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ABSTRACT 

This paper introduces a method for detecting and classifying vertical objects from a mobile 

terrestrial laser scanner point cloud. The paper concentrates on the classification of the top of the 

poles, where shields or lamps are installed. First, the variance-covariance matrix of each segmented 

object is computed. Then the eigenvalues and eigenvector of this matrix are derived. The 3D 

coordinates of each point are then transformed using the principal components transform in order to 

compute new features in this new space. In the second step the distribution of the three eigenvalues 

of the different classes in the eigenvalues space is analysed. Is it deduced that similar objects align 

in this space, allowing proposing a classification rule based on the distance to the lines. An 

experiment was performed to verify the approach performance. In the classification of different 

objects, the global accuracy reached 75%. When the classification was more general, separating just 

flat from three-dimensional objects the accuracy reached 94%. From the obtained results it can be 

concluded that the proposed method is feasible and allows separating objects according to its shape. 

 

Keywords: Mobile mapping, point cloud processing, pole mapping 

 

RESUMO  

Este documento apresenta um método para detectar e classificar objetos verticais a partir de uma 

nuvem de pontos do scanner laser terrestre móvel. O artigo concentra-se na classificação do topo 

dos postes, onde são instalados placas ou lâmpadas. Primeiro, a matriz de variância-covariância de 

cada objeto segmentado é calculada. Então os autovalores e os autovetores dessa matriz são 

derivados. As coordenadas 3D de cada ponto são transformadas usando a transformação de 

componentes principais para computar novas características nesse novo espaço. Na segunda etapa, 

analisa-se a distribuição dos três autovalores das diferentes classes no espaço de autovalores. É 

deduzido que objetos similares se alinham neste espaço, permitindo propor uma regra de 
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classificação baseada na distância para as linhas. Um experimento foi realizado para verificar o 

desempenho da abordagem. Na classificação de objetos diferentes, a precisão global atingiu 75%. 

Quando a classificação era mais geral, separando apenas objetos planos e tridimensionais, a precisão 

chegou a 94%. A partir dos resultados obtidos pode-se concluir que o método proposto é viável e 

permite separar objetos de acordo com sua forma. 

 

Palavras-chave: Mapeamento móvel, processamento de nuvem de pontos, mapeamento de postes. 
 

 

1 INTRODUCTION 

To support the FIFA World Cup in Brazil-2014, a great effort was invested towards 

improving urban infrastructure in the Brazilian cities. One of the aims was to improve the road 

network. At that point, it was stated that there was not enough information about the exiting urban 

infrastructure along the streets. One of the main concerns was to map existing poles and distinguish 

between their uses. In order to study the problem and develop a possible solution, a pilot study was 

executed within a University Campus, aiming at mapping and classifying poles using only LiDAR 

point cloud from mobile mapping survey. This paper describes part of the results, concentrating on 

the classification of pole tops.  

Pole detection methods have similarity with methods aimed at detecting trees, vertical 

elements of the landscape. Some works, such as Yu et al. (2015) or Yokohama et al. (2013) are 

examples of point clouds processing for detection of poles with terrestrial LiDAR. In a broader 

sense, pole detection and classification methods are also included in the more general detection of 

urban furniture problem and is discussed in works like Li et al (2016), Fukano and Masuda (2015) 

or El-Halawany (2013). 

As the problem is to detect and classify urban furniture, pole detection methods usually begin 

with the classification of ground points, which enables computing a normalized representation that 

stores the height of the objects above the ground. The methods of terrain filtering from aerial LiDAR 

can be applied for this purpose. When dealing with mobile terrestrial scanner data, alternative 

solutions were proposed to extract the bare soil, as for example in Ibrahim and Lichti (2012), who 

propose segmenting the point cloud into two main segments: ground and non-ground by analyzing 

the local density of the point cloud. It is assumed that points on the ground are in regions of lower 

density and therefore the number of points inside a sphere of defined radius is counted. A more 

complex approach is described in Denis et al. (2010), who propose an algorithm based on region 

growing, taking as seed the point with minimal height of each scanned line. 

From this point up, the pole detection techniques vary. Among the best known are the slicing 

techniques and those based on the detection of cylinders, as described in Huang and You (2005). 



Brazilian Journal of Development 
 

Braz. J. of Develop., Curitiba, v. 6, n. 6, p. 39506-39518 jun. 2020.    ISSN 2525-8761 

 
 

39508  

Slicing consists in defining a surface parallel to the ground, at a height specified by the user. This 

method, also described in Luo and Wang (2005), assumes that the poles are vertical structures and 

will intercept this virtual surface. To improve the method, several surfaces are produced at different 

heights. 

Assuming that poles are cylinders, some methods aim at detecting circular structures in the 

point loud. For example, Press and Austin (2004) propose to apply the Hough transform to identify 

the points belonging to a circle. Another way to model the section of the poles would be applying 

RANSAC method for detecting circular structures, as described in Bolles and Fischler (1981). 

Pole classification is a more complex task, because it deals with 3D object classification 

from an irregular point cloud. To obtain a description of relevant features in a point cloud, 

Weinmann et al. (2013) propose the analysis of a local neighborhood. As described by Jutzi and 

Gross (2009) the local point cloud allows deriving the 3D covariance matrix, which describes the 

point dispersion within the region. From the eigenvalues (λ1, λ2, λ3) and eigenvectors of this matrix, 

descriptors can be computed to describe the shape of the scanned object. Weinmann et al. (2013) 

propose to use the measures of as descriptors to identify linear, planar and volumetric structures 

three measures (Equations 1-3): 

 

 

 

This concept was also applied in a study of pole and trees classification, introduced by 

Ordoñez et al (2017). After testing several variables related to the geometric characteristics of 

vertical objects, they concluded that three descriptors derived from the eigenvalues are useful: 

 

 

 

x2 is useful to discriminate flat elements; x3 distinguishes narrow objects and x4 

discriminates between volumetric and flatter objects. 

A different approach is described in Rodríguez-Cuenca et al (2015). They propose the use 

of a classification scheme based on the Mahalanobis distance. First the point cloud is segmented 

and vertical clusters (pillars) are detected using voxels. Then, the Reed and Xiaoli Yu (1990) method 
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(based on the Mahalanobis distance) is applied to detect pillars that represent a vertical urban 

element.  

A more complex classification method is introduced in Fukano and Masuda (2015). After 

the pole-like objects are detected, the Fukano and Masuda method divides the point cloud in 

spatially more simple parts, First the pole is separated, then the remaining points are analyzed and 

its verified if a planar structure can be fitted using RANSAC. If it is necessary, the process is 

repeated searching for other elements. In a second step, the point cloud is classified using the 

following variables: Sizes of the bounding box; Eigenvalues; Ratios of eigenvalues: Numbers of 

subsets (elements); Distances between elements and the Ratios of edge directions. 

In the present study, the solution is based on the Principal Components Transform, as 

proposed by Weinmann et al. (2013) and Ordoñez et al (2017). The eigenvalues also analyzed to 

classify the tops of poles and identify the kind of object that is installed there. In the proposed 

approach, the original three-dimensional eigenvalues space is reduced to a bidimensional 

representation. This simplification affects the formulation of the above-mentioned variables. It is 

observed that the objects trend to align in this two-dimensional feature space and therefore a second 

difference in relation to the solutions described in the literature is the classification approach. In this 

paper, lines are used as the clusters of each class and the classification approach is based on the 

distance to lines. 

 

2 METHODS 

The method uses a 3D cloud points measured by a Mobile Terrestrial Laser System. The 

overall steps are (a) data capture; (b) point cloud computation; (c) pole detection and (d) pole 

classification. This paper focuses in the last step. 

 

2.1 POLE DETECTION 

To start the extraction process, the points on the ground were classified using the Classify 

Hard Surface tool and used to compute the height of the points above the ground. The point cloud 

was projected on the horizontal plane, using a grid as basic structure. The grid size was established 

according to the relation between the spatial resolution of the point cloud and the expected diameter 

of the poles. The idea is that, if many points fall on a pole or another vertical structure, they will be 

projected on the same cell of the grid. So, the number of points on each cell was computed and 

stored as grid value. In the next step, the grid values were separated according to the concentration 

of points (point density), enabling to identify vertical structures. The obtained regions were labelled 
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using the connected components algorithm. In the next step, the pole is segmented according to the 

diameter variation and the top of the pole is obtained. 

 

2.2 TOP ANALYSIS 

After the top is separated a reduced point cloud is available. It is assumed that the point set 

contains just points of the pole, although, in some cases, the top may be mixed with other objects 

like vegetation. Such cases will not be treated here. From the point cloud, the involving 

parallelepiped is computed, to estimate the size of the object. 

The principal components analysis is applied to derive new features, as proposed by Kukko 

et al. (2009) or Briese and Pfeifer (2008). Considering a set of 3D coordinates, the dispersion of the 

points in relation to the three axes (x1 x2 x3) is given by the variance-covariance matrix (C). The 

variance-covariance matrix is real, positive, semi-definite, and therefore its eigenvalues are always 

greater than or equal to zero. The eigenvalues are the scalars that satisfy equation 7. 

 

det (C- λ I) =      (7) 

 

The principal components are computed from the eigenvectors associated to the eigenvalues 

of C and provide the directions of the main axis of the point cloud. The relative significance of each 

axis is provided by the relative size of the associated eigenvalue: 

 

 

The result is a new three-dimensional system, parallel to the main directions of the dispersion 

of the top of the pole, as displayed on Figure 1. 

 
Figure 1. The eigenvectors of the point cloud of a shield. 

 
Fonte: The author. 
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Having computed the eigenvectors, the principal components transform can be applied 

according to equation (8) to obtain the transformed point cloud. 

 

 

 

Where: 

X: (x1 x2 x3) are the original coordinates 

Y: (y1 y2 y3) are the transformed coordinates 

EVE is a 3x3 matrix where each column stores an eigenvector. 

The normalized eigenvalues (I) can be used instead of the original values, according to 

equation 10, in order to avoid scale problems (El-Halawany, 2013). This relationship formulates the 

equation of a plane in the three-dimensional space, a property that can be used to simplify the 

analysis. 

 

                                      Ii+ I2+ I3 =1                                                           (10) 

 

Figure 2 displays the plane described in Equation (10). It is noticeable that the use of two 

variables derived from the eigenvalues is enough to describe the shape, without considering the size 

of the objects. 

 

 
Figure 2 – Three-dimensional representation of the plane described in Equation 9. 

 
Fonte: The author 

 

 

Many poles hold flat objects, like shields, that can be identified by its shape or size. 

Therefore, the transformed point cloud was projected on the plane formed by the first principal 

components, obtaining a 2D representation of the object that allowed computing shape parameters 
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as Area and Perimeter of the object. So, it is also possible to compute a shape index Equation (11), 

the Gravelius compactness index, commonly used to describe the shape of a basin according to 

Anwar (2011), being k a constant (k=1/(2 π1/2.). 

 

 

 

 

3 ANALYSIS 

Five different objects were considered in the classification step. They are displayed on Figure 

3. (A) Lamp A; (B) Lamp B; (C) Lamp C; (D) Round shield; (E) Square shield. The third class of 

lamps consists of a glass ball and therefore it is difficult to model from the point cloud, because of 

its transparency. 

 
Figure 3. Types of objects the top of the poles: (A) Lamp A; (B) Lamp B; (C) Lamp C; (D) Round Shield; (E) Square 

Shield. 

 
Fonte: The author 

 

The classification method follows three steps. As there is one spherical class of lamps (glass 

balls), the sphericity index was applied to separate it from the rest. Although this task looks simple, 

but isn´t. The fact that the object is transparent reduces the number of reflected points and may affect 

the classification.  

In the second step, a classification model based on the linearity of the distribution of the 

classes on the normalized eigenvalues space is used to separate different lamps and shields. This 

model is described in the following paragraphs. Finally, as there are shields, flat, but with different 

shape, the shape of the shields is classified using the Gravelius index. 

Figure 4 displays the plot of the three normalized eigenvalues of all the objects. It is 

noticeable that the points build up a plane in the three-dimensional space because they obey the 

relation: Ii+ I2+ I3 =1. This fact suggests that there is strong correlation between the eigenvalues and 

therefore the information can be represented using just two of them or projecting the points on this 

plane. In this three-dimensional space, objects with similar shape properties trend to align in the 
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eigenvalues space. Flat shields, the black points, are located on the base of the cloud, where the 

value of the third eigenvalue λ3 is small, almost zero. 

 

Figure 4. Scatter of selected classes: black –flat objects; blue lamps; red – glass balls. 

 
Fonte: The author 

 

 

As the minor variation corresponds to the smallest eigenvalue, the point distribution can also 

be displayed in a plane, as shown in Figure 4.  

 

Figure 4. Bidimensional Scatter of selected classes: black –flat objects; blue lamps class A; red – glass balls.  

 

Fonte: The author 

 
3.1 CLASSIFICATION 

Observing the distribution of the classes in the bidimensional space, it was proposed to adjust 

the equation of a line for each class. Therefore, the parameters of the line (a, b and c in equation 12) 

were computed for each class. 
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Finally, a classification scheme was proposed in which the distance of the point to each line 

was used as discriminant function. That means that the classification rule was:  

 
 

 

with: 

 

 

4  EXPERIMENT 

The data used in this study were captured using the Pegasus One Mobile System. The system 

computes the trajectory based on the onboard GNSS and IMU and then enables computing a point 

cloud also with intensity information. The test area is located within the campus of the Federal 

University of Paraná, in the municipality of Curitiba, Brazil. The mobile scanner took two hours to 

survey 2.3 linear kilometers. Figure 3 displays the path of the survey. The area was scanned at a 

speed of 30 km/h. The mean density of points for the study area was 2,400 points per m2 and was 

consider enough to detail the poles and shields.  

 
Figure 6: Study Area (Intensity and Hypsometric Map) 

 
Fonte: The author 

 

After the pole detection step, a sub point cloud was separated for each pole. Figure 7 displays 

an example of a pole with a glass ball lamp on its top. As the lamp is covered with a ball glass, fewer 

points were collected in this case, because of the high transmittance of the glass.  
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Figure 7: Example of a scanned object. Black = pole; red = top (glass ball lamp) 

 
Fonte: The author 

 
 

5  RESULTS 

The method was applied to a set of 167 poles with different objects on the top. Five classes 

of objects were considered for the experiments: (A) Lamp A; (B) Lamps B; (C) Lamp C; (D) Round 

Shield; (E) Square Shield. The computed parameters for each line (Equation 10) are displayed on 

Table 1. The value of b is -1 for each line. 

 

Table 1. Parameters of the lines of each class.  

Object A B C D E 

a 0.257 0.113 100.00 0.066 0.059 

c -0.419 0.041 -0.329 0.0162 -0.024 

 

 

The result of the classification of a total of 167 objects is summarized in the confusion matrix 

presented in Table 2. 

 
 

Table 2. Confusion matrix of 167 objects and five classes.  

Object A B C D E Tot. Prod.Acc. % 

A 3 0 1 1 0 5 60 

B 0 5 4 1 0 10 50 

C 4 6 44 1 1 56 79 

D 0 1 5 58 8 72 81 

E 0 0 0 1 23 24 96 

Tot. 7 12 54 62 32   

User’s accuracy % 43 42 80 94 72   

 

 

The overall accuracy of the classification is 75%. Analyzing the user’s accuracy, it is visible 

that the flat objects were classified with more success, while the first two kinds of lamps present 

lower values and high confusion. Although the glass balls are transparent and not fully covered by 
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the survey, the fact that this object has more volume contributes to the success of its classification. 

Nevertheless, this class is more mixed with all the others.  

Reducing the analysis to just two groups, flat (K1) and three-dimensional (K2) objects means 

to consider just the sphericity index (Equation 3). The result of this classification is better, as 

displayed on Table 3, with global accuracy of 93%. It shows that the eigenvalues can be used to 

separate flat and volumetric objects on the top of poles with relative high accuracy. 

 
Table 3. Confusion matrix of 167 objects and two classes.  

 K1 K2 Tot. Prod. accuracy % 

K1 67 5 72 93 

K2 6 90 96 94 

User’s accuracy % 92 94   
 
 

6  CONCLUSIONS 

 In this paper, a method for feature extraction and three dimensional objects classification 

was introduced, as a solution to the classification of poles with different uses. Concentrating on the 

relationship between eigenvalues of the covariance matrix derived from the position of the points in 

the point cloud, a classification rule was proposed. It uses lines in the bidimensional space of the 

two larger eigenvalues. From the obtained results, it can be concluded that the use of lines, instead 

of centers for each class has advantages in the classification step, considering that objects with the 

same shape trend to align in the eigenvalues space. The disadvantage remains with the high 

sensitivity of the eigenvalues to the point distribution. The outliers and different densities make it 

difficult to describe the shape of the objects. For future research, it would be expected to apply the 

approach with other data set and search for better alternatives to estimate the spread of each class in 

the eigenvalues space.  
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