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ABSTRACT 

The increasing concerns about fossil fuel sources have generated growth in investment in renewable 

sources. The slow pyrolysis of lignocellulosic materials has become favourable because to producing 

energy and is capable of supplying products with high added value. Accordingly, through the 

application of artificial neural networks, this study evaluated the kinetics of the slow pyrolysis of the 

powder obtained from the fruit peel of Pachira aquatica Aubl. in natural and chemical modified form 
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to determine the kinetic parameters using the Friedman, Kissinger and Ozawa isoconversion methods 

and introduction of Fraser-Suzuki deconvolution method to obtain the individual kinetic parameters 

for the pseudo-cellulose component. The results allowed the conclusion that the applied neural network 

was efficient in the prediction of the thermal data, obtaining similar thermogravimetric profiles to 

experimental ones and high determination values. The Friedman method was the best fit for the data, 

and the activation energies showed that the samples submitted to chemical treatment obtained lower 

activation energy, due to the modification of the components of the lignocellulosic matrix. 

 

Keywords: Biomass, Kinetic Parameters, Artificial Neural Network, Activation Energy, Chemical 

Treatment, Pyrolysis. 

 

RESUMO 

As crescentes preocupações com as fontes de combustíveis fósseis geraram um crescimento no 

investimento em fontes renováveis. A lenta pirólise de materiais lignocelulósicos tornou-se favorável 

porque produz energia e é capaz de fornecer produtos com elevado valor acrescentado. Assim, através 

da aplicação de redes neurais artificiais, este estudo avaliou a cinética da pirólise lenta do pó obtido da 

casca do fruto de Pachira aquatica Aubl. de forma natural e químicamente modificada para determinar 

os parâmetros cinéticos utilizando os métodos de isoconversão Friedman, Kissinger e Ozawa e a 

introdução do método de deconvolução Fraser-Suzuki para obter os parâmetros cinéticos individuais 

para o componente pseudo-celulósico. Os resultados permitiram concluir que a rede neural aplicada foi 

eficiente na previsão dos dados térmicos, obtendo perfis termogravimétricos semelhantes aos 

experimentais e valores de determinação elevados. O método de Friedman foi o mais adequado para 

os dados, e as energias de activação mostraram que as amostras submetidas a tratamento químico 

obtiveram menor energia de activação, devido à modificação dos componentes da matriz 

lignocelulósica. 

 

Palavras-chave: Biomassa, Parâmetros Cinéticos, Rede Neural Artificial, Energia de Activação, 

Tratamento Químico, Pirólise. 

 

 

1 INTRODUCTION 

Non-renewable sources of energy, especially fossil fuels, still predominate in the world energy 

matrix, as well as in all countries individually. However, it is impossible to maintain this state due to 

the limits of available reserves and the environmental impacts, especially those concerningclimate 

change[1] competition for oil and regional conflicts[2, 3]. Renewable energies become favourable; in 

addition to being considered an inexhaustible reserve [4], its environmental impact is far lessthan that 

caused by the fossil energy sources, thus, reducingthe emission of greenhouse gases[5, 6]. In this sense, 

lignocellulosic biomassesarehighlighted as a possible alternative among other sources because it is 

widely available and is neutral in the production of carbon dioxide [7]. In addition, lignocellulosic 

biomasses produce not only energy, but also other products of high economic value [8–12]by the 

application of different technologies [11, 13, 14]. Among the technologies using inbiomass processing, 

pyrolysis [8, 15]has advanced in research because it is a thermochemical process of thermal 
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decomposition in the absence of oxygen and can be classified as slow or fast, depending on the working 

temperature, providing liquid, gaseous and solid products [16]. Compared toother thermal methods, 

such as gasification and combustion, pyrolysis allows for the detailed characterization of thermal and 

kinetic behaviour, permitting the determination of the activation energy of the process, which is useful 

for other stages of the operation and comparative studies [17]. The use of artificial neural networks in 

these systems has increased significantly [18–21],and in this work, the multi-layer feed-forward neural 

network was implemented through MATLAB software with the objective of predicting the 

thermokinetic behaviour of the samples obtained from the fruit peel of Pachira aquatica Aubl. in its 

natural form (P) and chemically modified via treatment with 1.22 mol L-1C3H9N (PBO) or2.5 mol L-1 

NaOH(PBI) by evaluating the TG/DTG curves atheating rates of 5, 10, 15 and 20ºC min-1. The Fraser-

Suzuki deconvolution procedure was performed for the evaluation of kinetic parameters by the 

Friedman, Kissinger and Ozawa isoconversion methods. 

 

2 MATERIALS AND METHODS 

2.1. PREPARATION OF BIOMASSES 

2.1.1. Natural samples 

Samples were obtained following the procedure proposed by Carvalho and Virgens (2018) by 

washing the fruit peel of Pachira aquatica Aubl. with tap water to remove impurities. The shells were 

then washed with ultrapure water and decontaminated in a nitric acid bath, HNO3 (10% v v-1), for 10 

min to eliminate any contaminants such pesticides. Thereafter, successive washes were performed with 

ultrapure water. Thesampleswere dried using the conventional method in an SL100 oven for 24 h at1.01 

x 105Paand 378 K. The samples were ground in a knife mill and passed through an80-mesh sieve. The 

natural sample was referred to asP. 

 

2.1.2. Treatment of Pachira aquatica Aubl. samples 

The chemical treatment of the P sample was performed following the procedure proposed by 

Carvalho and Virgens (2018), where C3H9N (REATEC, 1.22 mol L-1) or NaOH (VETEC, 2.5 mol L-1) 

solution were added at a ratio of 1:10 and stirred (NOVA ETHIC MOD.109) for 24 h at 120 rpm. The 

samples were then filtered, and the solids obtained were dried in an air-circulating oven (SL100 model) 

at 378 K for 24 h. Subsequently, the solids were ground and passed through an 80-mesh sieve, 

generating the PBO and PBI, which were treated with C3H9N and NaOH, respectively [22]. 
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2.2. MOISTURE CONTENT 

The moisture content was determined according to ASTM E1756-08, Method A [23]. For the 

analysis, 1g of natural (P) or modified (PBO orPBI) sample was weighed in a crucible and oven dried 

(105±3°C) for 2h. Then, the crucible containing the sample was cooled in a desiccator and weighed 

using an analytical balance. The moisture content was calculated according to Equation 1: 

 

%moisture =
𝑚1−𝑚2

𝑚1
𝑥100         (1) 

 

where m1 is the mass of the wet sample (g) and m2 is the mass of the dry sample (g). 

 

2.3. THERMAL ANALYSIS 

The thermogravimetry (TG) of P, PBO and PBI samples were performed under atmospheric 

pressure using a TG/DTA analyser (Shimadzu model DTG 60). Approximately 8 mg of the sample 

was analysed in a dynamic nitrogen atmosphere (N2) with a constant flow of 50 mL min-1 using a 

platinum crucible atfour heating rates (5, 10, 15 or 20°C min-1). From the TG data, the analyserprovided 

the DTG results. 

 

2.4. PYROLYTIC KINETIC MODELLING 

2.4.1. Kinetic model 

Generally, in TG the solid-state material is heated at a constant heating rate (β = dT/dt K s-1), 

under controlled conditions, which is characterized as a non-isothermal analysis: 

 

𝛽
𝑑𝛼

𝑑𝑇
= 𝑓(𝛼)𝑘(𝑇)         (2) 

 

The conversion form of the reaction rate according to Arrhenius law can be expressed as: 

 

𝑑𝛼

𝑑𝑇
=

𝐴

𝛽
exp (

−𝐸

𝑅𝑇
)𝑓(𝛼)         (3) 

 

where E denotes the apparent activation energy (J mol-1), A denotes the pre-exponential factor (s-1), T 

is absolute temperature (K), R is the ideal gas constant (8.3145 J mol-1 K-1),𝑓(α) denotes the mechanism 

model thatdepends on the conversion (α), which is known as the normalized mass(α∈ [0,1]) and is 

dimensionless. The conversion factor can be expressed as: 
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𝛼 = 1 − 𝑥 = (𝑚0 − 𝑚𝑇)/(𝑚0 − 𝑚𝑓)      (4) 

 

where𝑚0, 𝑚𝑇 and 𝑚𝑓 denotes the normalized mass of the sample at the initial temperature (T0), given 

temperature T and final temperature (Tf), respectively; 𝑥 denotes the normalized mass remaining. The 

integral of Equation3gives: 

 

𝑔(𝛼) = ∫
𝑑𝛼

𝑓(𝛼)
=

𝐴

𝛽
∫ exp (

−𝐸

𝑅𝑇
) 𝑑𝑇

𝑇

𝑇0

𝛼

0
       (5) 

 

where g(α) is an integral form of the 𝑓(α), which is also dependent on the conversion factor, α. 

Several kinetic methods have been presented in the literature, but they can be classified into two main 

groups: fitting-model or model-free. Although model-free methods (also called iso-conversion 

methods) propose the determination of the activation energy without proposing any specific reaction 

mechanism or model for the transformation, it is believed to be accuratefor a single step. The E values 

at given α values, Eα, can be estimated by using 3–5 runs at different heating rates without known 𝑓(α) 

or g(α) values. Although there are many iso-conversional methods, one of the most widely used is the 

Friedman method, which is expressed as: 

 

ln[[𝛽𝑖 (
𝑑𝛼

𝑑𝑇
)

𝛼
] = ln[𝐴𝛼𝑓(𝛼)] −

𝐸𝑎

𝑅𝑇𝛼,𝑖
       (6) 

 

where the subscript i means i-th heating rate,𝑇𝛼,𝑖 is the temperature corresponding to given α of i-th 

heating rate, (dα/dT)α,𝐸𝑎 ,𝐴𝛼  denotes differential α versus T, the apparent activation energy, pre-

exponential factor of given α, respectively. In the linear fittings of ln[[𝛽𝑖 (
𝑑𝛼

𝑑𝑇
)

𝛼
] vs -1/Tα,i, Eα can be 

estimated from the slope Eα/R, and Aα can be calculated from the intercepts once the most suitable 𝑓(α) 

is known. 

 

 

2.4.2. Fraser-Suzuki deconvolution procedure 

 Sometimes due to the complexity of the reagents and the substantial number of simultaneous 

reactions, it is necessary to apply the deconvolution procedure of the global curves toindividual curves. 
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The deconvolution method of the dα/dT signal for the n-th pseudo component as a Fraser-Suzuki (FSF) 

temperature function, such that: 

 

𝑑𝛼

𝑑𝑇
|

𝑛
= 𝐻𝑝,𝑛 exp {−

𝑙𝑛(2)

𝐴𝑠,𝑛
2 ln [1 + 2𝐴𝑠,𝑛

𝑇−𝑇𝑝,𝑛

𝑞ℎ𝑓,𝑛
]

2

}     (7) 

 

where Tp, As, Hp and qhf indicate peak (K) temperature, curve asymmetry (dimensionless), curve height 

(K-1) and half-width (K) of dα/dT peak vs. n-th pseudo component, respectively. 

 

2.4.3. Calculation details 

 For the FSF application, the Fityk software (distributed under the terms GNU General Public 

License) version 0.9.8 [36] was used, withthe Log-normal function defined as: 

 

𝑦 = ℎ exp {− 𝑙𝑛(2) [
𝑙𝑛 (1+2𝑏

𝑥−𝑐

𝑤
)

𝑏
]

2

}       (8) 

 

where h is the parameter Hp, c is the parameter Tp, w is the  parameter qhf,  b is the parameter As. 

Withthese parameters, the same designations are also true as those outlined for the Fraser-Suzuki 

function presented in Equation 7. 

 

2.5. ARTIFICIAL NEURAL NETWORK 

In this paper, the Neural Network Toolbox from MATLAB software version R2017a was used 

to implement Artificial Neural Network’s (ANN) training, validation and test algorithms.Multilayer 

Feedforward Neural Network architecture, which presents one or more hidden layers, was applied to 

build the predictive model. Hyperbolic tangent sigmoid and linear transfer functions were used as 

input-to-hidden layer and hidden-to-output layer activation functions, respectively.The dataset was 

randomly distributed in three groups: 54% in training, 23% in validation and 23% in test. One input 

variable (temperature [ºC]) and two output variables (DTA [uV] and TG [mg]) were used for training, 

for  which the Levemberg-Marquart algorithm was utilized. This way, 50 ANN were created, each one 

with one input layer, two hidden layers and one output layer, and a different number of hidden neurons 

(processing units) that varied from 5 to 54. Four ANNs, relative to four heating rates, were created for 

each sample (P, PBI and PBO). 
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After training, the ANNs performances were evaluated through mean squared error (mse) and 

determination coefficient (R²) values, and the network that had the best values (low mse and R² value 

close to one) were selected for each case (sample and heating rate). Later, data prediction was done 

with preestablished inputs. 

 

3 RESULTS AND DISCUSSION 

The DTG curves at different heating rates are shown in Figure 1, while peak conversion 

temperatures and mass loss rates are shown in Table 1. 

 
Figure 1.DTG profiles for samples P (a), PBO (b) and PBI (c) 

 

 

 

The first decomposition event related to the first peak present in the graph profile is generally 

attributed to the evaporation of volatile materials and physically adsorbed water present on the surface 

of the material [17, 24]. This higher variation to PBI samplecan be attributedto the incorporation of 

hydroxyl groups (-OH) on the surface of this solid [22]due to the network’s interaction with water 

molecules, thereby increasing its moisture content [25]. 

 



Brazilian Journal of Development 
 

     Braz. J. of  Develop., Curitiba, v. 6, n. 10, p. 79686-79704, oct. 2020.            ISSN 2525-8761 

 
 

79693  

Table 1 Peak temperatures and weight loss of Pachira aquatica Aubl. nature (P) and modified (PBO and PBI). 

Heating 

Rate 

(°C/min) 

P PBO PBI 

Peak 

Temperature 

(°C) 

dW/dt 

(mg/min) 

Peak 

Temperature 

(°C) 

dW/dt 

(mg/min) 

Peak 

Temperature 

(°C) 

dW/dt 

(mg/min) 

5 
47,50 0,07 46,44 0,08 48,93 0,09 

299,49 0,26 304,50 0,30 281,27 0,22 

10 
53,65 0,14 55,36 0,18 55,09 0,22 

323,38 0,57 331,71 0,62 294,53 0,46 

15 
60,59 0,20 59,56 0,26 60,68 0,26 

331,05 0,88 327,79 0,89 301,13 0,71 

20 
62,80 0,22 60,84 0,20 72,80 0,51 

330,62 1,10 331,67 1,07 272,30 0,48 

 

 

The PBO sample also had higher volatile and moisture content relative to the natural sample P 

because the chemical treatment step was performed with a highly volatile chemical substance, probably 

impregnated on the surface of the released material duringsample heating.Table 2 compares the 

moisture content results with loss of mass in the first event for the samples, where evidence suggests 

that more than 50% of the loss of mass in the first event is associated with the presence of water 

molecules. 

 
Table 2 Moisture content and mass loss percentage of the first event for chemically treated and natural samples 

Sample Moisture 

content(%) 

Loss of mass first 

event (%) 

Reference 

Pine Wood 9,18 - (Hu et al., 2016) 

Bamboo 9,45 - (Hu et al., 2016) 

P 7,75 9,35 This work 

PBO 9,12 9,60 This work 

PBI 11,78 13,08 This work 

 

 

The second event, mostly related to the degradation of hemicellulose, cellulose and the onset of 

the decomposition of lignin, which is a component of the matrix of the material [13, 26, 27], extends 

from 200–500°C with higher degradation.ThePBI sample obtained lower mass variation in this region, 

due to the partial removal of lignin[28]by the inorganic base, with a loss of 42.40%, while the other 

samples had losses of 52.57% and 55.54% for P and PBO, respectively, indicating greater thermal 

stability in relation to the other samples in this temperature range.The influence of partial lignin 

removal can be observed in the DTG results (Figure 1), where the second peak related to the 

decomposition of the major lignocellulosic matrix components inthe PBI sample appears atlower 



Brazilian Journal of Development 
 

     Braz. J. of  Develop., Curitiba, v. 6, n. 10, p. 79686-79704, oct. 2020.            ISSN 2525-8761 

 
 

79694  

temperatures. In fact, the alkaline treatment with sodium hydroxide modified the surface properties of 

the solid due to the partial removal of the components of the lignocellulosic matrix of the material, 

resulting in a higher crystallinity index, zero load point (pHpcz) and the polymorphic transition of 

cellulose [22, 29]. The main decomposition of lignocellulosic materials (240–350°C) includes the 

reduction of the degree of polymerization by the appearance of free radicals with the loss of water and 

the formation of CO, CO2 and residues such as coal[30]and lignin (280–500°C) starting in the second 

stage and extending to the third stage of decomposition[13].The first stage occurs at a temperature 

below 100°C, which is related to the loss of residual water.The third stage of mass loss, in which lignin 

degradation continued up to approximately 500°C, is characterized by a ‘pseudo-stationary’ stage, in 

which a gradual loss of mass occurs until reaching the limit temperature of the analysis (1000°C).  

 

Figure 2 Comparison of experimental and ANN predicted thermal data at varying heating rates to P (a), PBO (b) and PBI 

(c) samples. 

 

 

Figure 2 compares the profiles of the mass loss events obtained by the experimental TG with 

the decomposition results predicted by the artificial neural network applied to the thermogravimetric 

data.Similar thermogravimetric profiles indicate that the application of the artificial neural network can 

satisfactorily describe the thermokinetic behaviour of the natural and chemically treated samples, 

presenting small low temperature deviation (b) by neural network extrapolations inherent to the 
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intrinsic characteristics of the sample. This characteristic suggests that, despite the high performance 

indices, there is still an associated error, as seen in Table 3. 

 

Table 3 Determination index of the thermogravimetric profile predicted by the neural network 

 β (°C min-1) 

Samples 5 10 15 20 

P 0,9999 0,9998 0,9991 0,9998 

PBO 0,9999 0,9999 0,9999 0,9999 

PBI 0,9999 0,9999 0,9999 0,9999 

 

2.6. FRASER- SUZUKI DECONVOLUTION RESULTS  

Due to the complexity and heterogeneity of the lignocellulosic samples, in the stages of 

decomposition the deconvolution procedure was performed usingthe Fraser-Suzuki method in order to 

determine the kinetic parameters of the individual pseudo-components [31], since the pyrolysis of the 

lignocellulosic biomass can be considered a weighted sum of the pyrolysis of cellulose, hemicellulose 

and lignin[32].  

 
Figure 3 DTG curves of the pseudo-components for the samples P (a), PBO (b) and PBI (c), after deconvolution by the 

Fraser-Suzuki method 

 



Brazilian Journal of Development 
 

     Braz. J. of  Develop., Curitiba, v. 6, n. 10, p. 79686-79704, oct. 2020.            ISSN 2525-8761 

 
 

79696  

 

 

In  Figure 3 shows the DTG plots for the P, PBO and PBI samples deconvoluted by the Fraser-

Suzuki method at arate of β = 10°C min-1. The presence of four main peaks was observed that obeyed 

the same sequence of decomposition of the samples (humidity, hemicellulose, cellulose and lignin, 

respectively).The deconvolution of the three major peaks associated with the main components of the 

lignocellulosic matrix [33]provided the second DTG peak seen in Figure 1. The DTG results provide 

greater clarity of the highmoisture content present in the PBI sample compared to the other samples, 

corroborating the values found in the moisture content analysis. The peak related to the cellulose 

decomposition in the PBI sample was at alower intensity than the other samples. The opposite effect 

was observed for the PBO sample, which presented a higher cellulose-related peak than the natural 

sample P. This isbecausethe alkaline treatment with the organic base was capable of promoting the 

reorganization ofthe material structure, due to the rupture of the hydrogen bonds present in the cellulose 

structure [29]. 

 

Table 4 Activation energy values by the Friedman method and Fraser-Suzuki parameters for the pseudo cellulose 

component in the P, PBO and PBI samples 

Samples 

Friedman 

(cellulose) 
Parameters of Fraser Suzuki 

β 

(°C 

min-1) 
 

𝐸𝑎
̅̅ ̅(kJ mol-1)  Tp(K) As Hp(K

-1) qhf(K)  

P 

PBO 

PBI 

115,42 596,75 -9,14x10-2 9,10 x10-2 28,54 10 

91,34 602,59 -3,35x10-1 9,62x10-2 54,98 10 

4,95 562,14 -1,73x10-1 7,98x10-2 36,63 10 

 

Since  the alkaline treatment performed can promote changes in the structure of the material 

[22, 28, 29, 34]the values of Ea of activation by the Friedman method and the Fraser-Suzuki parameters 
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for the cellulose pseudo-component in the samples were determined. As shown in Table 4, the Ea 

related to the decomposition of cellulose suffered a large decrease in the PBO and PBI samples, due to 

the structural modification caused by the chemical treatment. 

 

Table 5. Enthalpy, entropy and Gibbs free energy of samples 

Samples ∆Hx103 ∆Sx104 ∆G x106 

P -4,85 1,38 -8,22 

PBO -9,68 1,28 -7,73 

PBI -4,67 2,17 -1,22 

 

In Table 5 shows the enthalpy values found for the samples. It can be observed that the PBO 

sample showed a higher enthalpy value indicating that the treatment with the organic base favors a 

greater exothermic capacity in relation to the other samples and that the treatment with an inorganic 

base is not significant when compared to the natural sample (P). It can be seen that the degree of 

disorder is in agreement with the state of decomposition of the samples according to the TG results and 

that the PBI sample presents itself with the energy free energy. 

 

2.7. KINETIC STUDY 

The kinetic parameters of the results obtained by the experimental and predicted 

thermogravimetric analysis by the neural network were determined by the Friedman, Ozawa and 

Kissinger methods for the decomposition range α = 0.2–0.9 relative to the main components of the 

sample (hemicellulose, lignin). The isoconversion methods are based on the fact that the reaction rate 

in a given conversion fraction is only a function of the temperature, and the conversion function and 

the kinetic parameters in a given conversion fraction is independent of the heating rate[30]. As 

discussed, the approximately 10% of masslostduring the first stage of decomposition, which was 

related to the output of volatile materials and water, is disregarded from the process of determination 

of the kinetic parameters due to the difference in mechanism of decomposition of lignocellulosic 

components [24, 30]. 

In Table 6 summarizes the calculated activation energies obtained for the samples. The PBI 

sample obtained lower valuesof activation energy for all the methods studied in relation to the other 

samples, indicating a greater predisposition to solid phase reactions. This behaviour is attributed to the 

alkaline treatment employed,whichwas able to promote a partial polymorphic transition from cellulose 

I to cellulose II, in addition to removing amorphous components from the lignocellulosic matrix, such 

as lignin and hemicellulose [22]. 
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Table 6 Activation energies (Ea) for the P, PBO and PBI samples by Friedman, Ozawa and Kissinger methods 

α 

Ea (kJ mol-1) 

P PBO PBI 

Friedman Ozawa Kissinger Friedman Ozawa Kissinger Friedman Ozawa Kissinger 

0,2 288,94 293,25 284,3 145,04 151,86 142,76 81,63 19,44 80,00 

0,3 206,12 211,87 202,52 131,32 129,2 126,38 108,51 20,53 106,99 

0,4 205,01 210,73 201,1 129,43 136,92 127,17 38,84 19,87 36,54 

0,5 250,94 262,05 252,19 129,48 137,04 127,03 34,01 21,25 32,94 

0,6 84,86 281,46 86,01 83,56 93,16 80,00 63,32 16,8 60,47 

0,7 75,84 305,58 78,45 40,32 36,51 36,79 35,08 102,7 32,15 

0,8 40,32 131,17 41,25 59,88 35,89 45,69 68,76 99,32 64,26 

0,9 102,59 150,25 116,66 117,34 37,66 115,23 152,18 119,99 149,85 

Average 156,82 230,79 157,81 104,54 94,78 100,13 72,79 52,48 70,40 

 

The PBO sample also showed reductioninactivation energy, compared to the natural sample P, 

in the decomposition range of the main components. The treatment with 2-amino propane was able to 

promote breaks in the hydrogen bonds present in the cellulose, leading to a structural reorganization 

and formation of amino-cellulose complexes [29, 34, 35]. Due to these perturbations  the apparent Ea 

to promote the decomposition of the material under the studied conditions decreases, obeying the 

following general order for all isoconversion methods studied: EaP>EaPBO>EaPBI.  

For PBI sample in the range α = 0.8–0.9, which occurred in the final step of the analysis, there 

was an increase in apparent Ea for all the studied methods. This increase can be attributed to sodium 

impregnationon the surface of the solid in the pre-treatment stage, which would be capable of forming 

strong interactions with cellulose [35]and other inorganic species.In the other samples, due to the nature 

of the treatment carried out, the significant incorporation of inorganic materials in the sample surface 

was not observed. 

In Figure 4 shows the isoconversion graphs obtained from the Friedman, Kissinger and Ozawa 

methods. The non-parallelism of the lines suggests modification of the decomposition mechanism in 

the range α = 0.2–0.6, corresponding to the decomposition of the cellulose fraction present in the 

sample. 
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Figure 4 Isoconversional plots for the P, PBO and PBI samples by Friedman (a), Kissinger (b) and Ozawa (c) 

 

 

 

 

Among the methods studied, the Friedman method was evaluated to be the one that best fit the 

results, this method was chosen to evaluate the efficiency of the artificial neural network in the 

prediction of the experimental results of activation energy (Ea). 

However, the variation of the Ea values for all the samples indicatesthe non-compliance with 

the principle of isoconversionality (Figure 5) of the sample, since it has a complex matrix undergoing 

chemical treatment. 
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Figure 5 Comparison of activation energies obtained from experimental an artificial neural network predicted data from 

Friedman model for P (a), PBO (b) and PBI (c) samples respectively 

 

 

The TG results obtained by the neural network analysis were used to determine the Ea in the 

samples. The results found can be compared in Table 7. 

 

Table 7 Comparison between Ea obtained of experimental data and ANN data 

α 

Ea (kJ mol-1) 

P PBO PBI 

exp ANN 
Relative 

error(%) 
exp ANN 

Relative 

error(%) 
exp ANN 

Relative 

error(%) 

0,2 288,94 287,01 0,67 145,04 144,89 0,10 81,63 80,98 0,80 

0,3 206,12 205,83 0,14 131,32 131,02 0,23 108,51 108,00 0,47 

0,4 205,01 203,98 0,50 129,43 129,13 0,23 38,84 38,56 0,72 

0,5 250,94 249,17 0,71 129,48 128,96 0,40 34,01 33,88 0,38 

0,6 84,86 84,02 0,99 83,56 82,99 0,68 63,32 62,89 0,68 

0,7 75,84 75,23 0,80 40,32 40,03 0,72 35,08 34,99 0,26 

0,8 40,32 40,02 0,74 59,88 59,62 0,43 68,76 68,23 0,77 

0,9 102,59 101,9 0,67 117,34 117,02 0,27 152,18 151,86 0,21 

Average 156,83 155,90 0,59 104,55 104,21 0,32 72,79 72,42 0,50 

 

The Ea values found for  the experimental results presented with a maximum relative error of 

0.99% for the converting fraction α = 0.6 in the sample P. The low error associated with the prediction 

of Ea indicates the network’s efficiency in predicting the thermokinetic decomposition results. 

 

2.8. MULTI-ELEMENT ANALYSIS 

A multi-element analysis of the samples was performed, and PCA was applied and  auto-scaled 

using Statistica Software 7.0. The components (PC1 x PC2) were able to describe 100% of the total 

data variance by providing discriminatory information related to the samples. Figure 6 shows the 

PC1xPC2 graphs of the principal component analysis (PCA) and the obtained results show that the 

alkaline treatment allows the discrimination of the samples in different areas of the graph of scores. It 
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is apparent that the treatment performed on the samples was able to decrease the concentration of a 

large part of the elements present in the natural sample.This effect can be attributed to the partial 

removal of the main components of the lignocellulosic matrix and depolymerization reactions of the 

lignocellulosic matrix, which was able to remove components of the material matrix, and consequently, 

reduced the chemical species present in the sample. 

 

Figure 6 Principal component graphs representing the relationship between the variables (a) "loadings" (b) "scores" 

 

 

The correlation eigenvalues of the matrix for PC1 and PC2 are, respectively, 21.16 and 5.84. 

The first major component (PC1) describes 78.36% of the total variation, and the elements K, Mn, Ca, 

Cu, Al, P, S, Cl, Te, I and Ta are the dominant variables in this PC, which resulted in a separation of 

the samples, since in the second main component (PC2) the dominant variables are the elements Co 

and Er. Figure 5B shows the separation ofthe most significant elements in the samples.Due to the 

alkaline treatment, the PBI sample moves to the region of higher Na concentration, which favours the 

production of activated carbon with better properties. 

 

3 CONCLUSIONS 

The employed the artificial neural network was effective in predicting the thermokinetic 

behaviour of the natural and chemically modified samples, obtaining activation energyvalues close to 

that obtained by the experimental results with a maximum error of 0.99%. Due to the heterogeneity of 

the sample, the observed activation energy results indicated non-compliance with the principle of 

isoconversionality, and a change of decomposition mechanism from α = 0.6. In addition, the alkaline 

treatment promoted an Ea reduction in the chemically treated samples (PBO and PBI);this effect 
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wasmore pronounced in the sample treated with the inorganic base (PBI), due to the removal of major 

components of the sample matrix and partial modification of its structure, evidencing that the 

modifications carried out in the samples promoted by the alkaline treatment favoured solid phase 

reactions, as well as processes that aquired pyrolysis energy and obtaining high value products in the 

following order: PBI > PBO > P. However, due to enthalpy factors resulting from structural changes, 

the free energy of Gibbs follows the following order: ∆GP> ∆GPBO> ∆GPBI. 
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