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Abstract

Digitised archival photo collections allow members of the public to view

images relating to history and democracy. Recent advancements in visual

tasks such as Content Based Image Retrieval and the development of deep

neural networks have provided modern methods to analyse digitised images

and perform image queries for retrieval. We explore the image retrieval task

using several publicly available datasets, and a set of archival images from

the National Archives of Australia, and propose a simple change to existing

pooling method to improve retrieval performance in the archival set.

Another visual task of object localisation considers the ability of a model to

be trained to adequately locate in an image the positions of objects, given En-

glish text phrases. With other recent advances in large-scale text embedding

models, pre-trained text models retain rich semantic structure within them.

While other methods of object localisation involve the training of text path-

ways in their deep neural model, we explore direct use of a large-scale text

embedding for this task, and demonstrate its ability to localise objects, and

even on unseen words.

With our aim to continue the enhancement of retrieval performance of

difficult archival datasets, we question if such a pre-trained localisation model

can improve archival retrieval performance, due the nature that the archival

set contains text information that can be harnessed.

We find modest improvement on the retrieval task using a trained locali-

sation model that exploits the rich semantic structure of an off-the-shelf pre-

trained word embedding model. This is promising in that the use of text-guided

localisation can be an integral part of future archival image dataset retrieval.

KEYWORDS: Image Retrieval; Content Based Image Retrieval; Text Guidance;

Visual Grounding; Object Localisation; Word Embeddings; Convolutional Neural

Networks
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Chapter 2

Introduction

Background

Image Retrieval

The proliferation of smartphone cameras, and the advent of low-cost remote sensing

and high-speed Internet means large-scale image galleries can be produced inexpen-

sively. Smartphone galleries can hold many thousands of photos, while photos can

be backed up on personal computer systems.

Large-scale galleries can include Google Streetmaps, digital photo albums, social

media photo collections, satellite images and remote sensing [55], academic datasets

[24], and digitised historical images. The difficulty in a user retrieving a specific

image or images from datasets containing thousands, or even millions, of images

becomes apparent.

Image Retrieval (IR) is the automated process of retrieving images from an image

database (a gallery) by descending order of their similarity to a user’s query without

the need for exhaustive manual searching. Retrieval should be performed using a

human-friendly query, whether it be via keyword text input, an example image,

or some other novel means. This should be possible without expert knowledge or

onerous search fields, or the repeated finetuning of past queries.
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Finding a specific photo requires onerous user browsing via exhaustive scrolling,

which is not user-friendly. As a user’s digital photo collection increases in size,

it becomes difficult to navigate and manage. Large image collections may even

compel the user to manually split the gallery by event or location by producing file

subdirectories, which takes time and mental effort. A more human-friendly system

would react to human queries, such as “Show me pictures of my holiday to Europe”,

“Show me all my photos with my dog”, or “Show me all the pictures I took of

the Eiffel Tower”. Such a system could also sort the collection by similarity to one

particular photo the user is interested in.

Advanced IR systems even have potential in commercial applications. With a so-

phisticated IR system journalists and historians could easily find images and footage

for use in reporting [30, 105], art curators could easily search and explore artistic

works, and environmental scientists can classify remote sensing images according to

the presence of specific features. The potential applications of IR span into the fields

of criminal investigation, medical imaging [81], remote sensing [106], astronomy [21],

history, and heritage.

The intention of IR is to retrieve images by such means: using text and visual

data. Broadly, IR can be divided into Text-Based Image Retrieval (TBIR) and

Content-Based Image Retrieval (CBIR).

Text-Based Image Retrieval

Text-Based Image Retrieval (TBIR) [63] compares the user’s text query with the

text associated with each database image. It relies on three important factors: (1)

the user to input a useful query representing their intention, (2) images to be suffi-

ciently annotated with text that users will search for, and (3) a system (algorithm)

that parses the texts so that relevant images are retrieved. Text annotations and

descriptions alongside images allow for text-based retrieval. It is historically more

common than CBIR because it is a facsimile of text document retrieval. Document

retrieval is both easy to implement using already-existing algorithms, and is com-

putationally lightweight. However, the implementation of TBIR introduces a broad

2



range of problems in the annotation process: the production of comprehensive and

useful metadata can come at considerable expense, may require the knowledge and

experience of experts in the relevant field, and background knowledge of the archival

material.

Challenges in Text-Based Image Retrieval

The use of a text-based retrieval system with images requires that all images be

accurately described with text descriptions. This can be a prohibitively laborious,

and therefore expensive [91], requiring workers to research and cross-check before

committing their annotations via data-entry. Furthermore, information about the

image may be unavailable [109], unsuitable, or even incorrect. Image collections

on a niche subject would require annotation by a related expert with background

knowledge [14, 40, 91] or a relevant professional [125] to articulate the details, and

this may not be possible [30, 88, 111]. Organisations on strict budgets may ‘cut

corners’ and apply bulk descriptions to multiple images according to location, date,

or photographer. The annotations may also be encumbered with subjective bias of

the annotator or local colloquialisms [88], or may not match common user queries.

Furthermore, relevant experts, even if available, may annotate with jargon terms

that laypersons may not know.

Text details can be on a higher semantic level to the actual visual content [91],

meaning historical images may be described in a different manner to other types of

images [30]. For example, annotations may describe the situation behind an event

(“city mayor marks the opening of a new bridge”) rather than the actual visual

content (“man cutting ribbon with large scissors”).

For the user’s part, they may not know what they are looking for, or lack the

vocabulary to adequately describe it in a text query [105]. The text that appears

alongside dataset images may not capture the semantics that the user requires [63], or

have different wording than they expect [125], e.g. “car”/“motorcar”/“automobile”.

Users would generally not be aware of what terminology exists within the metadata

[111], especially if the metadata contains expert knowledge on the subject. Neverthe-
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less, regardless of the possible annotations, it should be possible to retrieve images

even if there is little or no metadata at all [105].

These problems motivate us to rely on a retrieval system that can work using a

visual query and by analysing the visual information [88] that exists within the image

pixels (i.e. the visual ‘content’). This is known as Content-Based Image Retrieval

(CBIR).

Content-Based Image Retrieval

Humans are able to rapidly detect image similarity without accompanying text infor-

mation [88], so it is intuitive for an automated process to perform a similar function.

CBIR extends back to 1992 with the seminal work of Hirata and Kato (1992) [40]

which used simple user sketches to retrieve database images according to their sim-

ilarity to the sketch. This is a form of ‘Query by Visual Example’ [40, 133]. A

user-chosen image or image region (from either inside the image dataset or exter-

nally) could also be used as a query [91, 111]. The system then returns to the user

the image dataset (or a subset of the image dataset) in descending order of similarity

to that query.

The increased computation performance and storage of modern computer systems

allows for raw images to be used as queries, which is a more user-friendly method.

CBIR potentially simplifies the process of dataset exploration by relying only on the

presence of the database images and a query image (which may itself be a database

image). However, the difference between the true meaning of the image content

and any numeric features becomes a semantic gap [88, 91, 105, 111]. The high-level

concepts may not be apparent in the low-level features or even the global features of

the image.

CBIR operates in two main stages: the offline stage (Figure 2.1) and the online

stage (Figure 2.2). The offline stage produces the descriptors for each image in the

gallery, and constructs the database. The online stage should be computationally fast

because it occurs whilst the user waits for the results. In this case, the query image is

uploaded, its descriptor is produced, and is rapidly compared against the descriptors
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in the database (this is in practice performed using fast matrix operations) before

returning the relevant images to the user.

Production of useful numeric representations of images generally requires one

high-dimensional vector (or ‘descriptor’) per image. This can be a descriptor using

a global (whole image) feature [9] or the aggregation of local, low-level features

[111, 112]. Images are represented within a gallery database as high-dimensional

vectors [9, 48] where the similarity of two images is equivalent to the distance of

their descriptors within the vector space. The similarity of a query vector Iq and a

gallery image vector Ig is given by their cosine similarity:

sim(Iq, Ig) =
Iq · Ig
||Iq|| ||Ig||

(2.1)

Calculating similarities between the query Iq and all n images within the gallery

I1 .. In can be performed as a single operation. Firstly, by constructing a matrix

I ∈ RC×n, where C is the vector representation length. The ith column of I is the

vector representation of the ith gallery image. Similarity of query vector q ∈ R1×C

to each gallery image is performed with cosine similarity:

sim(q, I) =
q · I

||q · I|| · ||q · I||
(2.2)

Ranking images as their similarity to the query is then done with a sorting oper-

ation.

Photographic Archives and Annotations

With widespread use of digital cameras and smartphones and the decreasing cost of

digital storage it is very easy and cost-effective to produce and store photographs

(Facebook reported the upload of 350 million images daily as early as 2013 [6]). Also

occurring at a rapid rate is the digitisation of historical photographs and images.

Libraries, museums, archives, and other cultural and historic institutions (both pri-

vate and governmental) around the world are working to digitise vast collections of
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Figure 2.1: Basic process of Content-Based Image Retrieval in the ‘offline’ stage. (1) An
image gallery is uploaded to the system. (2) Each image in the gallery is inspected by the
algorithm and a numeric descriptor is produced. Each image and its associated descriptor
are (3) stored in the database.

images and photography [3, 4, 5, 91, 109, 111, 125]. This ensures their preservation

going forward and to minimise the cost of ongoing physical storage [112] of photo-

graphic material previously concealed (and protected) in filing cabinets, boxes, and

storage rooms [14]. The digitisation process coupled with an accessible online re-

trieval system can allow everyday citizens to access and study images without expert

knowledge, and to easily explore without a concrete objective or query. For digitised

archival images and historical photographic collections, users may be interested in the

exploration of local or national history and culture without a specific aim. Similarly,

artists can use CBIR to find works in digital art collections [17].

However, most existing online image retrieval systems from libraries and muse-

ums require the input of keywords, date ranges, and other fields (which can be useful

in their own right), but these require prior knowledge, a useful set of keywords, and

correct spelling and choice of words by the user. Furthermore, it requires prop-

erly annotated descriptions and fields alongside the database images for them to be

searchable (see Text-Based Image Retrieval).
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Figure 2.2: Basic process of Content-Based Image Retrieval in the ‘online’ stage. (1)
The user interacts with the system and (2) uploads a query image. The query image
is inspected by an algorithm (3) that produces a concise numeric descriptor representing
the image contents. The query descriptor is compared to all the existing database image
descriptors (4) and the database images are sorted by their descriptors’ similarity to the
query (5) before being returned to the interface.
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Challenges of Archival Datasets

Archival, historical, and cultural image datasets are more challenging than traditional

(public) image retrieval datasets [91]. Public datasets can contain highly semantic

objects, and can vary in illumination, orientation, angle, and overall appearance [74].

Modern public datasets (such as Paris6k [90], Oxford5k [89], INRIA Holidays [46],

and UKBench [79]) are high-quality colour photographs produced with digital cam-

eras. The images have high resolutions and do not suffer from deterioration or image

quality issues. By contrast, the images in archival sets are generally digital scans of

older hardcopy photographs, artifacts, art, and are of varying indoor and outdoor

locations [91]. These photographs have often suffered visual damage caused by phys-

ical deterioration over time from improper storage (like heat or water damage or

edge disintegration), poorly-attempted repair, and mishandling. Digital scans may

still include distracting features like colour separation charts, measurement rulers,

borders, and page numbers, which need to be ignored by any IR algorithm. Fur-

thermore, scanned images may be askew or off-centre, and are subject to changes

in illumination, cropping, resizing, or may suffer from lossy compression during the

digitisation process [14].

Since the images are of a historic nature, objects may also change in appear-

ance through the decades (e.g. transportation) [20], while buildings can change in

appearance (urban development and changes to facades). Objects and landmarks

found within multiple images also have large changes in viewpoint and angle [111],

and illumination and colour. Older photos may also be black and white (or sepia)

while newer images may be in colour. Older images suffer from variations of colour

and geometry [112].

Existing Retrieval Systems

There exist some early photographic archives, and some are available for public access

and search. However, most rely on text-based retrieval only [40, 125].

The Eurovision St Andrews University Scotland photographic collection [19, 97]

contains 28,133 photographs and postcards (some hand-drawn) from the library of
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the University of St Andrews in Scotland. It consists of images of scenery, portraits,

animals, and buildings. About 10% are in colour, and the rest in greyscale.

The Arquivo Público Mineiro collection [4] contains cultural photographs desig-

nated to be preserved by the Brazilan state of Minas Gerais, including landscapes,

monuments, people, and daily living.

The British Museum Online Collection [3] contains over 1 million records that

have images. However, the collection’s search system relies on metadata and text-

based searches, and there is no feature for searching using image as a query.

The National Archives of Australia (NAA) has digitised over 300k images onto

their PhotoSearch [5] tool, which allows for users to search using keywords and a

date criterion. However, the tool does not allow for direct visual querying using an

image.

The Bodleian Ballads Search tool [2] from the University of Oxford is a working

online image search system using query-by-example of either a whole or part image.

It is rapid and uses SIFT features [67] in a bag-of-visual-words model. However, it

contains only prints of words and simple, repeating images, with little geometric or

semantic variation, such as those in the NAA images.

Finally, the Bibliothèque Nationale de France heritage image collection [1] is an

online, searchable collection of images regarding French history and culture. It does

not have a query-as-example feature, but allows for search by keywords.

Image Retrieval Using Archival Images

Image Retrieval using archival or cultural image collections was studied in the early-

to mid-2000’s [105, 111], with some recent interest [17, 20, 91, 109].

Archival images, due to their difficulty, are an excellent extension to the public im-

age retrieval datasets, and represent a ‘real’ and practical instance of image retrieval.

Furthermore, many archival image datasets come with existing metadata and other

descriptive text annotations. While the problems with using text are mentioned ear-

lier, the difficulty of archival images is impetus to employ available text annotations

as part of the image retrieval pipeline. While the text in archival datasets does not
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Figure 2.3: A set of random images from the NAA29k gallery

always contain full-form sentences, the user does not generally supply full-form sen-

tences as their text search query [88]. Instead, users tend to use specific keywords to

both find specific tags and to compensate for perceived weaknesses in the retrieval

algorithm [88].

This thesis will utilise a developed archival image dataset named NAA29k, a

collection of 28,912 images from the National Archives of Australia [5], as well as its

accompanying text metadata.

National Archives of Australia - NAA29k Dataset

There is serious motivation to produce a useful benchmark archival dataset that can

be used for Image Retrieval and have a groundtruth that allows retrieval models to be

quantitatively measured for their content-based retrieval effectiveness. From the over

300k digitised images in the National Archives of Australia PhotoSearch database,

28,912 were selected to construct an archival dataset. The aim of this thesis is to

use NAA29k alongside public benchmark datasets to investigate computer vision

methods of Image Retrieval.

The images in NAA29k (Figure 2.3) represent a broad range of visual infor-

mation that provides a complexity not found in public baseline Image Retrieval
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Figure 2.4: Examples of damaged images in NAA29k that have been taped over, or other-
wise marked, which occludes portions of the image

datasets. The gallery is broad in scope and content, and includes scenery and na-

ture, streetscapes, national landmarks, buildings in regional cities, building models,

and various indoor photos. There are also images of construction works, portraits

and group photographs, sketches and drawings, political events, and more. The

gallery captures significant events, places, and people in Australian history and cul-

ture. The images range between the years 1833 and 2002. We counted 3,785 either

colour or sepia-tone images, and 25,127 greyscale images.

The original source images were of varying sizes, and we resized them to be 256

pixels on the larger side, then took a 256 × 256 center crop. No borders or other

features were deliberately altered. Therefore there are still significant visual problems

that would make this dataset more difficult than high-quality public datasets. Many

images contain noticeable ‘noise’, including grainy appearances, fade, and damage

(Figure 2.5). Many damaged (and repaired) images are obscured by tape and markers

(Figure 2.4).

Many images also feature other items such as charts and book pages (Figure 2.5),

or are otherwise adversely affected by age and deterioration. These features may
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Figure 2.5: Examples of archival images in NAA29k that have distracting features like heat
damage, fading, colour separation charts, book pages, rulers, and excessive borders

distract from the salient features in the photographs.

Each image in NAA29k is paired with metadata that includes a manually written

description of the image. The text corpus is varied, with rare words appearing

only in one image each, whilst other words occur across several thousand images

(Figure 2.6). While image annotations vary in length and detail, most describe high

level semantics, such as the names of buildings, notable people, or an event taking

place. These annotated descriptions can suffer from contextual limitations, but can

also provide an extra clue to complement the visual information. The descriptions

are susceptible to annotator knowledge, subjectivity, and human error. For example,

the phrase ‘Prime Minister’ occurs in 345 image annotations, but sometimes is not

accompanied with the leader’s name, and can occur for visiting prime ministers of

different nations. Another annotation of a mining photo contains the words ‘Kambala

Lake Lefroy’, but Kambalda is the correct spelling of the mining town in question.

Despite such problems, the annotations can provide well-detailed descriptions, with

one boasting a 155-word description of the background of a hospital and its founding

by an immigrant couple. Others have shorter descriptions (198 images contain only
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Figure 2.6: The 70 most common terms in the NAA29k metadata, excluding common
stopwords. The words ‘photographic’, ‘negative’, and ‘bw’ (black & white) were included
in annotations to indicate the image source type

a single word), but still provide extra context to the image.

Without considering special characters and letter case, there are 12,039 unique

descriptions across the 28,912 images. This also does not consider combining word

variants (australia / australian / angloaustralian, office / offices, display / displaying

/ displays / displayed, etc.). This occurs because many groups of images (say, from

the same event) are labelled with the same description. This is a useful aid in linking

images that have no obvious visual similarities or landmarks. Some images of the

largest group are shown in Figure 2.7. Metadata can be very useful as a guide in

archival images where additional context and background would be useful to archivers

and researchers with a specific information need. The additional textual information

can be used as a ‘guide’ to complement visual image retrieval.

To produce the groundtruth, a series of images were selected to be queries that

contained some visually-similar counterparts in the gallery. For example, buildings,

scenes, and people. Two groundtruths were created: one with 1,137 queries, and

another with a further refined 100 queries. The 100 query set has no fewer than 6

and no more than 18 positives. These will be referred to specifically as NAA29k100

and NAA29k1137.
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Figure 2.7: Some of the 253 images in NAA29k with the description ‘Tullamarine Airport
special extensions’ (when special characters are omitted)
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Convolutional Neural Networks for Image Retrieval

Image Retrieval relies upon a similarity mechanism for numerically ranking reference

images to a query image. Early on, the pixel-level information of images was har-

nessed [105, 111], including colour [34, 43, 83, 99, 113, 126], shape [14, 43, 51, 100],

and texture [52, 73, 127]. Later, hand-crafted features including SIFT [67], SURF

[11], as well as Grayvalue Invariant Features [100] produced good results. These

hand-crafted features are invariant to some minor geometric changes. Arguably the

most popular feature, SIFT, can be used for object detection and image retrieval

even under rotation and changes in scale. In effect, these features are densely ex-

tracted, representing salient points in the image. Despite their power, they suffer

from high dimensionality, are computationally heavy to generate, and is (along with

SURF) patented, requiring a paid licence for commercial use.

More recently, however, Convolutional Neural Networks (CNNs) [58] have been

utilised as a means to extract dense and powerful image features. The ability to boost

computational performance with GPUs (Graphics Processing Units), the availability

of pre-trained ‘off-the-shelf’ networks, and open-source machine learning frameworks

make this an attractive tool for image retrieval. CNNs have great utility because

they maintain important spatial information from the input image. While CNNs
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have been used for many image tasks such as classification [32, 37, 42, 61] and

object localisation [102, 135], the trained networks have shown good performance on

the task of image retrieval [9, 10, 48, 74]. Off-the-shelf networks, although trained

for the image classification task, have shown incredible performance in the image

retrieval task, whereby extracted features from the FC layer [9, 10] can be exploited

to produce discriminative and powerful image descriptors. The main question is how

to effectively pool the dense image features produced by the CNN [9, 35, 37, 48, 76].

Some parts of the image features are more informative than others [130], motivating

different pooling techniques, and even inspiring newer, efficient, CNN structures with

less redundancy [39].

Visual Grounding

Visual Grounding, or localisation, is a task to localise a text phrase onto an image

by selecting the position of the visual object the text describes. Model training can

include fully-supervised methods using annotation bounding boxes [116], however

Weakly-supervised Object Localisation (WSOL) is a major focus [80] as it does not

require expensive bounding box annotations during training. There is practical use

to this visual task, including application in the medical field to use for medical

instrument detection during surgery [114].

Using a set of known classes and a small neural network, a Class Activation Map

can be used to perform localisation [122, 135], but does not rely on specific text

information, only class labels. Localisation of object parts and more coverage of

object areas can be performed using multiple object detectors [28] or combinations

of activation maps [122]. The text encoding can be performed using an off-the-shelf

pre-trained text embedding [70] or the embedding used as input into a trainable

module [53].

Deep learning models use encoder-decoder frameworks [44] or the embedding of

multiple features into a common space [29] trained on publicly-accessible groundtruth

datasets where both image and text are known. Such models can also expand cover-
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age of objects with multiple detectors that perform partial erasure on one detection

to allow a second detector to detect less discriminative parts of the object [132].

Layout of this Thesis and Novel Contributions

The following chapter provides a review of the literature in the space of the history

of image retrieval, and the use of deep features from convolutional neural networks

in modern retrieval methods. Then the review explores region pooling, and discusses

the usefulness of selective pooling. Then it moves to the task of visual grounding,

and how text can be exploited for the task, and the possibility of attention provided

by text annotations.

In “CNN-Based Image Retrieval” we explore the image retrieval task, especially

on an archival dataset of digitised images from the National Archives of Australia. We

explore the effectiveness of using various models and pooling techniques and visualise

retrieval on the archival set. Delving deeper into a weighted pooling method called

SPoC [9], it is identified that it is sub-optimal for parameter choice, and we propose

a simple improvement that can boost retrieval performance for specific datasets.

In “Visual Grounding Utilising Word2Vec Semantic Structure” the task of Visual

Grounding, or text localisation, is covered where we design a localisation model that

is trained end-to-end without the need of a specific trainable text module. Using a

pre-trained Word2Vec text embedding, we harness its semantic structure to perform

localisation on unseen words and demonstrate how it performs on publicly-available

localisation dataset. Further contribution is proposed modifications to the model’s

object localisation module, including the use of erasure technique to coerce improved

learning of visual objects.

In “Text Guided Archival Image Retrieval using Localisation Model” we demon-

strate the use of our trained localisation module on the archival dataset, by exploit-

ing the available text annotations and producing text-guided heatmaps for improved

pooling. Our novel contribution is to weigh visual features on the archival dataset

with our trained localisation model. We highlight that the weakness of our approach
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utilising text relies on quality metadata with rich visual descriptions, and that we

propose a simple solution to balance the influence of our text-guided module. We

demonstrate that our trained model can weigh features to produce a modest im-

provement over the baseline methods, and show that our method can be used in

future image retrieval work involving galleries with accompanying text metadata.

Finally in “Conclusion” we close out our discussion and highlight our findings.
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Chapter 3

Literature Review

Introduction

Producing image descriptors for the task of Image Retrieval (IR) has recently shifted

from using hand-crafted local image features to the activation features from a trained

Convolutional Neural Network (CNN). While the outputs fully-connected layers of

CNNs can be used to produce effective global image descriptors, the current approach

is to use output activations of convolutional layers [9, 10, 41]. Convolutional layer

activation outputs can be considered as 3-dimensional tensors containing neuronal ac-

tivations of visual features, while also maintaining useful spatial information from the

input image. However, the question of how to utilise the activation tensor to generate

a concise descriptor is an active research question, leading to numerous techniques

and approaches for pooling and aggregation. Simple global pooling has been bested

by more complex strategies of multi-scale pooling, region masking, and region-based

features. Although these approaches are broadly hand-crafted or unsupervised, the

weighted pooling approach has been critical for improved IR performance.

Region-based pooling is generally näıve and does not take into consideration the

image contents as a guide. Similarly, the tensor weighting has been handcrafted.

Attentive methods for pooling harness the power of automated learning to attribute

more suitable weighting to activation tensors. The self-contained module approach
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is the newest notion with modules that can be trained end-to-end with the CNN.

This chapter critiques the techniques and strategies for the extraction and use of

image features for IR. The lack of literature regarding the exploitation of available

text information with archival images as an attentive guide motivates research into

this space. The anticipation is that such a method can further improve the per-

formance of the image retrieval task, especially with more difficult archival image

datasets that also have text descriptions.

CBIR: The Beginning

Query by Visual Example (i.e. Content-Based Image Retrieval, or CBIR) was first

proposed in the context of art and cultural collections [40], whereby a user (recalling

an artwork from memory but not its name or artist) could draw a rough sketch to

retrieve it. Algorithm-generated sketches are made in the off-line stage using the

maximum gradient of intensity changes in four directions, producing small (64x64

pixel) binary sketches of all dataset images. By sliding a correlation filter over the

sketches, the user’s sketch is compared to the database sketches to return the closest

images. The lack of computation power at the time necessitated the use of simplified

binary sketches for comparison, placing a burden on the user to produce their own

query. However, it did introduce the idea of query by example, especially as a novel

means of providing a query. Modern computing power allows whole, raw, images to

be used as queries (the visual example). Features of the image can be extracted at

many locations on the image, which can be aggregated to produce a descriptor.

Hand-crafted Features

Pixel-level features of images can be exploited to produce image descriptors using

colour, gradient, and shape information. Basic colour histograms [107] are counts of

the occurrences of colours in a finite number of ‘bins’, thereby capturing the colour

distribution of the image. While this can be extended further to more complex colour
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moments and histogram variants [99, 113], it is inherently an insubstantial method for

complex images. The weakness in using colour comes from its lack of discriminative

power - many different objects and scenes share similar colour distributions, and it is

ineffective on greyscale images. The more descriptive gradients of intensity changes

can instead be utilised without the need for colour, and can still be binned into

histograms [23]. This captures the information in basic shapes. While this takes the

spatial information and simple, local features into account, it still does not capture

semantic objects and high-level features. Different objects can contain similar low-

level visual features despite having semantic (i.e. high-level) dissimilarities.

SIFT features [67] can outperform colour features [112] due to their rich high-

dimensional descriptors at visual keypoints, and their invariance to geometric changes

including scale and orientation [67]. SIFT features are powerful for finding the same

object or feature even at different rotations, and has thus been used in the image

retrieval task [9, 47], while its detector feature is useful for finding highly semantic

parts in images [41]. Using SIFT features for CBIR in an archival/historical image

dataset [112] showed improved performance over simpler colour histograms [84, 127].

Further, their method maintains spatial positioning for keypoints, in contrast to

the global colour histogram that removes all spatial information when making a de-

scriptor [60, 112]. However, this can lead to rapid increases in computation time

as the size of the dataset increases. The more general approach is to aggregate

the 128-dimensional SIFT features into a single vector using Fisher Vector [98], the

simpler Vector of Locally Aggregated Descriptors [8, 47], or using the Bag of Words

model. Production of long descriptors (tens of thousands of dimensions) [8, 47, 98]

introduces problems of storage requirements of online search speed unless dimension

reduction is used. Nevertheless, the resulting descriptors are more powerful than

colour descriptors for the IR task.

SIFT [67] and other hand-crafted features like SURF [11] are not robust to large

changes in viewpoint (e.g. looking at a building from two different sides). Thus for

complex images in image retrieval the hand-crafted features do not capture their high-

level semantics that remain after viewpoint change [22, 41, 136]. Images that have

the same objects or contents can be visually diverse, adding unrestricted complexity

21



to the retrieval task [105]. The need for a more powerful descriptor is required to be

robust to changes caused by rotation and scale.

Convolutional Neural Network Features

Features extracted from a Convolutional Neural Network (CNN) can be more power-

ful than historically hand-crafted features. Furthermore, the use of an automatically

pretrained (or “off-the-shelf”) CNN removes the need to manually hand-craft a lo-

cal descriptor at all. CNNs are networks of trainable weights in stackable blocks

designed to mimic the human vision system [78, 130]. The filters of earlier convo-

lutional layers correspond to the detection of simple patterns and shapes [78], while

later layers detect more semantic or object-like features [74, 134]. This contrasts with

the SIFT features [67] that correspond to medium-level features, and low-level colour

and gradient features [99, 107]. Comparing structurally-similar networks trained on

different data, the earlier layers ‘look’ for the same type of simple features, such

as blobs, colours, and edges [134]. Later layers in a network correspond to higher

semantics, such as objects and scenes. CNNs are usually constructed with a series

of convolutional layers (separated by non-linear layers such as the Rectified Linear

Unit), and finally by a Fully-Connected (FC) module consisting of several fully-

connected layers [58]. This gives many opportunities to extract features, including

most simply at the final FC module.

Generally, it is desirable to represent each image as a single vector [9, 10, 48, 91].

The output of the penultimate FC layer can act as a compact global feature vec-

tor to represent the image, known as a descriptor [9, 10, 91]. Using FC descriptors

can outperform simpler, hand-crafted features while being of lower dimensionality

[10, 20], lessening the need for a post-processing dimension-reduction stage. For ob-

ject classification in a dataset of digitised paintings, FC features extracted from a

CNN are superior in performance (and in storage requirements) to very-high-dimen-

sional Fisher Vectors with SIFT features [20]. However, this method was limited to

an implementation of 12 object classes. Models trained for a large number of classes
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show that indeed the FC descriptors can be used as useful discriminative vectors,

especially with network fine-tuning to improve retrieval performance [10].

Use of the FC module has two main limitations. Firstly, it always takes in the full

image content, including any noisy parts without considering the relative relevance or

significance of the parts or regions [35, 48]. This may not properly describe or encode

the smaller objects [91], properties, or layout of parts [35, 72]. Secondly, as the FC

module was designed to handle a finite set of output classes, there will be a mismatch

between the domains of the trained dataset and the test dataset, whereby object and

scenes may differ. Furthermore, the use of the FC module requires input images to

be of a pre-determined size. This forces the input images to be cropped or reshaped,

while also not taking into account any specific spatial information. However, it is

possible to explicitly save spatial information using the FC layer outputs.

Re-feeding separate image regions into the network can produce separate FC

outputs that contain location-specific information, but this has drawbacks in com-

putation performance and domain mismatch. This technique involves dividing input

images into spatial regions and feeding them separately into a pre-trained CNN to

extract their FC outputs [35]. The features were pooled at different scales using

VLAD [47] and then concatenated to form one descriptor for the image. However,

this suffers from a domain mismatch problem [130] whereby the pre-trained network

trained on whole, singular images is used for small image regions and possible non-

objects, reducing the discriminative power of the region descriptors. Furthermore,

larger numbers of locations and scales drives up the dimensionality of the VLAD

descriptors (and thus the final descriptor). Lastly, and most importantly, each and

every desired region must be resized to the correct size and fed as input into the

CNN, which has substantial computational cost. To solve these problems, the FC

module can actually be ignored, and the activation of the previous convolutional

layer used instead.
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Convolutional Layer Activation Pooling

The convolution layer outputs contain richer information about the input image

than an FC descriptor, and methods that utilise these activations can pool spatial

information into the final image descriptor. There is a conceptual parallel between

CNNs and human vision, whereby CNN deep features are the most powerful current

means that replicate the human concept of image similarity [130].

The output activation at any convolutional layer is a 3-D tensor X ∈ RH×W×C .

The tensor can be considered in two ways: (1) as C 2-dimensional channels (also

called ‘feature maps’) each of size H ×W , or (2) as D = H ×W number of deep

features, each of length C, one at each of D spatial locations. The activation should

be taken after the ReLU unit to remove negative values [82]. Spatial information in

the activation tensor highly corresponds to the features in the original image that

lead to those activations [87, 121, 134]. Removal of the most salient features in the

input image correspond qualitatively to the largest changes to the activation tensor

[134]. Spatial feature removal can also be used to enhance feature detection and

object localisation [12]. The 3-D activation tensor at a convolutional layer should be

pooled to form a compact and useful image descriptor, especially in later layers that

contain more semantic information [75, 128, 134].

Collapsing each channel to a scalar will produce a vector of length C. The

simplest pooling techniques are SumPool [9] and MaxPool [95]. The summation

method, SumPool [9], accumulates all activations across the spatial area, but does

not have the small-object localisation power as in MaxPool [95], in which smaller

but highly-semantic objects can highly activate, including infrequent features [76].

Postprocessing the SumPool feature [9] with a simple square-root operation can

further increase retrieval performance [64]. Further, a hybrid approach using multiple

descriptors (AveragePool and MaxPool) can increase retrieval performance despite

doubling the storage requirements [75].

Weighting techniques [9, 48, 76] can weigh convolutional feature activations to

focus on the most discriminative deep features, or can weigh channels as well [48].

Weighted regions of interest are areas that should intuitively present the most infor-

24



mation about the original image’s contents [112]. Extending SumPool with a center

weight gives more importance to any center-focused objects to produce their SPoC

(Sum-Pooled Convolutional Features) descriptor [9]. However, this is performed in

an unsupervised manner using a hand-picked gaussian weighting function over the

activation to increase weight at the center. This relies on the broad assumption that

the center deep features (and thus the center of the original image) contains the

salient information. While this may be the case for some curated image benchmark

datasets such as ImageNet [24], in difficult retrieval images the important features

can occur at any position or scale within the image, including nearer the edges. This

is avoided in the spatial- and channel-weighted CroW (Cross-Dimensional Weight-

ing) feature [48]. Since the channels of the convolutional activation correspond to

learned semantic features or objects [41, 128], the tensor could be better weighted us-

ing the channel information as well. The CroW feature [48] is produced using both

channel weights and spatial weights. Channel weighting is determined by overall

channel sparsity, while spatial weights are built using an accumulation of the feature

maps. Although this produces a more powerful descriptor, much like SPoC it is a

hand-made method that does not use explicit learning. However, it does highlight

that the spatial and channel information in the activation can be directly harnessed.

A combination of multi-layer activations, feature masking, and region-based selec-

tion can enhance CroW features, with improved performance on the public CBIR

datasets [87]. It is region-based pooling that can leverage the spatial information

retained in convolution activation tensors.

Region-based Pooling

Region-based descriptors can be produced from separate feature extraction of multi-

ple spatial regions of an image. Extracting FC descriptors at different image regions

and scales in a pyramid-like manner, and aggregating with VLAD [8] , can produce

useful global descriptors [35]. This approach has the problem of domain mismatch

where the regions are not in the same domain as the training data [64, 130]. Although
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they improve upon the basic VLAD implementation by treating each pyramid layer

separately with separate visual codebooks, this still requires the computationally-

expensive process of feeding each region into the CNN separately to extract each

region feature. Since the convolution activation features highly correspond to their

respective positions in the input image [121, 134], a single convolutional feature acti-

vation can be taken at a chosen convolutional layer, and the desired region features

extracted from the activation at different regions and scales. This jointly avoids the

problems of (1) strict input image size, and (2) multiple expensive feeds through the

CNN. It can also allow for the discovery of objects within the image [20] and specific

regional or object parts [91].

The choice of locations and scales for regional feature extraction is often done in

a näıve manner depending only on the desired size of objects [8], and the rectangular

window regions may not nicely align with objects or features within the input image

[102], or not properly encompass a salient region of interest that is of arbitrary shape

and size. To include spatial information in spatially-ignorant VLAD pooling, SIFT

features can be extracted at multiple spatial windows and then pooled [17]. However,

this performance of this method was not compared to plain VLAD, and instead uses

a weighted sum of the multiple methods [17]. The Regional Maximum Activation

of Convolutions (R-MAC) descriptor [110] takes MaxPool descriptors at different

scales and different sizes across the activation tensor rather than separate feeds of

the original image. This means the image is only fed through the CNN once, and all

post-processing done on the 3-D CNN activation [64, 110]. While the best choice of

the number of layers [110] in the pyramid was tested empirically (L = 4), the size of

the regions and their overlap (stride) was hand-crafted. Similarly, the SIFT-based

MultiVLAD scheme [8] uses a pyramid structure of VLAD descriptors at hand-picked

scales and region sizes. Their regions are non-overlapping, potentially ‘cutting’ poten-

tial objects between adjacent regions, as opposed to the partially overlapping regions

in [110]. However, the SIFT-based MultiVLAD algorithm is still outperformed by

deep-feature-based R-MAC in terms of both retrieval performance and storage re-

quirements (32768-D vectors vs. 512-D vectors). For the better-performing R-MAC

algorithm [110] the region vectors are näıvely accumulated to form a final descrip-
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tor, whether or not the regions contain features or noise. Intuitively the important

foreground features may be spatially small, and its activation can be suppressed by

significant distracting background [119]. Similarly, extracting simple SIFT and edge

features in regions can produce descriptors from histograms [57]. These methods

rely on näıve region segmentation to extract features at different scales and locations

regardless of the presence of useful information [35, 110]. It is therefore more useful

if regions or even specific parts of activations receive proper weighting depending on

their actual ‘objective-ness’ or saliency in an image-dependent manner.

Selective Pooling and Saliency

The individual feature maps (i.e. channels) in convolutional activation tensors are

essentially activation responses by a set of highly-semantic feature (or part) detectors

[37, 41, 64, 74, 128]. The ‘parts’ may not correspond directly to human-annotated

parts, and may instead be high-level details learned by the network [134]. Thus, two

images with similar features or objects will have high activations on common feature

detectors, and low activations on detectors that find features not in the image [37].

However, frequently-appearing spatial regions in the pixel space across the image or

the entire gallery (e.g. sky and clouds) may not be useful to include in the descriptor.

In contrast, rare objects or patches may be highly discriminative [74, 76, 77], and

are therefore more salient than others [2, 20, 91, 102, 105, 118]. The most relevant

points could be maintained to produce useful image descriptions [105], and such

regions could be appropriately weighted in the pooling process. Producing Bag of

Visual Word descriptors is possible with SIFT features, but using a keypoint detector

kind find the appropriate places for SIFT feature extraction [63]. While this approach

succeeds in avoiding irrelevant visual words from entering the visual vocabulary, the

methodology uses only simple gradient-based methods for keypoint detection. These

keypoint detectors such as Laplacian of Gaussian and Difference of Gaussian [36] and

the SIFT detector [66] indeed find more suitable points of interest, but in the domain

of CNNs this is equivalent to the learned early layers for use as feature detection. This
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idea is partially applied in the cross-convolutional layer pooling strategy [64], which

uses one layer’s activation as a guide to weigh deep features in the previous layer for

a weighted SumPool operation in order to use the most appropriate spatial features.

However, this pooling approach concatenates the exhaustive multiplication of the

feature maps from two layers, thereby producing a final vector of substantially larger

size (e.g. 256× 256 = 65536). To alleviate this, they train a new convolutional layer

with fewer feature maps and use post-processing PCA dimension reduction. Keeping

only the top k activated feature maps for descriptor production can increase perfor-

mance and reduce noise from irrelevant feature detectors [64]. They experimentally

show that the removal of some lower-activating channels increases performance. Al-

ternatively, a bottom-up approach can first generate spatial image regions and then

decide whether they contain objects by a threshold level of ‘objectness’ before clas-

sifying parts of objects [119]. This approach requires simple labelled groundtruth

to train the objectiveness classifier, but is then limited to seen objects rather than

overall objectiveness.

Finding generic salient parts can be performed with a spatial binary indicator

mask to exclude deep features which are not discriminative, such as the sky in outdoor

images [41]. Higher deep feature activations at particular locations correspond to

objects or features. While their method is a simple approach for a baseline of selective

pooling, they do not take the opportunity to use the l2-norm values of the loca-

tions as an indicator of objectiveness [9], which can provide another baseline. Their

methods are unsupervised and are fundamentally hand-crafted, much like the pre-

CNN keypoint detectors [63]. While they remove non-discriminative features before

pooling, their masking is just a pre-aggregation step [41]. All remaining features are

just combined using existing techniques. However, it was still outperformed by the

R-MAC approach [110] for the same descriptor dimensionality, but enjoyed a slight

increase in performance on the scene-heavy Holidays [46] dataset and the UkBench

[79] dataset for larger dimensionalities. Importantly it produced improved results

over the computationally-heavy MOP-CNN [35].

Selective masking can occur either in the convolutional activation or at the input

image. Instead of masking out irrelevant features in a weighted or binary fashion, an
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alternative method is to focus on image objects that are salient and then MaxPool

the representations of those regions in which the objects are located [74]. They ex-

haustively feed the cropped image region of each object proposal through a pretrained

CNN. Although the strategy is much like MOP-CNN [35], only object proposals are

used, rather than all locations at different scales. However, this is still computation-

ally expensive, and it requires up to 1000 proposals (and CNN feeds) per image to

reach peak retrieval performance, compared to using proposals in the CNN activation

directly, which would reduce computation cost.

Masked Attention

When looking at an image, humans do not ‘take in’ the entire image [56, 118]. Scenes

can be recognised by a small selection of features or objects without needing to take

in the entire image [134]. Image queries can be reduced to correctly classify scenes

when significant amount of extraneous features are removed [134]. The subconscious

approach is to fixate upon salient features while ignoring irrelevant areas [56, 131]

using decisions about what features are important or relevant to look at [45]. This

can help avoid irrelevant features while focusing the attention on relevant features

[121, 131]. The methods examined so far use a combination of region proposals or

deep features with types of spatial or channel weighting. However, the weighting is

generally hand-picked based on intuition, or require certain image parameters.

A controller module is used to learn and dictate which areas are best to fixate

[56]. This is equivalent to a weighting in the spatial dimension in the pixel-space,

and can correspond to those areas that have semantic objects or rare visual features.

By focusing on actual regions that require attention [77, 102] the uninformative parts

can be ignored [105, 131]. Using classification to produce spatial bounding boxes that

conform to more discriminative parts of images can improve detection performance

[102]. [37] train a new module between the convolutional stage and the FC stage

in a CNN that spatially pools the activation regions to produce a pooled vector of

the pyramid layers. The proportional sizes of the ‘bins’ in the pyramid layers allows
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the input image to be accepted at any arbitrary size while still retaining an FC

layer for classification. However, the authors only train a CNN from scratch and

did not try using a pre-trained network and placing their module and a new FC

module after it for training. This could balance the power of the new module while

maintaining the less expensive use of a pre-trained network. Likewise [93] attempts

both learning a shared vector of weights for weighting the channels, and a single

weight for all channels in a power-scale manner, beating the IR performance of the

R-MAC strategy. [71] train a separate CNN in a supervised manner to find the

most salient features to adaptively weigh those important areas for the production

of image descriptors. Also using the strategy of new CNN modules, the Squeeze

and Excitation network [42] produces a trainable block that accepts a convolutional

activation tensor as input and learns the appropriate channel weights in a small FC

module (the excitation) in an end-to-end manner. This method is simple but powerful

because the presence of activations on particular layers (thus the presence of objects)

has non-linear relationships to activations in other layers [42, 134]. Accordingly, the

presence of some objects corresponds strongly to the presence of other objects; e.g.

boats are found on water, cars have wheels, and buildings have windows. Likewise,

[131] learn channel attention weights and spatial attention weights. The channel

attention is learned by a squeeze operation as in [42] and a 1 × 1 convolution layer,

while the spatial attention is derived using learnable weights. More recently, an atten-

tion module to fit into the architecture of CNNs can learns in an end-to end manner

[118]. They experimented on object detection and classification with improvement

over the performance of the SE module. However, like their examinations did not

specifically involve the image retrieval task [42, 118]. They further did not try using

only spatial attention without channel attention in their experiments.

These newer methods have a focus on specifically learning the weights, but rely

only on the image content (pixel content) as a guide. Since archival images can have

associated descriptive text metadata, despite incompleteness or mistakes [109], it

may provide for further enhancement during the spatial and channel learning.
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Towards Visual Grounding and Text-Guided At-

tention

Humans desire specific visual features within an image to be useful and relevant

to their query, related to the user’s intention [111]. The user may be interested

in a specific object in the foreground or in the background [88]. Therefore, an

automated algorithm should either detect and ignore such irrelevant features [131],

or take further user intention to focus away from those features and towards relevant

features. User intention can be further refining using text-based inputs.

Text annotations can be utilised as a training signal to guide attention on con-

volutional activations. This has the benefit of minimising multiple feeds per image,

and can leverage the high-level semantics in the text descriptions. [116] trained an

attention network using existing class tag groundtruths for each image in the clas-

sification task. The learned attention detector then assigns spatial weights to the

convolution activation of an image according to a given class tag. The authors did

not extend their analysis to common public datasets (e.g. ImageNet [24]), nor to the

image retrieval task. Since text words and sentences can be embedded as a single

vector [116] and treated as classes, text can be used directly in model learning.

The Class Activation Mapping (CAM) [135] performs localisation of a finite num-

ber of classes by learning linear combinations of pooled feature maps from a CNN

backbone. Their method relies on image-level labels and implicitly uses a linear

combination of filters as object detectors. However, the learned filter combinations

only focus on the most discriminatory parts of each object class, such as the head

of an animal. To capture more of the object’s entirety [122] simply fuse a series of

CAMs by considering combinations of high- and low-discriminative activations.

For many visual tasks it is desired to learn more complementary object features,

and the two usual methods are erasure, and a multi-kernel approach. In the erasure

approach, the intuition is to drop out some input information to allow the network

to better generalise the object and focus on its entirety. [104] do this by performing

näıve data augmentation on the input image by removing random squares before
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model input. Instead of random erasing, [117] use a series of networks to first dis-

cover discriminative object areas, then subsequently erase these ‘interesting’ areas

from the input image before the next pass. This forces each network block in the

series to localise complementary areas of the object, but suffers from the require-

ment of multiple forward passes. To avoid the need for multiple forward passes,

[132] use a Fully Convolutional Network (FCN) and use its output as the input to

two complementary networks. They perform erasure on the FCN’s output feature

maps to avoid re-feeding the image each time. Furthermore, their method of CAM

using a convolutional kernel before the pooling layer produces class-wise feature de-

tectors that can perform detection spatially during the forward pass. The goal of the

multi-kernel approach is to use class-wise feature detectors. [28] uses a set number

of feature maps to act as object part detectors. Each part detector implicitly learns

different visual features of the object and the detectors are combined to form the

object detector. [114] use this method in their practical application of medical tool

detection. However, there is no direct or explicit guidance that trains what parts

each detector should detect. In their network structure for person re-identification,

[124] train a dual-path (text and image) model using a set of parallel network blocks

that is equivalent to part-detecting kernels. Instead of a feedback that performs era-

sure on the input [117, 132], their model is trained to avoid detection overlap using a

loss function that penalises the networks for detecting the same features. However,

the Re-id method [124] relies on the fact that for that task the objects (pedestri-

ans) are already localised and cropped. This still draws us to the hypothesis that a

set of parallel object detection modules should act towards finding different object

information and could boost visual grounding performance.

The use of cropped images, or images with annotated bounding boxes, is a form

of supervised object localisation. Annotations are expensive, and being able to train

for localisation on large datasets would require reduced supervision. [80] perform

Weakly-Supervised Object Localisation (WSOL) by using a CNN followed by a max-

pooling layer to perform class detection as a form of localisation. As opposed to [135],

a set of convolution filters act as explicit linear combinations of the previous layer

for localisation. Their trained model [80] also predicts object locations in cluttered
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scenes without the need for location knowledge or bounding boxes during training.

[28] learn object sub-parts with multiple convolution filters to localise different object

parts before pooling to form a single object detector. Training is also performed

using image-level labels without bounding box annotations, and they use Weldon

pooling [65] to boost performance with a combination of max- and min- pooling

with a non-learnable parameter that is empirically chosen. [114] perform object

grounding similar to [28] as an application in the medical domain by detecting 7

surgical instruments in surgical videos using multiple convolution filters followed by

the non-differentiable spatial Weldon pooling [65].

In the Visual Grounding task phrases can be grounded as whole text or by treat-

ing nouns as object classes. [44] use an encoder to jointly encode visual and text

encodings with a non-linear operation to produce heatmaps, followed by a decoder

that predicts concepts. Their class-based approach considers treating nouns as ab-

stract visual classes (they use the term ‘concepts’), and produce training batches

according to concept presence, rather than using phrases at random. In contrast,

[53] train a dual-path model using a Long-Short-Term Memory to encode full text

sentences, and a separate CNN to encode images, into the same high-dimensional

semantic space for the purpose of multi-modal retrieval. Similarly, [29] train a dual-

path model to perform multi-modal retrieval but using a Simple Recurrent Unit

(SRU) as the text encoder instead of an LSTM, due to improved computational per-

formance. Despite training directly for multi-modal retrieval, the convolution unit

inside the visual path in [29] can be re-purposed to perform visual grounding due

to being implicitly trained to detect visual concepts, as in the case of [80, 114]. [29]

select and aggregate specific visual filters to according to selection from the SRU, to

produce a grounding heatmap on the original input image.

Since training a dual-path model implicitly trains the visual path in object local-

isation, and the presence of text metadata in archival datasets can be leveraged as

a set of visual noun concepts [44], we propose to rethink the Visual Grounding task

as a multi-class classification problem where training a dual-path model acts as a

proxy task for object localisation. Furthermore, for Image Retrieval, text-guided re-

trieval using a trained localisation module can act as a text-based guide for improved
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convolutional pooling in the Image Retrieval pipeline.
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Chapter 4

CNN-Based Image Retrieval

Introduction

Content Based Image Retrieval is an image-to-image retrieval process, whereby an

image is submitted as a query and images from a gallery/database are returned as

the result. The intent of the Image Retrieval system is that the database images

are sorted by some similarity to the query by the image’s visual content, from ‘most

similar’ to ‘least similar’.

It would be desirable for such an Image Retrieval system to work in a high

level, to sort according to the presence of objects or scenery. In the past, algorithms

were handcrafted to capture low-level information such as colour and shapes, but not

such high-level semantics. Hand-crafted visual features [11, 23, 67] can match unique

local structures, known as keypoints, even at different scales and orientations, and

are robust to minor affine transformations. However, these algorithms suffer from

general drawbacks. They are only useful for finding common objects viewed from the

same orientation, and are thus not as useful for finding similar objects or scenes in

different perspective. Furthermore, image representations are high-dimensional and

the algorithms are computationally heavy to implement.

With the advent of GPU-acceleration of Convolutional Neural Networks (CNNs)

(Figure 2.8) and publicly-available pre-trained (or ‘off-the-shelf’) models, CNNs have
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become a state-of-the-art tool for the Image Retrieval task. CNNs can extract from

images high-level information and output fairly compact representations. CNNs

trained on the large ImageNet dataset [24] are semantically-aware due to their train-

ing on object classes, and their multi-layer structure allows for features to be ex-

tracted at any layer that is desired. Some CNNs (e.g. VGG16 [103]) consist of

two main modules: a Fully-Convolutional part and a Fully-Connected part. Out-

put features from the latter Fully-Connected part can represent the global input

image a single compact descriptor, and the output of the Fully-Convolutional part

even maintains local spatial information that can be further pooled into a global

image feature. Image Retrieval rankings work via highly discriminative but compact

global image features (vectors) that allow for rapid similarity sorting using euclidean

distance measurements via efficient matrix operations.

Post-processing descriptors can further boost performance, including feature whiten-

ing and the diffusion process [27]. Whitening is a step to reduce correlation between

features. The diffusion step then models more complex structures in the vector space;

while the euclidean distance measurement between image vectors works well, the ac-

tual descriptors can produce complex manifold structures in the high-dimensional

descriptor space that are ignored. The diffusion process could further boost perfor-

mance by employing the connections within these manifolds.

The remainder of this chapter is laid out as follows: the datasets used in Image

Retrieval experiments are explained, then the concepts of mean average precision,

whitening, and the diffusion process are described. the CNN for Image Retrieval is

outlined to explain how the network can be used to produce vector representations

of images, then a series of experiments are carried out on baseline datasets to test

the different methodologies. Firstly the ‘neural codes’ [10] of the Fully-Connected

layers are explored, then we delve into the convolutional pooling techniques, including

SPoC [9] and CroW [48], and propose a simple improvement to the SPoC method to

enhance retrieval, and analyse the effectiveness of the properties of CroW. We then

describe the steps of diffusion and query expansion. We perform a comprehensive

analysis of the retrieval performance of the NAA29k archival image dataset using

the different pooling techniques and examine Image Retrieval performance on the
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archival dataset.

Methodology

Any tool that makes predictions (outputs) on input data can be referred to as a

model. A CNN model can be generally considered, for the purposes of these experi-

ments, a black box (or series of boxes), or a complex function with many millions of

parameters. Figure 2.8 shows an example CNN trained for image classification, con-

taining a convolution module and a fully-connected module. While the final output

(the softmax layer) is designed to output class-wise information, it can still be used

to represent a global image feature. Furthermore, outputs from any preceding layer

can be used as an image-level output. We intend here to use off-the-shelf ImageNet-

trained [24] classification networks to perform Image Retrieval on a set of datasets,

including the archival NAA29k set.

Image Retrieval Datasets

To measure the performance of the experiments in this chapter, we will use a number

of benchmark Image Retrieval datasets:

• Oxford5k The Oxford5k dataset [89] consists of a gallery of 5,063 images of

buildings and locations around the University of Oxford in the United King-

dom. It contains 55 cropped queries in groups of 11 (five images per building)

and a groundtruth set of ‘correct’ images in the gallery.

• Paris6k Similar to Oxford5k, Paris6k [90] contains 6,093 images and also 55

queries, from buildings and locations in the city of Paris, France.

• Holidays The INRIA Holidays [46] dataset contains 1,491 scene-heavy holiday

photographs. There are 500 small groups, with one query per group. Following

[9] any incorrectly-rotated images have been manually rotated to the correct

orientation.
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Figure 4.1: Example of a query and ranked results with three positive groundtruth images.
Positive images are bordered in green, and negative images in red.

• NAA29k The NAA29k dataset is a collection of 28,912 images from the Na-

tional Archives of Australia [5], as introduced in National Archives of Australia

- NAA29k Dataset. Two sets of groundtruth were created: NAA29k100 and

NAA29k1137, which respectively have 100 and 1137 queries.

Mean Average Precision

Image Retrieval performance is evaluated using the mean-average-precision (mAP)

metric. mAP is useful as a score for retrieval performance because each query usually

has a small number of positive groundtruth images within a relatively large gallery.

mAP rewards the model when its gallery has groundtruth images ranked highly

(and penalises when they are ranked low) even if there are only a handful of them.

Consider a dataset with a groundtruth consisting a set of queries Q = {q1, q2, ..., qm}.
For illustration, imagine the first query (q1) has three positive groundtruth images in

the gallery, and a model returns the ranks as shown in Figure 4.1, where the positive

images occur in positions 1, 4, and 6.

The precision at each index (P@n) is calculated:

P@n =
relev(i(n))

n
(4.1)

where i(n) is the ranked image at position n and relev() is a function that is the

number of true positive results seen so far if i(n) is true positive, or zero otherwise.

The Average Precision for this query is simply the average of these precision
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values:

AP =
1

|n|

N∑
n=1

P@n (4.2)

where N is the number of gallery images. The Average Precision is calculated for

each query in the dataset’s groundtruth, and finally, the Mean Average Precision is

simply the mean of the Average Precision values:

mAP =
1

|Q|

m∑
q=1

APq (4.3)

The mAP provides a measure for the performance of an image retrieval model,

and will be used in this chapter for all image retrieval datasets.

Models

All experiments are conducted in the Python machine learning library PyTorch [85],

version 1.0.1. The pretrained VGG16 and VGG19 [103] models and the three largest

ResNet [38] models are compared: ResNet50, ResNet101, and ResNet152.

The VGG16 and VGG19 models consist of two main sub-networks: the Fully-

Convolutional Network (FCN) and a Fully-Connected (FC) classification network.

The FCN is made up of alternating convolutional layers and pooling layers. We are

interested in the highly-semantic information in the latter layers of the networks.

The final 1000-D output will be referred to as Softmax, the penultimate FC layer

as FC2, and the previous layer as FC1. In the FCN, the final layer is a pooling

layer called Pool5, the penultimate layer is a convolution layer Conv5−4, and the

second-last layer is a convolution layer Conv5−3.

The ResNet50, ResNet101, and ResNet152 models consist of 50, 101, and 152 con-

volutional layers, respectively. The major difference of the ResNet models is the

introduction of skip connections between early and later layers.

Before being fed into the CNN, all images are resized to 256 × 256 pixels, and the

average pixel value subtracted for stability. The image is a 3-D tensor I ∈ R3×256×256.
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Convolutional Pooling Methods

The output of a convolutional (or pooling) layer of a CNN produces a 3-D tensor

X ∈ RC×H×W . It contains H×W deep features of length C. Alternatively, it contains

C channels of H×W . The cth channel can be represented as Xc. The output of each

method is l2-normalised.

MaxPooling

Max pooling performs a max() function over the C channels to produce an output

that contains at each position the maximum value in that channel from all spatial

locations to produce Y ∈ RC .

SumPooling

Sum pooling performs a summation of each spatial location on each channel

Yi =
W∑
w=1

H∑
h=1

Xi (4.4)

and the final vector Y ∈ RC is the concatenation of the summed channels:

Y = [Y1, Y2, ..., YC ] (4.5)

SPoC: SumPooled Convolutional Features[9]

The SPoC method is a variation of the SumPool method, whereby a parameter σ is

chosen to affect a gaussian weighting across the spatial locations of the output tensor

X. The output of each spatial location Xi(x,y) is weighted by

w(x,y) = exp

(
−

(y − H
2

)2 + (x− W
2

)2

2σ2

)
(4.6)
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with σ chosen as a constant of one-third the width W (or height H, which are the

same in this case). Each spatial position (x, y) is weighted with multiplication by

w(x,y) and SumPooling is performed.

CroW: Cross-Dimensional Weighting [48]

The SPoC algorithm leverages only the spatial information to weigh the deep features

in order to improve performance. Cross-Dimensional Weighting (CroW) extends this

idea further by introducing a channel weighting. The spatial weighting begins with

a simple summation step over all channels of the tensor to produce a heatmap S′:

S′ =
C∑
i=1

Xi (4.7)

where Si is the ith feature channel in the tensor, and C is the number of channels in

the tensor. A normalised heatmap Ŝ is produced:

Ŝ =

(∑
x,y

√
S′

x,y

)2

(4.8)

Each spatial location (x, y) of the heatmap is then modified by dividing each spatial

location of the heatmap by Ŝ and square rooting:

Sx,y =

√(
S′

x,y

Ŝ

)
(4.9)

Each deep feature at position (x, y) can therefore be weighted with the weight Sx,y.

The channel weighting Q ∈ RC is produced by analysing the output tensor and

determining a sparsity value for each channel. Given that rarer features may corre-

spond to visual features on important objects, it is possible to boost the values of

rare features and suppress common features. Each element of the sparsity vector Qi

is calculated as a percentage of activations in the corresponding channel in excess of
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a threshold (in this case, zero). The element at channel c is calculated:

Qc =
1

WH

∑
x,y

1[Xx,y,c > 0] (4.10)

where 1 is an indicator function counting a 1 where threshold is breached. The final

boosting vector I ∈ RC is produced:

Ic = log

(
Cε+

∑
hQh

ε+Qc

)
(4.11)

where ε is a small positive value.

R-MAC [110]

Regional Maximum Activation of Convolutions (R-MAC) [110] divides the tensor X

into a series of spatial regions depending on a layer parameter L. With L = 0 there is

a single region that consists the entire tensor. At each subsequent layer li, i > 0 the

tensor is cropped with equal regions of width 2min(W,H)
l+1

. There is a defined overlap

of 0.4 widths for each crop on the same level. We use L = 3 for these experiments

following [110].

Feature Whitening

Dimensionality reduction on image vectors has been used to produce more concise

descriptors to reduce storage, decrease computational overhead, or even improve

performance [9, 18, 47, 48, 110]. This is performed using Principal Component

Analysis (PCA). A related step to PCA is whitening, which may (or may not) involve

dimensionality reduction, but ensures the features are uncorrelated, and have the

same variance. To whiten an n ×m matrix F (having n images and feature length

m), begin by l2-normalising F :

F :=
F

||F ||2
(4.12)
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then calculate the covariance matrix Σ efficiently to produce a symmetric positive

semi-definite matrix:

Σ =
FFT

m
(4.13)

then perform Singular Value Decomposition (SVD) on the Σ to get the eigenvectors

U and eigenvalues S. The PCA-whitened matrix Fw is computed by

Fw =
1√
S + e

UTF (4.14)

where e is a small number for numerical stability. Finally, the whitened matrix is

l2-normalised:

Fw :=
Fw

||Fw||2
(4.15)

This whitening process follows the direction of [9, 48, 110] where features are

firstly l2-normalised, whitened, then l2-normalised again.

Diffusion Process

Figure 4.2: Illustration of the advantage of the diffusion process. In a two-dimensional toy
example, two intertwining manifold structures of datapoints exist with a query denoted
with an X (left). The datapoints in the orange manifold are distinct from those in the blue
manifold, so the top-ranked results of querying X should contain only those in the orange
manifold. Simply taking euclidean distance (center) includes datapoints from the wrong
manifold, producing poor retrieval results. The diffusion process (right) diffuses similarity
across the manifold to produce superior results. Best viewed in colour.
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When performing Image Retrieval ranking it is computationally efficient to use an

affinity matrix, i.e. a similarity matrix, that models the similarity of every pair of

image descriptors. For a query the similarities are sorted from largest to smallest

to produce query rankings. However, the similarity calculations performed in the

high-dimensional space occur in distinct pairs, and do not consider further structure

within the space. Such structures can include manifolds, whereby apparently distant

pairs of image descriptors are actually related through latent connections via other

intermediate descriptors across the manifold (Figure 4.2).

Intuitively, re-think the affinity matrix as an undirected graph, with the descrip-

tors as nodes and their pairwise similarities as edges. The purpose of a diffusion pro-

cess is to disperse the similarity information (edge weights) to neighbouring edges.

The diffusion process is sometimes referred to as a random walk along the graph [27].

The diffusion process can be as follows: Consider an N × N affinity matrix A,

where N is the number of images in the dataset. A represents the similarities between

each pair. D is an N ×N diagonal matrix with the diagonal elements containing the

row-wise sums of A:

di,j =

deg(i) if i = j

0 otherwise
(4.16)

where deg(i) is the degree function (the sum of the edge weights of element i).

A random walk transition matrix P is then produced:

P = D−1A (4.17)

Since this intuitively represents a random walk of the graph, we can create a

probability vector ft of length N that represents the probability of being on each

node at time step t. With this, an iterative update of the probability vector can

be produced. At time zero (t = 0), f0 represents some initial distribution, and the

random walk is modeled as:

ft+1 = ftP (4.18)

An additional ‘random’ movement across the graph can be included to model the
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probability that there is a random link between two unrelated nodes. If there is a

high probability α that the random walk follows the iterative update (Equation 4.18),

then there is a 1 − α chance the random jump can occur. Therefore, the iterative

update rule can be expanded as

ft+1 = αftP + (1− α)y (4.19)

where y is a 1-vector of length N .

Experiment: Fully Connected Codes

Convolutional Neural Networks for image classification can be generally divided into

two main parts: the convolution block and the fully-connected (classification) block.

The convolution block consists of convolution layers that successively extract higher

levels of information from the previous block [78, 110, 128]. Although the latter fully-

connected block of a classification network is trained specifically for class selection,

the outputs of the intermediate hidden layers of the fully-connected block can be

used as global image features [10].

This experiment will demonstrate the effectiveness of each of the fully-connected

layer outputs as global image feature vectors for image retrieval. For comprehensive-

ness, five pre-trained models are used: VGG16 and VGG19 [103], and three ResNet

models [38] ResNet50, ResNet101, and ResNet152. The residual network differ in their

internal construction, consisting of convolutional with long-term connections. They

also feature only a single fully-connected layer at the end for the purposes of Ima-

geNet [24] classification.
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Model Layer Oxford5k Paris6k Holidays NAA100 NAA1137

VGG16

FC1 47.33 61.90 78.0 38.34 34.05

FC2 42.89 57.73 76.92 33.64 30.27

Softmax 35.34 55.84 71.31 28.07 24.27

VGG19

FC1 46.83 64.67 77.66 37.17 32.28

FC2 42.29 63.23 76.44 33.65 28.52

Softmax 36.08 56.39 70.61 27.64 22.92

ResNet50 Softmax 34.86 55.20 75.35 27.64 22.92

ResNet101 Softmax 36.30 60.05 77.18 33.38 29.23

ResNet152 Softmax 39.79 60.13 77.63 31.53 28.28

Table 4.1: Results (in mAP) for Image Retrieval datasets using outputs from fully-
connected layers. FC1 refers to the second-last FC layer and FC2 refers to the last layer
before Softmax. The best result for each dataset is in bold.

Fully Connected Results and Discussion

The final output of the model (1000-length softmax outputs) are consistently lower

than the FC layers. This is because the softmax is not designed as a global image

feature, but rather a set of confidence scores for each of the 1000 ImageNet [24]

classes.

The FC1 layer of VGG16 performs best across the datasets, and the VGG16 pro-

duced improved descriptors on every dataset except for Paris6k, where VGG19 FC1

outperformed VGG16 FC1 by 2.77%.

On NAA29k100 the VGG16 outputs outperformed ResNet by a minimum of 4.96%.

Some NAA29k queries are shown in Figure 4.3 and their top-10 retrieved images.

Note that images of the same scene are collected well, and even similar-looking scenes

that are technically incorrect are highly retrieved.

Clearly the VGG16 model shows the best performance compared to the other

models tested. We will continue to use the VGG16 model for the following exper-

iments. To highlight the benefit of the whitening and diffusion steps, outputted

descriptors from the VGG16 model are further enhanced using whitening and dif-
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fusion steps. We use the FC1 and FC2 layers and ignore the Softmax layer, which

produced the lowest mAP performance for all datasets. We perform whitening sep-

arately, diffusion separately, and both whitening followed by diffusion. The results

are shown in Table 4.2.
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Figure 4.3: Fifteen queries from NAA29k100 and their top 10 retrieved images on VGG16

from the FC1 output. The first column contains each query, and the following images are
the top 10 results. Correct results are bordered in green, and incorrect results are bordered
in red. Best viewed in colour. 48



Dataset Layer Baseline Whitening Diffusion White+Diff

Oxford5k
FC1 47.33 45.78 51.21 61.32

FC2 42.89 45.76 46.37 59.65

Paris6k
FC1 61.90 41.81 70.87 76.16

FC2 57.73 45.35 67.81 74.03

Holidays
FC1 78.00 79.49 79.82 83.68

FC2 76.92 77.41 77.72 82.38

NAA29k100

FC1 38.34 44.90 39.41 46.60

FC2 33.64 43.76 34.08 45.71

NAA29k1137

FC1 34.05 39.75 35.28 41.81

FC2 30.27 38.44 31.08 40.74

Table 4.2: Mean Average Precision results of Fully Connected descriptors from the VGG16

model. All descriptors are dimension-reduced to 512 dimensions. Results include after
whitening only, after diffusion only, and after both whitening and diffusion process.

In all datasets the best result was achieved when performing both whitening and

diffusion post-processing steps after the feature extraction. Compared to the baseline

Oxford5k achieved an additional 13.99% and 14.26% on the FC1 baseline. While

there was less improvement on the Holidays dataset, that already had a higher mAP

result. Intuitively, this is due to Holidays containing a large number of unconnected

groups of images, and many groups of images having little visual relationship.

NAA29k benefited from both whitening and diffusion but gained more benefit

from the whitening step. The NAA29k100 groundtruth demonstrated a 8.26% im-

provement over the baseline feature extraction from both whitening and diffusion,

and NAA29k1137 was improved by 7.76%.

Experiment: Convolutional Pooling

The outputs from the FC layers in the classification module of a CNN can produce

useful global image descriptors. Despite this simplicity, there are some limitations

to using the FC or softmax outputs as descriptors. The input image must be of a

specific size to ensure the input to the classification module is the correct shape, and
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because the fully-connected weights require the inputs of the final pooling layer from

the FCN, spatial information is not retained. This means that image regions cannot

be extracted, as in the case of the R-MAC method.

Convolution pooling has advantages of producing more compact descriptors [9, 47]

compared to the outputs of the fully-connected layers [10], and require less compu-

tation due to the removal of the classification part of the network. Furthermore,

due to the stacked nature of the convolution and pooling layers in the FCN part of

the network, the output tensor contains spatially-aware information from the input

image. In this experiment we carry out the various convolution pooling methods

described earlier. We will run each pooling method followed by l2-normalisation

but without whitening or other post-processing steps (as in [9, 48, 110]), to better

compare specifically the pooling methods only.

We will use the FCN part of the pre-trained VGG16 network as the feature ex-

tractor and take the 3-D tensor X. Each input image is first spatially resized to a

tensor I ∈ R3×256×256, and then the average pixel value subtracted. The output is

taken from the final pooling layer Pool5, and the previous convolution layers Conv5−4

and Conv5−3.
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Method Layer Oxford5k Paris6k Holidays NAA100 NAA1137

MaxPool

Pool5 45.72 63.75 77.07 36.06 30.63

Conv5−4 45.72 63.75 77.07 36.06 30.63

Conv5−3 44.06 62.42 76.35 35.18 30.15

SumPool

Pool5 46.33 61.39 80.80 41.50 35.03

Conv5−4 44.04 59.15 79.75 40.04 33.83

Conv5−3 44.80 52.64 78.33 38.06 32.33

SPoC

Pool5 46.22 60.18 78.98 40.03 33.78

Conv5−4 42.12 53.00 76.23 37.55 31.23

Conv5−3 40.56 51.18 75.63 35.47 30.87

CroW

Pool5 45.88 64.23 75.70 34.47 29.41

Conv5−4 45.44 64.12 74.61 34.28 28.78

Conv5−3 46.85 55.78 76.09 35.14 30.36

R-MAC

Pool5 45.12 60.15 80.53 38.88 33.96

Conv5−4 45.53 60.45 80.72 39.16 33.96

Conv5−3 44.61 63.13 79.02 36.90 31.74

Table 4.3: Mean Average Precision results for the five datasets using the convolution
pooling methods on the VGG16 model. Best results are highlighted in bold.

The experimental results are shown in Table 4.3, and show that the simpler

SumPooling method produces the best mAP results for the Holidays and NAA29k

datasets. Note that for the MaxPool method the retrieval results for the Pool5 and

Conv5−4 results are identical across all datasets because the Pool5 layer is simply a

pooled max output, and performing the max operation on both produced identical

image descriptors. MaxPooling did not achieve top results on any dataset. We at-

tribute this to an information loss, as only the top spatial activation of each image

is retained and the rest discarded, making it especially less suitable for scene-heavy

datasets.

CroW managed to outperform SumPooling for the Oxford5k and Paris6k datasets,

while SumPooling achieved top results for Holidays and the archival set NAA29k.

Oxford5k and Paris6k are object-heavy and appear to benefit somewhat from CroW’s

51



channel and spatial weights.

We believe the strength of the SumPooling method on the scene-heavy datasets

is its addition of all spatial features in an unweighted manner. This provides an ad-

vantage on Holidays, where useful features are spatially dispersed in visual scenes,

and background features are just as important as foreground objects. This is why

simpler SumPooling outperforms SPoC with the center weighting on Holidays - the

center weight would reduce influence of the global scene and focus more on a smaller

collection of visual features.

For the scene-heavy Holidays dataset the R-MAC method generally improved

over the other methods except for SumPool. We suspect this is the case because

the R-MAC method takes in more information of the scene at different scales. For

the object-heavy datasets we suspect it underperformed due to including too much

irrelevant background features instead of important center-positioned objects.

The CroW method produced top results for Oxford5k and Paris6k datasets, while

SPoC did not produce best results on any of the datasets. In the next section we

explore the individual spatial/channel components of the CroW method to assess

their importance, and in the following section propose a simple manner to test the

optimum SPoC σ parameter for each dataset.

CroW Analysis

The CroW method, is a SumPooling operation that includes two separate weighting

schemes: a channel weighting and a spatial weighting. We see from the previous

section that CroW produced best results for Oxford5k and Paris6k datasets, but not

for the other scene-heavy datasets. Here we desire to understand more about how

the weighting affects the retrieval results across the datasets.

In this experiment we run the CroW method but in the ‘Spatial Only’ mode

set the channel weights to be 1.0, and in the ‘Channel Only’ mode set the spatial

weights to be 1.0. This will produce descriptors for each weighting scheme separately.

Retrieval results in mAP are shown in Table 4.4.
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Method Layer Oxford5k Paris6k Holidays NAA100 NAA1137

No Weight

Pool5 46.33 61.39 80.80 41.50 35.03

Conv5−4 44.04 59.15 79.75 40.04 33.83

Conv5−3 44.80 52.64 78.33 38.06 32.33

Full CroW

Pool5 45.88 64.23 75.70 34.47 29.41

Conv5−4 45.44 64.12 74.61 34.28 28.78

Conv5−3 46.85 55.78 76.09 35.14 30.36

Spatial Only

Pool5 46.18 64.23 81.61 35.89 30.27

Conv5−4 45.20 63.62 75.52 35.01 29.31

Conv5−3 45.25 54.12 75.54 33.99 29.30

Channel Only

Pool5 47.63 63.35 75.70 42.37 35.76

Conv5−4 46.21 62.32 81.01 41.94 35.33

Conv5−3 44.80 52.64 78.33 38.06 32.33

Table 4.4: Mean Average Precision of the full CroW algorithm, and alternatively using
spatial and/or channel weighting schemes only.

Interestingly, we observe that for the Oxford5k and NAA29k datasets chan-

nel-only information produced improved descriptors compared to the full weighting

scheme. Paris6k is largely unaffected by the removal of the channel information, and

produces the same retrieval performance when channel weighting is removed from the

Pool5 layer. Channel-only weighting achieved a 1.75% improvement on Paris6k when

using channel information only, compared to the full CroW method, but NAA29k

improved far better at 7.9% for NAA29k100 and 6.35% for NAA29k1137.

Channel weighting is a self-weighting, calculated by the sparsity (rarity) of non-

zero activations in a channel, so more activations producing a boosted weight at that

channel. This increases existing high activations and suppresses low activations.

Holidays achieved 5.91% improvement on spatial-only over channel-only weight-

ing. Holidays strongly benefits from the spatial weighting because that weighting

scheme produces a full spatial map and normalises it, meaning it includes all pro-

vided spatial information. The Holidays is the most scene-heavy, and it is most useful
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to utilise global image features. Removing channel weighting stops the suppression

of useful channel-wise information.

We attribute the improvement on NAA29k dataset using channel-only weight-

ing by its ability to boost strongly-detected features in each channel and suppress

weakly-detected features. The weakness of the spatial weighting here is because it

sums and normalises all deep features to produce a global importance heatmap. This

is less effective for the archival set NAA29k, which contains significant image spa-

tial occlusion and distractions Figure 2.4. Therefore for archival sets the channel

weighting provides the best benefit by boosting useful channel-wise features.

Improving SPoC with Dataset Weighting

Sum-Pooled Convolution Features (SPoC) [9] is a SumPooling method that firstly

produces a constant Gaussian weighting over the output tensor X before carrying

out the SumPooling operation. This method intents to increase the activations of the

deep features located toward the spatial center of the tensor, which should correspond

to objects in the center of the input image. This method relies on the assumption

that more interesting object features are towards the center of the image [9] in order

to highlight those features more than irrelevant ones towards the edges of the image.

Ultimately the σ parameter is determined by the tensor shape.

This hypothesis may be correct for object-heavy image datasets where the pri-

mary object of interest hlis in the middle. For Paris6k and Oxford5k datasets this

is the case, but for scene-heavy datasets the positioning of images across the dataset

may be more dispersed. Therefore, each dataset may have a unique spatial bias that

produces a specific weighting scheme.

We propose a simple change to the weighting scheme that produces a new weight-

ing heatmap for each dataset, which requires no human annotation, and does not

require a σ parameter. We wish to use this to see the optimum weighting and how it

can further improve the SPoC method. The only performance disadvantage is that

it requires feeding the images in the feature extractor twice. For a tensor X of shape

C ×H ×W the Gaussian function (Equation 4.6) produces a weight matrix of size
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H ×W that is multiplied over the tensor on each channel.

Choosing a Best Sigma. Firstly we highlight that the arbitrary choice of σ

in the Gaussian weighting operation can be sub-optimal. We exhaustively run the

SPoC pooling operation on Oxford5k, Paris6k, Holidays, and NAA29k100 with σ

value between 0.1 and 10.0 at 0.1 increments using the Pool5 outputs of the VGG16

model, and graph their Mean Average Precision results in Figure 4.4. The Gaus-

sian weighting function produces more acute center weighting when σ is low - as σ

increases, the weight α(x,y) tends to 1.0 for all (x, y).

It is clear that with low σ values (σ < 1.0) the weighting scheme places too

much weighting to the exact center, and retrieval results are poor across all datasets.

However, there is a clear peak in retrieval performance for the Oxford5k and Paris6k

datasets where a specific σ value would benefit. The Holidays and NAA29k datasets

did not show a specific peak, but higher sigma values plateaued the retrieval perfor-

mance. We suspect that due to the scene-heavy nature of these two datasets they

respond less to the Gaussian center-weighting scheme.

55



0 2 4 6 8 10
Sigma

10

20

30

40

50

60

70

80

M
ea

n 
Av

er
ag

e 
Pr

ec
isi

on

Exhuastive Evaluation of Sigma Values on SPoC on Four Datasets

Holidays
Paris6k
Oxford5k
NAA29k

Figure 4.4: Repeating the SPoC centering algorithm with varying values for the hyperpa-
rameter sigma in the gaussian weighting function. The performance is measured in Mean
Average Precision, and the highest performance for each of the four datasets is indicated
with a diamond.

Producing the SPoC Weighting Heatmap. To produce a weighting heatmap

for a dataset, each image Ii is fed through the feature extractor to produce tensor Xi

∈ RC×H×W . The ith image’s output tensor is SumPooled along the channel dimension

C to produce a 2-D heatmap Zi:

Zi =
C∑
c=0

Xi,c (4.20)

where X i,c is the cth channel of the ith image, and Zi ∈ RH×W . The final heatmap

is a summation of each image’s heatmap:

Z =
N∑
i=0

Zi (4.21)
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where there are N images in the dataset. The final heatmap is then l2-normalised.

We use the VGG16 pre-trained network as before as the feature extractor, in-

put images of size 256×256, and produce the weighting heatmaps (of size 8×8)

for the Oxford5k, Paris6k, Holidays, and NAA29k datasets. They are displayed

in Figure 4.5. Redder activations correspond to high activation values, while blue

represent lower activations. Oxford5k clearly has a center-focused dataset, with low

values along the edges and high activation at the center. This corresponds with the

peak in Figure 4.4. NAA29k and Holidays both show more semantic features in the

corners, while Paris6k shows more information on the bottom edge.

Holidays Oxford5k Paris6k NAA29k

0.0 0.2 0.4 0.6 0.8 1.0

Average Activations at each Spatial Location of Four Datasets

Figure 4.5: Heatmaps of the average activations overall all spatial dimensions of all images
in the datasets Oxford5k, Paris6k, Holidays, and NAA29k. The heatmaps visualise that
across all datasets the objects and semantic features are mostly focused on the center of
the images.

The heatmaps are used in place of the original SPoC Gaussian weighting scheme

and results compared in Table 4.5.
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Method Layer Oxford5k Paris6k Holidays NAA100 NAA1137

SPoCsigma

Pool5 46.22 60.18 78.98 40.03 33.78

Conv5−4 32.12 53.00 76.23 37.55 31.23

Conv5−3 40.56 51.18 75.63 35.47 30.87

SPoCsigma best

Pool5 48.47 62.68 80.29 41.44 35.19

Conv5−4 33.61 54.40 78.20 38.71 33.22

Conv5−3 42.11 52.58 77.63 37.94 33.01

SPoCheatmap

Pool5 46.92 63.79 81.09 41.26 35.30

Conv5−4 44.88 62.01 79.93 40.04 34.19

Conv5−3 45.66 53.94 78.44 38.16 32.48

Table 4.5: Comparison of the standard SPoC with constant σ, the SPoC with exhaustive
search for best σ, and SPoC with proposed heatmap weighting.

The proposed heatmap scheme outperforms the best Gaussian values for the

Paris6k and Holidays datasets, and the NAA29k dataset with the 1137-query groundtruth.

The Oxford5k dataset performed best using the Gaussian weighting function, with

an increase of 1.55% against the proposed weighting, but the proposed weighting still

exceeded the retrieval results using the original σ value in the Gaussian weighting

function. The proposed heatmap scheme beat the original SPoC on NAA29k100 and

NAA29k1137 by 1.23% and 1.52% respectively.

Whitening and Diffusion. Finally we demonstrate the post-processing steps of

whitening and diffusion process on the output descriptors from the Pool5 layer using

the proposed heatmap scheme. Since diffusion-only without whitening produced

poorer results than whitening followed by diffusion in the fully-connected output

descriptors, we perform whitening, and white+diffusion, and show the results in

Table 4.6.
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Dataset Baseline Whitening White + Diffusion

Oxford5k 46.92 46.99 47.98

Paris6k 63.79 62.49 69.84

Holidays 81.09 81.05 81.30

NAA29k100 41.26 41.91 41.84

NAA29k1137 35.30 35.95 35.92

Table 4.6: Effect of PCA whitening and diffusion on the baseline results of the SPoCheatmap

features.

The NAA29k dataset increased retrieval performance with only whitening, while

the diffusion step actually had a negative affect on performance. Paris6k received the

best performance increase from the diffusion step, with a 7.35% increase, followed

by Oxford5k with a 0.99% increase and Holidays with 0.25%. This is in contrast

to the fully connected values which gained a greater boost in retrieval performance

for NAA29k - the 100-query groundtruth reported a 7.19% increase in performance

after the diffusion step.

Chapter Conclusion

In this chapter we have performed retrieval using the deep features from pretrained

convolutional neural networks for Content Based Image Retrieval. We outlined four

datasets that we used for image retrieval: Oxford5k, Paris6k, and INRIA Holidays

datasets, and the archival NAA29k dataset.

Post-processing steps of feature whitening and the diffusion process can improve

the retrieval performance by eliminating correlation between features, and tapping

into the underlying structure of the high-dimensional descriptor space. The outputs

of Fully-Connected layers require higher computation and produce descriptors of

higher dimensions than outputs of the convolutional layers in the convolutional neural

networks, but received enhanced retrieval performance when using post-processing

steps.

We overviewed a series of convolutional pooling strategies that exploit the more
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compact convolution output tensors. These were the MaxPool, SumPool, SPoC

[9], CroW [48], and R-MAC [110] pooling schemes. The scene-heavy Holidays and

NAA29k datasets benefited from simpler SumPooling operations while the other

object-heavy datasets did not. The CroW pooling method produced good results on

Oxford5k and Paris6k as compared to SumPooling, and a breakdown of its weighting

schemes showed that retrieval on Paris6k was unaffected by its channel weighting.

Our results conclude that the CroW’s channel weighting is more effective for archival

datasets by suppressing distracting channel features.

We proposed a simple improvement that replaces the 2-D Gaussian weighting

function with a 2-D weight that requires no extra human input, or other hyperpa-

rameters. The proposed heatmap scheme outperformed the original SPoC on each

dataset.

Content Based Image Retrieval can be adequately performed using pretrained

convolutional neural networks as visual feature extractors, but as is the case for

archival datasets like NAA29k, there is text metadata that can be exploited. In

the next chapter we will explore the Visual Grounding task for the task of object

localisation, as a stepping stone for text-guided retrieval.
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Chapter 5

Visual Grounding Utilising

Word2Vec Semantic Structure

Introduction

Visual Grounding [16, 26], also known as localisation, is a computer vision task that

aims to train a model that can spatially localise a word or text phrase on an image.

As we have seen in the previous chapter, pretrained Convolutional Neural Networks

(CNNs) trained on classification can act as complex functions that project image

data into a high-dimensional feature space suitable for the image retrieval task.

Similarly, text information can also be embedded into a shared embedding space

using recurrent neural networks [33, 49]. Such localisation models are usually trained

with word vector inputs, sometimes from a pre-trained Word2Vec model, and then

the new text module trained as one part of the localisation model [29]. As focus shifts

to training weakly-supervised models without the need for expensive bounding box

annotations in the training data, approaches include using singular word embeddings

as part of the training phase, whereby localisation happens automatically as part of

the model learning [80]. We are motivated to formulate weakly-supervised learning

as a multi-class classification problem, using noun-words in the provided text annota-

tions as classes. Using a pretrained Word2Vec model, we wish to determine whether
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pretrained Word2Vec embeddings on a large vocabulary is sufficient for model train-

ing, without the need for a learnable recurrent module.

We develop a model for training and an offline stage that uses the Word2Vec

word embeddings, while utilising the model’s semantic structure for untrained words

after training is completed. Our model includes a convolution layer that acts as an

object detector, and we investigate the effectiveness of using multiple modules in

parallel. Finally, we examine the performance using two modules in series with an

erasure technique [132] to allow the detectors to discover different object features.

Related Work

Early form of class localisation included the Class Activation Mapping [96] that per-

forms localisation of a finite number of visual classes by learning linear combinations

of pooled feature maps from a FCN backbone. This weakly-supervised object local-

isation (WSOL) method relies only on image-level labels. Their method implicitly

uses a linear combination of filters as object detectors. A problem with this approach

is that the learned filter combinations only focus on the most discriminatory parts

of each object class, such as the head of an animal. To capture more of the object’s

entirety [123] simply fuse a series of CAMs by considering combinations of high- and

low-discriminative activations.

The current motivation is to perform weakly-supervised training without the need

for bounding boxes [29, 65, 135] to eliminate the need for expensive annotations.

Recent approaches involve multi-path deep learning models that embed multi-modal

data into a shared embedding/semantic space. [49] embed Word2Vec [69] word

embeddings using a bi-directional recurrent network [101] and a VGG network for

the image path. Similarly, [29] use a Single Recurrent Unit (SRU) [59] to embed

Word2Vec embeddings for the multi-modal retrieval task. Training a convolution

layer as an object detector with labels implicitly produces an object localiser [80].

This technique is used to detect objects with sentences by isolating specific feature

maps in the trained convolution layer to localise the object described in that text
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[29]. With both images and text embedded into the same space, model learning can

take place by calculating error between the embedded features and enforce euclidean

distances. The triplet loss is used to enforce image embeddings and text embeddings

to have small distance, while unrelated text embeddings have high distance in the

semantic space [29, 115].

Another approach is to construct an encoder-decoder framework that jointly en-

codes both visual and text information into a joint space with a fully-connected

neural network, then decodes those localisation heatmaps into text concept predic-

tions [44]. They compel the network to learn by using batches containing the same

visual concept. In all cases the joint embedding of image and text in a learned model

acts as a means for localisation.

In each case a CNN acts as a powerful feature extractor while a following convo-

lutional layer acts as a detector. Furthermore, boosting performance can occur with

erasure/masking or using multi-detectors for part detection. Erasing input image

information following the first feature detector can capture more of the object’s en-

tirety [117], or using two complementary convolutional feature detectors can detect

different object regions [132].

We argue that since localisation is considered a task of localising short text

phrases to related visual objects, visual concepts are largely interchangeable with

noun-phrases [44]. While dual-path models can act as a proxy task for localisation

[29], we argue that an encoder using only the structure of a Word2Vec model, with-

out directly learning projected word embeddings, can still act as a powerful object

localiser, even for concepts unseen at training time. We leverage an off-the-shelf

part-of-speech detector with a pre-trained text vector model as a semantic gap-filler

that not only allows our model to train on a relatively large concept vocabulary, but

can still localise for unseen concepts.

The remainder of this chapter is as follows. We introduce the Word2Vec [69] text

model and the two localisation datasets Flickr30k and MSCOCO, the loss function

for model learning, and the Pointing Game metric. We then propose our encoder-

based model architecture, and justify how we choose the number of trained classes.

Finally, we show our experimental results of our model, and show improved perfor-
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mance using multiple convolutional layers and the erasure technique [117].

Word2Vec Model

A Word2Vec model is a tool that directly transforms a word into a vector represen-

tation [68] [69], with the aim that words with close semantic meaning are close in the

vector space. These semantic models map complex linguistic relationships between

words that exhibit behaviours such as word clustering and relationships [69]. For

our experiments we use the Google News Word2Vec [69] that embeds words into a

300-D vector space.

We are motivated to use a Word2Vec model to overcome some limitations of the

simpler 1-hot method. In the 1-hot method, words are represented as a vector where

all are zeros except for a 1.0 in one element. The limitation of this method is that

the size of the word dictionary/vocabulary is fixed, and the length of the vector is

equal to the vocabulary size, which can become very large. During model testing,

there is the possibility of unseen word that is not in the vocabulary at training, and

cannot be represented as a 1-hot vector. There is little difference in performance

whether the text path is trained using 1-hot vectors or Word2Vec embeddings [49].

However, Word2Vec overcomes the vocabulary size problem because the Word2Vec

embeddings are compact. The Word2Vec is structured so that words that have simi-

lar semantics have vectors that are closer in the embedding space by cosine similarity

(see Figure 5.1). Therefore, in the case of an unseen word, a semantically-similar

substitute can act as a placeholder during localisation.

We demonstrate this idea by selecting four words: ‘tiger’, ‘sedan’, ‘bird’, and

‘skirt’, and showing the top-10 closest words by cosine similarity in the Word2Vec

[69] model. Observe that in the example of ‘sedan’, the next words are ‘hatchback’

and ‘coupe’. In test situations where ‘sedan’ is not part of the training vocabulary,

the nearest words are sufficiently semantically similar to act as placeholders.

There are several available pretrained Word2Vec models, but the initialisation of

a Word2Vec model has little effect on overall performance, even when using a ran-
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dom initialisation of word vectors [49]. In our preliminary experiments we determined

whether the specific Word2Vec model has significant effect on the performance of our

model learning. We tested the 300-D GloVe vectors [86], pre-trained Bert embeddings

[25], the pre-trained Google Word2Vec model [69], and also on one-hot vectors for

sanity. The Bert embeddings were extracted from the first layer of the Bert model.

There was no material difference in performance in preliminary experiments, except

for bad performance using one-hot, where each word is represented by a long vector

whose length is the size of the vocabulary. The one-hot vector has no inherent se-

mantic structure between words, and output on unseen words was seemingly random

due to no underlying semantic organisation.
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Figure 5.1: The top-10 words by cosine similarity to the words ‘tiger’, ‘bird’, and ‘sedan’
in the Google Word2Vec model.
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Loss Functions

A loss function is a function that measures an error between the prediction of a model

and the desired target considering the model’s inputs. A model prediction that differs

highly from the desired target produces a high error, while a model prediction close

to the target delivers a low error value. The error value is backpropogated through

the training model to update model weights to bring the output closer to the desired

target. In this chapter we use the Cross-Entropy Loss function.

Cross-Entropy Loss

Cross-entropy loss aims to penalise the model when the predicted class differs from

the target class. The loss value decreases when the predicted class is close to the

target class. A model output in this case is a vector of length C where there are C

possible classes and the ith element of the vector represents the probability that the

input is the ith class. The cross-entropy loss of a model prediction p is

−
M∑
c=1

tclog(pc) (5.1)

where pc is the probability that the input is class c, and tc is a binary value that

indicates if c is the correct class.

Datasets

Several datasets have been used in the visual grounding/localisation task, including

Flickr30k [92], MSCOCO [62], Visual Genome [54], and ReferIt [50].

For our experiments we will utilise the MSCOCO and Flickr30k datasets in line

with [7, 29, 31, 129] with the MSCOCO as training and Flickr30k for validation.

MSCOCO. The MSCOCO dataset utilised by [29] is made up of 123,287 images

that are a combination of both the original training set (82,783 images) plus the

validation set (40,504 images). This is because the Flickr30k dataset will be used
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Figure 5.2: A selection of 9 images from Flick30k with one localisation phrase and its
corresponding bounding box(es). Each bounding box is represented as a blue rectangle.

for validation. Each MSCOCO image has five associated captions, or phrases, that

describe the image.

Flickr30k. The Flickr30k dataset contains 29,783 training images and 1000

validation images, as well as 1000 test images. All validation and test images have a

set of bounding boxes that encompass visual objects in the image, and corresponding

short phrases that are to be localised. The goal is to use the short phrases and image

as input to a trained model, and localise the visual object that the phrase describes

using the Pointing Game metric as described below. A small set of images and their

accompanying phrases and bounding boxes are shown in Figure 5.2.
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Pointing Game

The Pointing Game is a quantitative measurement of the effectiveness of a model

on localising phrases to their respective bounding boxes in an input image. The

trained localisation model should ‘point’ to a spatial position in an input image that

best corresponds to the visual feature described by the input phrase. Each phrase

is accompanied by groundtruth bounding boxes that envelopes the visual object(s).

When the point occurs inside one of the bounding boxes coupled with the localisation

phrase then it is considered a #hit , and if it is not then it is a #miss. The total

pointing game score for one image is #hit
#hit+#miss

and the total pointing game score is

the percentage of all hits over all localisation phrases across every image.

Pointing Game Baselines

To establish baseline on the pointing game for the Flickr30k dataset, it is a simple

task to ‘simulate’ the pointing using various techniques. Center means to always

point at the image center, (w
2
, h
2
) where w is the original image width and h is

the original image height, and this produces a pointing game accuracy of 49.20%.

Random is a random (x, y) point on each image, and we show an accuracy of 27.24%.

The random result differs each time the algorithm is run, so we ran it five times and

took the average. VGG16 accuracy means to feed each image through a pre-trained

VGG16 network only and take the spatial point that produces the highest activation

in the output tensor. We ran it through the pre-trained VGG16 network with the

classification and softmax layers removed, so the output was represented by the

tensor output of the Pool5 layer. This result produced a pointing game accuracy of

35.37%.
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Proposed Architecture and Pipeline
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Figure 5.3: Overview of the proposed architecture and pipeline. The main image path
contains a CNN such as VGG16 and a series of one or more convolutional layers in parallel
that act as concept detectors. Separate spatial pooling modules produce predictions of
object, and loss is calculated for one random concept known in the image phrase. In the
online stage the user selects their desired concept or phrase, and using the pre-trained word
space a best fit is found. Trained concept detectors output heatmaps corresponding to that
concept.

We use a pre-trained CNN as our base network to act as a feature extractor. We

choose the VGG16 network used in the previous chapter, and as used in [31, 44], and

then remove the classifier and softmax to leave a FCN. The FCN accepts an input

tensor I ∈ R3×256×256 and the output of the FCN is a tensor X ∈ R512×H×W .

One or more convolutional modules Φi take X as input, and output φi ∈ RC×H×W

where C is the number of known concepts in the training dictionary/vocabulary. A

learnable 1× 1 convolutional kernel then produces confidence scores for each known
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concept. A 1× 1 convolutional kernel is a 3-D kernel of shape C × 1× 1, meaning its

receptive field has width and height of one. Its important characteristic is that the

output tensor has equal shape to the input tensor, and it acts as a linear transforma-

tion of each spatial location of the output. This means that the kernel will output a

confidence score reflecting the presence of a concept that kernel is intended to find.

Outputs from each convolutional module are spatially pooled using separate GeM

[76] modules to produce C-dimensional predictions of object class, which are then

passed through Softmax. Rectified Linear activation units (ReLU) are also used after

VGG16 and each Φi but not shown for clarity.

Therefore, prediction pi is Softmax(GeMi(Φi(VGG16(I )))).

Online Localisation

Intuitively, the visual model is trained to predict a target that is a one-hot vector

with the jth element a 1.0 (and all other elements 0.0) representing the jth noun in

the training vocabulary that is the object in the image. Therefore in the localisation

stage the output of the jth channel corresponds to high neuron activation upon seeing

the visual object, and can be ‘sliced’ out for heatmap generation.

Sliced heatmaps are 2-D visual signals and can be interpolated to a common size

if Φ output sizes vary, and are then combined with addition. To overlay heatmap, a

final interpolation to size 3× 256× 256 and multiplication with the original image I

produces a heatmap localisation.

Loss Function

Cross-entropy loss is calculated on each prediction against a one-hot vector that

represents the class target. For a C-dimensional one-hot target vector t and a pre-

diction pi from the ith pooled parallel convolution output, the cross-entropy loss of

is calculated as

Li = −
C∑
c=1

tclog(pc) (5.2)
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and the final loss is the average of all cross-entropy losses across |L| parallel

modules:

L =

∑|L|
i=0 L

N
(5.3)

Justification for Object-Noun Threshold

For vocabulary selection, the training phrases of the train set are trawled and the

noun words extracted using the NLTK [13] toolkit. For example, in the Flickr30k

training set there are 11,707 nouns and in MSCOCO there are 13,068. Some are

more common than others, and in fact there are 3,953 nouns in Flickr30k training

set and 4,392 nouns in the MSCOCO training set that each occurs in only a single

image. Therefore it is prudent to reduce the vocabulary size by removing nouns that

exist in few images. By setting a threshold of how many images each noun exists in

we can see how the vocabulary changes size. A set of thresholds and their respected

vocabularies in Flickr30k and MSCOCO are shown in Table 5.1. Training a large

vocabulary would increase training time and provide very few visual examples for

some words. We intend to instead use the semantic structure of a Word2Vec model

for such rare concepts.
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Number of Concepts

Image Threshold Flickr30k MSCOCO

1 11707 13068

2 7754 8676

5 4866 5517

10 3492 3978

20 2416 2867

50 1352 1780

100 845 1200

200 475 777

500 205 450

Table 5.1: Image thresholds and the corresponding number of concepts that are found in
the minimum number of images in the datasets Flickr30k and MSCOCO. As the threshold
increases, there are fewer concepts that meet that minimum threshold. Concepts belonging
in large numbers of images are therefore more common concepts.

In the Flickr30k dataset there are many object types, but the text annotations

add extra complexity to the objects. Many objects are referred to with different

names (e.g. car/vehicle/automobile). For general computer vision tasks, including

object detection and localisation, localising a generic term for the object is satis-

factory without the need to learn alternate words that describe the same object.

Additionally, it would be favourable to learn a number of common concepts and

avoid the larger number of rare concepts where there is minimal training data.

To perform localisation using no bounding box annotations we can perform un-

supervised learning by leveraging the available full-text global image annotations

that appear with each image in the dataset. Assuming that the global text anno-

tations contain object-nouns that correspond to semantic objects in the image, the

phrases can be broken down into their noun-phrases. We assume that the presence

of the object-noun indicates the presence of that object in the image. Since spatial

object localisation can be performed as a side-effect of object detection [80] these

object-nouns will be the basis of finding the objects.
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There are many object-nouns in the data. We use the off-the-shelf toolbox NLTK

[13] to extract object-nouns from the available sentences on each image, after remov-

ing common stop-words. Looking at the Flickr30k dataset, there are many object

nouns, and it may be unfitting to learn the presence of each type. There are 11,707

nouns detected, although many are counted despite being spelling errors, or non-

object nouns. Instead of learning 11,707 possible objects, nouns are only used when

they appear in a minimum number of images’ annotations in the dataset. We choose

the threshold of 50 images for training on both the MSCOCO train set and the

Flickr30k train set.

Implementation

Visual pipeline. We construct the visual pipeline as in Figure 5.3 but consisting of

a single convolutional object detector. The VGG16 classifier and softmax are removed

so the output is from the Pool5 layer. The model is trained on the new MSCOCO

train set as in [7, 29, 44, 129], and also on Flickr30k train set for comparison. Model

is validated using the Flick30k validation set. We also train separately with the

ResNet152 model used by [29] for further comparison, and remove the final two layers

of the ResNet (average pooling layer and softmax layer) to produce a FCN. The

output of the ResNet152 is a tensor of size 2048×W ×H.

Embedding space. We use the Google Model Word2Vec [69] with 300-D vectors

as the high-dimensional word embedding space.

Training details. The convolution module Φ is trained from epoch zero, and

finetuning of VGG16 begins from epoch 8. In finetuning the first four convolution

layers are still frozen as they represent the detection of simple features.

The model is trained in batches of 64 image/phrase pairs using stochastic gradient

descent with a learning rate of 0.01 and a momentum value of 0.9. Early experiments

using Adam optimizer produced numerical instabilities, so stochastic gradient descent

was preferred.

Preliminary experiments showed that the model training performance largely

plateaus between epochs 50 and 70, so the model is trained for 80 epochs for confi-
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dence. To account for dips in performance during the plateauing period, the offline

stage is performed after each 10 epochs to determine model performance and the

best model retained.

Experimental Results

Our VGG16-only model when trained on MSCOCO produced a pointing game result

of 55.59% and when trained on Flickr30k 58.67%. The results are shown in Ta-

ble 5.2. On the more difficult task of training on MSCOCO train set (as compared

to training with the Flickr30k train set) for validation on Flickr30k val set, the model

outperforms the baselines Center, Random, and VGG16-only. The result was also a

13.19% improvement over [129] and 5.49% better than [94]. While it was also better

than [44], their model was trained instead on the Visual Genome [54] dataset.

We show some qualitative results in Figure 5.4 from our model trained on MSCOCO.

In it we highlight some of the behaviours of the model. We see the model has some

primitive ability to not only detect people, but in some cases differ between gender.

In the first two images the model distinguishes between ‘man’ and ‘girl’. In other

cases the highest spatial activation point is slightly outside of the bounding box,

representing a miss for that phrase, despite being close.

We can also observe that the model, while detecting the ‘dog’ class, focuses on

only one portion of the dog, on the head. In another case it can detect a BMX bikes

but chooses only to see the distant one. In the bottom-center image the model is

apparently confused by the addition of the word ‘yellow’ and the neuronal activation

for that object causes heatmaps on all yellow objects.
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Method Settings Training Flickr30k Val

Baseline

Center - 49.20

Random - 27.24

VGG16[103] - 35.37

ResNet152[103] - 38.03

Javed [44] VGG16 VG 49.10

Zhang [129] GoogleNet MSCOCO[62] 42.40

Fang [31] VGG16 MSCOCO 29.03

Ramanishka [94] InceptionV3[108] MSVD[15], MSR-VTT[120] 50.10

Akbari [7] ELMo+VGG16 MSCOCO 61.66

Akbari [7] ELMo+PNASNet MSCOCO 69.19

Ours

VGG16 MSCOCO 55.59

VGG16 Flickr30k 58.67

ResNet152 MSCOCO 59.04

ResNet152 Flickr30k 62.38

Table 5.2: Pointing game results for our model, and a series of results from the literature
for comparison.



Figure 5.4: A selection of images from the Flickr30k validation set overlaid with trained
localisation heatmaps for the text phrase written in the bottom left corners. The model
was trained on MSCOCO using the VGG16 feature extractor. Areas of higher activation
are red while lower activations are blue. The highest activation point used for the pointing
game is represented as a white X. The bounding boxes for the localisation phrase are shown,
and if the X is inside a box it is shown as green, otherwise as red. Best viewed digitally
and in colour.
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Effect of Differing Parallel Convolution Detectors

Our initial model was composed of a single convolution layer that acted as an object

detector. Intuitively, the addition of multiple such layers in parallel can provide

additional discriminative power to the model. Such multi-detectors have been used

in [28] with spatial pooling for part detection.

We are motivated to observe the impact of erasure on a pair of parallel modules

affects the performance of our model. In our first experiment we used a single

convolution layer as an object detector as a baseline. In this experiment we will

increase the number of parallel modules in our model.

Implementation

We construct the same model but with a series of parallel Φ convolution detectors.

Each detector is independent and has its own set of trainable weights. The model

is trained for 80 epochs using batches of 64 with stochastic gradient descent, with a

learning rate of 0.01 and momentum 0.9. The Google Model Word2Vec [69] is used

for the word embedding space.

The convolution module in the baseline model is a 1×1 convolution that outputs

a tensor φ ∈ RC×W×H where W and H are the same spatial dimensions as the input

tensor X . This is because the learned 2-D kernel is a 1× 1 kernel. Selecting kernel

sizes of different spatial dimensions would produce output tensors that differ, and

tensors φi..φN require interpolation to a common size for heatmap generation. In

these cases we use bilinear interpolation and resize the smaller outputs upward to

match the spatial output size of the largest tensor. Intuitively, larger kernel sizes

pool larger areas and would discriminate visual features of large size while smaller

kernel sizes observe finer visual details, and while naturally a kernel size of W ×H
would act as a global pooling layer.

We train the model with a number of alternative module combinations and show

some in Table 5.3.

78



Experimental Results

Preliminary experiments showed that two or three modules outperformed a single

module, but performance enhancements peaked at three modules. Manual observa-

tion of the outputs of the modules showed that different modules produced identical

output tensors, and the learned weights had been trained to look for the same visual

features, as there was no constraints to make them learn complementary features.

Adding an additional parallel module increased pointing game performance in all

cases, and we found that extra modules with kernel size of 1 was better at improving

performance than larger kernel sizes. Adding one extra module with kernel size of

1 on the VGG16-based model trained on MSCOCO increased the performance from

55.59% to 56.99% (1.4% improvement) and another addition further increased it

to 57.60% (0.61% improvement), but further extra modules had negligible effect on

performance.

We also show some results while training on Flickr30k - the VGG16-based model

with modules (1,2,4) in size increased performance against the baseline from 58.67%

to 60.41%, which was a 1.74% increase in performance, and the ResNet152-based

model with modules (1,2,4) improved the performance similarly from 62.38% to

64.11%, marking an improvement of 1.73%.
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Method CNN Model Training Flickr30k Val

Baseline (1)

VGG16 MSCOCO 55.59

VGG16 Flickr30k 58.67

ResNet152 MSCOCO 59.04

ResNet152 Flickr30k 62.38

(1,1) VGG16

MSCOCO

56.99

(1,4) VGG16 56.52

(1,1,1) VGG16 57.60

(1,2,8) VGG16 57.29

(1,1) ResNet152 59.08

(1,4) ResNet152 59.59

(1,2,4) VGG16
Flickr30k

60.41

(1,2,4) ResNet152 64.11

Table 5.3: Pointing game results from the baseline model and for differing number of
parallel modules. Under the ‘method’ heading the kernel sizes are shown in parentheses.
For example, (1,2) means two parallel convolution modules Φ1 and Φ2 with kernel sizes 1
and 2, respectively.

Complementary Learning With Erasure

Object part detection can using multiple detectors to discriminate more regions of

the object [28]. Multi-feature detectors can be trained by masking the input image

with the activated region of one detector, and re-feeding the image through the base

model and a second object detector [117] to capture more features. Another approach

is to use two detectors, but instead of masking the original image, mask the highest

activation outputs of the first detector [132].

We modify our model to perform the erasure technique by replacing the parallel

modules with two in series.
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Figure 5.5: Block diagram of serial module to perform erasure. The first tensor
X ∈ R512×h×w that is outputted from the VGG16 feature extractor. The output of the
first convolution layer is a tensor Y ∈ RC×H×W , which is spatially pooled. The subtrac-
tion of the spatially pooled 2-D map from the tensor Y is fed into a second detector.

Implementation

We consider a set of two convolution layers with 1 × 1 kernels that act object de-

tectors, and accept input tensors X ∈ RC×h×w where C is 512 for VGG16 or 2048

for ResNet152. We re-implement the object detection stage as a serial rather than

a parallel manner. The serial module is shown in Figure 5.5. The output is a

tensor X ∈ RC×h×w, and the output from the first convolution layer is a tensor

Y ∈ RC×H×W that aims to perform the object detection as in the our base model. A

pooling layer transforms tensor Y into a 2-D heatmap corresponding to the highest

activations from the detector, which is then subtracted from the tensor X along the

spatial dimension. This will mask the highest activations detected from the first con-

volution before feeding into the second to produce Z ∈ RC×H×W , the final heatmap

stack, and can be sliced channel-wise for object detection.

Preliminary experiments showed similar train time to the base model, so this

model is trained for 80 epochs using batches of 64 with stochastic gradient descent,

with a learning rate of 0.01 and momentum 0.9. The Google Model Word2Vec [69]

is used for the word embedding space.
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Experimental results

Method CNN Model Training Flickr30k Val

Baseline (1)

VGG16 MSCOCO 55.59

VGG16 Flickr30k 58.67

ResNet152 MSCOCO 59.04

ResNet152 Flickr30k 62.38

(1,1) VGG16

MSCOCO

56.99

(1,4) VGG16 56.52

(1,1,1) VGG16 57.60

(1,2,8) VGG16 57.29

(1,1) ResNet152 59.08

(1,4) ResNet152 59.59

(1,2,4) VGG16
Flickr30k

60.41

(1,2,4) ResNet152 64.11

Serial
VGG16

MSCOCO
58.51

ResNet152 60.24

Table 5.4: Pointing game results including experiments from the baseline, the parallel
modules, and the model with serial convolution layers with subtraction erasure. Under the
‘method’ heading the kernel sizes in the parallel modules are shown in parentheses. Kernel
formats in parallel layers are as in Table 5.3. Modules used in the serial model are both
1× 1 kernel sizes.

Both models trained on MSCOCO and using two convolution layers with the erasure

method performed better than the model with two modules in parallel. The VGG16

model achieved a pointing game performance of 58.51%, which is 1.52% higher than

two parallel modules. The ResNet152 model trained similarly also outperformed

the equivalent parallel module, with a pointing game performance of 60.24%, an

improvement of 1.16%.

We observe in some cases, especially smaller objects, where the model is distracted
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by some surrounding features as the erasure causes the primary feature to be masked

and the surrounds detected as part of the object. A sample of heatmap-overlaid

Flickr30k validation images are shown in Figure 5.6. The visualised heatmaps are the

outputs from the model trained on MSCOCO (second-to-last column in Table 5.4).

In Figure 5.6 the bottom-center image shows the phrase ‘a meal’ is to be localised on

the image, and our model detects food items throughout the kitchen. The bottom-left

image shows our model detecting both dogs but correctly identifies the black dog, as

the word ‘black’ provides significant contextual cue. Likewise, the final image of the

taxi in the city shows distraction by the model on the detection of yellow features,

which was the case in the model using a single convolution object detectors as well.

Figure 5.6: A set of six example Flickr30k validation images with overlaid heatmaps
from the model trained with the erasure module and with the VGG16 feature detector
on MSCOCO train set. Areas of higher activation are red while lower activations are blue.
The highest activation point used for the pointing game is represented as a white X. The
bounding boxes for the localisation phrase are shown, and if the X is inside a box it is
shown as green, otherwise as red. Best viewed digitally and in colour.
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Chapter Conclusion

Our model was designed to train on object localisation on a dataset of image-phrase

pairs to localise visual objects from short English text phrases. We considered how

the existence of nouns in the training phrases could be sufficient context for the exis-

tence of related visual objects in the paired images. Convolution layer-based object

detection modules were able to detect semantic visual objects across the validation

set, and we showed that uniting a number of modules is a simple and inexpensive

way to boost localisation performance.

We chose a balance of object nouns to train a sufficient vocabulary while disre-

garding rare nouns, and utilised the semantic structure of an off-the-shelf Word2Vec

model for the offline stage, suggesting such a pre-trained model can provide good

semantic text information. Furthermore, replacement of parallel modules with two

convolution layers in serial with simple erasure improved performance on localisation.
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Chapter 6

Text Guided Archival Image

Retrieval using Localisation Model

Introduction

The trained localisation model in the previous chapter used a pre-trained Word2Vec

model for semantic structure in the offline stage and showed good promise for lo-

calising a set of trained vocabulary words, as well as unseen words by utilising the

Word2Vec structure. Archival datasets such as NAA29k contain text metadata an-

notations paired to each image, where the text contains some contextual description

of the image.

We are motivated to use the trained model of the previous chapter to attempt

to enhance the image retrieval performance of NAA29k by utilising its capability

to produce attention on visual features that correspond to text. We showed in the

image retrieval chapter that improved global image pooling by focusing on the best

features can improve retrieval performance. We desire to establish whether we can

boost performance using the pretrained model on the dataset with text metadata as

guidance to heatmap generation.
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Implementation

The best model is used from the previous chapter trained on MSCOCO - the model

with the serial module trained using erasure, and using the VGG16 feature extractor

as used in the chapter on image retrieval.

The NAA29k dataset, 28,912 images, is fed into the model. The input size of

each image is 256× 256. Using the text phrases that are provided with each image,

an output heatmap is generated and interpolated to the original input image size to

produce a localisation for that phrase.

Visualising Localising Text on Archival Dataset

We provide some examples from the output of the trained localisation model. Fig-

ure 6.1 illustrates the model’s ability to localise on particular objects as referenced in

the text. The first image shows high activation on the lizard and the second image

on the emus that are in the text annotations. The final image shows an airplane,

and the model is able to localise the entirety of the object.
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Figure 6.1: Eight images from the NAA29k dataset and their overlaid heatmaps generated
from the text phrases. Higher neuronal activations are shown in red, and lower activations
in blue. The most activated spatial location is shown with a white X. Phrase is embedded
in black rectangles. Best viewed digitally and in colour.

The trained model when used on the NAA29k dataset shows some weaknesses,

including behaviour that provides too much focus on a single visual feature and not

enough on the entirety of the image. Recall that the NAA29k dataset is scene-

heavy, and retrieval experiments showed that broader global information is more

useful for pooling into global image descriptors than very specific parts. Figure 6.2

shows three such images where the model puts high activations on a single image

portion and low on all others. The final image is of a telescope, and the phrase being

‘research telescope’, but the model does not see the dish portion of the object, only

the building, when pooling using text guidance.
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Figure 6.2: Three images from the NAA29k dataset and their overlaid heatmaps generated
from the text phrases. These heatmaps suffered from excessive spatial focus by the model,
and ignored more of the scene. Higher neuronal activations are shown in red, and lower
activations in blue. The most activated spatial location is shown with a white X. Phrase
is embedded in black rectangles. Best viewed digitally and in colour.

Furthermore, Figure 6.3 highlights how the attention can focus on salient parts

of images. Six images from construction sites are shown and the common parts of

semi-constructed piping receives attention, while other parts do not. The perfor-

mance of each query depends on whether it is scene-based or object-based, and a

balanced attention because the pooled descriptors would be influenced by the focus

given by the text metadata. Focusing on only rare local features is an advantage for

retrieval performance.
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Figure 6.3: Six images from the NAA29k dataset from a construction site, and their overlaid
heatmaps generated from the text phrases. Note the model focuses on common features
in each. Higher neuronal activations are shown in red, and lower activations in blue. The
most activated spatial location is shown with a white X. Phrase is embedded in black
rectangles. Best viewed digitally and in colour.

Therefore, the weakness of this proposed model is its tendency to sometimes focus

too heavily on some localised features and ignore global features, depending on the

content of the provided text metadata. To balance this we also provide a new scalar

weight hyperparameter β that can be chosen to weigh the heatmap tensor. Weighting

is performed with a multiplication of X × h × β over the spatial dimension of X

before the pooling stage. β is the same for the entire dataset and does not change

for individual images. When the weight is zero the output is the same as without

the weighting module. For our experiments we choose β as 0.0, 0.1, 0.5, and 1.0,

reflecting varying levels of importance of the weighting module.

To perform retrieval using this proposed method we use the text-guided heatmaps
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produced by the trained localisation model, weigh their values using β, and add to

the output tensor of the pre-trained FCN portion of the VGG16 model. The VGG16

model accepts an input tensor I ∈ R3×w×h and outputs a tensor X ∈ R512×W×H

where W and H are the width and height of the tensor. For our purposes we use

the output of the Pool5 layer, so when w = 256 and h = 256, W = 8 and H = 8 in

the output tensor.

The output of the trained localisation model on image Ii is a predicted tensor

pi ∈ R8×8.

Retrieval Results

We show our retrieval results for NAA29k100 and NAA29k1137 in Table 6.1 using Max-

Pool and SumPool methods, and include β = 0 for completeness, which is equivalent

to no guided text annotation. We find that using text guided heatmaps produce

improved results.

For the NAA29k100 the weighting improved the MaxPool performance by 0.43 for

β = 0.1, 0.92 for β = 0.5, and 0.33 for β = 1.0. Slightly better improvements were

seen on the SumPooling method, which already presented comparatively higher mAP

values to MaxPool. Using β = 0.5 produced the best result at 42.7, an increase of

1.2. We suspect that it is a balance between the model’s ability to guide activations

towards visual features mentioned in the text annotations, while helping to ignore

non-visual nouns. This is a symptom of text annotations containing non-visual words

and historical facts rather than literal visual descriptions of the scene. Take exam-

ple of the two first images in Figure 6.1, where specific mentions of visual features

(‘lizard’ and ‘emu’) are highly useful to the localisation model, when in other images

more vague descriptions of the image and historical information are less useful to the

text guided module.

For comparison we show fifteen query images and their top results on the baseline

SumPooling method in Figure 6.4 and the same queries using text guidance in our

proposed model in Figure 6.5.
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It is clear that the performance improvement of the proposed model relies on

valuable text metadata to accompany the images. Good metadata provides usable

noun phrases for guided heatmap generation. To illustrate this, in Figure 6.6 we show

the metadata of the queries in Figure 6.5 and Figure 6.4. The varying quality and

comprehensiveness of the descriptions would affect the heatmap generation. This

justifies our choice of introducing the β hyperparameter to soften the influence of

the text guided module. However, for practical purposes, human intervention would

be pragmatic to select an optimum β, with a higher value for datasets with visually-

descriptive metadata.

Method β NAA29k100 NAA29k1137

MaxPool* 0.0 36.06 30.63

SumPool* 0.0 41.50 35.03

MaxPool 0.1 36.49 31.08

MaxPool 0.5 36.98 31.49

MaxPool 1.0 36.39 30.98

SumPool 0.1 42.48 36.10

SumPool 0.5 42.70 36.18

SumPool 1.0 41.96 35.63

Table 6.1: Mean Average Precision results for the NAA29k dataset on both groundtruths
(100 and 1137) on MaxPool and SumPool methods using the VGG16 model, with heatmaps
generated from the trained localisation model. Methods indicated with an asterisk (*) are
baseline methods reported in Table 4.3 for comparison.
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Figure 6.4: Fifteen random queries from the NAA29k100 groundtruth set are illustrated
with their top-10 results on baseline SumPooling. The first image in each row is a query,
and the following images are the top 10 results. Correct images have green borders and
incorrect images have red borders. Best viewed digitally and in colour.
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Figure 6.5: Fifteen queries from the NAA29k100 groundtruth set from Figure 6.4 using text
guidance and SumPooling with β = 0.5. The first image in each row is a query, and the
following images are the top 10 results. Correct images have green borders and incorrect
images have red borders. Best viewed digitally and in colour.
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Figure 6.6: Fifteen queries as shown in Figure 6.4 and Figure 6.5 with their accompanying
metadata. Best viewed digitally and in colour.
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Chapter Conclusion

We used our proposed text guided localisation model to extract features from the

archival dataset NAA29k and perform image retrieval. The pretrained model pro-

vided heatmap outputs that represent the confidence scores of visual features that

correspond to the provided text annotations.

The quality of the provided metadata affects the final spatial weights, and some

images and their text guided weights are illustrated. The weakness of the proposed

model is that it requires strong and useful metadata to boost retrieval performance.

Visualisations of the model’s generated heatmaps showed some problems with im-

ages where over-focusing causes significant parts of the image to be ignored, while in

other images the model is able to see large parts of the scene. We introduce a hyper-

parameter to balance the effect of the text guided weight module. We believe that

the text guided module provides a worthy contribution to archival image retrieval

where images are accompanied by text metadata as it provided a modest retrieval

performance boost. Future work should concentrate on further investigating a text-

guided model that minimises the distracting effect of non-visual text metadata, such

as separate β values for individual images.
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Chapter 7

Conclusion

Image retrieval on archival image datasets is an interesting visual task that can allow

the public to easily access, browse, and explore historical digitised archives that have

previously been in only analogue form. Being able to retrieve images from image

queries can allow members of the public to easily access history and perform local

research. In this thesis we explored pooling methods for image retrieval and how

the methods affect the retrieval performance of several publicly accessible retrieval

datasets and an archival set, NAA29k, from the National Archives of Australia.

In our literature review we established the strength of the pooling method and

attention as essential to adequate image retrieval performance. Furthermore, the

existence of accompanying text metadata motivates a strategy to harness it to boost

performance.

We performed comprehensive experiments using Convolutional-Neural-Network-

based feature extraction with different models, layer outputs, and pooling methods.

We also implemented the diffusion process as an additional step to boost retrieval

performance.

We proposed a simple change to the SPoC pooling method that harnesses the

information within dataset galleries to provide a more useful pooling to boost per-

formance. We introduce a weighting parameter that tweaks the gaussian weighting

function, and we find it produces improved performance on the benchmark and
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archival datasets.

In the localisation task we explore weakly-supervised training whereby a dual-

path text/image model learns object localisation by utilising text object-nouns as

training signals. We train a visual pipeline to detect object classes and examine

the idea that an off-the-shelf Word2Vec model has sufficient semantic structure in

place of a text model. The use of the Word2Vec model not only localised words in

the known vocabulary, but the semantic structure provided an ability to localise for

untrained words.

We proposed a further improvement on the localisation model by extending the

object detector module with a set of parallel object detection modules, as well as

using an erasure technique designed to find more object parts. The model performed

better using a simple inclusion of more parallel modules. Furthermore, using the

erasure technique in a serial manner produced further improvement over the parallel

modules.

Considering the archival image dataset also contains text annotations, we were

motivated to investigate if our trained localisation model can provide outputs to

enhance the image retrieval performance. Our experiments showed that there is a

small improvement, with qualitative examination showing that there are also distrac-

tions caused by the model focusing on small areas. We proposed a simple balance

by introducing a hyperparameter that weights the effect of the text guidance. This

demonstrated that guiding the weighting for pooling using text is a promising tech-

nique for image retrieval using archival digitised galleries with accompanying text

annotations.

Image retrieval of digitised historical images is an appealing topic because of

its practical applications in local research and democracy. We demonstrate good

retrieval performance with CNN-based techniques and produce modest improvements

with our proposed localisation model with text guidance. However, we identify a

weakness of the proposed method and introduce a simple change to offer balance of

the text guided weightings. There is strong motivation to continue using available

text metadata in archival sets where available, to boost retrieval performance.
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Suggestions for Future Research

We showed that retrieval on archival datasets can be improved by continuing to take

advantage of the provided text annotations that accompany the digitised images.

We considered object nouns as single-word phrases with the Word2Vec model em-

beddings. Further possible model improvements could include embedding whole text

phrases, and adjusting the model’s design to accept long phrases.

Our object nouns were limited by the use of an off-the-shelf object-noun detector.

Many text phrases in the archival dataset contains specific information, such as

names, places, and historical information, that does not correspond to direct visual

objects. Further filtering of the annotations should help to focus on visual objects

and provide less distractions from non-object nouns.

For localisation, utilising parallel object detectors boosted performance against a

single object detector. Further, implementing erasure to detect additional features

in a single, serial module further boosted performance. An interesting open question

would be whether a parallel set of such modules could further improve localisation.

Further using the trained model as the feature extractor, how it could improve re-

trieval performance on the archival dataset.

Our proposed model used a single parameter to balance the effect of the text

guided output against the visual-only output. However, it is a single parameter that

affects all images equally. An interesting future direction would be to explore how

the parameter can be chosen for individual image/text pairs according to the text

metadata content. Improvement here would significantly reduce the constraint of

the proposed model.
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