DOI: 10.1002/jez.b.23230

REVIEW

Check for updates

Skeletal Class III phenotype: Link between animal models and human genetics: A scoping review

Alexandra Dehesa-Santos¹ | Alejandro Iglesias-Linares^{1,3} ⁽¹⁾

Alexandra Dehesa-Santos¹ | Maria Cristina Faria-Teixeira^{1,2} |

¹School of Dentistry, Complutense University of Madrid, Madrid, Spain

²University Clinic of Stomatology, Faculty of Medicine, University of Lisbon, Lisbon, Portugal

³BIOCRAN, Craniofacial Biology and Orthodontics Research Group, School of Dentistry, Complutense University of Madrid, Madrid, Spain

Correspondence

Alejandro Iglesias-Linares, School of Dentistry, Complutense University of Madrid, Madrid, Spain. Email: aleigl01@ucm.es

Funding information Complutense University of Madrid and Banco Santander

Abstract

This study aimed to identify evidence from animal studies examining genetic variants underlying maxillomandibular discrepancies resulting in a skeletal Class III (SCIII) malocclusion phenotype. Following the Manual for Evidence Synthesis of the JBI and the PRISMA extension for scoping reviews, a participant, concept, context question was formulated and systematic searches were executed in the PubMed, Scopus, WOS, Scielo, Open Gray, and Mednar databases. Of the 779 identified studies, 13 met the selection criteria and were included in the data extraction. The SCIII malocclusion phenotype was described as mandibular prognathism in the Danio rerio, Dicentrarchus labrax, and Equus africanus asinus models; and as maxillary deficiency in the Felis silvestris catus, Canis familiaris, Salmo trutta, and Mus musculus models. The identified genetic variants highlight the significance of BMP and TGF- β signaling. Their regulatory pathways and genetic interactions link them to cellular bone regulation events, particularly ossification regulation of postnatal cranial synchondroses. In conclusion, twenty genetic variants associated with the skeletal SCIII malocclusion phenotype were identified in animal models. Their interactions and regulatory pathways corroborate the role of these variants in bone growth, differentiation events, and ossification regulation of postnatal cranial synchondroses.

KEYWORDS

animal model, genetic variants, mandibular prognathism, maxillary deficiency, skeletal Class III malocclusion phenotype

1 | INTRODUCTION

The Skeletal Class III (SCIII) malocclusion phenotype is characterized by a maxillo-mandibular relationship, in which the mandible is relatively positioned more forward than the maxilla. This may be the result of protrusion or hyperplasia of the mandible, hypoplasia of the maxilla, or a combination of both (Singh, 1999). This phenotype has been identified in several vertebrate species other than humans, such as short-nosed dog breeds, rabbits, fishes, and iguanas (Ferraresso et al., 2010). In humans, the negative impacts associated with this condition include masticatory impairments (Bae et al., 2017), temporomandibular disorders, and an overall negative impact on quality of life (Barros et al., 2019; Javed & Bernabé, 2016). Whilst in animals, such as short-nosed dogs, this condition is associated to

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2023 The Authors. *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution* published by Wiley Periodicals LLC. -WILEY- **IEZ-B** MOLECULAR AND DEVELOPMENTAL EVOLUTION

breathing difficulties due to obstructive airway syndrome (Ekenstedt et al., 2020).

The role of genetic mechanisms involved in the expression of this condition has been elucidated in several studies in humans; however, the available evidence remains inconclusive. To date, the most probable inheritance pattern of this condition is thought to be autosomal dominance with incomplete penetrance and variable expression (Bui et al., 2006; Chen et al., 2015; Cruz et al., 2008; Perillo et al., 2015; Rao et al., 2020). Several genetic variants, including MYO1H (rs10850110), BMP3 (rs1390319), GHR (rs2973015, rs6184, rs2973015), FGF7 (rs372127537), FGF10 (rs593307), and SNAI3 (rs4287555) have been identified through genetic association studies. For example, a previous systematic review and meta-analysis of genetic association studies (Dehesa-Santos et al., 2021) determined that the presence of the A allele of SNP rs7351083 in FBN3 increases the predisposition to SCIII malocclusion. In contrast, linkage studies have identified IGF1, HOXC, COL2A1 (Frazier-Bowers et al., 2009), DUSP6 (c.545 C > T; p. Ser182Phe) (Nikopensius et al., 2013), and ARHGAP21 (Gly1121Ser) as being associated with this condition (Perillo et al., 2015).

As vertebrates, humans and other gnathostome species share common primordial structures, such as the paired maxillary and mandibular prominences, which are derivatives of the first branchial arch originating from the neural crest (Jaruga et al., 2022). Therefore, in human and vertebrate animal models, arches are extensively patterned with signals from the surrounding epithelia, and neural crest cell (NCC) intrinsic information, to accomplish general functions, which have been proven to be highly conserved across species (Mork & Crump, 2015). Animal disease models provide a critical scientific background regarding several conditions essential for understanding the molecular events leading to the development of craniofacial structures and identifying the roles played by specific pathways, facilitating the targeting of potential candidate genes involved in the development of specific phenotypes (Jaruga et al., 2022). Furthermore, the advent of high-throughput technologies has generated considerable large-scale data at various cellular levels, ranging from genomics to proteomics, across different tissues and species (Podder et al., 2021). This knowledge is a percussor for advancements in human research.

This scoping review aimed to identify available evidence from animal studies that examined genetic variants underlying maxillomandibular discrepancies resulting in a SCIII malocclusion phenotype.

2 | MATERIAL AND METHODS

This review was conducted following the suggestions of the template and manual for evidence synthesis of the JBI (Peters MG et al., 2020), and the PRISMA extension for scoping reviews (Tricco et al., 2018).

2.1 | Review question

The following participant, concept, context (PCC) question was proposed to select eligible studies: "What available evidence is

provided by the animal models regarding genetic variants underlying maxillomandibular discrepancies resulting in the SCIII malocclusion phenotype?"

2.2 | Eligibility criteria

The eligibility criteria for studies to be part of this review were as follows: Participants: Studies must involve vertebrate animal subjects, regardless of the species. Concept: Studies must involve the identification or characterization of genetic variants that regulate craniofacial structures involved in maxillomandibular discrepancies, resulting in a SCIII malocclusion phenotype in animal subjects. Context: No particular context was required, therefore it remained as "open." Type of sources: The duration of the study and language in which it was presented were not considered as limitations, as long as they met the above criteria for participants, concept, and context. Eligible studies were limited to functional animal, case-control, and in vivo studies. Functional studies using animal models, identified in the context of human studies, have also been considered. Studies on syndromic conditions, craniofacial malformations, and other diseases that result in SCIII malocclusion, secondary to the disease, were excluded. This was to ensure that specific information pertaining to the SCIII malocclusion phenotype as an isolated trait was obtained for the review. In vitro studies, reviews, and opinions were also excluded from the analysis.

2.3 | Search strategy

The search strategy was developed in three stages. The first stage involved an initial search using *PubMed* and *Scopus* databases. The strings of keywords contained in the titles and abstracts of the retrieved papers and their indexed terms were obtained. Then, a second search was performed after incorporating this string of keywords, using the same databases, including *WOS*, *SciELO*, and the gray literature databases *Open Gray* and *Mednar*. The third stage of the search strategy involved a manual search of the reference lists of the identified studies that fulfilled the selection criteria. If necessary, contact with authors of the primary sources was considered and established. The search strategies, including all identified keywords and index terms adapted for each of the consulted databases, are presented in Supporting Information 1.

2.4 | Study/Source of evidence selection

The screening process was divided into three phases: (1) duplicate removal, (2) title and abstract examination, and (3) full-text examination. These were independently performed by two researchers (ADS and CFT). Disagreements were resolved by consensus or by a third reviewer (AIL).

2.5 | Data extraction

Data extraction was performed by a single reviewer (ADS), and corroborated by a second reviewer (CFT). The preset variables of interest were recorded as follows: authors, year, type of study, animal model, phenotype definition, phenotyping method, genetic variant reported, animal genome location, harboring gene, implication in humans/mammals, human genome location, and closest genes associated with SCIII malocclusion (Cruz et al., 2017; da Fontoura et al., 2015; Marañón-Vásquez et al., 2020; Saito et al., 2017; Sun et al., 2018; Tassopoulou-Fishell et al., 2012; Weaver et al., 2017; Xiong et al., 2017).

2.6 | Interspecies conservation assessment

The orthological relationship between the genes of the animal models and the human genome was determined using the Ensemble 110 database (Martin et al., 2022; Pignatelli et al., 2016). Two scores were attained: the gene order conservation (GOC) score, and the whole genome alignment (WGA) score calculates the alignment coverage over the ortholog pair, assuming that genes that are orthologous to each other will fall within genomic regions that can be aligned with one another. Protein conservation scores were calculated to estimate the evolutionary conservation of the products of each of the identified genes. This analysis was performed using ConSurf (Ashkenazy et al. 2010, 2016; Celniker et al., 2013; Glaser et al., 2003; Landau et al., 2005; Yariv et al., 2023), a bioinformatics tool for estimating evolutionary conservation based on phylogenetic relationships between homologous protein sequences. The *average pairwise distance* (APD) from the multiple sequence alignment of the proteins was acquired to detect evolutionary diversity in the sequences included (Ashkenazy et al., 2010). Additionally, gene function enrichment analysis using all the identified genes orthologs was carried out using the GO (Aleksander et al., 2023; Ashburner et al., 2000) and PANTHER (Thomas et al., 2022) web tools to highlight the possibly overrepresented gene functions. Potential genetic and signaling interactions between the orthologs candidate genes identified across studies were estimated using the GeneMANIA prediction server (Warde-Farley et al., 2010).

3 | RESULTS

3.1 | Search results

Our search strategy retrieved 779 studies, of which 93 were duplicates. Following the PCC criteria, screening by title and abstract yielded 40 articles for a full-text review. Ultimately, 13 studies were included (Babbucci et al., 2016a; Bannasch et al., 2010; Bertolini et al., 2016; Ferraresso et al., 2010; Hünemeier et al., 2009; Marchant et al., 2017; Palmas et al., 2020; Quilez et al., 2011; Rodrigues et al., 2013; Sakata-Goto et al., 2012; Schoenebeck et al., 2012; Sophocleous et al., 2020; Sun et al., 2018) (Figure 1). The reasons for exclusion are compiled and described in *Supporting Information* 2.

The description of the studies included species and genetic variants associated with the SCIII malocclusion phenotype. A summary of the included studies is shown in Table 1. Mandibular prognathism (MP) and

haracterictice	ום פררבו זרובז.
ī	כ
Studioc	ornarco
Ţ	1
ц	J
_	J
۵	ב
<	ζ
μ.	

24	WILE	TY- JEZ-B MOLECULAR AND DE	VELOPMENTAL EVOLUTION	DEHESA-SANTOS
	Source	Saito et al. (2017). da Fontoura et al. (2015)	Saito et al. (2017). Marañón- Vásquez et al. (2020)	
	Closest genes associated to SCIII malocclusion in humans ^b	CALN1 (7q11.22) assoc. MP COLIA1 rs2249492 (17q21.33)- fRisk of skeetal class III	TCF21 (6q23.2) assoc. MPICF2R (6q25.3) rs6920141 UG6-Pg and Ptm-A measures) rs2277071 U maxillary length (Ptm'-A')	
	Human homologus genome location	7q11.21	6q22.31	20p12.2
	Molecular functions of human homologus genes ^a	CALCA: This gene encodes a membrane protein that functions as part of a receptor complex for a small neuropeptide that increases intracellular cAMP levels. Alternate transcriptional splice variants, encoding different isoforms, have been characterized.	FABP7: The gene encodes a small, highly conserved cytoplamic protein that bind long-chain faitty acids and other hydrophobic ligands. The encoded protein is important in the establishment of the radial gilal fiber in the developing brain. Alternative splicing and promoter usage results in multiple transcript variants encoding different isoforms. Pseudogenes of this gene are found on multiple chromosomes.	SNAP25: Synaptic vesicle membrane docking and fusion is mediated by SNAREs (soluble N-ethylmaleimide- sensitive factor attachment protein receptors) located on the vesicle membrane (v-SNARE) and the target membrane (t-SNARE). The assembled v-SNARE/
	Harboring gene/coding protein	CALCA (CGRP)	DLPD06176 (FABP7)	DLPD06508 (5NA- P25)
	Animal genome Location	2q31-q32?	CAJNN- U010000003- 1:17,150,885- 17,152,589: -17,152,589: -17,152,589: -120,566,541- 20,568,713:1	CAJNN- U010000008- 1:4,579,431- 4,624,439: 1,624,439: 1,27,773,604- 27,812,169:-1 27,812,169:-1
	Result	downregulation in pooled- samplesof deformed mandibles compared to controls	downregulation in pooled- samples of deformed madibles compared to controls	
	Genetic variant/ARN transcript	DLPD08826: calcitonin gene- related peptide (CGRP)	DLPD06176 (Fatty acid- binding protein, brain)*	DLPD06508 (Synapto- somal- associ- ated protein 25-A)*
	Phenotyp- ing method	Not speci- fied- visual inspec- tion		
	Phenotype definition	Mandibular progna- thism		
istics.	Animal model	Seabass (Dicen- trarchus Idbrax)		
lies character	Study type	sm mRNA expres- sion study		
LE 1 Stuc	Author	dibular prognathi) Ferraresso et al.		
TAB	Year	Man 2010		

ESA-SANTOS ET A	L	EZ-B MOLE	CULAR	AND DEVELOPMENT	ALEVOLUTION - WILEY-	25
Source	•				Tassopoulou- Fishell et al. (2012). Sun et al. (2018). Cruz et al. (2017)	(Continues)
Closest genes associated to SCIII malocclusion in humans ^b					MYO1H (12q24.11) assoc. MP, arsoc. MP, and horizontal and vertical maxillo- mardibular discrep- ancies	
Human homologus genome location					12921.2	
Molecular functions of human homologus genes ^a	t-SNARE complex consists of a bundle of four helices, one of which is supplied by v-SNARE and the other three by t-SNARE. For t-SNAREs on the plasma membrane, the protein syntaxin supplies one helix and the protein syntaxin supplies one helix and the protein encoded by this gene contributes the other two. Therefore, this gene product is a presynaptic plasma membrane protein involved in the regulation of neurotransmitter	release. Two alternative transcript variants encoding different protein isoforms have been described for this gene.			PHLDA 1: This gene encodes an evolutionarily conserved proline- histidine rich nuclear protein. The encoded protein may play an important role in the antiapoptotic effects of insulin-like growth factor-1	
Harboring gene/coding protein			DLPD06320	DLPD09667 DLPD14047 (Arrest- in-C)	N.A. cluster of con- served non- coding elements <i>PHLDA1</i> (closest coding gene)	
Animal genome Location					ChrX (non coding region)Nearest genotyped SNP marker upstream: (L_39728:Chr- X:3,348,951) downsteam L_39753, ChrX: 3,540,808)	
Result					Hypothesis: might contribute to lower jaw deformity altering patterns of gene expression rather than directly affecting the	
Genetic variant/ARN transcript			DLPD06320 *	DLPD09667* DLPD14047 (Arres- tin-C)*	L_39743	
Phenotyp- ing method					Visual inspec- tion by two opera- tors inde- pen- denty	
Phenotype definition					Mandibular progna- thism	
Animal model					Seabass (Dicen- trarchus labrax)	
Study type					QTL mapping and GWAS	
Author					Babbucci et al.	
Year					2016	

(Continued)	
-	
ш	
Ξ	
4	

-Wile	Y- JEZ-B MOLECULAR AND DEVELOPMENTAL EVOLUTION	DEHESA-SANTOS ET AL.
Source	Saito et al. (2017). Marañôn- Vásquez et al. (2020)	Tassopoulou- Fishell et al. (2012). Sun et al. (2018). Cruz et al. (2017)
cuoses genes associated to SCIII malocclusion in humans ^b	TCF21 (6q23.2) assoc. MPIGF2R (6q25.3) rs6920141 J.Go-Pg and Ptm-A measures) rs2277071 J.maxillary length (Ptm '.A')	MYO1H (12q24.11) assoc. MP, ↑risk MP and horizontal and vertical maxillo- mandibular discrep- ancies
Human homologus genome location	6q21	- 12q24.11
Molecular functions of human homologus genes ^a	SOBP: The protein encoded by this gene is a nuclear zinc finger protein that is involved in development of the cochea. Defects in this gene have also been linked to intellectual disability. ROCK2: The protein encoded by this gene is a serine/ threonine kinase that regulates cytokinesis, smooth muscle contraction, the	formation of actin stress fibers and focal adhesions, and the activation of the c-fos serum response element. This protein, which is an isozyme of ROCK1 is a target for the small GTPase Rho. MYO1H: Predicted to enable actin filament binding activity and microfilament motor actin filament organization and vesicle transport along actin filament. Predicted to be part of myosin complex. Predicted to be active ir several cellular components, including
Harboring gene/coding protein	SOBP (habour- ing gene) ROCK2 (nearest gene)	myo1ha- myo1hb
Animal genome Location	Chr17 (coding region)	Chr 5(zebrafish)
Result	sequence of a protein coding gene. CNE distant enhancers in craniofactal developement developement deformed larvae. Association to mandibular prognathism	showed underdeve- loped jaw regions and at 5 dpf had a "mandibular jaw cownward rotation" (gaped mouth) phenotype
Genetic variant/ARN transcript	L_12903	Paralogous gene: myo1ha and myo1hb
Phenotyp- ing method		Alcian blue staining to visual- ize the carti- lage aspect mea- sure- ments on lower lower jaws in
Phenotype definition		Mandibular progna- thism
Animal model		Zebrafish (Danio rerio)
Study type		Knockdown study of Zebrafish MYO1H Or- thologs
Author		Sun et al.
Year		2018

ī

E	SA-SANTOS ET A	l.	IEZ-B MOLECULAR AND DEVELOP	MENTAL EVOLUTION -WILEY 27
	Source		Jang et al. (2010)	Sun et al. (2018). Marañón- Vásquez et al. (2020) et al. (Continues)
	Closest genes associated to SCIII malocclusion in humans ^b		MATN I(r- s 1065755) T risk MP	5p13.1- p12GHR (rs6184) frisk MP.GHR (rs297- 3015) Increased measures for mandibular sagittal
	Human homologus genome location		1p36	5q32-q33.1
	Molecular functions of human homologus genes ^a	actin oytoskeleton; microvillus; and vesicle.	MATN1: This gene encodes a member of yon Willebrand factor A domain containing protein family. This family of proteins are thought to be involved in the formation of filamentous networks in the extracellular matrices of various tissues. Mutations of this gene have been associated with variety of inherited	TCOF1: This gene encodes a nucleolar protein with a LIS1 homology domain. The protein is involved in ribosomal DNA gene transcription through its interaction with upstream binding factor (UBF). Mutations in this gene have been associated with Treacher Collins
	Harboring gene/coding protein		MATN1	. TCOF1
	Animal genome Location		Region: ENSE- CA- G00000087. 47 (donkey)	CFA4 at 61.902-61.94 2 Mb)
	Result		protector effect in the risk to develop prognathism in donkeys	C/Pro is found inhomozygos- ity in several brachy- cephalic breedsThe T/Ser frequencies obtained were not statistically associated to
	Genetic variant/ARN transcript		MATN1 (g503G > A)	TCOF1 c.396 C > T (ρ. Pro117S- er)
	Phenotyp- ing method	3 dimen- sions: the mouth- opening dis- tance), ble ble ble ble width	Clinical, oral and dental exami- nations	 Classified inde- pen- dently by two trained veteri- narian- sac- cording to head shape
	Phenotype definition		Mandibular progna- thism	Brachycephaly
	Animal model		Zamorano- Leonés donkeys (Equus atíricanus asinus)	Purebred dogs (Canis familiaris)
	Study type		Case control study	Genetic associa- tion study
	Author		Rodrigues et al.	lary deficiency Hünemeier et al.
	Year		2013	Maxil 2009

Source		Saito et al. (2017). Marañón- Vásquez et al. (2020) et al.
Closest genes associated to SCIII malocclusion in humans ^b	lengths (Co-Gn)	TCF21 (6q23.2) assoc. MP ICF2R (6q25.3) rs6920141 ↓G0-Pg and Gn-Pg and Gn-Pg rs2277071 ↓maxillary !-A')
Human homologus genome location		6q27
Molecular functions of human homologus genes ^a	syndrome, a disorder which includes abnormal craniofacial development. Multiple transcript variants encoding different isoforms have been found for this gene.	THBS 2: The protein encoded by this gene belongs to the thrombospondin family. It is a disulfide-linked homotrimenic gly coprotein that mediates cell-to-cell and cell to-matrix interactions. This protein has been shown to function as a potent inhibitor of tumor growth and angiogenesis. Studies of the mouse counterpart angiogenesis. Studies of the mouse counterpart suggest that this protein may modulate the cell surface properties of mesenchymal cells and be involved in cell adhesion and migration. SMOC2: This gene encodes a member of the SPARC family (secreted protein acidic and rich in cysteine/ osteoncetin/BM-40), which are highly embryogenesis and wound healing. The gene product is a matricellular protein which promotes matrix assembly and can
Harboring gene/ coding protein		THBS25MO- C2
Animal genome Location		Primary_assembly- Labrador retrieve- r1:56,584,696- 56,612,929 reverse strand- Boxe 1:57,192,665- 57,221,428 reverse strandPrimar- y_assembly- Labrador retriever 1:56,009,366- 56,168,233 forward strand- Boxe- r1:56,617,399- 56,777,591 forward strand forward strand
Result	the brachy- cephalic phenotype	association with canine brachy- cephaly
Genetic variant/ARN transcript		THBS2, SMOC2
Phenotyp- ing method	as dolicho- cephali- c, meso- cephalic or brachy- cephalic cephalic	By breeds consid- ered brachy- cephal- ic: Pugs, Boxer and Pe- kinges
Pheno type definition		Brachycephaly
Animal model		Purebred dogs (Canis familiaris)
Study type		GWAS (Across Breed Mapping)
Author		Bannasch et al.
Year		2010

EHE	SA-SANTOS ET A	M	-B molecular and developmental evolution –WILEY $^{-125}$
	Source		Tassopoulou- Fishell et al. (2012). Sun et al. (2018). Cruz et al. (2017) (Continues)
	Closest genes associated to SCIII malocclusion in humans ^b		MYO1H (12q24.11) assoc. MP, frisk MP and horizontal and vertical maxillo- mandibular discrep- ancies
	Human homologus genome location		12q24.31
	Molecular functions of human homologus genes ^a	stimulate endothelial cell proliferation and migration, as well as angiogenic activity. Associated with pulmonary function, this secretory gene product contains a Kazal domain, two thyrmoglobulin type-1 domains, and two EF hand calcium- bindingeromisis. The encoded protein may serve as a target for controlling angiogenesis in tumor growth and myocardial ischemia. Alternative splicing results in multiple transcript variants.	HIP2.R: Enables several functions, including phosphate binding activity: phosphate binding activity: and protein homodimerization homodimerization no estive regulation of signal transduction; protein stabilization; and rudife positive regulation of signalle organization. Located in ciganization. Located vesicle; cytosol: and ruffle membrane. P2XX4: he product of this gene belongs to the family of purinoceptors for ATP. This receptor functions aa
	Harboring gene/coding protein		ROH from CFA 26: HIP1R, Q64- F94_CA- NFA, B0FL- R1_CAN- FA, AT2A2,- P0LE, N- CANFA, P0LE, N- ROH from CFA 1: THBS2, SMOC2
	Animal genome Location		- Boxer: 26:8,548,679- 9,227,043 bp
	Result		Selective sweep regions on CFAare candidate for strong artificial selection in the Boxerfor a trait of interest, possibly brachy- cephaly
	Genetic variant/ARN transcript		CFA CFA 26R0H from CFA 1 CFA 1
	Phenotyp- ing method		 By breed: Boxers consid- erated as as bit cephal- ic
	Phenotype definition		Brachycephaly
	Animal model		Purebred dogs (Canis familiaris)
ntinued)	Study type		GWAS
E 1 (Co	Author		Quilez et al
TABL	Year		2011

Source																																							
Closest genes associated to SCIII malocclusion in humans ^b																																							
Human homologus genome location																																							
Molecular functions of human homologus genes ^a	a ligand-gated ion channel with high calcium permeability. The main	pharmacological	distinction between the	members of the	purinoceptor ramily is the relative sensitivity to the	antagonists suramin and	PPADS. The product of	this gene has the lowest	sensitivity for these	alternatively spliced	transcript variants, some	protein-coding and some	not protein-coding, have	been found for this gene.	P2RX7: The product of	this gene belongs to the	family of purinoceptors	for ALP. This receptor	runctions as a ligand- mated ion channel and is	gated for Litalified and is responsible for ATP-	dependent Ivsis of	macrophages through the	formation of membrane	pores permeable to large	molecules. Activation of	this nuclear receptor by ATP in the cytonlasm	may be a mechanism by	which cellular activity can	be coupled to changes in	gene expression. Multiple	alternatively spliced	variants have been	identified, most of which	fit nonsense-mediated	decay (NMD) criteria.	ATP2A2: This gene encodes	one of the SERCA Ca	(2 +)-ATPases, which	are intracellular pumps
Harboring gene/coding protein																																							
Animal genome Location																																							
Result																																							
Genetic variant/ARN transcript																																							
Phenotyp- ing method																																							
Phenotype definition																																							
Animal model																																							
Study type																																							
Author																																							
ear																																							

30

TABLE 1 (Continued)

located in the

ESA-SANTOS et al.	
e	
Closest genes associated to SCIII malocclusion in humans ^b So	
Human homologus genome location	
Molecular functions of human homologus genes ^a sarcoplasmic or endoplasmic reticula of the skeletal muscle. This enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol into the sarcoplasmic reticulum lumen, and is involved in regulation of the contraction/ relaxation cycle. Mutations in this gene cause Darier-White disease, also known as keratosis follicularis, an autosomal dominant	skin disorder characterized by loss of adhesion between epidermal keratinization. Other types of mutations in this gene have been associated with various forms of muscular dystrophies. Alternative splicing results in multiple transcript variants encoding different isoforms. POLE : This gene encodes the catalytic subunit of DNA polymerase epsilon. The enzyme is involved in DNA repair and chromosomal DNA replication. Mutations in this gene have been associated with colorectal cancer 12 and facial dysmorphism, imwundeficiency, livedo, and short
Harboring gene/coding protein	
Animal genome Location	
Result	
Genetic variant/ARN transcript	
Phenotyp- ing method	
Phenotype definition	
Animal model	
Study type	
Author	
Year	

		۲۲) ۲۳
Source		Weaver et al. (2)
Closest genes associated to SCIII malocclusion in humans ^b		BMP3 (rs1495- 643) Increased asymmetric phenotypic variations in the dental arches with more copies of the rare allele
Human homologus genome location		4q21.21
Molecular functions of human homologus genes ^a	stature. MYL2: This gene encodes a major sarcomeric protein in manualian striated muscle. The encoded protein plays a role in embryonic heart muscle structure and function, while phosphorylation of the encoded protein is involved in cardiac myosin and function in adults. Mutations in this gene are associated with hypertrophic cardiomyopathy 10 and infant-onset myopathy.	BMP3: This gene encodes secreted ligand of the TGF-beta (transforming growth factor-beta) superfamily of proteins. Ligands of this family bind various TGF-beta receptors leading to recruitment and activation of SMAD family transcription family transcription family transcription family transcription factors that regulate gene expression. The encoded preproportien is proteolytically processed to generate each subunit of the disuffice-linked homodimer. This protein suppresses osteoblast differentiaton, and negatively regulates bone density. by modulating TGF-beta receptor availability to other ligands.
Harboring gene/coding protein		B
Animal genome Location		Primary_assembly- Labrador retriteve- r32:5,237,314- 5,263,865 forward strand- Boxe- r32:36,674,930 reverse strand
Result		association with canine brachy- cephaly
Genetic variant/ARN transcript		BMP3-F452L (missense mutation)
Phenotyp- ing method		Geometric mor- pho- (Pro- crustes fit, PCA, and duals)
Phenotype definition		Brachycephaly
Animal model		Purebred dogs (Canis familiaris)
Study type		GWAS
Author		Schoenebeck et al.
Year		2012

32

SA-SANTOS ET	u.	IEZ-B MOLECULAR AND DEVELOPMENTAL	FVOLUTION-WILEY	33
Source	Saito et al. (2017). Marañón- Vásquez et al. (2020)		Tassopoulou- Fishell et al. (2012). Sun et al. (2018). Cruz et al. (2017)	(Continues)
Closest genes associated to SCIII malocclusion in humans ^b	TCF21 (6q23.2) assoc. MPIGF2R (6q25.3) rs6920141 ↓GG-Pg and Ptm-A measures) rs2277071 ↓maxillary length (Ptm '.A')		MYO1H (12q24.11) assoc. MP, frisk MP and vertical maxillo- maxillo- mandibular	
Human homologus genome location	6q27		12q24.31	
Molecular functions of human homologus genes ^a	SMOC2: This gene encodes a member of the SPARC family (secreted protein acidic and rich in cysteine/osteonectin/ BM-40), which are highly expressed during embryogenesis and wound healing. The gene product is a matricellular protein which promotes matrix assembly and can stimulate endothelial cell proliferation and migration, as well as angiogenic activity. Associated with	pulmonary function, this secretory gene product contains a Kazal domain, two thymoglobulin type-1 domains, and two EF hand calcium-binding domains. The encoded protein may serve as a target for controlling angiogenesis in tumor growth and myocardial ischemia. Alternative splicing results in multiple transcript variants.	P2RX7: The product of this gene belongs to the family of purinoceptors for ATP. This receptor functions as a ligand- gated ion channel and is responsible for ATP- dependent lysis of macrophages through the formation of membrane pores	
Harboring gene/coding protein	SMOC2		P2RX7	
Animal genome Location	Primary, assembly- Labrador retriever 1:56,009,366- 56,168,233 forward strand- Boxe- r1:56,617,399- 56,777,591 forward strand		Primary_assembly- Labrador retrieve- r26:8224106 forward strand	
Result	SMOC2 dysfunction is responsible for canine brachy- cephaly		association with brachy- cephalic breeds	
Genetic variant/ARN transcript	SMOC2		P2RX7 (r- s23314- 713) (p. Phe103- Leu)	
Phenotyp- ing method	Geometric mor- pho- (Pro- (Pro- Fit, PCA, and resi- duals)		Pedigree dogs: classi- fried as brachy- cephal- ic as repor- ted in other-	
Phenotype definition	Brachycephaly		Brachycephaly	
Animal model	Purebred and mixed pedigree dogs (canis familiaris)		Purebred and mixed pedigree dogs (Canis familiaris)	
Study type	GWAS (Quanti- tative Trait Locus)		Genetic associa- tion study	
Author	Marchant et al.		Sophocleous et al.	
Year	2017		2020	

(Continued)	
÷	
щ	
8	
TA	

	Y - JEZ-D MOLECULAR AND DEVELOPMENTAL EVOLUTION	
Source		Weaver et al. (2017)
closest genes associated to SCIII malocclusion in humans ^b	discrep- ancies	SATB2 (2q33.1) rs7593422 assoc. unilateral posterior crossbites
Human homologus genome location		2p25.1
Molecular functions of human homologus genes ^a	permeable to large molecules.	ID2: The protein encoded by this gene belongs to the inhibitor of DNA binding family, members of which are transcriptiona regulators that contain a helix-loop-helix (HLH) domain but not a basic domain. Members of the inhibitor of DNA binding family inhibit the functions of basic helix-loop-helix transcription factors in a dominant-negative manner by suppressing their heterodimerization partners through the HLH domains. This
Harboring gene/coding protein		<i>H</i> 2
Animal genome Location		129
Result		narrower hypertrophic zone andan inhibited proliferative zone in presphenoid synchondrosi (PSS) and spheno- occipital synchondro- sis(SOS) with maxillary hypoplasia were identified in the Id2 mutant mice during the
Genetic variant/ARN transcript		1 1 2 2
Phenotyp- ing method	stu- dies- Mixed- dies- gree dogs: cephal- brachy know- nan- cestry and/or display brachy ter- cephal- ter- ter- ic	Cephalome trycal analy- sis: Eucli- dean Matrix Analys is
Phenotype definition		Maxillary hypoplas
Animal model		Mice (Mus musculus)
Study type		Knockout study of inhibitors of the differen- tiation 2 (Id2)
Author		Sakata - Goto et al.
Year		2012

ESA-SANTOS ET AL.		EZ-B MOLECULAR AND DEVELOPMENTAL EVOLUTION	-WILEY-	35
Source	Saito et al. (2017). Xiong et al. (2017)			(Continues)
Closest genes associated to SCIII malocclusion in humans ^b	RASA2 (3q23) assoc. MPFGF12 (3q28) r- s7917605- 1 ^risk MP			
Human homologus genome location	3p26.13p26.3			
Molecular functions of human homologus genes ^a protein may play a role	in negatively regulating cell differentiation. A pseudogene of this gene is located on chromosome 3. CHL1: The protein encoded by this gene is a member of the L1 gene family of neural cell adhesion molecules. It is a neuralrecognition molecule that may be involved in signal transduction pathways. The deletion of one copy of this gene may be responsible for	mental defects in patients with 3p- syndrome. This protein may also play a role in the growth of certain cancers. Alternate splicing results in both coding and noncoding variants. CNTN6 : The protein encoded by this gene is a member of the immunoglobulin superfamily. It is a glycosylphosphatidyli- nositol (GPI)-anchored neuronal membrane protein that functions as a cell adhesion molecule. It may play a role in the formation of	axon connections in the developing nervous system. Alternative splicingresults in multiple transcript variants.	
Harboring gene/coding protein	CHLICNTN6			
Animal genome Location	A2			
Result postnatal	growth period Higher homozygosity in Persiancats and highest divergence from the non- Persian breeds			
Genetic variant/ARN transcript	CHL1, CNTN6			
Phenotyp- ing method	By breeds brachy- cephal- ic: Per- sian, non- Persian derived breeds			
Phenotype definition	Brachycephaly			
Animal model	Cats (Felis silvestris catus)			
Study type	il. Selective sweep analysis			
Author	Bertolini et a			
Year	2016			

Source		
Closest genes associated to SCIII malocclusion in humans ^b		
Human homologus genome location		
Molecular functions of human homologus genes ^a	Coding the LDH enzyme	
Harboring gene/coding protein		
Animal genome Location	Mitochondrial DNA	
Result	No association with genetic basis was found	
Genetic variant/ARN transcript	Mitochondrial (p-loop) LDH-C1* gene and 11 microsa- tellites	:
Phenotyp- ing method	Modified version of the jaw index	
Phenotype definition	Pug- head- edness	
Animal model	Mediterranean trout (Salmo trutta L)	
Study type	Genetic associa- tion study	
Author	Palmas et al.	
Year	2020	

Abbreviations: MP, mandibular prognathism; N.A, not annotated; ROH, region of homocygocity. RefSeq and each study report. с С ^aAccording

-WILEY- **JEZ-B** MOLECULAR AND DEVELOPMENTAL EVOLUTION

that lower i ratio l change * fold in genetic association studies: ^bClosest genes identified

0.118.

maxillary deficiency (MD) phenotypes were described in the studies using animal models as follows: fishes, Dicentrarchus labrax (Babbucci et al., 2016b; Ferraresso et al., 2010), Danio rerio (Sun et al., 2018), Salmo trutta L (Palmas et al., 2020), dogs (Canis familiaris) (Bannasch et al., 2010; Hünemeier et al., 2009; Marchant et al., 2017; Quilez et al., 2011; Schoenebeck et al., 2012; Sophocleous et al., 2020), cats (Felis silvestris catus) (Bertolini et al., 2016), mice (Mus musculus) (Sakata-Goto et al., 2012), and donkeys (Equus africanus asinus) (Rodrigues et al., 2013). Danio rerio (Sun et al., 2018), Dicentrarchus labrax (Babbucci et al., 2016b; Ferraresso et al., 2010), and Equus africanus asinus (Rodrigues et al., 2013) were used to model the MP phenotype. The MD phenotype was described as brachycephaly in Felis silvestris catus (Bertolini et al., 2016) and Canis familiaris (Bannasch et al., 2010; Hünemeier et al., 2009; Marchant et al., 2017; Quilez et al., 2011; Schoenebeck et al., 2012; Sophocleous et al., 2020), pug-headedness in Salmo trutta L (Palmas et al., 2020), and maxillary deficiency in Mus musculus (Sakata-Goto et al., 2012).

3.2 Findings associated with MP phenotype

The genetic variant matrilin 1 (MATN1) (g503G > A) (Rodrigues et al., 2013) showed a preventive effect on MP expression in a casecontrol study of Equus africanus asinus (Table 1), indicating one of the highest levels of homology (Figure 2). A non-synonymous common variant of myosin IH (MYO1H), rs3825393, C > T, p. Pro1001Leu, was significantly associated with MP in a Danio rerio model (Sun et al., 2018). In this model, the paralogous genes myo1ha and myo1hb were knocked down, resulting in an underdeveloped iaw and gaped-mouth phenotype (Table 1). An mRNA expression study using the Dicentrarchus labrax model showed that 242 transcripts were differentially expressed in prognathous individuals compared with controls. Table 1 displays the DLPD08826 transcripts corresponding to the calcitonin gene-related peptide (CALCA). Its importance was highlighted by the authors, and the other six transcripts that had a fold-change ratio lower than 0.118 (q value = 3.275) were used to assess the variability between the experimental and control probes. Finally, in a case-control allelic association analysis of the same model, an association between the MP phenotype and two regions related to the NCC was found, harboring a cluster of conserved noncoding elements and the coding region of SOBP (sine oculis-binding protein homolog) (Babbucci et al., 2016b).

3.3 Findings associated with MD phenotype

In a knockout model of inhibitors of the differentiation 2 gene (Id2) in Mus musculus, the maxillary hypoplasia phenotype was observed as a result of abnormal endochondral ossification in the cranial base synchondroses during the postnatal growth period (Table 1).

ID2 showed one of the highest homology levels (Figure 2). The pug-head phenotype, characterized by deformation of the

FIGURE 2 Human and animal homologous loci and variants identified. GOC and WGA scores express human and animal gene conservation. The APD score expresses interspecies evolutionary diversity. Detailed information on each protein result can be consulted in Supporting Information 3.

maxilla, premaxilla, infraorbital bones, and ethmoid region, was studied in *Salmo trutta L* (Palmas et al., 2020). No association with the genetic basis was found, and environmental factors during larval development were identified as the most likely factors triggering this malformation. In two genome-wide association studies (GWAS) on purebred *Canis familiaris* (Table 1), brachycephaly, a phenotype characterized by severe shortening of the muzzle, was associated with *THBS2* and *secreted modular calciumbinding protein 2* (*SMOC2*) (Bannasch et al., 2010), and a missense mutation (p. Phe452Leu) (Schoenebeck et al., 2012) in *BMP3*, a highly homologous gene (Figure 2). In a genetic association study, *TCOF1* c.396 C > T (p. Pro117Ser) was found to be associated with brachycephalic breeds (Hünemeier et al., 2009). Two other GWAS on purebred and mixed pedigree *Canis familiaris* found a similar association with *SMOC2* (Marchant et al., 2017) and *P2RX7* (rs23314713), including a variant causing a phenylalanine to leucine change (p. Phe103Leu) (Table 1). Additionally, a GWAS on purebred pedigrees of *Canis familiaris* identified a region of homozygosity (ROH) harboring *HIP1R*, *P2RX4*, *P2RX7*, *ATP2A2*, *POLE*, and *MYL2* as candidates for strong artificial selection for brachycephaly in the boxer pedigree (Quilez et al., 2011) (Table 1). A selective sweep analysis of *Felis silvestris catus* (Bertolini et al., 2016) comparing Persian, non-Persian, and Persian-derived breeds indicated that the region containing the neuronal genes *CHL1*, *CNTN6*, and *LRRN1* had the highest homozygosity in the Persian breed, which was the brachycephalic phenotype, and had the highest divergence from the non-Persian breeds (Table 1).

37

3.4 | Functional interactions

The human homologous locus for each animal variant described above is shown in Figure 2. Among all identified variants, *ID2*, *BMP3*, and MATN1 showed the highest homology scores (100/100 GOC and WGA scores) between the animal and human genomes. In terms of protein conservation, the average pairwise distance (APD, which represents the average number of replacements between any two sequences in the alignment) oscillated between 0.25 and 1.06. A detailed description of each protein analysis is provided in *Supporting Information* 3. Gene enrichment analysis results are displayed in Table 2, where overexpression of the biological processes surpassing the threshold for FDR (p > 0.05) is shown.

A visual representation of the genetic interactions, pathways, co-expression, and shared protein domains of all identified genes, along with software-predicted genes (Warde-Farley et al., 2010), is shown in Figure 3. The identified genes exhibited genetic interactions between *ID2* and *SMOC2*, *THBS2*, and *TCOF1*; *BMP3* and *ROCK2*; and *CNTN6* and *MYO1H*, *SMOC2*, *SOBP*, and *PHLDA1*. Co-expression was observed between *MYL2* and *ATP2A2*, *MYL2* and *POLE*, and *THBS2*, *FABP7*, and *PHLDA1*. *CNTN6* and *CHL1* shared pathways and protein domains, whereas *P2RX7* and *P2RX4* shared protein domains.

3.5 | Discussion

This scoping review aimed to identify available evidence from animal studies that examined the genetic variants underlying maxillomandibular discrepancies resulting in a SCIII malocclusion phenotype.

The MD phenotype, which was associated with SMOC2, TCOF1, THBS2, and ID2 in dogs and cats, displayed genetic interactions, as depicted in Figure 3. Based on the study by Sakata-Goto et al. (Sakata-Goto et al., 2012). ID2 (GOC and WGA:100/100), coding for DNA-binding protein inhibitor ID-2 (APD:0.56), interacts with the BMP-Smad signaling pathway. It acts downstream of bone morphogenetic protein (BMP) signaling, regulating cartilage formation during postnatal growth and development by enhancing BMP signaling and inhibiting Smad7 expression. These are expressed in the proliferating and differentiating chondrocytes of the presphenoid synchondrosis (PSS) and spheno-occipital synchondrosis (SOS). Similarly, SMOC2 (GOC:100/100; WGA:71.77/100), coding for SPARC-related modular calcium-binding protein 2 (APD:0.69) is related to BMP signaling because the matricellular protein SMOC inhibits BMP signaling downstream of its receptor (Thomas et al., 2017). SMOC2, which was associated with brachycephalic breeds (Bannasch et al., 2010; Marchant et al., 2017; Quilez et al., 2011), has a genetic interaction (Figure 3) with CNTN6, which is adjacent to CHL1 in both the feline and human genomes. These genes were identified in a region of high homozygosity in Persian cats, characterized by an extreme brachycephalic phenotype. Consistently, our enrichment analysis (Table 2) showed that ID2, CNTN6, and CHL1 are involved in anatomical structure development and morphogenesis.

BMP3 (GOC and WGA:100/100), coding for bone morphogenetic protein 3 (APD:0.76), a member of the BMP family, was associated with the brachycephalic phenotype in canines (Schoenebeck et al., 2012). In addition, our enrichment analysis revealed the involvement of anatomical structural development (Table 2). Bone morphogenetic proteins (BMPs) may play critical roles in mediating chondrocyte proliferation and differentiation, possibly regulating chondrocyte-to-osteoblast transition in synchondroses, as they are expressed in the presumptive central hypertrophic zone of the SOS (Kettunen et al., 2006; Schoenebeck et al., 2012). To test this hypothesis regarding the role of Bmp3 in cranioskeletal development, Schoenebeck et al. used a knockdown zebrafish model and found severe deficiencies in jaw development in knockdown individuals, indicating that Bmp3 is required for zebrafish craniofacial development and that its role in craniofacial development has been prevalent since ancient times (Schoenebeck et al., 2012). Signaling proteins from the BMP subfamily (BMPs) have been reported to influence the development of dentary bone, as ectopic expression of Bmp on the oral side of the mandibular process results in the formation of a mirror-image dentary bone (Fabik et al., 2021). BMPs comprise approximately 20 structurally related members of the transforming growth factor β (TGF- β) superfamily, which are crucial for growth and differentiation events that determine body structure (Wu & Hill, 2009). TGF- β is regulated by the fibrillin protein family, and is primarily associated with the modulation of bone marrow stem cells and bone growth during development. FBN genes encode this protein family. A recent meta-analysis showed an overall association between fibrillin-3 precursor gene (FBN3-rs7351083) and SCIII malocclusion (Dehesa-Santos et al., 2021).

Regarding the MP phenotype, MATN1 (GOC and WGA:100/ 100) coding for cartilage matrix protein (APD:0.41), showed a decreased risk of presenting the MP phenotype in the presence of the g503G > A variant in the animal model (Rodrigues et al., 2013). This result agreed with the preventive effect described in a human study on the presence of the AA genotype of rs20566 (Jang et al., 2010), and was in line with the association of rs1149042 with mandibular retrognathism (Balkhande et al., 2018). In contrast, other human studies have shown an increased risk of mandibular prognathism in the presence of rs1065755 and an association of MATN1 with SCIII malocclusion in Korean (Jang et al., 2010), Indian (Kulkarni et al., 2021), and Deutero-Malay (Laviana et al., 2021) populations. Similar results were observed for MYO1H (GOC:100/100; WGA:60.8/100) coding for unconventional myosin-Ih APD:1.05), in which an increased risk of presenting with MP in the presence of rs3825393, a non-synonymous common variant, C > T, p. Pro1001Leu, was reported by Sun et al. in a knockdown zebrafish model (Sun et al., 2018). Consistent with human studies, MYO1H polymorphism rs10850110 has also been associated with MP (Tassopoulou-Fishell et al., 2012) and vertical and horizontal maxillomandibular discrepancies in the Brazilian population (Cruz et al., 2017). Conversely, the same polymorphisms, rs10850110 (Cunha et al., 2019) and rs3825393 (Arun et al., 2016), were also

Genetic enrichment analysis. GO biological process complete, describes the type of biological information being analyzed; REFLIST, displays the number of genes in the reference list overrepresentation of the genes observed in the uploaded list over the expected; Overrepresentation is indicated with a plus sign; raw p value and FDR determined by Fisher's exact test and the that are associated with the specific annotation data category; expected value, represents the number of expected genes based on the reference list; Fold Enrichment express the **TABLE 2**

Benjamini-Hochberg procedure. To	see the genes uplo	aded distribution per biological category, please refer	to the PANTH	IER database.			
GO biological process complete	Homo sapiens - REFLIST	Genes uploaded	Expected value	Fold enrichment	Over-representation	Raw p value	False discovery rate (FDR)
Positive regulation of interleukin-1 alpha production	٢	CALCA; P2RX7	0.01	>100	÷	3.54E-05	4.23E-02
Regulation of multicellular organismal process	2983	ATP2A2; CALCA; ID2; SMOC2; ROCK2; THBS2; MYL2; MATN1; P2RX7; P2RX4; HIP1R	3.04	3.62	+	5.12E-05	5.30E-02
Regulation of interleukin-1 alpha production	6	CALCA; P2RX7	0.01	>100	+	5.41E-05	4.94E-02
Regulation of calcium ion transport into cytosol	20	CALCA; P2RX7; P2RX4	0.02	>100	+	1.59E-06	8.25E-03
Response to ischemia	57	ROCK2; P2RX7; P2RX4	0.06	51.6	+	3.01E-05	3.89E-02
Regulation of muscle contraction	169	ATP2A2; CALCA; MYL2; P2RX4	0.17	23.21	+	2.57E-05	3.99E-02
Regulation of muscle system process	235	ATP2A2; CALCA; ROCK2; MYL2; P2RX4	0.24	20.86	+	3.59E-06	1.39E-02
Regulation of system process	569	ATP2A2; CALCA; ROCK2; MYL2; P2RX4; HIP1R	0.58	10.34	+	1.74E-05	3.01E-02
Regulation of heart contraction	203	ATP2A2; CALCA; MYL2; P2RX4	0.21	19.32	+	5.17E-05	5.02E-02
Muscle system process	282	ATP2A2; CALCA; ROCK2; MYL2; P2RX4; HIP1R	0.29	17.38	+	8.57E-06	1.66E-02
Multicellular organismal process	6713	BMP3; ATP2A2; CALCA; ID2; CHL1; POLE; TCOF1; ROCK2; MYL2; CNTN6; MATN1; P2RX7; CHL1; FABP7; SOBP; P2RX4; HIP1R	6.85	2.48	+	7.42E-06	1.65E-02
Blood circulation	403	CALCA; ID2; ROCK2; MYL2; P2RX4	0.41	12.16	+	4.65E-05	5.15E-02
Anatomical structure morphogenesis	2244	ID2; CHL1; TCOF1; ROCK2; MYL2; CNTN6; MATN1; P2RX7; CHL1; SOBP	2.29	4.37	+	2.71E-05	3.82E-02
Anatomical structure development	5201	BMP3; ATP2A2; CALCA; ID2; CHL1; POLE; TCOF1; ROCK2; MYL2; CNTN6; MATN1; P2RX7; CHL1; FABP7; SOBP; HIP1R	5.3	3.02	+	1.47E-06	1.14E-02
Developmental process	5702	BMP3; ATP2A2; CALCA; ID2; CHL1; POLE; TCOF1; ROCK2; MYL2; CNTN6; MATN1; P2RX7; CHL1; FABP7; SOBP; HIP1R	5.82	2.75	+	5.48E-06	1.70E-02

39

(Continues)

GO biological process complete	Homo sapiens - REFLIST	Genes uploaded	Expected value	Fold enrichment	Over-representation	Raw p value	False discovery rate (FDR)
System development	3553	BMP3; CALCA; ID2; CHL1; TCOF1; ROCK2; MYL2; CNTN6; MATN1; P2RX7; CHL1; FABP7; HIP1R	3.62	3.59	+	6.19E-06	1.60E-02
Multicellular organism development	3966	BMP3; CALCA; ID2; CHL1; POLE; TCOF1; ROCK2; MYL2; CNTN6; MATN1; P2RX7; CHL1; FABP7; SOBP; HIP1R	4.05	3.71	+	3.14E-07	4.87E-03

associated with a skeletal Class II phenotype. This evidence suggests that these two genes play key regulatory roles in the sagittal dimension of craniofacial growth (Gershater et al., 2021), and not exclusively in SCIII malocclusion expression.

The complexity of the manifestations of the genes discussed herein is also reflected in their association with other conditions associated with craniofacial or skeletal alterations. SMOC2 is a candidate gene for craniosynostosis and midface hypoplasia in humans (Marchant et al., 2017). Several studies have established a relationship between premature ossification of the intersphenoid synchondrosis (ISS), SOS, and various forms of craniofacial deformities, which often present craniosynostosis (Hallett et al., 2022). The role of TCOF1 in the development of Treacher Collins Syndrome has been extensively studied for its participation in regulatory processes related to the facial skeleton and nervous system (Grzanka & Piekiełko-Witkowska, 2021). Consistently, in mouse embryos, the expression of TCOF1 peaks at E8.5-9.5, and is particularly pronounced in the first pharyngeal arch (which develops into the mandible and maxilla), as well as in the neuroepithelium and developing brain (Grzanka & Piekiełko-Witkowska, 2021).

In this same line, the important roles of TGF^β and BMPs during embryogenesis give rise to a diverse spectrum of skeletal and craniofacial dysmorphologies through mutations in pathway-related genes (Brito et al., 2009; Oka et al., 2007; Wu et al., 2016). BMPs', particularly BMP2', BMP4', and BMP7', are prominently expressed in early craniofacial development (Francis-West et al., 1998), collaborating with FGF, HH, and WNT pathways to regulate key transcription factors crucial for craniofacial skeletogenesis (Karsenty, 2003). Likewise, BMP/ GDF (growth differentiation factor) pathway's dysregulation contributes to distinct conditions (Katagiri & Watabe, 2016); BMP/GDF overactivity, stemming from noggin protein loss-of-function or GDF-5 gain-of-function mutations, leads to multiple synostoses syndrome characterized by multiple joints fusion (Dawson et al., 2006; Gong et al., 1999); conversely, BMP/GDF inhibition due to GDF-5 or ALK-6 receptor loss-of-function mutations is linked to brachydactylies (Lehmann et al., 2006; Polinkovsky et al., 1997; Thomas et al., 2017).

Interspecies comparisons have significantly improved in recent years because of the better quality of genome assemblies, orthology mapping between organisms, and increasingly available tissue expression data (Doncheva et al., 2021). However, the application of animal models to humans and the inference of their conclusions has certain limitations.

Comparing human and animal models is still defiant considering that functions, pathways, and protein interactions are still behind the quality of human data (Doncheva et al., 2021). Notably, in this review, the decision to exclude animal models analyzing syndromic conditions or other genetic diseases with SCIII as a secondary trait was made. Although this may produce a reduction in the possibly implicated pathways identified, an analysis of the conserved pathways affecting the SCIII phenotype related to syndromic conditions was attempted.

This review aimed to contribute to the craniofacial research field by gathering evidence from studies on animal models to identify possible susceptible regions in the human genome and postulate

(Continued)

BLE 2

∠

FIGURE 3 Displays 20 identified genes (indicated with stripes) and 20 related genes. (a) Genetic interactions, pathways, co-expression, and shared protein domains are shown. (b) Common functions are shown. Gene networks generated through GeneMANIA.

pathways that are likely responsible for the expression of the SCIII malocclusion phenotype. In conclusion, twenty genetic variants were identified as isolated traits in animal models that studied the SCIII malocclusion phenotype: MATN1, ID2, CHL1, CNTN6, BMP3, TCOF1,

SMOC2, THBS2, SOBP, ROCK2, FABP7, CALCA, PHLDA1, MYO1H, HIP1R, P2RX4, P2RX7, POLE, MYL2 and ATP2A2. Many of these genes are related to BMP and TGF- β signaling, especially in the regulation of postnatal synchondrosis ossification.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Carlos Flores-Mir for his valuable contribution in reviewing this article. This study was conducted under a pre-doctoral contract for research personnel in training (CT63/19-CT64/19). This study was funded by the Complutense University of Madrid and Banco Santander.

CONFLICTS OF INTEREST STATEMENT

The authors declare that they have no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

ETHICS STATEMENT

This study was conducted under a predoctoral contract for research personnel in training (CT63/19-CT64/19). This study was funded by the Complutense University of Madrid and Banco Santander. The authors declare that they have no conflicts of interest. Data used in this study are available upon request from the corresponding author.

ORCID

Alejandro Iglesias-Linares 🗅 http://orcid.org/0000-0001-9063-1612

PEER REVIEW

The peer review history for this article is available at https://www. webofscience.com/api/gateway/wos/peer-review/10.1002/jez.b. 23230.

REFERENCES

- Aleksander, S. A., Balhoff, J., Carbon, S., Cherry, J. M., Drabkin, H. J., Ebert, D., Feuermann, M., Gaudet, P., Harris, N. L., Hill, D. P., Lee, R., Mi, H., Moxon, S., Mungall, C. J., Muruganugan, A., Mushayahama, T., Sternberg, P. W., Thomas, P. D., Van Auken, K., ... Westerfield, M. (2023). The gene ontology knowledgebase in 2023. *Genetics*, 224(1), iyad031.
- Arun, R. M., Lakkakula, B. V. K. S., & Chitharanjan, A. B. (2016). Role of myosin 1H gene polymorphisms in mandibular retrognathism. *American Journal of Orthodontics and Dentofacial Orthopedics*, 149(5), 699–704.
- Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene ontology: Tool for the unification of biology. *Nature Genetics*, 25(1), 25–29.
- Ashkenazy, H., Abadi, S., Martz, E., Chay, O., Mayrose, I., Pupko, T., & Ben-Tal, N. (2016). ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. *Nucleic Acids Research*, 44(W1), W344–W350.
- Ashkenazy, H., Erez, E., Martz, E., Pupko, T., & Ben-Tal, N. (2010). ConSurf 2010: Calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. *Nucleic Acids Research*, 38(Web Server issue), W529–W533.
- Babbucci, M., Ferraresso, S., Pauletto, M., Franch, R., Papetti, C., Patarnello, T., Carnier P., & Bargelloni L. (2016a). An integrated genomic approach for the study of mandibular prognathism in the

European seabass (Dicentrarchus labrax). Scientific Reports, 6, 38673.

- Babbucci, M., Ferraresso, S., Pauletto, M., Franch, R., Papetti, C., Patarnello, T., Carnier P., & Bargelloni L. (2016b). An integrated genomic approach for the study of mandibular prognathism in the European seabass (*Dicentrarchus labrax*). *Scientific Reports*, 6(1), 38673.
- Bae, J., Son, W. S., Kim, S. S., Park, S. B., & Kim, Y. I. (2017). Comparison of masticatory efficiency according to angle's classification of malocclusion. *The Korean Journal of Orthodontics*, 47(3), 151–157.
- Balkhande, P. B., Lakkakula, B. V. K. S., & Chitharanjan, A. B. (2018). Relationship between matrilin-1 gene polymorphisms and mandibular retrognathism. American Journal of Orthodontics and Dentofacial Orthopedics, 153(2), 255–261.
- Bannasch, D., Young, A., Myers, J., Truvé, K., Dickinson, P., Gregg, J., Davis, R., Bongcam-Rudloff, E., Webster, M. T., Lindblad-Toh, K., & Pedersen, N. (2010). Localization of canine brachycephaly using an across breed mapping approach. *PLoS One*, *5*(3), e9632.
- Barros, L. A. N., Jesuino, F. A. S., de Paiva, J. B., Rino-Neto, J., & Valladares-Neto, J. (2019). An oral Health-Related quality of life comparison between adults with unilateral cleft lip and palate and class III malocclusion. *The Cleft Palate-Craniofacial Journal*, 56(10), 1359–1365.
- Bertolini, F., Gandolfi, B., Kim, E. S., Haase, B., Lyons, L. A., & Rothschild, M. F. (2016). Evidence of selection signatures that shape the Persian cat breed. *Mammalian Genome*, 27(3–4), 144–155.
- Brito, D. I., Dias, P. F., & Gleiser, R. (2009). Prevalência de más oclusões em crianças de 9 a 12 anos de idade da cidade de Nova Friburgo (Rio de Janeiro). Revista Dental Press de Ortodontia e Ortopedia Facial, 14, 118-124.
- Bui, C., King, T., Proffit, W., & Frazier-Bowers, S. (2006). Phenotypic characterization of class III patients. *The Angle Orthodontist*, 76(4), 564–569.
- Celniker, G., Nimrod, G., Ashkenazy, H., Glaser, F., Martz, E., Mayrose, I., Pupko, T., & Ben-Tal, N. (2013). ConSurf: Using evolutionary data to raise testable hypotheses about protein function. *Israel Journal of Chemistry*, 53(3–4), 199–206.
- Chen, F., Li, Q., Gu, M., Li, X., Yu, J., & Zhang, Y. B. (2015). Identification of a mutation in FGF23 involved in mandibular prognathism. *Scientific Reports*, 5, 11250.
- Cruz, C. V., Mattos, C. T., Maia, J. C., Granjeiro, J. M., Reis, M. F., Mucha, J. N., Vilella, B., Ruellas, A. C., Luiz, R. R., Costa, M. C., & Vieira, A. R. (2017). Genetic polymorphisms underlying the skeletal class III phenotype. American Journal of Orthodontics and Dentofacial Orthopedics, 151(4), 700-707.
- Cruz, R. M., Krieger, H., Ferreira, R., Mah, J., Hartsfield, Jr., J., & Oliveira, S. (2008). Major gene and multifactorial inheritance of mandibular prognathism. *American Journal of Medical Genetics*, *Part A*, 146A(1), 71–77.
- Cunha, A., Nelson-Filho, P., Marañón-Vásquez, G. A., Ramos, A. G. C., Dantas, B., Sebastiani, A. M., Silvério, F., Omori, M. A., Rodrigues, A. S., Teixeira, E. C., Levy, S. C., Araújo, M. C., Matsumoto, M. A. N., Romano, F. L., Antunes, L. A. A., Costa, D. J., Scariot, R., Antunes, L. S., Vieira, A. R., & Küchler, E. C. (2019). Genetic variants in ACTN3 and MYO1H are associated with sagittal and vertical craniofacial skeletal patterns. Archives of Oral Biology, 97, 85–90.
- Dawson, K., Seeman, P., Sebald, E., King, L., Edwards, M., Williams, J., Mundlos, S., & Krakow, D. (2006). GDF5 is a second locus for multiple-synostosis syndrome. *The American Journal of Human Genetics*, 78(4), 708–712.
- Dehesa-Santos, A., Iber-Diaz, P., & Iglesias-Linares, A. (2021). Genetic factors contributing to skeletal class III malocclusion: A systematic review and meta-analysis. *Clinical Oral Investigations*, 25(4), 1587–1612.

- Doncheva, N. T., Palasca, O., Yarani, R., Litman, T., Anthon, C., Groenen, M. A. M., Stadler, P. F., Pociot, F., Jensen, L. J., & Gorodkin, J. (2021). Human pathways in animal models: Possibilities and limitations. *Nucleic Acids Research*, 49(4), 1859–1871.
- Ekenstedt, K. J., Crosse, K. R., & Risselada, M. (2020). Canine brachycephaly: Anatomy, pathology, genetics and welfare. *Journal* of Comparative Pathology, 176, 109–115.
- Fabik, J., Psutkova, V., & Machon, O. (2021). The mandibular and hyoid Arches-From molecular patterning to shaping bone and cartilage. International Journal of Molecular Sciences, 22(14), 7529.
- Ferraresso, S., Milan, M., Pellizzari, C., Vitulo, N., Reinhardt, R., Canario, A. V., Patarnello, T., & Bargelloni, L. (2010). Development of an oligo DNA microarray for the European sea bass and its application to expression profiling of jaw deformity. *BMC Genomics*, 11(1), 354.
- da Fontoura, C. S. G., Miller, S. F., Wehby, G. L., Amendt, B. A., Holton, N. E., Southard, T. E., Allareddy, V., & Moreno Uribe, L. M. (2015). Candidate gene analyses of skeletal variation in malocclusion. *Journal of Dental Research*, 94(7), 913–920.
- Francis-West, P., Ladher, R., Barlow, A., & Graveson, A. (1998). Signalling interactions during facial development. *Mechanisms of Development*, 75(1–2), 3–28.
- Frazier-Bowers, S., Rincon-Rodriguez, R., Zhou, J., Alexander, K., & Lange, E. (2009). Evidence of linkage in a Hispanic cohort with a class III dentofacial phenotype. *Journal of Dental Research*, 88(1), 56–60.
- Gershater, E., Li, C., Ha, P., Chung, C. H., Tanna, N., Zou, M., & Zheng, Z. (2021). Genes and pathways associated with skeletal sagittal malocclusions: A systematic review. *International Journal of Molecular Sciences*, 22(23), 13037.
- Glaser, F., Pupko, T., Paz, I., Bell, R. E., Bechor-Shental, D., Martz, E., & Ben-Tal, N. (2003). ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. *Bioinformatics*, 19(1), 163–164.
- Gong, Y., Krakow, D., Marcelino, J., Wilkin, D., Chitayat, D., Babul-Hirji, R., Hudgins, L., Cremers, C. W., Cremers, F. P. M., Brunner, H. G., Reinker, K., Rimoin, D. L., Cohn, D. H., Goodman, F. R., Reardon, W., Patton, M., Francomano, C. A., & Warman, M. L. (1999). Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. *Nature Genetics*, 21(3), 302–304.
- Grzanka, M., & Piekiełko-Witkowska, A. (2021). The role of TCOF1 gene in health and disease: Beyond treacher collins syndrome. International Journal of Molecular Sciences, 22(5), 2482.
- Hallett, S. A., Ono, W., Franceschi, R. T., & Ono, N. (2022). Cranial base synchondrosis: Chondrocytes at the hub. International Journal of Molecular Sciences, 23(14), 7817.
- Hünemeier, T., Salzano, F. M., & Bortolini, M. C. (2009). TCOF1 T/Ser variant and brachycephaly in dogs. *Animal Genetics*, 40(3), 357–358.
- Jang, J. Y., Park, E. K., Ryoo, H. M., Shin, H. I., Kim, T. H., Jang, J. S., Park, H. S., Choi, J. Y., & Kwon, T. G. (2010). Polymorphisms in the Matrilin-1 gene and risk of mandibular prognathism in Koreans. *Journal of Dental Research*, 89(11), 1203–1207.
- Jaruga, A., Ksiazkiewicz, J., Kuzniarz, K., & Tylzanowski, P. (2022). Orofacial cleft and mandibular prognathism-human genetics and animal models. International Journal of Molecular Sciences, 23(2), 953.
- Javed, O., & Bernabé, E. (2016). Oral impacts on quality of life in adult patients with class I, II and III malocclusion. Oral health & preventive dentistry, 14(1), 27–32.
- Karsenty, G. (2003). The complexities of skeletal biology. *Nature*, 423(6937), 316–318.
- Katagiri, T., & Watabe, T. (2016). Bone morphogenetic proteins. Cold Spring Harbor Perspectives in Biology, 8(6), a021899.
- Kettunen, P., Nie, X., Kvinnsland, I. H., & Luukko, K. (2006). Histological development and dynamic expression of Bmp2–6 mRNAs in the embryonic and postnatal mousecranial base. The Anatomical Record

Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 288A(12), 1250-1258.

Kulkarni, S. D., Bhad, W. A., & Doshi, U. H. (2021). Association between mandibular prognathism and MATRILIN-1 gene in central India population: A cross-sectional study. *Journal of Indian Orthodontic Society*, 55(1), 28–32.

EZ-B MOLECULAR AND DEVELOPMENTAL EVOLUTION -WILEY

- Landau, M., Mayrose, I., Rosenberg, Y., Glaser, F., Martz, E., Pupko, T., & Ben-Tal, N. (2005). ConSurf 2005: The projection of evolutionary conservation scores of residues on protein structures. *Nucleic Acids Research*, 33(Suppl. 2), W299–W302.
- Laviana, A., Thahar, B., Melani, A., Mardiati, E., Putri, L., & Zakyah, A. D. (2021). Role of matrilin-1 (MATN1) polymorphism in class III skeletal malocclusion with mandibular prognathism in Deutero-Malay race: A casecontrol study. *Egyptian Journal of Medical Human Genetics*, 22(1), 11.
- Lehmann, K., Seemann, P., Boergermann, J., Morin, G., Reif, S., Knaus, P., & Mundlos, S. (2006). A novel R486Q mutation in BMPR1B resulting in either a brachydactyly type c/symphalangism-like phenotype or brachydactyly type A2. European Journal of Human Genetics, 14(12), 1248–1254.
- Marañón-Vásquez, G. A., Vieira, A. R., de Carvalho Ramos, A. G., Dantas, B., Romano, F. L., Palma-Dibb, R. G., Arid, J., Carpio, K., Nelson-Filho, P., de Rossi, A., Scariot, R., Levy, S. C., Antunes, L. A. A., Antunes, L. S., & Küchler, E. C. (2020). GHR and IGF2R genes may contribute to normal variations in craniofacial dimensions: Insights from an admixed population. *American Journal* of Orthodontics and Dentofacial Orthopedics, 158(5), 722–730.
- Marchant, T. W., Johnson, E. J., McTeir, L., Johnson, C. I., Gow, A., Liuti, T., Kuehn, D., Svenson, K., Bermingham, M. L., Drögemüller, M., Nussbaumer, M., Davey, M. G., Argyle, D. J., Powell, R. M., Guilherme, S., Lang, J., Ter Haar, G., Leeb, T., Schwarz, T., ... Schoenebeck, J. J. (2017). Canine brachycephaly is associated with a Retrotransposon-mediated missplicing of SMOC2. *Current Biology*, 27(11), 1573–1584.
- Martin, F. J., Amode, M. R., Aneja, A., Austine-Orimoloye, O., Azov, A. G., Barnes, I., Becker, A., Bennett, R., Berry, A., Bhai, J., Bhurji, S. K., Bignell, A., Boddu, S., Branco Lins, P. R., Brooks, L., Ramaraju, S. B., Charkhchi, M., Cockburn, A., Da Rin Fiorretto, L., ... Flicek, P. (2022). Ensembl 2023. Nucleic Acids Research, 51(D1), D933–D941.
- Mork, L., & Crump, G. (2015). Zebrafish craniofacial development: A window into early patterning. In Y. Chai, *Current topics in developmental biology* (Vol. 115, pp. 235–269). Academic Press.
- Nikopensius, T., Saag, M., Jagomägi, T., Annilo, T., Kals, M., Kivistik, P. A., Milani, L., & Metspalu, A. (2013). A missense mutation in DUSP6 is associated with class III malocclusion. *Journal of Dental Research*, 92(10), 893–898.
- Oka, K., Oka, S., Sasaki, T., Ito, Y., Bringas, Jr., P., Nonaka, K., & Chai, Y. (2007). The role of TGF-β signaling in regulating chondrogenesis and osteogenesis during mandibular development. *Developmental Biology*, 303(1), 391–404.
- Palmas, F., Righi, T., Musu, A., Frongia, C., Podda, C., Serra, M., Splendiani, A., Caputo Barucchi, V., & Sabatini, A. (2020). Pugheadedness anomaly in a wild and isolated population of native mediterranean trout *Salmo trutta* L., 1758 complex (Osteichthyes: Salmonidae). *Diversity*, 12(9), 353.
- Perillo, L., Monsurrò, A., Bonci, E., Torella, A., Mutarelli, M., & Nigro, V. (2015). Genetic association of ARHGAP21 gene variant with mandibular prognathism. *Journal of Dental Research*, 94(4), 569–576.
- Peters MG, C., McInerney, P., Munn, Z., Tricco, A. C., & Khalil, H. (2020). JBI manual for evidence synthesis. In E. M. Aromataris, & Z. (Eds.), *Scoping reviews*. JBI.
- Pignatelli, M., Vilella, A. J., Muffato, M., Gordon, L., White, S., Flicek, P., & Herrero, J. (2016). ncRNA orthologies in the vertebrate lineage. *Database*, 2016, bav127.
- Podder, A., Raju, A., & Schork, N. J. (2021). Cross-species and human inter-tissue network analysis of genes implicated in longevity and

44

aging reveal strong support for nutrient sensing. *Frontiers in Genetics*, 12, 12.

- Polinkovsky, A., Robin, N. H., Thomas, J. T., Irons, M., Lynn, A., Goodman, F. R., Reardon, W., Kant, S. G., Brunner, H. G., van der Burgt, I., Chitayat, D., McGaughran, J., Donnai, D., Luyten, F. P., & Warman, M. L. (1997). Mutations in CDMP1 cause autosomal dominant brachydactyly type C. *Nature Genetics*, 17(1), 18–19.
- Quilez, J., Short, A. D., Martínez, V., Kennedy, L. J., Ollier, W., Sanchez, A., Altet, L., & Francino, O. (2011). A selective sweep of >8 mb on chromosome 26 in the boxer genome. *BMC Genomics*, 12(1), 339.
- Rao, C., Guan, B., Luo, D., Deng, Q., Peng, Q., Lin, Z., Huang, M., Qi, M., Zhong, B., & Lu, X. (2020). Identification of pathogenic variants of ERLEC1 in individuals with class III malocclusion by exome sequencing. *Human Mutation*, 41(8), 1435–1446.
- Rodrigues, J. B., Araújo, S., Guedes-Pinto, H., San Roman, F., Viegas, C., & Bastos, E. (2013). Analysis of new Matrilin-1 gene variants in a casecontrol study related to dental malocclusions in *Equus asinus*. *Gene*, 522(1), 70–74.
- Saito, F., Kajii, T. S., Oka, A., Ikuno, K., & Iida, J. (2017). Genome-wide association study for mandibular prognathism using microsatellite and pooled DNA method. *American Journal of Orthodontics and Dentofacial Orthopedics*, 152(3), 382–388.
- Sakata-Goto, T., Takahashi, K., Kiso, H., Huang, B., Tsukamoto, H., Takemoto, M., Hayashi, T., Sugai, M., Nakamura, T., Yokota, Y., Shimizu, A., Slavkin, H., & Bessho, K. (2012). Id2 controls chondrogenesis acting downstream of BMP signaling during maxillary morphogenesis. *Bone*, 50(1), 69–78.
- Schoenebeck, J. J., Hutchinson, S. A., Byers, A., Beale, H. C., Carrington, B., Faden, D. L., Rimbault, M., Decker, B., Kidd, J. M., Sood, R., Boyko, A. R., Fondon, J. W., Wayne, R. K., Bustamante, C. D., Ciruna, B., & Ostrander, E. A. (2012). Variation of BMP3 contributes to dog breed skull diversity. *PLoS Genetics*, 8(8), e1002849.
- Singh, G. D. (1999). Morphologic determinants in the etiology of class III malocclusions: A review. *Clinical Anatomy*, 12(5), 382–405.
- Sophocleous, R. A., Sluyter, V., Curtis, B. L., Curtis, S. J., Jurak, L. M., Faulks, M., Spildrejorde, M., Gates, S., Proctor, E. J., Seavers, A., Watson, D., Kuit, T., Dowton, M., Stokes, L., & Sluyter, R. (2020). Association of a P2RX7 gene missense variant with brachycephalic dog breeds. Animal Genetics, 51(1), 127–131.
- Sun, R., Wang, Y., Jin, M., Chen, L., Cao, Y., & Chen, F. (2018). Identification and functional studies of MYO1H for mandibular prognathism. *Journal of Dental Research*, 97(13), 1501–1509.
- Tassopoulou-Fishell, M., Deeley, K., Harvey, E. M., Sciote, J., & Vieira, A. R. (2012). Genetic variation in myosin 1H contributes to mandibular prognathism. American Journal of Orthodontics and Dentofacial Orthopedics, 141(1), 51–59.
- Thomas, J. T., Eric Dollins, D., Andrykovich, K. R., Chu, T., Stultz, B. G., Hursh, D. A., & Moos, M. (2017). SMOC can act as both an antagonist and an expander of BMP signaling. *eLife*, *6*, e17935.

- Thomas, P. D., Ebert, D., Muruganujan, A., Mushayahama, T., Albou, L. P., & Mi, H. (2022). PANTHER: Making genome-scale phylogenetics accessible to all. *Protein Science*, 31(1), 8–22.
- Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., ... Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473.
- Warde-Farley, D., Donaldson, S. L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi, F., Lopes, C. T., Maitland, A., Mostafavi, S., Montojo, J., Shao, Q., Wright, G., Bader, G. D., & Morris, Q. (2010). The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. *Nucleic Acids Research*, 38, W214–W220.
- Weaver, C. A., Miller, S. F., da Fontoura, C. S. G., Wehby, G. L., Amendt, B. A., Holton, N. E., Allareddy, V., Southard, T. E., & Moreno Uribe, L. M. (2017). Candidate gene analyses of 3dimensional dentoalveolar phenotypes in subjects with malocclusion. American Journal of Orthodontics and Dentofacial Orthopedics, 151(3), 539–558.
- Wu, M., Chen, G., & Li, Y. P. (2016). TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. *Bone Research*, 4, 16009.
- Wu, M. Y., & Hill, C. S. (2009). Tgf-beta superfamily signaling in embryonic development and homeostasis. *Developmental Cell*, 16(3), 329-343.
- Xiong, X., Li, S., Cai, Y., & Chen, F. (2017). Targeted sequencing in FGF/ FGFR genes and association analysis of variants for mandibular prognathism. *Medicine*, 96(25), e7240.
- Yariv, B., Yariv, E., Kessel, A., Masrati, G., Chorin, A. B., Martz, E., Mayrose, I., Pupko, T., & Ben-Tal, N. (2023). Using evolutionary data to make sense of macromolecules with a "face-lifted" ConSurf. *Protein Science*, 32(3), e4582.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Dehesa-Santos, A., Faria-Teixeira, M. C., & Iglesias-Linares, A. (2024). Skeletal Class III phenotype: Link between animal models and human genetics: A scoping review. *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution*, 342, 21-44. https://doi.org/10.1002/jez.b.23230