[32]. 

 
Figure 3 DTG curves of the pseudo-components for the samples P (a), PBO (b) and PBI (c), after deconvolution by the 

Fraser-Suzuki method 
 

 

 
In Figure 3 shows the DTG plots for the P, PBO and PBI samples deconvoluted by the 

Fraser-Suzuki method at arate of β = 10°C min-1. The presence of four main peaks was observed 

that obeyed the same sequence of decomposition of the samples (humidity, hemicellulose, cellulose 

and lignin, respectively).The deconvolution of the three major peaks associated with the main 

components of the lignocellulosic matrix [33]provided the second DTG peak seen in Figure 1. The 

DTG results provide greater clarity of the highmoisture content present in the PBI sample compared 

to the other samples, corroborating the values found in the moisture content analysis. The peak 

related to the cellulose decomposition in the PBI sample was at alower intensity than the other 

samples. The opposite effect was observed for the PBO sample, which presented a higher cellulose- 

related peak than the natural sample P. This isbecausethe alkaline treatment with the organic base 

was capable of promoting the reorganization ofthe material structure, due to the rupture of the 

hydrogen bonds present in the cellulose structure [29]. 
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Table 4 Activation energy values by the Friedman method and Fraser-Suzuki parameters for the pseudo cellulose 

component in the P, PBO and PBI samples 

Friedman β 
(cellulose) 

Parameters of Fraser Suzuki 
(°C

 

Samples min
-1

) 

 ̅�̅��̅�(kJ mol-1) Tp(K) As Hp(K
-1) qhf(K)  

P 115,42 596,75 -9,14x10-2 9,10 x10-2 28,54 10 

PBO 91,34 602,59 -3,35x10-1 9,62x10-2 54,98 10 

PBI 4,95 562,14 -1,73x10-1 7,98x10-2 36,63 10 

 

Since the alkaline treatment performed can promote changes in the structure of the material 

[22, 28, 29, 34]the values of Ea of activation by the Friedman method and the Fraser-Suzuki 

parameters for the cellulose pseudo-component in the samples were determined. As shown in Table 

4, the Ea related to the decomposition of cellulose suffered a large decrease in the PBO and PBI 

samples, due to the structural modification caused by the chemical treatment. 

 
Table 5. Enthalpy, entropy and Gibbs free energy of samples 

Samples ∆Hx103 ∆Sx104 ∆G x106 

P -4,85 1,38 -8,22 

PBO -9,68 1,28 -7,73 
PBI -4,67 2,17 -1,22 

 

In Table 5 shows the enthalpy values found for the samples. It can be observed that the PBO 

sample showed a higher enthalpy value indicating that the treatment with the organic base favors a 

greater exothermic capacity in relation to the other samples and that the treatment with an inorganic 

base is not significant when compared to the natural sample (P). It can be seen that the degree of 

disorder is in agreement with the state of decomposition of the samples according to the TG results 

and that the PBI sample presents itself with the energy free energy. 

 
3.2 KINETIC STUDY 

The kinetic parameters of the results obtained by the experimental and predicted 

thermogravimetric analysis by the neural network were determined by the Friedman, Ozawa and 

Kissinger methods for the decomposition range α = 0.2–0.9 relative to the main components of the 

sample (hemicellulose, lignin). The isoconversion methods are based on the fact that the reaction 

rate in a given conversion fraction is only a function of the temperature, and the conversion function 

and the kinetic parameters in a given conversion fraction is independent of the heating rate[30]. As 

discussed, the approximately 10% of masslostduring the first stage of decomposition, which was 
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related to the output of volatile materials and water, is disregarded from the process of determination 

of the kinetic parameters due to the difference in mechanism of decomposition of lignocellulosic 

components [24, 30]. 

In Table 6 summarizes the calculated activation energies obtained for the samples. The PBI 

sample obtained lower valuesof activation energy for all the methods studied in relation to the other 

samples, indicating a greater predisposition to solid phase reactions. This behaviour is attributed to 

the alkaline treatment employed,whichwas able to promote a partial polymorphic transition from 

cellulose I to cellulose II, in addition to removing amorphous components from the lignocellulosic 

matrix, such as lignin and hemicellulose [22]. 

 
Table 6 Activation energies (Ea) for the P, PBO and PBI samples by Friedman, Ozawa and Kissinger methods 

  Ea (kJ mol
-1

)  

α P PBO PBI 

Friedman Ozawa Kissinger Friedman Ozawa Kissinger Friedman Ozawa Kissinger 

0,2 288,94 293,25 284,3 145,04 151,86 142,76 81,63 19,44 80,00 

0,3 206,12 211,87 202,52 131,32 129,2 126,38 108,51 20,53 106,99 
0,4 205,01 210,73 201,1 129,43 136,92 127,17 38,84 19,87 36,54 

0,5 250,94 262,05 252,19 129,48 137,04 127,03 34,01 21,25 32,94 
0,6 84,86 281,46 86,01 83,56 93,16 80,00 63,32 16,8 60,47 

0,7 75,84 305,58 78,45 40,32 36,51 36,79 35,08 102,7 32,15 

0,8 40,32 131,17 41,25 59,88 35,89 45,69 68,76 99,32 64,26 
0,9 102,59 150,25 116,66 117,34 37,66 115,23 152,18 119,99 149,85 

Average 156,82 230,79 157,81 104,54 94,78 100,13 72,79 52,48 70,40 

 

The PBO sample also showed reductioninactivation energy, compared to the natural sample 

P, in the decomposition range of the main components. The treatment with 2-amino propane was 

able to promote breaks in the hydrogen bonds present in the cellulose, leading to a structural 

reorganization and formation of amino-cellulose complexes [29, 34, 35]. Due to these perturbations 

the apparent Ea to promote the decomposition of the material under the studied conditions decreases, 

obeying the following general order for all isoconversion methods studied: EaP>EaPBO>EaPBI. 

For PBI sample in the range α = 0.8–0.9, which occurred in the final step of the analysis, 

there was an increase in apparent Ea for all the studied methods. This increase can be attributed to 

sodium impregnationon the surface of the solid in the pre-treatment stage, which would be capable 

of forming strong interactions with cellulose [35]and other inorganic species.In the other samples, 

due to the nature of the treatment carried out, the significant incorporation of inorganic materials in 

the sample surface was not observed. 

In Figure 4 shows the isoconversion graphs obtained from the Friedman, Kissinger and 

Ozawa methods. The non-parallelism of the lines suggests modification of the decomposition 
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mechanism in the range α = 0.2–0.6, corresponding to the decomposition of the cellulose fraction 

present in the sample. 

 
Figure 4 Isoconversional plots for the P, PBO and PBI samples by Friedman (a), Kissinger (b) and Ozawa (c) 

 
 

 

 

 

Among the methods studied, the Friedman method was evaluated to be the one that best fit 

the results, this method was chosen to evaluate the efficiency of the artificial neural network in the 

prediction of the experimental results of activation energy (Ea). 

However, the variation of the Ea values for all the samples indicatesthe non-compliance 

with the principle of isoconversionality (Figure 5) of the sample, since it has a complex matrix 

undergoing chemical treatment. 



80230 

Brazilian Journal of Development 

Braz. J. of Develop., Curitiba, v. 6, n. 10, p.80216-80235, oct. 2020. ISSN 2525-8761 

 

 

Figure 5 Comparison of activation energies obtained from experimental an artificial neural network predicted data from 

Friedman model for P (a), PBO (b) and PBI (c) samples respectively 

 
 

 
The TG results obtained by the neural network analysis were used to determine the Ea in the 

samples. The results found can be compared in Table 7. 

 
Table 7 Comparison between Ea obtained of experimental data and ANN data 

  Ea (kJ mol
-1

)  

α 
P PBO PBI 

exp ANN 
Relative 

error(%) 
exp ANN 

Relative 

error(%) 
exp ANN 

Relative 

error(%) 

0,2 288,94 287,01 0,67 145,04 144,89 0,10 81,63 80,98 0,80 
0,3 206,12 205,83 0,14 131,32 131,02 0,23 108,51 108,00 0,47 

0,4 205,01 203,98 0,50 129,43 129,13 0,23 38,84 38,56 0,72 
0,5 250,94 249,17 0,71 129,48 128,96 0,40 34,01 33,88 0,38 

0,6 84,86 84,02 0,99 83,56 82,99 0,68 63,32 62,89 0,68 
0,7 75,84 75,23 0,80 40,32 40,03 0,72 35,08 34,99 0,26 

0,8 40,32 40,02 0,74 59,88 59,62 0,43 68,76 68,23 0,77 
0,9 102,59 101,9 0,67 117,34 117,02 0,27 152,18 151,86 0,21 

Average 156,83 155,90 0,59 104,55 104,21 0,32 72,79 72,42 0,50 

 

The Ea values found for the experimental results presented with a maximum relative error 

of 0.99% for the converting fraction α = 0.6 in the sample P. The low error associated with the 

prediction of Ea indicates the network’s efficiency in predicting the thermokinetic decomposition 

results. 

 
3.3 MULTI-ELEMENT ANALYSIS 

A multi-element analysis of the samples was performed, and PCA was applied and auto- 

scaled using Statistica Software 7.0. The components (PC1 x PC2) were able to describe 100% of 

the total data variance by providing discriminatory information related to the samples. Figure 6 

shows the PC1xPC2 graphs of the principal component analysis (PCA) and the obtained results 

show that the alkaline treatment allows the discrimination of the samples in different areas of the 

graph of scores. It is apparent that the treatment performed on the samples was able to decrease the 
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concentration of a large part of the elements present in the natural sample.This effect can be 

attributed to the partial removal of the main components of the lignocellulosic matrix and 

depolymerization reactions of the lignocellulosic matrix, which was able to remove components of 

the material matrix, and consequently, reduced the chemical species present in the sample. 

 
Figure 6 Principal component graphs representing the relationship between the variables (a) "loadings" (b) "scores" 

 
 

 

The correlation eigenvalues of the matrix for PC1 and PC2 are, respectively, 21.16 and 5.84. 

The first major component (PC1) describes 78.36% of the total variation, and the elements K, Mn, 

Ca, Cu, Al, P, S, Cl, Te, I and Ta are the dominant variables in this PC, which resulted in a separation 

of the samples, since in the second main component (PC2) the dominant variables are the elements 

Co and Er. Figure 5B shows the separation ofthe most significant elements in the samples.Due to 

the alkaline treatment, the PBI sample moves to the region of higher Na concentration, which 

favours the production of activated carbon with better properties. 

 
4 CONCLUSIONS 

The employed the artificial neural network was effective in predicting the thermokinetic 

behaviour of the natural and chemically modified samples, obtaining activation energyvalues close 

to that obtained by the experimental results with a maximum error of 0.99%. Due to the 

heterogeneity of the sample, the observed activation energy results indicated non-compliance with 

the principle of isoconversionality, and a change of decomposition mechanism from α = 0.6. In 

addition, the alkaline treatment promoted an Ea reduction in the chemically treated samples (PBO 

and PBI);this effect wasmore pronounced in the sample treated with the inorganic base (PBI), due 

to the removal of major components of the sample matrix and partial modification of its structure, 
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evidencing that the modifications carried out in the samples promoted by the alkaline treatment 

favoured solid phase reactions, as well as processes that aquired pyrolysis energy and obtaining high 

value products in the following order: PBI > PBO > P. However, due to enthalpy factors resulting 

from structural changes, the free energy of Gibbs follows the following order: ∆GP> ∆GPBO> ∆GPBI. 
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