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ABSTRACT 

Previous work on Chagas disease at large spatial scales has not explored how interaction with 

humans can affect projections for geographical distribution of environmental suitability of vector 

species. Here, we compare niche-based species distribution models with climatic variables as 

predictors (SDMClim) and with climatic variables + human population density (SDMHuman). Our 

results show that accounting for human population density helps refine the models to finer 

geographical scales. Also, different spatial patterns of accumulated environmental suitability were 

obtained by SDMClim and SDMHuman. Moreover, projections were more accurate for SDMHuman than 

for SDMClim. Our results show that considering human populations in SDMs for epidemiologically 

relevant triatomiane species can improve our understanding of macroecology and biogeography of 

environmental suitability for vectors of Chagas disease. 

 

Keywords: disease ecology, ecological epidemiology, infectious diseases, neglected tropical 

diseases, maxent. 

 

RESUMO 

Estudos anteriores sobre a doença de Chagas em grandes escalas espaciais não exploraram como a 

interação com humanos pode afetar as projeções para a distribuição geográfica da aptidão ambiental 

das espécies de vetores. Aqui, comparamos modelos de distribuição de espécies usando apenas 

variáveis climáticas como preditores (SDMClim) com modelos que incluem variáveis climáticas + 

densidade populacional humana (SDMHuman). Nossos resultados mostram que considerar a 

densidade da população humana ajuda a refinar os modelos para escalas geográficas mais finas. 

Além disso, diferentes padrões espaciais de adequabilidade ambiental acumulada foram obtidos por 

SDMClim e SDMHuman. Ainda, as projeções foram mais precisas para SDMHuman do que para 

SDMClim. Nossos resultados mostram que considerar fatores antropogênicos em SDMs para espécies 

de triatomianos epidemiologicamente relevantes pode melhorar nossa compreensão da 

macroecologia e biogeografia para vetores da doença de Chagas. 

 

Palavras-chave: ecologia de doenças; epidemiologia ecológica; doenças infecciosas; doenças 

tropicais negligenciadas; maxent. 

 

 

1 INTRODUCTION 

Infectious diseases cause approximately 9.6 million deaths each year, resulting in economic 

costs which can reach the order of billions of dollars/year and invaluable social costs (Lozano et al. 

2012; Hotez et al. 2014; Murray et al. 2015; Stephens et al. 2016) ⁠. From this universe, a group of 

etiological agents that have been little studied makes a disproportionate contribution to the global 

burden of human disease, being reported by the World Health Organization (WHO) as neglected 

tropical diseases (NTDs) (Murray et al. 2015; WHO 2015) ⁠. They are among the major diseases 

affecting poor populations around the world, being estimated that about 1 billion people are infected 

by one of the 17 NTDs (Hotez et al. 2014; WHO 2015; WHO 2012).  

In Latin America, Chagas disease, or American Trypanosomiasis, is the main NTD in most 

countries, presenting the greatest social impacts among all infectious diseases (Lozano et al. 2012; 

Hotez et al. 2014; WHO 2015). In Brazil, the South American country with the greatest number of 

NTDs, Chagas disease is the one with the highest case fatality rate (Lozano et al. 2012; Hotez et al. 
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2014; WHO 2015; WHO 2012; Coura & Borges-Pereira 2010). The human infections can occur by 

blood transfusion and by ingestion of food infected with the etiologic agent (the protozoan parasite 

Trypanosoma cruzi), however the primary form of transmission occurs by the bite of triatomine 

hematophagous insect, popularly called “kissing bugs” (Hemiptera, Reduviidae) (Coura & Borges-

Pereira 2010). Due to the lack of vaccine and efficient chemotherapeutic treatments, 

epidemiological control strategies are focused on the control of vector infestations (Ministério da 

Saúde do Brasil 2015; Fikho et al. 2016). Despite the relative success of these actions, T. cruzi 

infection through triatomine vectors continues to represent a critical transmission route for the 

epidemiology of Chagas disease, with occurrences of home and peridomiciliary infestations, as well 

as records of new acute cases each year (Pereira et al. 2013) ⁠. In this context, research that 

contributes to increase the consistency of the theoretical background of vector control practices 

remains needed. 

Most ecological studies on the vectors of Chagas disease focus on small-scale, 

environmental factors affecting species distribution and abundance locally (i.e., household, 

peridomestic and wild microenvironments) (Dias et al. 2016; Bezerra et al. 2014; Waleckx et al. 

2015; Costa & Lorenzo 2009; Diotaiuti et al. 1993; Coura et al. 1999). Previous studies have shown 

that triatomines can have different levels of adaptation to anthropogenic environments (Waleckx et 

al. 2015; Bustamante et al. 2007). They are organisms that can move around actively looking for 

microenvironments that meet their ecological demands and, thus, the species can infest best suited 

household and peridomestic areas (Bustamante et al. 2007; Parra-Henao et al. 2016). These different 

levels of successful colonization of anthropic environments can be interpreted as different levels of 

ecological interaction between different species of triatomine vectors and the human species. Given 

the prevalence of humans in the Earth's ecological systems, this interaction may represent a critical 

aspect of the niche of these species, influencing environmental suitability throughout geographical 

space and, potentially, affecting the spatial pattern of species distribution. 

In this context, in the present study our objective was to investigate the influence of human 

species on environmental suitability of kissing bugs, triatomine vectors of Chagas disease. 

Specifically, we focused on epidemiologically relevant species in Brazil and assessed how the 

inclusion of spatial data of human population density affect the projections of niche-based spatial 

distribution models (SDMs) based in climate variables. Considering the relevance of Chagas disease 

in Latin America, the results of such analysis are important to the consistency of the knowledge that 

underpins the decisions regarding epidemiological control strategies. 
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2 MATERIALS AND METHODS 

2.1 OCCURRENCE DATA 

Through the platforms Species Link (www.specieslink.org.br), GBIF (Global Biodiversity 

Information Facility – www.gbif.org), as well as searching directly in the literature, we obtained a 

total of 609 occurrence records  for 14 of the 15 triatominae species reported as epidemiologically 

relevant by the Brazilian Department of Health Surveillance (Panstrongylus geniculatus, P. lutzi, 

P. megistus, Rhodnius nasutus, R. neglectus, R. robustus, R. pictipes, Triatoma infestans, T. 

brasiliensis, T. maculata, T. pseudomaculata, T. rubrovaria, T. sordida e T. vitticeps) (Ministério 

da Saúde do Brasil 2015; Fikho et al. 2016). Considering the findings of other authors (specially 

van Proosdij et al. 2016), we assumed 20 records as the minimal sample size for our analysis. So, 

Triatoma rubrofasciata was not considered in our analysis because we were able to compile less 

than five records throughout our study area. Records not identified at taxonomic level of species 

(e.g., identified at genus taxonomic level), with uncertainty in coordinates greater than 5 km, points 

of occurrence outside of continental areas, as well as repeated points at the same site (i.e., same 

pixel in our raster layers, having a resolution of 2.5 minutes – details in the next section), were 

excluded from our datasets. Our final datasets are provided at Supplementary Material. All 

procedures were performed in R software environment, using packages rgibif (https://CRAN.R-

project.org/package=rgbif) and raster (https://CRAN.R-project.org/package=raster). 

 

2.2 CLIMATIC VARIABLES AND HUMAN POPULATION DENSITY DATA 

Following other authors (Diniz-Filho et al. 2013; Ceccarelli & Rabinovich 2015; Parra-

Henao et al. 2016), we have modeled the niche of each one of our 14 triatomine species using species 

distribution models (SDMs) built upon climatic variables related to temperature (in ºC) and 

precipitation (in mm). So, we used the 19 bioclimatic variables of the World Clim 

(www.worldclim.org; Hijmans et al. 2005⁠), with resolution of 2.5 minutes (≈ 5km × 5km in 

equatorial regions). In order to minimize multicollinearity, we employed a stepwise procedure to 

exclude highly correlated variables (i.e., r > 0.7). Specifically, first we calculated Pearson pairwise 

correlation among the 19 bioclimatic variables. Then, the employed algorithm finds the pair of 

variables which has the higher correlation and exclude one of them which has greater VIF (variance 

inflation factor). This procedure is iterated until no highly correlated variables remains. For 

convenience, we used the functions from usdm package (https://CRAN.R-

project.org/package=usdm) in R software environment for our implementation of variable selection. 

After this procedure, the following variables were selected:  Bio 2, Bio 3, Bio 8, Bio 10. Bio 11, Bio 

12, Bio 13, Bio 14, Bio 15, Bio 16, Bio 18, Bio 19 (respectively, mean diurnal range, isothermality, 
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mean temperature of wettest quarter, mean temperature of warmest quarter, mean temperature of 

coldest quarter, annual precipitation, precipitation of wettest month, precipitation of driest month, 

precipitation seasonality, precipitation of wettest quarter, precipitation of warmest quarter, 

precipitation of coldest quarter). 

Human population density data were obtained from Grided Population of the World, Version 

4 (GPWv4) (Center for International Earth Science Information Network 2017) ⁠, a spatially explicit 

database of human population (http://sedac.ciesin.columbia.edu/data/collection/gpw-v4). We used 

the most recent available data (which currently is for the year of 2015), at 2.5 arc-minutes and 

clipped for South America. All described procedures were performed in R software environment, 

using packages raster and usdm (https://CRAN.R-project.org/package=usdm). 

 

2.3 MODELS OF SPECIES DISTRIBUTION 

The niche-based species distribution models (SDMs) for each one of our 14 studied 

triatomine species were implemented with Maxent (Phillips et al. 2004; Phillips et al. 2006) ⁠, using 

the package dismo (https://CRAN.R-project.org/package=dismo) in R software environment. To 

consider the interaction with humans in the SDMs we rely on the framework provided by Anderson 

(Anderson 2017)⁠. Relying on this conceptual framework, we built two types of models for each of 

the triatomine species: the SDMclim, only with climatic variables; and the SDMHuman, with climatic 

variables + human population density. 

To implement each type of model, for each species we generate background points through 

sampling 10,000 points across South America geographical area using a bias layer (Phillips et al. 

2009; Kramer-Schadt et al. 2013; Fourcade et al. 2014)⁠. This procedure is one of the most 

recommended frameworks when accounting for spatial bias in the focal species occurrence data 

(Kramer-Schadt 2013; Fourcade et al. 2014)⁠. Our bias layer was produced using a spatial kernel 

density estimation algorithm (specifically, we used the function kde2d from the package MASS, in 

R software environment) and employing data for all Reduviidae occurrences available at GIBIF. 

Presences and background points were grouped together to form a consolidated dataset (i.e., one 

dataset for each one of our 14 focal triatomine species). Posteriorly, the set of points in each dataset 

were splitted in geographical blocks (or bins) with approximately sizes. So, the model can be 

calibrated using data from three blocks and validated with data from remaining one. This process 

was iterated until each block were used in the validation step. Also, we employed the partial area 

under the Receiver Operating Characteristic curve (pROC) as a measure of model performance. In 

practical terms, pROC allows the modeler to define a biologically acceptable level of omission in 

the performance of the SDM. In the present work, we use an acceptance limit of 5% of omission 
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error. Here, we used the R function PartialROC from the package ENMGadgets 

(https://github.com/narayanibarve/ENMGadgets) to compute pROC for each species-specific SDM. 

Regarding Maxent parametrization, we assessed model complexity (i.e., combinations of 

Maxent features and regularization multipliers; see Moreno-Amat et al. 2008, Anderson & Gonzalez 

2011) testing over each possible combination of features (being allowed linear, linear + quadratic, 

hinge, linear + quadratic + hinge, linear + quadratic + hinge + product, linear + quadratic + hinge + 

product + threshold, respectively) and regularization multipliers (ranging from 0.5 to 5.5, by steps 

of 0.5). The outputs of each model parametrization were compared through AICc scores and the one 

with the lowest scores were used. Then, for each species, SDMs with the selected parametrization 

were used to implement spatial projections of environmental suitability (using all occurrence data) 

along the geographical area inside an estimated accessible area. Following other authors (e.g., Poo-

Muñoz et al. 2014)⁠, we hypothesized that the accessible area for one species is that within the 

minimum convex polygon described by its occurrence points in the geographical area plus a buffer 

equal to the mean distance between each occurrence point and the centroid of the set of points. 

Finally, SDMs’ projections were converted in binary maps (0=non-habitat; 1=suitable habitat) using 

species specific threshold based on omission error (Peterson et al. 2008)⁠. In the present study, we 

used an omission error level of 5%. 

All procedures described here were performed in R software environment using the packages 

ENMeval (https://CRAN.R-project.org/package=ENMeval), ENMGadgets 

(https://github.com/narayanibarve/ENMGadgets) and raster. 

Given that human population data could be considered as a scenopoetic predictor variable in 

the SDMs, we infer ecological influence of human density on environmental suitability for each 

tritaomine species in terms of Maxent metrics of variable importance. Specifically, we rely on 

Maxent's permutation importance metric as a measure of the relative influence of each predictor 

variable for the SDMs.  

For suitability maps, we measured the pixel-by-pixel difference between SDMHuman and 

SDMClim, i.e., SDMHuman minus SDMClim, allowing us to map (species specific) geographical 

discrepancies in modeled suitability with the inclusion of human density in the models. Here, such 

maps are filled with values ranging from -1 to 1 (naturally, sites where SDMHuman and SDMClim 

project similar suitability values are mapped with values closer to zero). Also, we mapped the 

overlap between binary maps for SDMClim and SDMHuman of each species, inspect the result visually, 

and calculate the proportion of concordance between maps (which were measured using the overlap 

area between binary maps produced by SDMHuman and SDMClim for each species, as well Pearson 

correlations for environmental suitability maps produced by each one of this model types for the 
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species). Finally, the accumulated suitability across species (i.e., pixel-by-pixel sum of suitability 

maps for the modeled species – divided by 14, as for 14 species this is the maximum possible value 

when summing up suitability from each species; hence our accumulated suitability map can be 

presented ranging from 0 to 1) were mapped for both kinds of SDMs, allowing us to inspect 

geographical patterns of environmental suitability for the focal triatomine species. As an additional 

assessment, we perform a Spatial Autoregressive Regression (SARs) model between records for 

new cases of Chagas disease and accumulated suitability projections produced by SDMHuman and by 

SDMClim. We used data for Brazilian municipalities for the last 10 years (2007-2017), made 

available by Sistema de Informação de Agravos de Notificação at http://datasus.saude.gov.br/ (see 

Supplementary Material). The spatial autocorrelation of residuals of models were analyzed from 

spatial correlogram of Moran’s I. The software SAM 4.0 was used for SAR (Rangel et al. 2010). 

 

3 RESULTS 

Our assessment of SDMClim and SDMHuman showed that human population density represents 

an important variable for the models. For most modeled species, SDMs have better performance 

when human population density is considered among the predictor variables, increasing pROC by 

26.68% on average. Moreover, human population density always performed as one of the main 

variables of the set of the predictor variables used, being the most important one for most of the 

species (9 of 14 triatomine species). Among this last group of species, the largest differences in 

model performance (i.e., ΔpROC) were observed for P. geniculatus and T. infestans. 

  



Brazilian Journal of Animal and Environmental Research 
ISSN: 2595-573X 

6393 

 

 

Brazilian Journal of Animal and Environmental Research, Curitiba, v.4, n.4, p. 6386-6403 out./dez.. 2021. 

 

Table 1: Performance metrics (pROC) for the implemented species distribution models (SDMs). Species names are 

arranged in the rows, models and performance metrics are arranged in the columns of the table. SDMClim and SDMHuman 

are the models with and without human population density as a predictor variable, respectively (see Material and 

Methods section); ΔpROC stands for the difference of pROC between the different models (values in bold represents 

loss in performance when human population density is added to the SDM); the permutation importance of human 

population density as a predictor variable in the SDMHuman were computed by the Maxent algorithm and are provided 

in the last column. 

 

 

Geographically, considering the human population density in triatomines SDMs increased 

to spatially heterogeneous projections of suitability. While SDMClim tended to project suitability 

more continuously distributed across large geographical areas, SDMHuman tended to produce more 

discontinuous projections throughout the space. This can be verified through the overlap between 

binary maps (Figure 1; Table S2 in Supplementary Material) and the distribution of suitability 

difference (Figure 2) between SDMClim and SDMHuman of each species. 
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Figure 1: Results of Maxent models for the 14 triatomine species considered in this study. SDMHuman and SDMClim are 

compared through overlapping binary maps of each species. 
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Figure 2: Results obtained from the (pixel-by-pixel) difference between projections of SDMClim and SDMHuman for each 

triatomine species (i.e., suitability map obtained with SDMHuman minus suitability map obtained with SDMClim). Values 

in the maps range from -1 (blue) to 1 (red). So, regions where the inclusion of human density in SDMs led to lower 

predictions of suitability are mapped in blue tons. Regions where accounting for human density increases modeled 

suitability are mapped in red tons. 

 

Comparatively, for the species which human population density have higher influence in the 

models’ performance we observed the lowest overlay in binary maps. For example, for P. lutzi and 

T. pseudomaculata we obtained a permutation importance of 91.913 and 88.502 for human 

population density and binary maps overlap were 0.049 and 0.096, respectively. For T. rubrovaria 

and T. maculata we obtained 0.429 and 2.989 for permutation importance and 0.647 and 0.917 for 

binary maps overlap, respectively. However, in general, this does not represent improvement in 

SDM performance. The ∆pROC were 0.051, 0.028, 0.008, -0.008 for P. lutzi, T. pseudomaculata, 

T. rubrovaria and T. maculata, respectively. Apparently, species with higher delta pROC are the 

ones with higher differences between SDMClim and SDMHuman projections, in terms of geographical 

extension. However, this is not conclusive. 
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Beyond the differences in terms of geographical areas, human population density affected 

environmental suitability distribution (as a continuous response variable) throughout the 

overlapping areas projected by SDMClim and SDMHuman. In this sense, we observed that suitability 

was higher at the southern portion of the modeled distribution of T. rubrovaria when human density 

is considered in the SDM. For T. maculata, higher suitability throughout the whole modeled 

distribution area is obtained with SDMHuman. For other species with higher overlap (i.e., R. pictipes, 

T. infestans, R. robustus) no clear or relevant patterns were observed. 

The results for accumulated suitability (Figure 3) shows that high quality habitats for most 

of the species analyzed are located at northeastern and south-eastern Brazil, despite the 

consideration of human population density in SDMs. Accounting for human density, we observed 

that most of the accumulated environmental suitability are associated to localities populated by 

humans. The accumulated environmental suitability throughout northern and southern Brazil were 

lower and exhibits a more continuous distribution, not associated to human populated localities. 

Spatial Autoregressive Regression between records of new Chagas disease cases (for Brazilian 

municipalities, between 2007 and 2017) and accumulated suitability obtained from SDMHuman 

showed a statistically significant positive slope (0.621, p-value < 0.05), being positive but not 

statistically significant (0.622, p-value > 0.05) when projections from SDMClim were used. Detailed 

results are available in Supplementary Material. 
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Figure 3: Map of accumulated environmental suitability for epidemiologically relevant triatomine species in Brazil. 

Each map was produced by adding the suitability map projected for each triatomine species using Maxent. Results for 

SDMClim (a) and SDMHuman (b) are presented. Higher values indicate locations with greater accumulation of suitability 

(considering the 14 epidemiologically relevant triatomine species studied here) and are indicated in darker shades of 

red. 

 

4 DISCUSSION 

Together, our results showed that the inclusion of the human population density can affect 

the projections of environmental suitability obtained from SDMs. Ecologically, human density 

performs as a relevant environmental covariate for the niche of the analyzed triatomine species. So, 

on the one hand, human populations trigger a range of environmental alterations which biologically 

favor (at least) most of the analyzed studied species. These environmental alterations comprehend 

an amalgam of local conditions, being not it possible here to specify which dimensions of the 

triatomine species niche were decisive for the differences observed between SDMClim and 

SDMHuman. On the other hand, it is precisely the generality of such environmental alteration that 

allows us to argue that the ecological interaction among human density and triatomine species may 

represent a relevant aspect for the ecological niche of these vector species.  Future work that seeks 

to thoroughly analyze the nature of anthropogenic environmental changes and how they affect the 

availability of conditions and resources for triatomine vectors may advance and deepen our results, 

paving the way for highly detailed projections in time and space to become possible and benefiting 

the accurate identification of sites with high suitability for proliferation of triatomine vectors. 

Despite our focus in triatomine species with epidemiological relevance for Brazil (see 

Ministério da Saúde do Brasil 2015 and Fikho et al. 2016), the geographical patterns of accumulated 

environmental suitability mapped by SDMClim is concordant with patterns of species richness 

provided by other authors who investigated the triatomine group more comprehensively. The most 
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extensive studies were Diniz-Filho et al. (2013) and de la Vega et al. (2015), the first providing an 

analysis of the species richness patterns of 115 species for the whole Western Hemisphere and the 

second assessing the thermal tolerance of two species (T. infestans and R. prolixus), bringing 

insights into the distribution of the triatomine group as a whole. Specific studies were carried out 

for Venezuela (Ceccarelli & Rabinovich 2015; Medone et al. 2015), Argentina (Medone et al. 2015), 

Colombia and Ecuador (Cajo et al. 2016). For Brazil, in particular, Pereira et al. (2013) analyzed 

the distribution of eight species in the center-west region and de Melo-França et al. (2014) analyzed 

the distribution of the species complex T. brasiliensis, which occurs mainly in the Brazilian 

northeast. Such results are in consonance with the species distributions and the patterns of 

environmental suitability obtained through SDMClim. 

As evidenced in our results, human population density can affect model projections for 

geographical distribution of environmental suitability of Chagas disease vectors. Despite of that, 

even before the advent of large-scale, macroecological studies on triatomine distribution and 

richness, T. infestans was recognized as an emblematic example of the potential of human influence 

on the geographical distribution of vector species in this group (Waleckx et al. 2015). This is a 

species with wide distribution in South America, which is pointed out in the literature as a 

consequence of its high association with humans (Waleckx et al. 2015; Waleckx et al. 2011). Due 

to its ability to completely perform its life cycle and establish persistent populations in anthropic 

environments, this triatomine species was the main target of measures of epidemiological control of 

Chagas disease over the last decades (Ministério da Saúde do Brasil 2015; Fikho et al. 2016; 

Waleckx et al. 2015). However, T. infestans are not among the species most influenced by human 

population density in our analysis. In fact, isothermality (i.e., variable Bio 3 variable in our SDMs) 

was the most influential predictor in the SDMs for this species. We highlight that such apparent 

discrepancy relies on the different spatial scales involved, which was continental scale in our 

implemented models whilst classical works on T. infestans ecology focused on local scale. This 

species has historic occurrence records from central Argentina and north Bolivia to the Brazilian 

Atlantic coast, and the west coast of southern Peru (Schofield 1994; Galvão 2014)⁠. So, niche-based 

models, focusing on Grinnellian niche, should capture the range of climate conditions in which the 

species can maintain viable populations (Peterson et al. 2012)⁠. In the case of T. infestans, the 

influence of human species at local spatial scales does not scales up to macro-spatial scales, where 

climate conditions tend to be critical. This draws attention to the fact that the influence of biotic 

interactions may not be linearly transposed between different spatial scales during construction and 

interpretation of environmental suitability models. 
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It has been widely recognized that the global climate change will have broad impact in the 

distribution of the infectious diseases (Ceccarelli & Rabinovich 2015; Altizer et al. 2013). The 

extent to which human populations will suffer the adverse effects of this biogeographical 

reorganization of diseases depends closely on the consistency of the knowledge that underpins 

decision makers in public health systems (Ceccarelli & Rabinovich 2015). Previous works show 

that, unlike diseases with direct transmission among humans, zoonoses are not uniformly distributed 

on the globe, presenting strong geographical bias (Jones et al. 2008; Smith et al. 2014). Furthermore, 

zoonoses account for most of the emerging infectious diseases in humans (Jones et al. 2008; Smith 

et al. 2014). In this context, the macroecology and biogeography of species that are related to the 

epidemiological cycle of etiological agents of infectious diseases assumes a critical aspect in 

epidemiology. Moreover, it is important to emphasize that both vector species and reservoir species 

may present different levels of ecological interaction with humans, and accounting for such nuances 

in SDMs can yield new insights in spatial epidemiology of vector born infectious diseases. 

Our results show that more detailed information about the distribution of environmental 

suitability and accumulated environmental suitability throughout geographical space can be 

obtained from niche-based species distribution models when human population density is taken into 

account. Finally, our findings may serve to subsidize better estimates of areas vulnerable to Chagas 

disease, as well as to highlight that environmental variables related to human populations should be 

progressively explored in upcoming macroecological and biogeographical research on vector 

ecology. 
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