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A B S T R A C T   

Graphene oxide (GO) intercalated with transition metal oxides (TMOs) has been investigated for optimal 
supercapacitance performance. However, attaining the best performance requires conducting numerous exper
iments to find an optimal material composition. This raises an important question; can resource consumption 
associated with extensive experiments be minimized? Here, we combine the machine learning (ML)-based 
random forest (RF) model with experimentally observed X-ray photoelectron spectroscopy (XPS) data to 
construct the complete chemical analysis dataset of Co(III)/Co(II) ratio for thermally synthesized Co-rGO 
supercapacitor electrodes. The ML predicted dataset could be further coupled with other experiment results, 
such as cyclic voltammetry (CV), to establish a precise model for predicting capacitance, with ML coefficient of 
determination (R2) value of 0.9655 and mean square error value of 6.77. Furthermore, the error between pre
dicted capacitance and experimental validation is found to be less than 8%. Our work indicates that RF can be 
used to predict XPS data for the TMO-GO system, thereby reducing experimental resource consumption for 
materials analysis. Moreover, the RF-predicted result can be further utilized in experimental and computational 
analysis.   

1. Introduction 

The development of sustainable and renewable energy storage sys
tems has gained significant momentum in recent years, leading to the 
emergence of non-conventional energy devices such as supercapacitors. 
Graphene-based supercapacitors have emerged as promising candidates 
for next-generation energy storage technology because of their high 
specific area, fast-charging capability, long-life cycle, and low mainte
nance cost [1–5]. Among these, the combination of graphene oxide (GO) 
with transition metal oxides (TMOs-GO) has garnered significant 
attention in recent years [6–9]. Notably, the integration of cobalt oxide 
(Co oxide) and reduced graphene oxide (rGO) electrodes have demon
strated remarkable potential [10]. The exceptional properties of rGO, 
including high surface area [11] and facile functionalization [12], 
coupled with the benefits of Co oxide, such as the introduction of active 
sites [13,14], improved conductivity [15], and widened voltage win
dow, make this hybrid electrode a highly desirable choice. 

Nevertheless, the investigation of these TMOs-GO supercapacitor 

materials presents significant challenges. Due to various synthesis con
ditions, materials containing different structures and compositions 
exceed the scope of exhaustive methods [16,17]. The synergistic in
teractions among components contribute to the complexity of the sys
tem, limiting the ability to predict results intuitively [18,19]. It is 
technically infeasible to rely solely on experiments to characterize the 
material and predict the capacitance under all experimental conditions, 
considering prediction accuracy, time efficiency, and cost-effectiveness 
[16,17]. Hence, utilizing data-driven methods like machine learning 
(ML) to accelerate the prediction process is necessary [20]. Multiple ML 
studies have exhibited that it can predict capacitance, which still relies 
heavily on the availability of extensive experimental data. It requires 
collecting experimental conditions and capacitance information from 
available sources in the literature. However, the data collection method 
may pose errors in the analysis [16]. Employing ML not only for pre
dicting capacitance but also for assisting material characterization be
comes particularly crucial to minimise errors in data analysis. 

Recently, ML-assisted material characterization encompasses 
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microscopy enhancement and spectral analysis, with the latter garnering 
significant attention as an important area of research [21,22]. A com
mon approach in ML-assisted characterization is utilizing existing data 
and establishing models for predicting or screening new datasets [23]. 
Recent studies have predominantly focussed on ML-assisted Raman 
spectroscopy, aiming to predict parameters such as graphene-based 
materials’ thickness, twist angle, and defects [24–26]. Notably, these 
studies employed an approach that predominantly relies on random 
forest models (RF) [24–26]. RF can achieve a high level of predictive 
performance with a relatively low computational burden. Moreover, the 
RF model is also more suitable for predicting with small datasets. 
However, there has been limited exploration of utilizing RF models to 
assist other material’s characterizations. This prompts the question of 
whether these models can be employed in predicting the performance of 
graphene-based materials, such as capacitance. 

In this work, we systematically investigated the relationship among 
specific capacitance, chemical composition and the synthesis tempera
ture for Co-rGO. We have used a thermal synthesis method for this study 
[27]. Previously it has been reported that increasing temperature from 
150 to 500 ◦C would increase surface area and enhance conductivity due 
to a higher C/O ratio in rGO, weakening the capacitance performance 
[28]. We combined for the first time the machine learning random forest 
(RF) model with X-ray photoelectron spectroscopy (XPS) data to accu
rately predict the Co(III)/Co(II) ratio in Co-rGO system synthesized at 
different temperatures with a remarkable accuracy of 99.9%. Further
more, based on the RF-assisted XPS results and relevant experimental 
data, we established RF model to predict the Co-rGO capacitance. The 
model exhibited a R2 value of 96.5% and an error (between predicted 
and experiment data) within 8%. Using these two models, we inferred 
that the Co(III)/Co(II) ratio of Co in Co-rGO synthesized through ther
mal methods consistently increased within the temperature range of 
200–600 ◦C. Our work demonstrates that ML, particularly the RF model, 
can be utilized for predicting XPS results, thereby reducing the con
sumption of actual XPS measurements. The ML-assisted XPS result 
predictions can be incorporated into ML models for predictions of ma
terials properties. 

2. Materials and methods 

2.1. Preparation of GO/Co electrodes 

Graphene oxide (purchased from NiSiNa Materials Japan Co., Ltd.) 
ethanol solution (2 mg/mL) was mixed with CoCl2-ethanol solution (0.1 
mg/mL). The CoCl2 amount was appropriately varied in the host GO 
solution to achieve the compositions 2 wt%, 4 wt%, 6 wt%, 8 wt%, 10 wt 
%, 12 wt%, 14 wt%, 16 wt% in GO/CoCl2 mixture. An appropriate 
quantity (i.e., 5 μL) of this mixture (with different mass ratio) was drop 
casted on carbon fibre paper followed by heating in muffle furnace for 
duration of 2 h. The samples were named as X-Co-rGO according to 
heating temperatures (200, 300, 400, 500, 600 ◦C), where X is the 
temperature. 

2.2. Characterization 

2.2.1. RF-assisted XPS data collection 
X-ray photoelectron spectroscopy (XPS, Thermo Scientific, UK, 

ESCALAB250Xi) was used to characterize the valency and ratio of Co 
(III) to Co(II). It applied 100 eV for survey scans and 20 eV for region 
scans. In our experiments the C1s = 284.5 eV for graphite act as a 
reference. We selected a subset of Co-rGO samples for XPS experiments 
based on different synthesis conditions. These conditions include 
200 ◦C: 2 wt%, 4 wt%, 6 wt%, 8 wt%, 10 wt%, 12 wt%, 14 wt%, 16 wt%; 
300 ◦C: 4 wt%, 8 wt%, 16 wt%; 400 ◦C: 16 wt%; 500 ◦C: 16 wt%; 600 ◦C: 
16 wt% (shown in SI 2 Sheet S1). 

Based on the above XPS data, we conducted data collection for the 
RF-assisted XPS model. The input data are the experimental conditions 

for sample preparation. The output data are corresponding Co(III)/Co 
(II) ratio obtained from Gaussian fitting of experimentally obtained XPS 
data. Random forest models (RF) leverage the collective decision- 
making of multiple individual decision trees to provide accurate pre
dictions and handle complex data patterns [29]. It is regarded as a 
versatile and powerful ML algorithm due to its high prediction accuracy, 
robustness to noise as well as the outliers [30,31]. The training and test 
data of the RF-assisted XPS model were collected from the experimental 
XPS data of our samples. The training set and test set have a ratio of 80% 
and 20%, respectively. 

2.2.2. RF-assisted XPS model establishment 
After data collection, we used Python to perform modelling on the 

PyCharm software. All screened data were initially accepted impartially 
without any initial judgment or bias regarding the data validity. The 
descriptors data were broadly categorized into three categories based on 
the (1) mass ratio of doping transition oxide, (2) experimental condi
tions including temperature and corresponding Co(III)/Co(II) ratio. 

All the algorithm-specific hyperparameters were tuned via the grid 
search, which involves splitting the hyperparameter space into user- 
defined grids, from where the optimal hyperparameter values are 
searched. The estimators were set as 150. We set max depth and min 
split as variable values to optimise the results until the results are 
acceptable. The max depth refers to the maximum depth allowed for 
decision tree branches in a random forest model. The min split refers to 
the minimum number of splits allowed during the construction of a 
decision tree. To enable effective hyperparameter tuning and avoid 
overfitting simultaneously, the k-fold cross-validation method was used. 
Considering the dataset size, the K value was set to 10 to prevent 
overfitting. Further hyperparameter detail set for this study can be found 
in Supplementary SI 2 Sheet S5. 

In this work, two performance functions were applied to analyse the 
accuracy of output, including R2 (R squared), MSE (Mean Square Error) 
and MAE (Mean Absolute Error). The functions are described below 
[32]: 

R2 = 1 −

∑

i
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)2

∑

i
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1
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∑
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(
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1
N
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(3)  

where ŷ(i) is the predicted value; y(i) is real value; and ȳ(i) indicates the 
average of real values. 

2.2.3. Other material characterization 
X-ray diffraction (XRD, PANalytical Empyrean II thin-film) with Co 

Kα radiation (λ = 0.154 nm) in the range 2θ = 18–30◦ and 33–64◦, with 
a scan speed of 0.11◦/s and step size of 0.05◦ was used for crystal 
structure determination. Raman spectroscopy (Renishaw inVia Raman 
Microscope, 532 nm excitation laser) was also utilized for structural 
analysis. The surface morphology was studied using scanning electron 
microscopy (FEI Nova NanoSEM 230 FE-SEM) with energy dispersive X- 
Ray spectroscopy (EDS) (shown in the supplementary information SI 1). 

2.3. Electrochemical measurement 

All electrochemical measurements were conducted at ambient tem
perature on the workstation (WonAtech Electrochemical Workstation 
ZIVE SP1) with a three-electrode system. The Ag/AgCl electrode work as 
a reference electrode, and the platinum foil (1 cm × 1 cm) acts as the 
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counter electrode. The Co-rGO was prepared as a working electrode, and 
1.0 M KOH was used as an electrolyte. Cyclic voltammetry (CV) mea
surements were used to evaluate the electrochemical performance. In 
our experiments, 100 mV/s scan rate was applied between − 1 V and 
+1V to explore the acceptable potential windows. Based on this, the 
appropriate potential window (− 0.3 to +0.4V) of Co-GO was set and 
conducted CV analysis with different scan rates (100 mV/s, 200 mV/s, 
300 mV/s, 400 mV/s and 500 mV/s). The specific capacitance C (F/g) 
was calculated with the equation below and electrochemical results [33, 
34]: 

C=
1

mν × V

∫ V2

V1
IdV (4)  

Where I is current in Amp; m is the effective electrode mass in g; V is the 
potential window in V; ν is the scan rate in mV/s; and 

∫ V2
V1 IdV is the 

integrated area of the CV curve. 
The electrochemical impedance spectroscopy (EIS) was conducted 

with a potential amplitude of 5 mV in a frequency from 600 kHz to 0.01 
Hz. Prior to the EIS measurements, the open circuit potential (OCP) 
measurements were carried out to stabilize the system, and the obtained 
OCP value was set as the bias voltage in the EIS measurements. 

2.4. RF capacitance model 

2.4.1. RF capacitance model data collection 
Using the same approach as above, we established a new random 

forest model RF2 to predict CO-rGO capacitance. The training and 
testing data of the RF2 capacitance model was collected from RF1 and 
CV experiments. Similar to RF1, the training set and test set have a ratio 
of 80% and 20%, respectively. The samples were prepared at different 
synthesis temperatures which are 200 ◦C, 300 ◦C, 400 ◦C, 500 ◦C, and 
600 ◦C. For each temperature, the samples with 8 different concentra
tions: 2 wt%, 4 wt%, 6 wt%, 8 wt%, 10 wt%, 12 wt%, 14 wt%, and 16 wt 
% were prepared. The CV analysis was performed on each sample with 
different concentrations at 5 different scanning rates: 100 mV/s, 200 
mV/s, 300 mV/s, 400 mV/s, and 500 mV/s to obtain the capacitance 
data. In total, 200 rows of data were obtained from the experiment 
(shown in SI 2 Sheet S3). The inputs include synthesis temperatures, 
mass ratio, scan rate and Co(III)/Co(II) ratios. The output is the corre
sponding capacitance value for the Co-rGO system. 

2.4.2. RF capacitance model establishment 
Based on the above data, we established the capacitance model. The 

descriptors data were broadly categorized into five categories based on 
the (1) capacitance of samples, (2) mass ratio of doping transition oxide, 
(3) Co(III)/Co(II) obtained from RF1 and experimental conditions, 

Fig. 1. (a) Workflow of the whole project. (b–d) XPS spectrum of Co 2p form samples prepared at 200, 400, 600 ◦C. (e) Comparison of actual Co(III)/Co(II) and 
predicted Co(III)/Co(II). Different colours represent one iteration of the training and testing sets. (A colour version of this figure can be viewed online.) 
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which include (4) synthesis temperature and (5) scan rate. 
Here, the RF model parameters are similar to RF1, with estimators 

set at 150. No specific values are set for the maximum depth and min
imum sample split. Consequently, the 10-fold cross-validation method 
was utilized to validate model accuracy as RF1. Similarly, the accuracy 
of the predicting capacitance model is validated through R2, MSE, and 
MAE. 

3. Results and discussion 

Fig. 1 illustrates the two stages of this study. In the first stage, XPS 
data of samples with 8 different mass ratios at 200 ◦C, 4 different mass 
ratios at 300 ◦C, and with only one mass ratio of 16 wt% at 400 ◦C, 
500 ◦C, 600 ◦C was analysed to obtain the Co(III)/Co(II) ratio. These 
synthesis temperatures and mass ratios were regarded as inputs. The 
corresponding Co(III)/Co(II) ratio worked as the output to train the first 
random forest model (RF1). Additionally, we employ other character
ization techniques such as XRD, Raman, and SEM to analyse for 
obtaining chemical compositions and morphology information of the 
synthesized cobalt oxide. 

In the second stage, we used the predicted Co(III)/Co(II) ratio from 
RF1 and corresponding sample mass ratios, scanning rates and synthesis 
temperatures as inputs. The corresponding capacitances as the output to 
train a second random forest model RF2. An additional experimental 
validation was performed to verify the accuracy of the model. Moreover, 
EIS measurements are utilized to explain the reasons behind capacitance 
variations. 

3.1. Stage1 ML-assisted XPS spectral analysis 

3.1.1. Model of RF-assisted XPS 
The chemical composition and state of Co-rGO were analysed by X- 

ray photoelectron spectroscopy (XPS). The Co 2p XPS spectrum of 200- 
Co-rGO exhibits two characteristic peaks (Co 2p3/2 781.1eV and Co 2p1/ 

2 796.7eV) and two satellite peaks (785.4eV and 801.7eV), which shown 
in Fig. 1b [35]. The high intensity of satellite peaks and their shape 
indicate the existence of Co(II) [36]. Furthermore, the binding energy 
difference between Co2p3/2 and Co 2p1/2 is close to 16eV, suggesting Co 
(II) is the sole component when the temperature at 200 ◦C [37]. The 
valence states of Co in the experimentally obtained XPS data were 
analysed (as shown in Fig. 1b-d and SI 1 Fig. S1) and based on the 
experimental data, RF1 model was established. 

The XPS data for the samples 400-Co-rGO (Fig. 1c) clearly shows the 
two Co states in the spectrum. We observed two new Co(III) character
istic peaks (780.0eV and 794.8eV) and three small new satellite peaks 
(787.0eV, 797.3eV and 804.0eV). The fitting peaks at 780.0eV and 
795.2eV are assigned to Co(III), while the other two peaks at 781.7eV 
and 797eV are attributed to the presence of Co(II) [35]. Compared with 
XPS data for 200-Co-rGO samples, Co peak for the 400-Co-rGO sample 
has red shifted suggesting the formation of Co(III) [35]. Additionally, for 
the 400-Co-rGO samples, the binding energy difference between 
Co2p3/2 and Co 2p1/2 is close to 15 eV, which indicates the coexistence 
of Co(II) and Co(III) [37]. 

While the XPS peaks of 600-Co-rGO samples exhibited similar 
characteristic peaks range and shape as of 400-Co-rGO samples. How
ever, the intensity of satellites peaks of 600 ◦C samples are reduced, 
suggesting Co(III) is predominant [38]. 

To quantify the trend of change in chemical composition we intro
duced a Co(III)/Co(II) ratio aiding in XPS analysis. Supplementary SI 2 
Sheet S2 shows the Co(III)/Co(II) at different synthesis temperatures. 

Combining the XPS analysis with the machine learning tool, we 
constructed the RF1 to predict more Co(III)/Co(II) ratios at more 
extensive experimental conditions. The experimental condition of the 
XPS samples, which include 8 different mass ratios at 200 ◦C, 3 different 
mass ratios at 300 ◦C, 400 ◦C, and one mass ratio of 16 wt% at 500 and 
600 ◦C, was combined with corresponding Co(III)/Co(II) ratio to build 

dataset 1. We emphasise here that experimental conditions act as inputs, 
and Co(III)/Co(II) ratios act as output (shown in SI 2 Sheet S1). The 
predicted Co(III)/Co(II) ratio at extensive experimental conditions, 
including all mass ratios (2 wt% to 16 wt%) and temperature intervals 
(200–600 ◦C), are provided in SI 2 Sheet S2. 

Fig. 1e exhibits the predicted Co(III)/Co(II) ratio obtained from RF1. 
Here the X-axis represents the experimental Co(III)/Co(II) ratio, and the 
Y-axis represents the predicted ratio. The slope of the black line (as 
typically known in ML-based analysis) is 1 (Fig. 1e) [39]. Here, we can 
see that the data points are close to the black line, which indicates that 
predicted and actual values are in good agreement [39] with R-squared 
value of 0.9997, MAE value of 0.0047 and MSE value of 0.0000618. 
According to RF1 model, we can say that with the synthesis temperature 
increasing the Co(III)/Co(II) ratio increases. This demonstrates the po
tential of utilizing machine learning to predict other XPS results by 
conducting a small portion of XPS experiments when a large number of 
XPS measurements are required. 

3.1.2. Analysis of chemical compositions and structure 
Based on the XPS spectra analysis, it has been confirmed that Co 

exists in two states: divalent and trivalent. Furthermore, we conducted 
XRD, Raman, and SEM analysis for samples prepared at (200 ◦C, 400 ◦C, 
and 600 ◦C) for structural and morphological characteristics and the XPS 
analysis of Co-rGO materials systems. 

Fig. 2a – c shows the O1s spectra in different temperatures, and a 
noticeable difference can be seen in the range below 532eV. For Fig. 2a, 
the OOH Peak (531.4eV) of 200-Co-rGO can be assigned to the OH group 
in Co(OH)2 [35], whereas for 400-Co-rGO (Fig. 2b), the OOH peak dis
appears, and two new peaks- OL (529.8eV) and OV (531.4eV) appear. 
The OL corresponds to oxide connected with metal, and OV is assigned to 
oxygen defects in the oxide [10]. The observed XPS peaks for 
600-Co-rGO and 400-Co-rGO samples locate at a similar position. Thus, 
it could be understood that Co(OH)2 is retained at low temperatures 
while transforming into cobalt oxide when temperature increases. 

XRD results are shown in Fig. 2 d-e. The XRD analysis was divided 
into two ranges (18–30◦, 35–70◦) to avoid high-intensity substrate peaks 
(~33◦). The 200-Co-rGO samples exhibit distinct Co(OH)2 peaks at 
19.8◦, 38.0◦, and 44.0◦. Additionally, the minor peak at ~36.3◦ in
dicates the presence of a small amount of Co3O4. For the synthesis 
temperature of 400 ◦C, more peaks of Co3O4 (36.3◦,43.6◦) were 
observed, while only one Co(OH)2 peak remains at 44◦. Furthermore, 
when the synthesis temperature increases to 600 ◦C, we can only observe 
Co3O4 peaks in the XRD plots. Thus, it can be concluded that the Co 
(OH)2, which was initially formed at low temperature, is converted into 
Co3O4 at 600 ◦C. We observed a weak peak around 28.4◦ in our XRD 
plots as shown in Fig. 2d. In order to analyse this peak, we conducted 
additional XRD measurements of pure GO on carbon fibre paper heated 
at 200 ◦C (refer to SI 1, Fig. S2) and observed no peak 28.4◦. On ana
lysing further, we noticed that the interplanar spacing (d-value) corre
sponding to 28.4◦ closely resembles with d-value of Co2O3 (012) plane 
(refer to "XRD standard reference material card 04-007-3333" and 
reference [40]). This suggests that the peak at 28.4◦ might be due to the 
presence of residual Co2O3. 

The synthesis and phase transformation processes were also 
observed in the Raman spectra. The 200-Co-rGO sample exhibited 
distinct Co(OH)2 peaks at ~460 cm− 1 and ~640 cm− 1 [41]. In contrast, 
the samples 400-Co-rGO mainly displayed characteristic peaks of Co3O4 
(185 cm− 1, 506 cm− 1, 690 cm− 1) [42]. Specifically, the samples also 
have a shoulder perk at ~640 cm− 1 corresponding to the residual Co 
(OH)2. Furthermore, this residue was barely visible in the 600-Co-rGO 
samples, which only exhibited characteristic peaks of Co3O4. 
Combining the results of XPS, XRD, and Raman, it could be inferred that 
the chemical compositions experience a transformation from Co(OH)2 to 
Co3O4 when the synthesis temperature varies from 200 ◦C to 600 ◦C. The 
200-Co-rGO, 400-rGO-Co and 600-rGO-Co were also characterized by 
SEM, and the images were shown in SI 1 Fig. S3. 
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3.2. Stage 2 capacitance model establishment and validation 

To establish the relationship among synthesis temperatures, Co(III)/ 
Co(II) ratios, and electrochemical properties, we conducted CV experi
ments and collected data to develop a new RF2 model. These multiple 
CV scans were conducted in at different synthesis temperature 
(200–600 ◦C) and mass ratio (2 wt%-16 wt%). Compared to the exper
imental conditions of XPS provided above, the experimental conditions 
for CV have a larger and more comprehensive range. Additionally, we 
have used different scan rates (100 mV/s - 500 mV/s) to enlarge the 
dataset and refine the model. All the CV plots are provided in SI 1 
Figs. S4–8. 

Based on our observations, the variations in the capacitance per
formance of the samples were similar under different mass ratios or scan 
rates. Therefore, for convenience, we only present the capacitance 
trends under 16 wt% and 100 mV/s conditions. (Fig. 3a). For more 
capacitance results, please refer to the Supplementary Information (SI 1 
Figs. S4–S8). With the increase in synthesis temperature, the capacitance 
first decreases (From Fig. 3a) from 160.9 F/g (for 200-Co-rGO) to 16.0F/ 
g (400-Co-rGO) and then increase to 176.2F/g when the temperature is 
raised to 600 ◦C. 

Based on CV experiments and RF1, we conclude that temperature 
variation affects Co(III)/Co(II) ratio and thus influences capacitance. To 
quantify the correlation, a second random forest model (RF2) was 

Fig. 2. (a–c) XPS spectrum of O1s of 200 ◦C, 400 ◦C, 600 ◦C samples. XRD pattern of electrode composite heating in different temperatures in the range of (d) 18–30◦

(e) 33–64◦ All peak location reference to XRD standard reference material card 00-045-0031 (Co(OH)2) and 01-074-1656(Co3O4). (f) Raman spectrum analysis of 
three different temperatures. (A colour version of this figure can be viewed online.) 

Fig. 3. (a) Capacitance at different temperatures and 16 wt%. (b) Comparison of actual specific capacitance and predicted specific capacitance. (c) Comparison of 
actual specific capacitance and predicted specific capacitance for experimental validation data (550 ◦C). (d) Resistance at different temperatures and 16 wt%. (A 
colour version of this figure can be viewed online.) 
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constructed. Co(III)/Co(II) ratios from RF1 were combined with Dataset 
2 (SI 2 Sheet S3), which include synthesis temperatures (200–600 ◦C), 
mass ratios (2 wt%-16 wt%), scan rates (100 mV/s – 500 mV/s), and 
their corresponding capacitances to establish the Dataset 3 (SI 2 Sheet 
S4). Thereinto, synthesis temperature, mass ratio, and scan rate act as 
input, and their corresponding capacitances are output (Fig. 1a Stage 2). 

Fig. 3b exhibits the RF2 predicted capacitance, and the black line 
indicates the best-predicted situation. It can be observed that the data 
points are distributed centrally along the line. The R-squared value is 
0.9655, MAE is 6.77, and the MSE is 95.00. To verify the accuracy of this 
RF2 model, we compared the experimental validation results at 550 ◦C 
with RF2 predicted results (Fig. 3c). It is worth pointing out that pre
dicted values match well with the experimental values with a mean 
relative error value of less than 8%. As for the relationship between the 
experimental conditions and capacitance, it can be concluded that the 
capacitance correlates to the Co(III)/Co(II) ratio, with the least perfor
mance for the samples with a ratio proximity of 0.7, and it improves as 
the ratio deviates from 0.7. 

The EIS measurements were performed and presented in Fig. (3d and 
S9) to understand the reasons for the change in capacitance. The results 
reveal a highly correlated trend between the diffusion of ions or mole
cules (Warburg impedance) and the capacitance. It demonstrates that 
the Warburg slope of 200-Co-rGO and 600-Co-rGO is significantly higher 
than that of 400-Co-rGO, suggesting the first two samples offer a larger 
ion transfer rate [43]. This trend could be attributed to the dihydrox
ylation of Co(OH)2 at 400 ◦C, resulting formation of a denser mixture of 
Co(OH)2 and Co3O4 [44,45]. The denser oxide increases the resistance at 
this temperature compared to other temperatures. Thus, it could be 
inferred that the ion transfer resistance in 200-Co-rGO and 600-Co-rGO 
is lower than that in 400-Co-rGO, contributing to increased capacitance. 

4. Conclusion 

We have systematically investigated the effect of temperature on the 
capacitance of Co-rGO prepared by the hydrothermal method. We used 
the RF-assisted XPS database to establish a relationship between tem
perature and Co(III)/Co(II) ratio. The rise of the Co(III)/Co(II) ratio is 
attributed to an increase in the Co3O4/Co(OH)2 ratio with temperature. 
A machine learning model was developed to predict capacitance under 
extensive experimental conditions. We also observed that the capaci
tance is less when the Co ratio approximates 0.7, potentially due to 
increased ion transfer resistance. The study showcases the efficacy of 
machine learning, particularly the random forest model, in supporting 
XPS spectroscopy. This approach offers the dual advantages of reducing 
resource consumption during extensive XPS measurements and utilizing 
predicted XPS results for further experimental analysis and computa
tional simulations. 
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