

2023

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Improving Web Application User Experience with Dynamic

Sidebars

Guilherme Emanuel Junqueira Borges

Mestrado em Engenharia Informática

Trabalho de Projeto orientado por:

Prof. Doutor Pedro Alexandre de Mourão Antunes

Acknowledgments

I would like to thank my esteemed supervisor Dr. Pedro Antunes for his invaluable supervi-

sion, support and tutelage during the course of my Master’s degree. My gratitude extends to the

University of Lisbon for the create opportunity to work together with Acro Companion company.

Additionally, I would like to express gratitude to Lander, Ruben and Samuel for their mentorship

as well as all my colleagues that started the internship with me. My appreciation also goes out to

my family and friends for their encouragement and support all through my studies.

i

Resumo

Acro Companion tem vindo a evoluir gradualmente e a desenvolver a sua gama de produtos

nos últimos anos para a sua aplicação web. Devido a esta grande pressão no desenvolvimento

a experiência de utilização e a interface do utilizador foram-se degradando. O objetivo deste

projeto é através da implementação de uma solução dinâmica melhorar a experiência de
utilização e a interface.

Para ajudar na organização do projeto usei a metodologia Action design research Sein et al.

[2011] uma vez que esta é baseada em artefactos, neste caso, uma sidebar dinâmica e permite

um design iterativo dentro da Acro Companion. Além disso, ainda ajuda no processo de resolver

problemas com o objetivo de organizar o processo de aprendizagem.

Todo o desenvolvimento feito durante os nove meses em que estive no estágio com a Acro

Companion está dividido em três grandes iterações:

• Prova de conceito para a sidebar dinâmica (Primeira iteração);

• Sidebar dinâmica de conteúdo de navegação (Segunda iteração);

• Sidebares dinâmica de conteúdo (Terceira iteração).

Cada iteração teve diferentes razões para ter sido criada e com o objetivo de refinar a solução

sidebars dinâmicas. Com o crescimento da Acro Companion era necessário desenvolver uma

solução que primeiro fosse muito escalável e dinâmica e após isso resolvesse todos os problemas

de experiência de utilização e da interface do utilizador. Com isto o conceito de sidebars dinâmicas

surgiu como uma solução que se adaptava à Acro e não o contrário.

Em cada iteração foram discutidos seis tópicos:

• Problema;

• Design/Construção;

• Intervenção;

• Implementação Prática;

• Avaliação;

• Reflexão.

v

Primeiramente no capı́tulo ”Problema” é feita uma análise do problema que leva à criação de

uma iteração. Seguida essa análise no capı́tulo ”Design/Construção” são apresentados conceitos

e mockups que tem como finalidade propor uma solução para o problema descrito no capı́tulo

“Problema”. No capı́tulo da intervenção e onde são apresentados problemas no desenvolvimento

da solução, restrições impostas pela Acro Companion, estado da solução e o que falta fazer para

completar a solução. No capı́tulo da ”Implementação Prática” são descritas as decisões tomadas

a nı́vel da arquitetura e da estrutura do código. Na ”Avaliação” é feita uma avaliação da solução

desenvolvida seguida por uma reflexão segundo todos os pontos descritos anteriormente.

Durante o desenvolvimento da solução ideal para a Acro na Prova de conceito para a sidebar

dinâmica existiam duas possı́veis soluções principais:

• Titlebar dinâmica;

• Sidebar dinâmica;

Depois de analisar os benefı́cios e problemas de cada solução, tornou-se claro que a sidebar

dinâmica seria a melhor opção para resolver os problemas da Acro Companion, pois a title bar

dinâmica não resolveria todos os problemas existentes e em termos de implementação iria aumen-

tar a dificuldade. Alguns inconvenientes da titlebar dinâmica seriam o facto de ter uma dimensão

pequena para exibir o conteúdo, o que poderia levar a problemas de UX/UI, como por exemplo a

dificuldade em exibir a progressão e hierarquia da navegação ou a impossibilidade de voltar a uma

página pai após entrar em uma página filha sem implementar um método para retornar à página

anterior.

A sidebar dinâmica, por outro lado, não tinha nenhum dos problemas mencionados anterior-

mente e tinha outras vantagens. Como a sidebar tem um formato grande, seria mais fácil ajustar

e personalizar o conteúdo com ı́cones e animações que são importantes para a experiência de

utilização. Outra consideração é que os monitores são mais largos do que altos, então a barra de

tı́tulo ocuparia muito espaço que já é limitado. Além disso, enquanto a barra de tı́tulo precisaria

estar sempre visı́vel em smartphones, podemos ocultá-la com a barra lateral.

No final, o principal elemento de UI (a sidebar) foi projetada com base nos princı́pios da teoria

de affordances. De acordo com Stendal et al. [2016], ”affordance”refere-se às ”possibilidades de

ação”ou capacidades latentes do ambiente, independentemente da capacidade do indivı́duo de

reconhecê-las, mas sempre em relação aos atores e, portanto, dependentes das suas capacidades.

Ao conceptualizar a sidebar, temos possibilidades de ação e intenções do utilizador. Quando

aplicada à solução personalizada da sidebar, a sidebar é dinâmica e exibe apenas as opções ne-

cessárias, fornecendo ao utilizador opções relevantes. A sidebar dinâmica pode ser representada

por duas principais affordances: a primeira é que a sidebar dinâmica é uma affordance como um

todo, aparece apenas para utilizadores especı́ficos e adapta a sua estrutura de acordo com o con-

texto. A outra affordance é que o conteúdo exibido dentro da sidebar dinâmica tem affordances

que adaptam o conteúdo em relação ao tipo de utilizador. Com isto, a Prova de conceito para a

vi

sidebar dinâmica do projeto começou com o objetivo de desenvolver uma prova de conceito para

testar a solução escolhida.

Durante a Prova de conceito para a sidebar dinâmica, continuei a desenvolver e expandir a

solução da sidebar introduzida na iteração inicial. Este capı́tulo apresenta os ajustes feitos para

lidar com os desafios relacionados à flexibilidade e natureza dinâmica da experiência de utilização

e interface da aplicação web. O objetivo é fornecer uma solução que atenda à necessidade de

um aplicação web mais flexı́vel e ágil, capaz de facilitar o desenvolvimento rápido de serviços

e atender às necessidades dos utilizadores, o que não foi alcançado na Prova de conceito para a

sidebar dinâmica. Foi necessário mover componentes para a sidebar e introduzir a possibilidade

de navegar por páginas através da sidebar. Após esta implementação e através de uma avaliação

por parte da equipa da Acro Companion foi descoberto que a experiência de utilização tinha sido

prejudicada por apresentar conteúdo de páginas e botões de navegação na mesma sidebar.

O objetivo da Sidebares dinâmica de conteúdo foi abordar os problemas de UX/UI identifi-

cados na Prova de conceito para a sidebar dinâmica, refinando o design e a funcionalidade da

sidebar dinâmica, com o foco em melhorar a experiência de utilização e garantir que a solução es-

teja pronta para produção. O objetivo era identificar uma solução estável e adaptável que abordasse

os problemas identificados e cumprisse os requisitos do aplicativo da web Acro Companion.

Foi então reestruturada a arquitetura da sidebar,para o novo conceito, em vez de uma sidebar

passar a ter duas, tendo cada sidebar uma função diferente:

• Uma das sidebares exclusivamente usada para a navegação entre páginas;

• A outra exclusivamente para a gestão do conteúdo do componente principal.

Além disso, a sidebar de navegação está dividida em três componentes principais para melho-

rar a estrutura.

• Menu principal;

• Menu de gestão da organização;

• Menu de desenvolvedores.

No menu principal, estão os botões para navegação para as funcionalidades básicas da aplicação.

Esta implementação foi mais direta de implementar pois todos os componentes eram individuais

e a sua estrutura de navegação era bem estruturada.

No menu de gestão da organização encontra-se a navegação do sistema de gestão de competições

que apenas um determinado tipo de utilizador tem acesso. Esta implementação foi a que apresen-

tou um maior grau de dificuldade e levou mais tempo porque a arquitetura desta parte da aplicação

era muito antiga e crı́tica para o funcionamento da Acro Companion. Para mitigar os problemas da

alteração da arquitetura do componente foram desenvolvidos testes end to end e testes unitários.

Por fim o menu de desenvolvedores que apenas os desenvolvedores têm acesso que foi a menos

cuidada uma vez que o cliente final não tem acesso.

vii

Concluindo, a sidebar dinâmica é um elemento dinâmico que pode ser modificado usando

affordances, permitindo maior flexibilidade em termos de conteúdo que pode ser exibido e propor-

cionando uma interface de utilizador mais uniforme. A implementação das sidebares dinâmicas

foi uma implementação com base em várias soluções foram testadas e avaliadas, levando à solução

final que cumpriu todos os requisitos pedidos pela Acro Companion.

Palavras-chave: Experiência de Utilização, Interface do Utilizador, Sidebars Dinâmicas

viii

Abstract

This paper demonstrates the role of a dynamic sidebar solution as a model to enhance the

user experience of a web application. Acro Companion has gradually evolved and expanded their

product line over the last few years. Because of the emphasis on product development, the web

application’s user experience and user interface design have become inconsistent and disjointed,

threatening the company’s growth.

This study, which incorporates evidence from user feedback, demonstrates that implementing

a dynamic sidebar solution will result in an improved user experience, a reduction in the amount

of time required for implementation, and a project structure that will make future development

easier.

By working in an agile setting, the development of this study was divided into iterations.

Each iteration identified and addressed any concerns that arose, allowing the design of the dynamic

sidebar implementation and structure to be continuously improved. These concerns were highly

evidenced and exaggerated due to the scope and complexity of the project, which required me to

adapt and refine the solution in order to overcome implementation barriers. As a result, I was

able to develop a more robust and scalable final solution with fewer potential implementation

barriers.

Keywords: Agile; Dynamic Sidebars; User Experience; User Interface; Web Application

ix

x

Contents

Figure List xvi

Table List xix

1 Introduction 1
1.1 Study context: Acro Companion . 1

1.2 Organizational setting . 2

1.3 Document structure . 3

1.4 Flexibility difficulties: Acro Companion . 3

2 Methodology 5
2.1 Action design research . 5

2.2 Intervention . 6

2.3 Theorizing in Design Science Research . 6

2.4 Evaluating Design Science Research . 8

3 Dynamic sidebars 11
3.1 Evolution of the sidebar . 11

3.2 Sidebar Reactivity . 14

4 Dinamic sidebar Proof of concept (First iteration) 17
4.1 Problem . 17

4.2 Design/building . 20

4.3 Intervention . 22

4.4 Practical implementation . 23

4.5 Evaluation . 27

4.6 Reflection . 27

5 Navigational sidebar (Second iteration) 29
5.1 Problem . 29

5.2 Design/building . 29

5.3 Intervention . 33

5.4 Practical implementation . 34

xi

5.5 Evaluation . 36

5.6 Reflection . 37

6 Content sidebar (Third iteration) 41
6.1 Problem . 41

6.2 Design/building . 41

6.3 Intervention . 44

6.4 Practical implementation . 45

6.5 Evaluation . 53

6.6 Reflection . 53

7 Formalization of learning 55
7.1 Dynamic sidebars . 55

7.2 Impact on user experience . 56

7.3 Impact on organizational experience . 57

7.4 Future work . 57

8 Conclusions 59

Abreviaturas 61

bibliografia 64

Índice 65

A Appendix 67
A.1 Technologies . 67

A.1.1 Angular and Typescript . 67

A.1.2 Google Firebase (Cloud Computing) 67

A.1.3 RXJS . 67

A.1.4 Playwright Tests . 67

A.1.5 Adobe XD . 68

A.2 Methodologies . 68

A.2.1 Reactive Programming . 68

A.2.2 Design System . 68

A.2.3 Unit Testing and e2e Testing (End-to-End) 68

A.2.4 Test-driven Development (TDD) . 69

xii

xiv

List of Figures

1.1 Friction logic . 4

2.1 ADR Method Stages and Principles, adapted from (Sein et al., 2011) 6

2.2 Design Theorizing Framework, adapted from (Lee et al., 2011) 7

2.3 A Strategic DSR Evaluation Framework (adapted from (Venable et al., 2012) . . 8

3.1 AOL 1990-2000 . 11

3.2 AOL 2000-2010 . 12

3.3 AOL 2010-2020 . 13

3.4 AOL 2020-2023 . 13

3.5 Sidebar reactivity . 15

4.1 Company relation diagram . 18

4.2 Real-Time Judging Service page . 19

4.3 Multiple title bars . 19

4.4 Title bar mockup . 20

4.5 Sidebar bar mockup . 21

4.6 Login Sign-up Redesign . 23

4.7 Competition Overview page with sidebar . 24

4.8 Manual page with sidebar menu on custom sidebar 24

5.1 Sidebar with navigation state mockup . 30

5.2 Sidebar with component state mockup . 30

5.3 Button group . 31

5.4 Main sidebar (navigational sidebar iteration) . 32

5.5 Organisation sidebar (navigational sidebar iteration) 32

5.6 Developer sidebar (navigational sidebar iteration) 33

5.7 Organisation Admin Component . 34

5.8 File structure (navigational sidebar iteration) . 35

5.9 Competition Page (Sidebar with page content) 37

5.10 Competition Page (Sidebar with navigation buttons) 38

5.11 Competition Page (Sidebar closed) . 38

xv

6.1 Facebook layout structure . 42

6.2 Facebook mockup . 42

6.3 Stack Overflow layout structure . 43

6.4 Stack Overflow mockup . 43

6.5 Competition Navigation sidebar . 44

6.6 File structure (content sidebar iteration) . 46

6.7 Navigation Sidebar template . 46

6.8 Navigation Sidebar ngOnInit . 47

6.9 Navigation Sidebar functions . 48

6.10 Content Management Sidebar template . 49

6.11 Content Management Sidebar ngOnInit . 49

6.12 Content Management Sidebar functions . 50

6.13 Navigation on top structure . 51

6.14 Navigation side by side structure . 51

6.15 App component template structure . 52

6.16 Highlight sidebar menu items . 52

6.17 Menu selected . 52

6.18 Menu hovered . 53

6.19 Menu selected and hovered . 53

7.1 First sidebar mockup . 55

7.2 Second sidebar mockup . 56

7.3 Third sidebar mockup . 57

xvi

xviii

List of Tables

4.1 Sidebar Specification . 26

5.1 Sidebar Component Specification . 36

xix

Chapter 1

Introduction

Is it possible to enhance the user experience of a web application by using dynamic sidebars?

Small companies with a high level of customer intimacy may find it challenging to scale the

project while maintaining a quick development pace and a pleasant user experience and user in-

terface.

For instance, Acro Companion has a complicated application that is difficult to maintain due to

the developing pace and complexity of the products, having different ways to navigate and interact

with the components throughout the web application can increase the difficulty for user to locate

the products or understand how to utilize the web application, causing them to become frustrated

with the platform as a whole.

The development of dynamic sidebars will allow for faster integration while maintaining the

same user experience and also increasing the flexibility of the web application framework.

Managing the integration of a central piece of software in an agile environment is difficult to

achieve without disrupting existing products.

So, while the initial implementation may take some time, the balance between a dynamic solu-

tion that allows the developer to add any component and structure would solve the main problems

that Acro’s web application currently have with flexibility.

When compared to the previous version of the web application, the development of the dy-

namic sidebars provided Acro Companion with a stronger framework for future development as

well as a progression in user experience and interface design. This study’s solution has the poten-

tial to help Acro’s products scale.

1.1 Study context: Acro Companion

Acro Companion is a Belgian company that specializes in the development of gymnastic web ap-

plications. They have created several of solutions to assist coaches, organizations, and federations

in managing all administrative tasks.

The web application has become a growing, complex piece of software that is a game changer

in the gymnastics world once it provides products with rates suitable for various sizes of organi-

zations and federations.

1

Chapter 1. Introduction 2

Because of the company’s diverse customer base, Acro Companion must be agile and flexible

in order to meet the varying needs of its clients.

This project addresses the company’s commitment to providing the best possible experience

and software to the gymnastics community, as well as to address the flexibility challenges that

Acro faces as it grows and expands its web application. By addressing these issues, the company

will be able to continue to improve and evolve, further solidifying its position as a leader in the

industry.

1.2 Organizational setting

During the Acro Companion development process, two distinct teams collaborated: one focused

on the development aspects, consisting of five team members, including myself, and another re-

sponsible for design, consisting of one team member. My role was on the development team.

I consistently provided valuable feedback and insights about the design of the sidebars, which

contributed to the design team’s continuous improvement.

Acro Companion relies on Azure DevOps to aid with team structure and management. Azure

DevOps is a suite of services that cover the entire development life cycle. The use of this platform

helps to keep the team organized and the objectives in sync.

The Azure Boards aid in the creation of agile planning and the tracking of work items. We use

the reporting tool to help and learn from one another by evaluating each other’s code. The Azure

Pipelines platform assists us in executing all the tests on the submitted code (DevOps,).

From a high-level perspective, there are numerous types of product development. A federation

may request a special product for its case in some circumstances; if this occurs, the federation will

pay for the product’s development. If more than one Federation requests a product that Acro

Companions believes cannot be monetized for the market, funds will be divided equally among

those Federations. Furthermore, if a product is desired by one or more customers and an Acro

Companion analyst considers it a wise investment, Acro will cover the entire development cost, or

the price will be split between the Federations and Acro.

Acro Companion operates on the basis of customer intimacy, and the majority of Acro Com-

panion clients continuously request functionality. The team will then internally debate the best

strategy for implementing the feature. Depending on what it is, Acro Companion seeks input

internally or from certain excellent clients or test groups once it has been built and deployed as

described in the company structure figure 4.1.

Lastly, Acro Companion awaits client feedback on contests. This allows the company to ex-

pand by learning as much as possible about their customers and market demands by offering the

desired product.

Chapter 1. Introduction 3

1.3 Document structure

This report’s remaining sections will be organized as follows: In the Methodology chapter (2), I

explain the significance of Design Research to the development of my thesis. A problem framing
chapter (??) in which I describe the issue that Acro Companion’s web application is experiencing.

In the chapter on dynamic sidebars (3), I provide a comprehensive explanation of all theoretical

sidebar concepts as well as the current state of the art. To describe the evolution of the dynamic

sidebar, I will use three iterations. In the dinamic sidebar proof of concept iteration chapter

(4), I describe the first design cycle, including all decisions made to enhance the user experience

and interface. In the navigational sidebar iteration chapter (5), I detail the modifications made

to address the challenges associated with the flexibility and dynamic nature of the Acro web ap-

plication. In the final section of the content sidebar iteration (6), I finalize the dynamic sidebar

solution and make it production-ready. Each Iteration contains six subchapters:

1. Problem: describes the problem of the iteration;

2. Design/building: describes the design solution;

3. Intervention: describes all the decisions.

4. Practical implementation: context for the practical implementation;

5. Evaluation: where an evaluation is performed to provide additional information about the

developed solution;

6. Reflection: where a reflection on the solution implemented in the iteration is provided.

In the formalization of learning chapter (7), I explain how the dynamic sidebar evolved from

a single design to a dual architecture. I demonstrated the effect of the newly reorganized structure

and the benefits it provided to the end user.

1.4 Flexibility difficulties: Acro Companion

As the web application grew, Acro Companion encountered an issue with the title bar’s lack of

flexibility. To address this issue, a promising solution was sought out in an effort to increase

flexibility. During the development of the solution, the team placed an emphasis on flexibility,

which can have negative consequences. Due to the need to anticipate and represent narratives with

variations an multiple configurations, developing and debugging a flexible solution can be more

challenging (Antunes and Tate, 2022).

In the (Thuan et al., 2022a) is referred that the difficulties associated with implementing pro-

cess flexibility, with a focus on the push and pull factors. Additionally, the concepts of com-

prehensibility and representationality are introduced as essential elements for achieving process

flexibility. Flexibility has the greatest impact during the analysis and design/modeling phases for

Chapter 1. Introduction 4

organizations that require it because of uncertainty, change, and variation as described in Figure

1.1.

Acro Companion aimed for a solution that offered a high degree of flexibility. However, this

level of flexibility posed challenges during the development and debugging phases. As a result,

I had to advocate for a balanced approach, addressing the trade-off between flexibility and the

potential issues it could introduce.

Flexibility and structure must coexist for the optimal solution to be achieved. The solution

should be adaptable enough to allow for rapid development while still offering structure.

Figure 1.1: Friction logic

Chapter 2

Methodology

Methodology is an essential part of the research process because it provides a framework for

addressing the research problem.

To guide the structure of the research and development for this thesis, I used the Action Design
Research (ADR) (Sein et al., 2011) as guidance to achieve a solution for the main issue.

My thesis will be based on the ADR that were presented in (Sein et al., 2011), because the ADR

is artifact-centered (in this case, the dynamic sidebars), allows for iterative design within Acro

Companion, and helps structure the problem-solving process in order to organize the development

and learning process. In the following sections, I will provide a more detailed explanation of ADR.

2.1 Action design research

The ADR methodology is part of the Design Science Research methodology (Sein et al., 2011)

and it’s a way to make innovative artifact design inside a company. ADR is a way to do research

that leads to prescriptive (describe a how to) design knowledge. It is a way to share design

knowledge that goes beyond instantiations that can be used in a certain context by building and

evaluating artifacts in an organizational setting. It addresses two issues:

1. Intervening and assessing a problem scenario discovered in a given organizational environ-

ment;

2. Creating and assessing an innovative artifact that addresses the issue class characterized by

the problem scenario.

These two difficulties necessitate a method centered on the building, intervention, and eval-
uation of an artifact that symbolizes not only theoretical predecessors and researchers’ goals but

also the impact of users and continuing usage in context.

The stages of the ADR process are shown in Figure 2.1.

The action design research method was chosen because the concept of intervention can explain

the relationship with Acro Companion. Intervention research is concerned with discovering which

treatments or method are most effective in improving results.

5

Chapter 2. Methodology 6

Figure 2.1: ADR Method Stages and Principles, adapted from (Sein et al., 2011)

2.2 Intervention

On the intervention side, I’m going to address my role in the Acro Companion environment and

what impact it caused.

Acro Companion identified a flexibility problem that existed due to various conditions, and I

proposed a solution that, once implemented, would fix the problem. After multiple iterations, the

final solution fixed the problem.

During the intervention, it was my responsibility to not only look at what other businesses had

done to address their flexibility problems, but also to find a solution that would make it possible

for the company to expand its operations without running into this issue again. Following the

completion of each implementation, it was important to determine, with the assistance of Acro

Companion, if the solution would satisfy the requirements.

2.3 Theorizing in Design Science Research

Design Science Research and ADR center in a cycle of abstractions, (Lee et al., 2011) the paper

provides grounds for building strong design theories in the design science paradigm.

The paradigm describes a circular dependence between the abstraction of the problem and the

De-abstraction of the solution. (2.2)

Chapter 2. Methodology 7

Figure 2.2: Design Theorizing Framework, adapted from (Lee et al., 2011)

A key assumption of this framework is that theorizing for design operates in two distinct

domains: an abstract domain and an instance domain. In the abstract domain, a solution search

process occurs in which an abstract solution is searched for an abstract problem. In contrast,

the instance domain refers to where a particular solution is applied to address an instance or a

particular problem. These two domains operate on their own independent grounds, with fewer

constraints on how ideas are developed.

There are four activities in the theorizing framework, each represented by an arrow in Figure

2.2. These activities are abstraction, solution search, de-abstraction, and registration. Given that

all four of these activities may take place as human thought, it may be possible that these occur

not cyclically but simultaneously.

Abstraction - A theory is considered to be generalizable when it may be used in multiple con-

texts. Abstraction occurs when a researcher extracts common concepts or ideas from an instance

problem by eliminating information related to the instance’s context. This abstraction process

entails a lot of cognitive judgment.

Solution search - Understanding the links between the afferent and efferent is fundamental to

solution search theory. The afferent is a sensory world in which the outer environment is seen in

terms of its condition, whereas the efferent is the world in which actions are done (e.g., solving

the requirements of the problem).

De-Abstraction - Proposed solutions or design artifacts may be speculative or abstract notions

throughout the solution search. The abstract notions must be restricted and instantiated before they

can be evaluated in a specific situation. This de-abstraction entails the addition of context-specific

features.

Registration - The registration activity is part of the theorizing process, but it is not necessarily

independent of the design science research assessment process.

The framework proposed in this paper was used to orient toward building strong design theo-

ries in the design science paradigm.

To center Acro companion in the Design Science Research I started in the Instance Domain

Chapter 2. Methodology 8

with an Instance Problem, that was issues in the user experience of Acro’s web application.

Through some search on the existing technologies, I arrived to a Instance Solution dynamic

sidebar, from this I moved to the Abstract Domain, for the Abstract Solution was the possibility

to divide the application in sections, the Abstract Problem that Acro have was that users were

having troubles using the products because the interaction with the web application would vary

from product to product.

2.4 Evaluating Design Science Research

To assist with the evaluation, I’m going to follow the framework presented and described in (Ven-

able et al., 2012). Venable et al. propose that to address the evaluation gap by developing a Design

Science Research (DSR) evaluation framework 2-by-2 (figure 2.3) with clear guidance for how

one could design and conduct evaluation within DSR.

Figure 2.3: A Strategic DSR Evaluation Framework (adapted from (Venable et al., 2012)

This framework combines a dimension that contrasts artificial versus naturalistic evaluation

with a dimension that contrasts ex ante and ex post evaluation. Ex post evaluation is referred to

the examination of an instantiated item, whereas ex ante evaluation is referred to the evaluation of

an uninstantiated artifact, such as a design or model.

According to the 2-by-2 matrix, evaluation in Acro Companion is divided into two significant

segments:

1. Artificial Ex Post: This segment encompasses all assessments conducted prior to deploying

any changes to the production or test environment. In the context of Acro Companion, this

Chapter 2. Methodology 9

involved a series of unit tests to validate the logical calculations and end-to-end tests to

confirm the correctness of navigation paths.

2. Naturalistic Ex Post: This category pertains to evaluations conducted by users after the

modifications have been deployed to the test environment. In Acro Companion’s case, all

these tests were conducted internally by members of the team. It’s worth noting that Acro

Companion also presented the new user interface to select clients for feedback. However,

the feedback collection process remained under Acro’s control, and I did not have direct

influence over it.

Chapter 2. Methodology 10

Chapter 3

Dynamic sidebars

3.1 Evolution of the sidebar

Commonly located on the left or right side of the display, the sidebar is a frequent design element

in web applications. It is a container that displays a user-accessible list of navigation items or

other information.

The sidebar has evolved over time to become an integral component of contemporary web

application layout. With the help of (Chen et al., 2017), I will split the sidebar evolution into

phases:

Early web design (1990s to 2000s): In the early days of web design, sidebars served primarily

as a separation between content and navigation. They were typically visually simple and static,

and they offered only the most fundamental navigational options, such as links to other pages as

demonstrated in Figure 3.1.

Figure 3.1: AOL 1990-2000

With the rise of social media platforms in the mid-2000s, the sidebar evolved to include social

widgets and tools, including feeds, sharing options, and notifications as shown in Figure 3.2.

With the introduction of responsive web design in the 2010s, the sidebar became more flexible

and adaptable to various screen sizes (web and mobile view). It became a hamburger menu on

11

Chapter 3. Dynamic sidebars 12

Figure 3.2: AOL 2000-2010

mobile devices and a full-screen menu on larger screens.

With the advancement of web technologies such as HTML5, CSS3, and JavaScript, the sidebar

became more interactive and dynamic in the 2010s and 2020s. In addition to interactive widgets

such as calendars, chat boxes, and search boxes, animations and transitions were added to enhance

the user experience as displayed in Figure 3.3.

Modern web application design (2020s): The sidebar has become an integral part of the user

interface in modern web application design. Not only is it used for navigation, but it also displays

contextual information, notifications, and user settings. Additionally, the sidebar has become more

personalized, with the ability to tailor its layout and content to the user’s preferences and behavior

as shown in Figure 3.4.

In conclusion, the sidebar has evolved significantly since its introduction to web design. Changes

in technology, user behavior, and design trends have contributed to its development. Today, the

sidebar is an integral component of the design of contemporary web applications, offering users a

personalized and interactive experience.

Chapter 3. Dynamic sidebars 13

Figure 3.3: AOL 2010-2020

Figure 3.4: AOL 2020-2023

Chapter 3. Dynamic sidebars 14

3.2 Sidebar Reactivity

With the development of the dynamic sidebar solution, sidebars were created to be more than

purely static screen components. They were designed to be reactive, which allows them to respond

to user actions in real time. This is made possible by the deployment of a service that acts as an

intermediary between the components and the sidebars.

When a user interacts with an element on the screen, such as by clicking a button or entering

text into a form, the interaction generates a response in the service. The service then transmits this

action to the relevant sidebar or component, which can subsequently adjust its state to reflect the

screen changes as described in Figure 3.5.

This strategy is particularly effective because the sidebars are active players in the user expe-

rience, as opposed to merely being inert screen components. They can interact with one another

and with the components, providing for a more integrated and smoother experience for the user.

This strategy symbolizes the future of sidebar design, since it permits greater flexibility and

customization while retaining a high degree of responsiveness and usability. Acro Companion is

able to remain at the forefront of web application development and give its clients with a cutting-

edge user experience by using this dynamic, reactive approach to sidebar design.

Chapter 3. Dynamic sidebars 15

Figure 3.5: Sidebar reactivity

Chapter 3. Dynamic sidebars 16

Chapter 4

Dinamic sidebar Proof of concept (First
iteration)

In this chapter, I will discuss the first design cycle of the Acro Companion web application, includ-

ing the iterations and decisions made in the Dinamic sidebar Proof of concept iteration to improve

the user experience and interface, as well as address the flexibility issue.

4.1 Problem

Before I get into the specifics of the current Acro companion UX/UI design concerns, I’ll explain

how they arrived to this problem.

Acro Companion is still a startup, and the main objective has been to be flexible and give as

many features as possible in order to attract customers and keep the company viable. All develop-

ment has been requested by the primary users, who are coaches, clubs, and competition organizers,

as described previously in the Organizational Setting section (1.2). When one of these users re-

quires assistance, they contact the business analyst via email or in person during competitions.

If the business analyst authorizes the development, the design team will prepare a design that

will be executed by the developers. As shown in Figure 4.1, we will go back and forth between

the development team and the business analyst until it is cleared for deployment.

This interaction prompted the need to swiftly build and redevelop, and the easiest choice was

to add multiple title bars to present all the content, resulting in the need to reassess and evolve

the UX/UI. With this in mind, it’s clear to see how the present solution wasn’t flexible enough to

support the rapid development of services or dynamic enough to only show what the user needed

to view at any given moment.

The amount and complexity of Acro Companion’s provided products have caused their UI

to become inconsistent. As shown in 4.3, certain pages have sidebars, title bars with menus and

sub-menus, and others have multiple navigation bars, which may mislead and confuse users.

The Acro Companion web application faced several issues related to user experience (UX).

To address these issues, I decided to divide the web application into two sections: one for non-

logged-in users and another for logged-in users.

17

Chapter 4. Dinamic sidebar Proof of concept (First iteration) 18

Figure 4.1: Company relation diagram

Chapter 4. Dinamic sidebar Proof of concept (First iteration) 19

Users who were not logged-in could only view competitions, login, check available services,

and view the manual pages. However, logged-in users’ access can vary slightly because it is

determined by their user level. It has all the features that a non-logged-in user has, plus additional

options like profile management, sheet creation, sheet loading, and organization administration.

With this conceptual shift, it was possible to simplify the user interface by making it look like

a simple blog and reusing the old title bar to help non-logged-in users navigate between pages.

The intention was to provide non-logged-in users with only the exact information and context

necessary to understand the Acro Companion services and the gymnastics world. For the logged-

in users, the intention was to provide a far more comprehensive UX for the users who spend more

time on the Acro Companion web application.

The non-logged-in user interface was outstanding. The interface had features that were easy

to access, comprehend, and use for all the operations that the user required. The UX was also

satisfactory, though there were some minor issues with adapting the content to smaller displays,

and some pages didn’t feel cohesive with the design of Acro’s remaining web application.

On the ”Services” page, for example, the user must first scroll to see the page content that they

previously clicked. As shown in Figure 4.2, the title and description take up half of the page.

Figure 4.2: Real-Time Judging Service page

The user interface for logged-in users, on the other hand, was complicated and, at times,

unpleasant to use. Figure 4.3 shows how multiple title bars were displayed on some pages to move

between distinct content or pages.

Figure 4.3: Multiple title bars

Chapter 4. Dinamic sidebar Proof of concept (First iteration) 20

As a result, the most important problem to solve was the UI/UX for logged-in users; once

solved, it may bring more users back to Acro Companion.

4.2 Design/building

To improve the UX/UI issues faced by Acro Companion and described in 4.1, I identified two

possible solutions. Both solutions, would involve an assessment of the UX design, including the

redesign of certain pages to better fit Acro Companion’s new vision. The UI design solution for

logged-in users, I could either implement a ”Dynamic Title bar” or a ”Dynamic Sidebar” solution.

Dynamic Title bar Solution: During the first problem analysis of Acro Companion’s web

application, it became clear that some pages required more than one title bar so that users could

move between sub-pages. The idea presented in the team meeting was a single title bar, and its

content would change depending on user context. When the user selects a button from the first

title bar, the title bar updates to show the child buttons only visible from that component, as shown

in the mockups below (4.4).

Figure 4.4: Title bar mockup

In comparison to the current solution, the dynamic title bar would address the following issues:

1. Because the dynamic title bar would ”host” all the possibilities in a single bar, the title bar

stack problem would be eliminated.

2. Because this solution is very similar to the one that was implemented, the period for user

adaptation would be much shorter.

Dynamic Sidebar Solution: The concept is the same as the dynamic title bar solution, but

with a different approach, we would have a single sidebar whose content changes depending on

the user context (e.g., user type, user level, user route). As shown in Figure 4.5, this sidebar would

remain on the left side and could be hidden to save space if needed by the user.

In comparison to the current solution, the dynamic sidebar would address the following issues:

1. Because the dynamic sidebar would ”host” all the options in a single sidebar container, this

solution would eliminate the title bar stacking issue.

Chapter 4. Dinamic sidebar Proof of concept (First iteration) 21

Figure 4.5: Sidebar bar mockup

2. The larger form factor of this solution would make it easier to increase its complexity for

future development by simply adding a new component to the sidebar.

3. All product modifications are now centralized in the sidebar for greater consistency and ease

of use for the user.

4. The dynamic sidebar can be hidden to save space if desired by the user.

After comparing the two solutions, it became clear that the dynamic sidebar would be the better

option for addressing the issues with Acro Companion’s UX and UI, because the dynamic title bar

would not solve all the existing issues and could cause significant implementation difficulties.

Some drawbacks stemmed from the fact that having a small area to display content could lead

to some UX/UI problems, such as the difficulty in displaying the navigation’s progression or the

impossibility of going to a parent page after entering a child page without implementing a method

to return to the previous page.

The dynamic sidebar solution, on the other hand, did not have any of the issues mentioned

above and had other advantages. Because the sidebar is a large form factor, it would be easier to

fit all the content there and customize with icons and animations that are important for the user

experience. Another consideration is that monitors are wider than they are tall, so the title bar

would take up a lot of space that is already limited. And, while the title bar would need to be

always visible on smartphones, we can hide it with the sidebar.

In the end, the main UI element (the sidebar) was designed based on the principles of affor-

dance theory. According to (Stendal et al., 2016), ”affordance” refers to the ”action possibilities”

or capabilities latent in the environment, regardless of the individual’s ability to recognize them,

but always in relation to the actors and therefore dependent on their capacities.

Chapter 4. Dinamic sidebar Proof of concept (First iteration) 22

When we conceptualize the sidebar, we have action possibilities and user intents. When ap-

plied to the custom sidebar solution, the sidebar is dynamic and only displays necessary options,

providing the user with relevant options. The dynamic sidebar can be represented as two main

affordances: the first one is that the dynamic sidebar is a affordance as a whole, it only appears

for specific users and adapts it’s structure regarding the context. The other affordance is that the

content displayed inside the dynamic sidebar has affordances that adapt the content regarding the

user type.

Affordances are more important for logged in users because different levels of users have

access to different states of the products or restrictions.

All concerns were presented to Acro Companion, and the dynamic sidebar solution was chosen

in response.

4.3 Intervention

The development of the new custom sidebar will have a substantial impact on the UI/UX since it

will consolidate navigation and content in one location, resulting in a much easier interaction for

the user and mitigating the issues depicted in Figure 4.3.

Furthermore, the sidebar delivers a more agile solution. Technically, the sidebar will be able

to mimic menus and pages, and it is essential that they are different components. This approach

will greatly simplify and structure future development.

This sidebar’s sophistication goes beyond the typical sidebar used only for page navigation.

The goal is to build a custom component that modifies the user’s content based on the path/URL

as well as the user’s current state and level. Because of the web application’s complexity, all

sidebar content will be lazy loaded to save network bandwidth and resources and improve the web

application’s load time.

As a proof of concept, the first interaction was created, followed by the properties listed below:

1. Added some extra properties to make fine management and control precisely what happens

to the sidebar;

2. Incorporate existential elements of user management to the sidebar;

3. Restructuring web application entry point to competition overview;

4. Integrate the old sidebar from Manual page to the new custom sidebar.

These properties allowed me and Acro to determine whether the solution chosen had every-

thing necessary to be flexible and adaptable to the current Acro Companion web application.

Beginning with item 3.

The login component in the Acro Companion web application was originally divided into two

parts: one that was a login component that had a picture switcher, and the other that included a

router outlet where Sign in, Sign Up, Forgot Password, and Reset Password were loaded. In item

Chapter 4. Dinamic sidebar Proof of concept (First iteration) 23

2, the objective was to incorporate all the login components that were loaded onto the router outlet

into the sidebar, eliminating the need to have the router outlet load and switch between all the

login components.

With this change, the login component would only include the picture switch, while the sidebar

would handle loading the necessary login components. As shown in Figure 4.6, the left half of the

image represents the sidebar, which is where all possible login pages are lazy loaded, and the right

half is the login component.

Figure 4.6: Login Sign-up Redesign

The implementation of the custom sidebar for the competition overview page involved mov-

ing the functionality side, previously located on the left of the page, to the sidebar. The picture

switcher, which provided the user with a preview and context for the competition, remained on the

competition component. This can be seen in Figure 4.7. The goal of this change, together with

item 2, was to improve the user experience and make navigation easier by concentrating content

and navigation in a single location and increasing the consistency between similar components.

In item 4, we aimed to move the angular material sidebar to the custom sidebar while retaining

all its functionality. As shown in Figure 4.8, this relocation necessitated some changes to the

properties of the sidebar. Previously, whenever a user selected an element, the URL would change,

causing the sidebar to reload. However, in this case, it was required that the router change without

triggering a router change.

I was able to determine whether the chosen strategy would work for the Acro Companion web

application after implementing these four items, and I concluded that it met all the requirements

described in the Design and Building section (4.2).

4.4 Practical implementation

The dynamic sidebar’s content is intended to change based on the user’s current location within

the web application. To manage this feature, I built a sidebar service that listens for changes to

Chapter 4. Dinamic sidebar Proof of concept (First iteration) 24

Figure 4.7: Competition Overview page with sidebar

Figure 4.8: Manual page with sidebar menu on custom sidebar

Chapter 4. Dinamic sidebar Proof of concept (First iteration) 25

the URL and determines which content to display in the sidebar based on the current path. For

example, we will receive an update whenever the URL changes, and depending on the path, we

will have the option to show or hide the custom sidebar, and if we show the sidebar, the content

will change.

The main challenge was to find the best solution that would not have an impact on the entire

web application while remaining as adaptable as possible.

1. Two router-outlets

(a) One for sidebar

(b) One for content

2. Sidebar as ngIf

(a) One for sidebar - Component in app-component called sidebar

(b) One for content - router-outlet

3. Dynamic ng-content for sidebar

(a) One for sidebar - Component in app-component called sidebar

(b) One for content - router-outlet

An Angular router outlet is a placeholder that Angular dynamically fills based on the current

router state. It is used to render the component for the current route. In other words, it is a

container that is used to render the view for a particular route. It is represented by the ”¡router-

outlet¿” element in the template. When the router navigates to a new route, it uses the router outlet

to place the component for that route into the view.

In item 1, the risks were: whether it was feasible to develop something that worked; the

increased complexity of communicating between the sidebar and the content; the need to change

the URL paths because the components are loaded into an existing component, and it would be

different if we had two router-outlets. This option prevents the end user from bookmarking the

Acro Companion Web application link.

The risks in item 2 as ngIf were the number of ngIfs on the sidebar component to determine

which component to show, which would be difficult to understand and maintain over time.

In item 3 , the risks were whether it was feasible to build anything that worked due to the

complexity of the web application.

The ability to implement lazy loading is the most significant opportunity for all items. After

some deliberation about the risks and benefits of each option, the Dynamic ng-content for sidebar

approach, would allow the current routing structure to be maintained while only adding a new

component to the app component, which would be the custom sidebar. Inside this new component,

there would be an ng content with the sidebar options, which would be dynamic, lazy-loaded, and

Chapter 4. Dinamic sidebar Proof of concept (First iteration) 26

would change based on the router path. I meet all the main requirements for the web application

with this option.

The first step was to develop a way to load components in a lazy manner; otherwise, switching

to a sidebar component would be a regression to the fluidity of the web application. There were

several technical issues, such as the inability to directly load a component into another component

dynamically. The workaround method was to load the module and ”build” the component within

it.

Following the completion of this process, the next steps in testing the implementation were to

incorporate and restructure some of the existing sidebar components, as described in the section

4.2.

Sidebar Specification

In this section, I will be explaining the sidebar component and the service that manages it. The

Sidebar Component has an Array type of ”DynamicComponentStructure” objects each object or

in other words dynamic component specification is defined by:

Table 4.1: Sidebar Specification
Specification Description

routerStarts Defines when that component will be shown
lazyCompoent Is the Component that will be shown

lazyModule Used to load in a lazy module the component
sidebarWidth Specify the sidebar width

sidebarPosition Specify the default sidebar position
SidebarButtonPosition Define the default sidebar button position

The array of objects is then used in a function that listens for URL changes and loads the

appropriate component into the sidebar component based on those changes. When the component

has been created, it must be resized to fit the screen. So I wrote a custom function to handle it,

which will make use of the recently populated Observables from the previous function. I adjusted

the component using the ”DynamicComponentStructure” properties.

To summarize, there are six major steps in this sidebar component:

1. Listening to the url;

2. Find the correct component;

3. Clear the container reference of the previous component loaded;

4. Populate all Subjects;

5. Load the new dynamic component;

6. Resize the component to adjust to the screen;

Chapter 4. Dinamic sidebar Proof of concept (First iteration) 27

The service that handles communication between the sidebar component and the app compo-

nent is the SidebarService, which hosts all subjects and observables as well as all the setters used

to manage all the properties of the sidebar. The subjects defined in this service are:

1. sidebarPosition;

2. sidebarWidth;

3. sidebarDisplayBool;

4. sidebarButtonPosition;

5. sidebarComponent;

6. sidebarButtonState;

7. sidebarState;

4.5 Evaluation

To help explain the Acro Companion evaluation of the Custom sidebar implementation and design

changes, the previously described 2-by-2 Matrix in 2.4 will help understand how and why the

evaluation was done. To begin, we can divide the evaluation into two major parts:

• In house evaluation, Artificial Ex Post and Naturalistic Ex Post.

• Users evaluation, Naturalistic Ex Post.

The solution was deployed to the experimental environment after the Dinamic sidebar Proof

of concept iteration was completed, allowing Acro Companion to begin performing naturalistic ex

post evaluations in the sidebar.

According to Acro’s team, the core sidebar solution architecture was robust but not yet ready

for production. The solution appeared to be flexible enough to address the existing issues, but at

the time, multiple areas of the web application were not integrated with the sidebar. So, there was

no point in continuing to evaluate the solution in an Artificial Ex Post manner.

4.6 Reflection

To conclude this chapter, the key difficulties assigned were from the Acro Companion web appli-

cation’s logged-in section. The search for a solution and the debates about it all started with this

first key UX/UI review, which came up with the principles ”need to be flexible and agile.”

Chapter 4. Dinamic sidebar Proof of concept (First iteration) 28

Chapter 5

Navigational sidebar (Second iteration)

During the navigational sidebar iteration, I continued to develop and expand the sidebar solution

introduced in the initial iteration. This chapter presents the adjustments made to address the chal-

lenges related to the flexibility and dynamic nature of the web application’s user experience and

interface design. The objective is to provide a solution that addresses the need for a more flexible

and agile web application capable of supporting the rapid development of services and meeting

the needs of the primary users, which was not met by the initial iteration.

5.1 Problem

This iteration was prompted by the need to transform the concept (prototype) created in the previ-

ous iteration into a production-ready solution.

The first version of the dynamic sidebar solution only adapted six components (sign-in, sign-

up, forgot password, reset password, manual, and competition overview). While none of these

pages had UX issues, it was easiest to test proof of concept without breaking major functionality

on these pages.

To develop a production-ready solution, however, it is necessary to address the vast majority

of UX issues in the logged-in portion of the web application.

5.2 Design/building

In this section, the goal was to find a solution that was stable enough for production. There were

two primary issues that required to be addressed, robustness and extension:

• Extension of dynamic sidebar components;

• Addition of a navigation sidebar.

A mockup of the dynamic sidebar with two states was designed to demonstrate the function-

ality and appearance of the updated version of the sidebar. The first state displays buttons for

changing the content of the main component, while the second state of the sidebar shows the

navigation content.

29

Chapter 5. Navigational sidebar (Second iteration) 30

Besides the hamburger button that was already added in the Dinamic sidebar Proof of con-

cept iteration, The switch button was also added to provide an alternative way for users to toggle

between the two states of the sidebar.

Figure 5.1: Sidebar with navigation state mockup

Figure 5.2: Sidebar with component state mockup

Extension of dynamic sidebar components:

The extension of dynamic sidebar components was implemented by evaluating and compiling

a list of components that required relocation or modification to the sidebar, including:

• Livestream component;

Chapter 5. Navigational sidebar (Second iteration) 31

• Sheet-view component;

• Registrations information component;

• Verify email component.

For each new dynamic sidebar component, four main files were created: a typescript file

containing all the HTML and component logic, a SCSS file containing all custom styling, a module

containing all necessary modules, and another typescript file containing all the communication

between the sidebar and the component.

Changes to the programming paradigm complicated the transition of the dynamic sidebar com-

ponents. The previous implementation made use of a functional programming paradigm, which

resulted in the development of all components within a single component without external commu-

nication. To achieve a more dynamic solution, however, a paradigm shift to reactive programming

was required. This paradigm, which is predicated on the notion that everything is a stream observer

and observable, demanded extensive low-level code development to ensure component compati-

bility and functionality. This aspect of the development process will not be discussed further in

the thesis, as it has no bearing on the final outcome of the sidebar.

Addition of the navigation sidebar:

The addition of the navigation sidebar was accomplished by dividing it into three smaller

sidebar components to make it easier for developers to work on specific components without in-

terfering with the user’s ability to navigate between pages. The proposed end-user structure aims

to improve readability and consistency. As described in subChapter Design/building 4.2 with re-

spect to user level and user permissions, the content would adjust. The three selected components

are:

• Main menu (5.4).

• Organisation menu (5.5).

• Developer menu (5.6).

In the top was added a button group to navigate between the different navigation components

(Main menu, Organisation menu, Developer menu).

Figure 5.3: Button group

The main menu displays the user’s profile picture and name. As shown in Figure 5.4, the tariff

sheet buttons and all the buttons that the user has when not logged in have been added to this

menu.

Chapter 5. Navigational sidebar (Second iteration) 32

Figure 5.4: Main sidebar (navigational sidebar iteration)

Figure 5.5: Organisation sidebar (navigational sidebar iteration)

Chapter 5. Navigational sidebar (Second iteration) 33

The Organisation menu, have all the buttons necessary to manage Federations, Clubs or com-

petitions as we can see in Figure 5.5

As shown in Figure 5.6, the Developer menu contains only buttons accessible to developers

and users with user level greater than 55.

Figure 5.6: Developer sidebar (navigational sidebar iteration)

5.3 Intervention

In the intervention, the organization component of the Acro Companion web application had to

have its architecture modified.

The previous architecture consisted of a parent component that contained all the organization’s

components, as well as the logic used to display and conceal each component and calculate user

context.

As shown in 5.7, whenever a subcomponent is added to the parent component, it is necessary to

accommodate all the logic within the organisation component without breaking what has already

been implemented.

The implemented architecture was difficult to scale and complicated to debug when presented

with bugs. The architectural transformation had three primary goals and steps:

• Remove child components from main organisation component;

• Fix and update all the routing for the components;

Chapter 5. Navigational sidebar (Second iteration) 34

Figure 5.7: Organisation Admin Component

• Move all the logic to multiple services with observables.

Implementation of the sidebar was significantly delayed and lengthened due to the need to

alter the architecture of a major component that hosts all the main products. The enhancement

to the codebase’s long-term maintainability or extensibility made this change optional, but it was

deemed too beneficial to forego.

Because the logic had to be migrated and adapted to other areas of the application, this change

impacted all the tests that had already been developed to test that side of the application, as well

as introducing numerous failure points.

Even though the updated version of the sidebar was complete, it was not deployed due to its

impact on all the tests and the risk of introducing failures. During a period of intense competition,

this option was not viable.

Despite this, the Acro team welcomed the new architecture of the organization’s administra-

tion, which featured independent components and services, because it would improve the imple-

mentation structure.

5.4 Practical implementation

For this practical implementation, the dinamic sidebar proof of concept iteration’s logic was re-

fined and additional logic was added to handle the transition between the sidebar with navigation

Chapter 5. Navigational sidebar (Second iteration) 35

content (Figure 5.1) and the sidebar with buttons to change the content of the main component

(Figure 5.2).

Additionally, a new file structure was defined, which included a directory for the sidebar com-

ponent and subdirectories for the sidebar button component and all other sidebar components. This

new structure provided Acro Companion with the organization it lacked and required to grow.

Figure 5.8: File structure (navigational sidebar iteration)

Two States Sidebar Specification

This section will describe the sidebar component and the service that controls it. Despite the fact

that the definition was similar to the dinamic sidebar proof of concept iteration, some variables

were necessary to define it more precisely. The Sidebar Component has an array of ”Dynam-

icComponentStructure” objects, with each object’s dynamic component specification defined as

follows:

This array of objects is then utilized by a function that monitors URL changes and, based on

those changes, loads the appropriate component into the sidebar component. Once the component

has been created, it must be adjusted to the appropriate screen size. Consequently, I created a

custom function to manage it by utilizing the recently populated Observables from the preceding

function. There, I adjusted the component using the ”DynamicComponentStructure” properties.

In conclusion, the six major steps in this sidebar are identical to those described previously in

the sidebar definition section (5.4):

SidebarService is the service that manages communication between the sidebar component

and the app component. It contains all subjects, observables, and setters used to manage the

sidebar’s properties. These are the subjects defined by this service:

Chapter 5. Navigational sidebar (Second iteration) 36

Table 5.1: Sidebar Component Specification
Specification Description

routerStarts Defines when that component will be shown
lazyCompoent Is the Component that will be shown
lazyModule Used to load in a lazy module the component
sidebarWidth Specify the sidebar width
sidebarPosition Specify the default sidebar position
sidebarButtonPosition Define the default sidebar button position
hasNavigation Define the if page on a specific route had the navigation

sidebar
hasDynamicComponent Define the if page on a specific route had the dynamic com-

ponent sidebar
hasHamburgerButton Define the if page on a specific route had a close sidebar

button
hasSwitchButton Define the if page on a specific route had a switch sidebar

button

1. sidebarPosition;

2. sidebarWidth;

3. sidebarDisplayBool;

4. sidebarButtonPosition;

5. sidebarComponent;

6. sidebarButtonState;

7. sidebarState;

8. sidebarHasNavigation;

9. sidebarHasDynamicComponent;

10. sidebarHasHamburgerButton;

11. sidebarHasSwitchButton;

The sidebar component had only three functions: one for handling all route changes and com-

ponent loading, another for handling resize events, and the last for switching between sidebar

contents.

5.5 Evaluation

To assist with the evaluation, I’m going to follow the framework presented and described in 2.4.

Chapter 5. Navigational sidebar (Second iteration) 37

To clarify, the second internal evaluation, dubbed Artificial Ex Post, will help identify critical

errors or bugs that should not reach production and develop end-to-end or unit tests to increase

confidence in the sidebar development. Then, the in-house evaluation, known as Naturalistic Ex

Post, will assist in identifying significant UI/UX design issues and discussing alterations.

During the second internal evaluation, several issues, including the competition overview side-

bar, the placement of buttons across all web applications, and the consistency of the sidebar across

all pages, were discussed.

The evaluation at the conclusion of the second sidebar development revealed the following

issues:

As illustrated in figures 5.9 and 5.10, the need to toggle between the sidebar with navigation

buttons and the content page buttons hindered the fluidity of the user experience (UX) on certain

pages of the Acro Companion web application.

Figure 5.9: Competition Page (Sidebar with page content)

After completing this evaluation, we hit a roadblock and had to continue discussing how to

resolve the UX design issue that the implementation of the dynamic sidebar had caused.

5.6 Reflection

After a second evaluation, we discovered issues with the user interface and the user experience.

The UX/UI problems that we believed would be resolved by implementing the dynamic custom

sidebar were not addressed, and the UX/UI was actually made worse.

Putting navigation and component functions in a single location seemed consistent and orga-

nized when discussing the proposed solution. However, after testing the internally implemented

solution, it was difficult to comprehend the application’s state, and users often required more than

double the number of clicks to reach any portion of the logged-in application.

In the default Acro solution, for instance, to access the ”ongoing competitions” livestream,

Chapter 5. Navigational sidebar (Second iteration) 38

Figure 5.10: Competition Page (Sidebar with navigation buttons)

Figure 5.11: Competition Page (Sidebar closed)

Chapter 5. Navigational sidebar (Second iteration) 39

it was necessary to click ”ongoing competitions” in the title bar and then click ”livestream.” To

utilize the dynamic sidebar solution, it was necessary to open the sidebar, click the ”ongoing

competitions” button, change the sidebar to display the ongoing competition sidebar component,

and then click the ”livestream” button.

The requirement for users to toggle between navigation and content would result in an un-

intuitive interface, and because the sidebar’s components would be lazily loaded, the user would

experience a slight delay when using it.

Chapter 5. Navigational sidebar (Second iteration) 40

Chapter 6

Content sidebar (Third iteration)

In this content sidebar iteration, I will discuss the modifications made to the Acro Companion

web application to address these issues from the navigational sidebar iteration and how they were

implemented.

6.1 Problem

The objective of the content sidebar iteration was to address the UX/UI issues identified in the

navigational sidebar iteration by refining the design and functionality of the dynamic sidebar, with

a focus on enhancing the user experience and ensuring the solution is production-ready. The

objective was to identify a stable and adaptable solution that addresses the identified issues and

fulfills the requirements of the Acro Companion web application.

6.2 Design/building

I proposed a new design solution for the Acro Companion web application by introducing multiple

dynamic sidebar containers, similar to those used by popular web applications such as Facebook

and Stack Overflow. If we examine Facebook’s web application (which is a single page applica-

tion), for instance, we can see that the application is divided into three main containers:

1. Navigation;

2. Main;

3. Complementary;

This method permits the application to display specific content in multiple sidebar container,

which can enhance the user experience.

As shown in Figure 6.1 and 6.2, Facebook uses the ”navigation” container for navigation

between different ”pages,” the ”main” container to display the content of the selected ”page,” and

the ”complementary” container to display additional information and online Friends.

41

Chapter 6. Content sidebar (Third iteration) 42

Figure 6.1: Facebook layout structure

Figure 6.2: Facebook mockup

Chapter 6. Content sidebar (Third iteration) 43

Another example of a big company that uses the dynamic container concept is Stack Overflow

that as we can see in figure 6.3 and 6.4 the left dynamic container has the left-sidebar id, the center

container has the mainbar id and the last one has the sidebar id.

Figure 6.3: Stack Overflow layout structure

Figure 6.4: Stack Overflow mockup

This design solution featured two dynamic sidebars, one for navigation and one for content

management, allowing for greater flexibility and user customization, which ultimately led to an

enhanced user experience. This new design solution was implemented by including a third con-

tainer for a second dynamic sidebar, allowing for a more uniform user interface and more layout

customization options.

Double Dynamic Sidebar Solution: This solution is similar to the one described in 4.2, but

slightly more complicated:

This solution includes two dynamic sidebars, one on the left labeled ”Navigation Sidebar” and

one on the right labeled ”Content Navigation sidebar.” On the left sidebar, we will only display

Chapter 6. Content sidebar (Third iteration) 44

content/buttons used for navigation between pages, and on the right sidebar, we will only display

buttons to manage the content of the main displayed component and other components, as shown

in figure 6.5.

Figure 6.5: Competition Navigation sidebar

This design would provide the user with a greater degree of flexibility when using the web

application. They would have several options for tailoring the layout of the interface to their

needs and preferences. They could, for instance, leave the left sidebar open while keeping the

right sidebar closed, or they could close both sidebars in order to have more space to interact with

the primary component. Alternately, they could close the left sidebar and only use the primary

component and the right sidebar. This level of customization would enhance the overall user

experience by enabling the user to tailor the interface to his or her specific requirements.

6.3 Intervention

In this content sidebar iteration the objective was to finalize all the sidebar remarks from the second

evaluation and make all the testing more structured and covering a higher coverage of the project.

The development of the navigation sidebar necessitated a new user interface for the main

menu, developer sidebar, and organization sidebar. In addition, it was necessary to restructure and

implement existing components used in multiple locations to display different types of buttons.

The implemented solution was assigned to the previous organization component 5.7 and had to

be relocated to the content management sidebar. This solution had to be implemented within the

sidebar component of the content management system, but it had to be activated in a different

manner. Each component that required these buttons was required to create them internally. Acro

has some pages that only require the content management sidebar, others that only require the but-

tons, and occasionally both, so it was illogical to always display both, thereby increasing resource

Chapter 6. Content sidebar (Third iteration) 45

consumption. With the implementation of the sidebar, the web application’s structure and imple-

mentation logic had to be modified to ensure that functionality was not broken. It was necessary

to fix all existing tests and add additional ones.

There were three new types of tests added:

• Unit tests

• End-to-End tests

• Integration tests

The business analyst proposed the necessity to add a way to evaluate all the observables added

to the organization, as well as all the possible triggers for those observables, as part of the Unit

tests. For the End-to-end tests, navigation tests were added to ensure that the sidebar would display

the correct navigation sidebar with the correct option and that all sidebar buttons navigated to the

correct location. Was added to ensure that all logic in the organization worked and for scoring and

evaluating. The integration tests were added to identify existing database request errors.

6.4 Practical implementation

Due to the addition of a second sidebar in this iteration, the file structure and file names for sidebars

had to be modified to maintain a readable and understandable structure. As shown in figure 6.6, we

have two primary directories, one for the navigation sidebar content and the other for the content

management sidebar content.

The remainder of the structure is virtually identical; each sidebar has a button to open or close

it, as well as a directory containing all the components that can be hosted within it.

In this content sidebar iteration, the sidebar structure of the Navigation Sidebar was stream-

lined, and performance issues were assessed.

Left Sidebar (Navigation Sidebar):
The sidebar template, as depicted in Figure 6.7, consists of the ”holder-logged-in” element,

which is the navigation structure sidebar, and the ”navigation burger” element, which is the

open/close sidebar button.

These two elements are surrounded by a ”ng-container” in order to utilize structural directives

without the need for an additional element, ensuring that the only DOM modifications made are

those dictated by the directives themselves. This solution improves performance as a result of

the browser rendering fewer elements. In order to dynamically trigger changes in the sidebar’s

position, state, and animations, the properties ”class.open” and ”style.position” are overridden on

the sidebar styles using observable. The ”ngif” property is used to hide the sidebar in a specific

component. This is a necessary feature because Acro Companion has pages that are independent

from the main user web application; in some cases, these pages are used to display competition

information on large screens.

Chapter 6. Content sidebar (Third iteration) 46

Figure 6.6: File structure (content sidebar iteration)

Figure 6.7: Navigation Sidebar template

Chapter 6. Content sidebar (Third iteration) 47

To increase readability, multiple functions were added to split the complexity, thereby dividing

it. The primary functionality of the sidebar is defined by three main functions: as depicted in figure

6.8 the function ” subscribeToCurrentRoute()” manages all the url event change and retrieves

the correct component definition to display. The ” subscribeToResizeAndComponentConfig”
updates the sidebar styles and resize state because the sidebar has different behaviours depending

on the window width. Finally the function ” subscribeToHamburgerToggleAction” handles the

open/close sidebar state logic because the open/close hamburger is a dumb component.

Figure 6.8: Navigation Sidebar ngOnInit

The ” highlightSidebarMenuItem()” function is used to highlight the currently selected but-

ton in the navigation sidebar. This function is triggered whenever the url changes. The id is

inserted into a stream of sidebar button ids, and the current value is utilized within the template.

The figure 6.9 displays all the sidebar component’s functions. Every input and output of a

function is strongly typed, which is one of the advantages of the Typescript framework, reducing

the likelihood of a function call with incorrect arguments.

The Navigation Sidebar Component has an array of ”NavigationSidebarComponentConfig”

objects, with each object’s dynamic component specification being defined by:

1. label - That defines the name of the component

2. routerStarts - That defines when that component will be shown

3. closedByDefault - That defines if the sidebar is closed by default

4. sidebarAndContentStructure - That will define the structure of the sidebar

A new Sidebar component (content-management-sidebar) and sidebar service were developed

(content-management-sidebar-service).

Right Sidebar (Content Management Sidebar):
The sidebar template, as depicted in Figure 6.10, consists of the ”content-management-burger,”

which is the open/close sidebar button, and the ”dynamic-content-holder,” which is the content

management sidebar.

Chapter 6. Content sidebar (Third iteration) 48

Figure 6.9: Navigation Sidebar functions

Chapter 6. Content sidebar (Third iteration) 49

The ”dynamic-buttons-holder” presented in the content management sidebar is used to assign

a collection of small buttons. This functionality operates differently than the primary content

management sidebar; the trigger for this element is a component rather than a change in route.

The sidebar styles’ ”class.border” and ”style.width” properties are overridden with observable

to trigger changes in the sidebar’s width, state, and animations. The ”ngif” property is used to hide

the sidebar hamburger. This is a necessary feature because Acro Companion has pages that only

require the ”dynamic-buttons-holder” and must be always visible.

Figure 6.10: Content Management Sidebar template

As illustrated in Figure 6.12, multiple functions were added to split the complexity and im-

prove readability. The content sidebar main functionality is defined by the tree main function, as

shown in 6.11. The function ” subscribeToRouterEvents()” handles all url event changes and

displays the correct component definition.

The ” subscribeToResizeComponentConfig” updates the sidebar’s styles and resize state, as

the sidebar’s behavior varies based on the current component. Lastly, the function ” subscribeToHamburgerToggleAction” man-

ages the open/close sidebar state logic because the open/close hamburger is a dumb component.

Figure 6.11: Content Management Sidebar ngOnInit

The Navigation Sidebar Component has an Array of ”ContentManagementSidebarContent”

objects, each of which is defined by:

1. label - That defines the name of the component

2. routerStarts - That defines when that component will be shown

Chapter 6. Content sidebar (Third iteration) 50

Figure 6.12: Content Management Sidebar functions

3. routerIncludes - That defines when a very specific component will be shown

4. lazyComponent - That is the Component that will be shown

5. contentManagementSidebarWidth - That will specify the sidebar width

6. hideHamburger - That will enable the possibility to not having button

The Content Management sidebar functions identically to the Navigation sidebar, utilizing a

different Array but maintaining the same concept; only the resizing logic is altered.

In some components of the content management sidebar, it was necessary to always display

a group of components. This collection of components would serve as a holder for the buttons

required by those components. As shown in Figure ??, the small container contains the group of

buttons and the large container contains the more complex components.

In addition to the navigation and content management sidebars’ underlying logic, additional

functionality was required to improve user interaction and comprehension. This included the

incorporation of a background and a menu selection option for user convenience.

As mentioned previously, the navigation sidebar’s structure includes a ”sidebarAndContentStruc-

ture” property that can exist in two distinct states. This permits flexibility and adaptability in the

sidebar’s design and functionality.

1. SideBySide - Make that the sidebar is side by side with the main component;

2. onTop - Make that the sidebar is on top of the main component.

As depicted in Figure 6.13, the ”SideBySide” state is utilized on pages where the user fre-

quently needs to navigate to other pages for convenience. Alternatively, the ”onTop” state, as

Chapter 6. Content sidebar (Third iteration) 51

Figure 6.13: Navigation on top structure

Figure 6.14: Navigation side by side structure

Chapter 6. Content sidebar (Third iteration) 52

depicted in Figure 6.14, is utilized on pages where the user is engaged in a task and navigations

would result in the loss of work.

The backdrop was added to the navigation sidebar when it is displayed above the content.

This ensures that the user cannot continue editing the page while the sidebar is visible. As shown

in Figure 6.15, the backdrop was added to the app.component so that it encompasses both the

navigation and content management sidebars. The logic for this feature was implemented by

combining the sidebar’s state and position observables.

Figure 6.15: App component template structure

I implemented a function that knows the selected menu item regardless of URL changes. Thus,

the user is always aware of which option they have chosen and can easily navigate the various

menus. As depicted in Figure 6.16, this logic was implemented by monitoring URL changes and

updating an observable with the appropriate menu value.

Figure 6.16: Highlight sidebar menu items

This value then was used to highlight the menu item, as illustrated in figure 6.17, I imple-

mented as well a hover and a selected hover demonstrated respectively in figure 6.18 and 6.19

styles to improve the user experience.

Figure 6.17: Menu selected

Chapter 6. Content sidebar (Third iteration) 53

Figure 6.18: Menu hovered

Figure 6.19: Menu selected and hovered

The addition of the backdrop element, and menu selection element all contribute to an en-

hanced user experience by facilitating the user’s interaction with and comprehension of the side-

bars. These features were implemented to improve the functionality and usability of the web

application and to offer a more streamlined and effective user experience.

6.5 Evaluation

Using the methodology previously described in 2.4, the team discovered some UX issues with

the production-ready final solution during the third internal evaluation (Naturalistic Ex Post). The

team discovered, for instance, that the logic for the left sidebar was occasionally flawed and ineffi-

cient. In addition, the list of organisations that organisation-admin hosts in the sidebar would load

every time the page was refreshed, even if the user was not on that page. Additionally, some ani-

mation overlays did not function when deep linking to specific pages. This was not the purpose of

the iteration, so it was not necessary to address these issues before the solution could be deployed.

For the internal evaluation (Artificial Ex Post), I was able to identify and resolve a few bugs

and issues, but this was insufficient because the Web application coverage was insufficient.

Only at the end of the content sidebar iteration was it possible to deploy the solution and collect

user feedback (Naturalistic Ex Post). However, most of the feedback was not related to bugs, but

rather suggestions for additional enhancements.

6.6 Reflection

Looking back on the development process, it is evident that adding a second sidebar was a major

undertaking. Even if the core implementation was complete, it was still essential to rebuild the

configuration object, create s for communication and reorganize the project structure in order to

reuse a portion of the code used to develop the initial sidebar. Initially, it was feared that this

new feature would complicate the user interface, which could have a negative impact on the user

experience. However, after careful consideration and testing, it became clear that this approach

was required to provide the application with the required level of flexibility. Finding the optimal

balance between providing a user-friendly interface and preserving the flexibility of the application

was one of the greatest challenges during the development process. To achieve the desired result,

Chapter 6. Content sidebar (Third iteration) 54

a significant amount of testing and design iteration were required. Overall, the incorporation of

a second sidebar was a difficult but necessary development step. It enabled a more dynamic and

adaptable user interface, which enhanced the user experience overall. The implementation of tests

and evaluations contributed to the final solution being both functional and user-friendly. This

experience highlighted the significance of careful planning and testing in achieving the desired

result.

Chapter 7

Formalization of learning

In the concluding chapter, I will reflect on the lessons learned during the nine-month process of

developing dynamic sidebars. I will discuss the key takeaways and insights gained from this expe-

rience, including the obstacles encountered and the solutions implemented to overcome them, from

the initial concept to the final implementation. In addition, I will investigate the effect of dynamic

sidebars on the user experience and the overall efficacy of the proposed solution in enhancing

the functionality and usability of the web application. This chapter will provide a comprehensive

overview of the development process and the most important lessons learned.

7.1 Dynamic sidebars

The solution design began with a simple concept of hosting components within a dynamic sidebar.

The dynamic sidebar would work with affordances with the purpose of adapting to the user context

and browser context. This initial iteration served as a proof-of-concept and demonstrated that the

concept to enhance the Acro Companion web application was feasible as illustrated in figure 7.1.

Figure 7.1: First sidebar mockup

55

Chapter 7. Formalization of learning 56

In order to completely remove the title bar, it became necessary to implement a navigation

sidebar as the project progressed. It was necessary to implement a switch between the sidebar

component and the navigation sidebar in order to accomplish this solution. However, this imple-

mentation negatively affected the user experience, so a new sidebar design was implemented as

illustrated in figure 7.2.

Figure 7.2: Second sidebar mockup

Instead of combining the navigation sidebar and content management sidebar in the same

space, the new design separated them into two separate sidebars. In addition, a second dynamic

container was added to the Content Management sidebar in order to hold a group of buttons that

certain components required. The final solution included two sidebar options: one for navigation

and another for content management. The sidebar for content management also featured a second

dynamic sidebar as illustrated in figure 7.3.

In conclusion, the dynamic sidebar is a dynamic element that can be modified using affor-

dances, allowing for greater flexibility in terms of the content that can be displayed and providing

a more uniform user interface. The implementation of the dynamic sidebar was a journey of trial

and error in which various solutions were tested and evaluated, leading to the final solution that

met the application’s requirements and offered a seamless user experience.

7.2 Impact on user experience

The addition of a second sidebar enabled greater content display flexibility, resulting in a more

uniform and understandable user interface. Users were able to customize the interface layout

based on their needs and preferences, which enhanced the overall user experience by allowing

them to tailor the interface to their specific requirements.

In addition, the development of the dynamic sidebars enhanced the performance of the web

Chapter 7. Formalization of learning 57

Figure 7.3: Third sidebar mockup

application by minimizing the number of DOM changes and implementing efficient logic for the

sidebars. This resulted in a quicker and more responsive web application, which enhanced the user

experience even further.

Overall, the development of the dynamic sidebars had a significant impact on the user experi-

ence of the Acro web application. It not only improved the overall usability and performance of the

application, but it also provided users with a more personalized and intuitive interface, resulting

in an ultimately more satisfying user experience.

7.3 Impact on organizational experience

The development of the sidebar was conducted entirely remotely, which presented some commu-

nication and collaboration challenges. Despite this, the team was able to effectively communicate

and share information using tools including Skype, Azure DevOps, WhatsApp, and Google Docs.

In the dinamic sidebar proof of concept iteration, the design team and the development team were

not closely aligned, with the design team having already completed the initial design. However,

this did not impede the project’s progression because the development team was able to commu-

nicate any concerns or suggestions for improvement to the design team as needed. The implemen-

tation of the dynamic sidebar presented challenges in terms of coordination and collaboration, but

the team was able to overcome these obstacles and successfully implement the new feature.

7.4 Future work

This chapter explores the potential for future work based on the nine-month dynamic sidebar

project’s developments. There are several ways in which the project could be enhanced, despite

its solid foundation. Among these are:

Chapter 7. Formalization of learning 58

Increasing the number of unit tests to ensure complete coverage of all functionalities. Enhanc-

ing end-to-end tests to guarantee a consistent user experience across all pages and interactions.

Enhancing the user experience by enhancing the sidebar’s animations and visual design. Increas-

ing the sidebar’s usability and accessibility on mobile devices by optimizing it for mobile devices.

Reevaluating the placement of certain components and possibly moving them to the Navigation

Sidebar in order to improve organization and usability. Improving the sidebar interactions’ logic

and decision-making by incorporating an AI algorithm. Each of these areas has the potential to

increase the usability and efficacy of the dynamic sidebar for Acro Companion’s users.

Chapter 8

Conclusions

In conclusion, Acro Companion’s online application has benefited from the deployment of the

dynamic sidebar solution. The dynamic sidebar has improved the structure and user experience of

the web application by addressing the lack of flexibility and inconsistency in the user experience.

The development of the dynamic sidebar solution was an iterative process, including user

feedback and utilizing an agile methodology to continuously enhance the design and structure. By

this method, I was able to develop a system that is more resilient, scalable, and flexible, with fewer

possible implementation obstacles.

The new dynamic sidebar solution is designed to be reactive, connecting with the other side-

bars and the components, and allowing for accelerated development while preserving structure.

This solution reflects the future of sidebars, and Acro Companion has received its implementa-

tion positively. Overall, the dynamic sidebar solution has effectively solved the company’s growth

challenges, and its implementation represents a step forward for the Acro Companion web appli-

cation.

The feedback from Acro companion regarding the dynamic sidebars and project structure

improvements was positive.

59

Chapter 8. Conclusions 62

Bibliography

Angular. The modern web developer’s platform. URL https://angular.io/.

Pedro Antunes and Mary Tate. Business process conceptualizations and the flexibility-

support tradeoff. Business Process Management Journal, 28, 04 2022. doi: 10.1108/

BPMJ-10-2021-0677.

Wen Chen, David J Crandall, and Norman Makoto Su. Understanding the aesthetic evolution of

websites: Towards a notion of design periods. In CHI, pages 5976–5987, 2017.

Lisa Crispin. Driving software quality: How test-driven development impacts software quality.

IEEE Software, 23(6):70–71, 2006. doi: 10.1109/MS.2006.157.

Azure DevOps. Plan smarter, collaborate better, and ship faster with a set of modern

dev services. URL https://azure.microsoft.com/en-us/services/devops/

#overview/.

Google. Firebase helps you build and run successful apps. URL https://firebase.

google.com/.

Jong Seok Lee, Jan Pries-Heje, and Richard Baskerville. Theorizing in design science research.

In International conference on design science research in information systems, pages 1–16.

Springer, 2011.

Playwright. Playwright enables reliable end-to-end testing for modern web apps. URL https:

//playwright.dev/.

Rxjs. Reactive extensions library for javascript. URL https://rxjs.dev/.

Maung K Sein, Ola Henfridsson, Sandeep Purao, Matti Rossi, and Rikard Lindgren. Action design

research. MIS quarterly, pages 37–56, 2011.

Karen Stendal, Devinder Thapa, and Arto Lanamäki. Analyzing the concept of affordances in in-

formation systems. In 2016 49th Hawaii international conference on system sciences (HICSS),

pages 5270–5277. IEEE, 2016.

63

https://angular.io/
https://azure.microsoft.com/en-us/services/devops/#overview/
https://azure.microsoft.com/en-us/services/devops/#overview/
https://firebase.google.com/
https://firebase.google.com/
https://playwright.dev/
https://playwright.dev/
https://rxjs.dev/

Bibliography 64

Nguyen Hoang Thuan, Hoang Ai-Phuong, Mathews Nkhoma, and Pedro Antunes. Using process

stories to foster process flexibility: The experts’ viewpoint. Australasian Journal of Information

Systems, 26, 2022a.

Nguyen Hoang Thuan, Hoang Phuong, Mathews Nkhoma, and Pedro Antunes. Using process

stories to foster process flexibility: The experts’ viewpoint. Australasian Journal of Information

Systems, 26:1–35, 02 2022b. doi: 10.3127/ajis.v26i0.3479.

John Venable, Jan Pries-Heje, and Richard Baskerville. A comprehensive framework for eval-

uation in design science research. In International conference on design science research in

information systems, pages 423–438. Springer, 2012.

Adobe XD. Lifelike in every sense. create stunningly real ui/ux designs and stand out from the

rest. URL https://www.adobe.com/products/xd.html/.

https://www.adobe.com/products/xd.html/

Bibliography 66

Appendix A

Appendix

A.1 Technologies

A.1.1 Angular and Typescript

On Acro Companion, Angular is utilized to build the web application’s front end. Angular is

an HTML and Typescript-based platform and framework for creating single-page client applica-

tions. Typescript is a client-side and server-side scripting language that is tightly typed and object-

oriented. Modules, components, templates (HTML, SCSS), services, and dependency injectors

are all key aspects in the design of an Angular application Angular .

A.1.2 Google Firebase (Cloud Computing)

For controlling user logins and information in Acro Companion, we use Google Firebase as a

cloud computing service. We use Firebase Authentication, which offers backend services and

authentication based on passwords, Google accounts, and Facebook accounts. Cloud Firestore is

a database that is both versatile and scalable (MAYBE COMPARE WITH NORMAL DBs). We

construct and link cloud services using Google cloud functions, which is a serverless environment

that can scale as the number of users grows and is highly available and fault-tolerant Google.

A.1.3 RXJS

RxJS is a reactive programming framework that uses observables to make writing asynchronous

code extremely simple. According to the official literature, this project is a reactive extension to

JavaScript that improves efficiency, modularity, and debugability while remaining mainly back-

wards compatible, with a few breaking changes that limit the API surface. It’s Angular’s official

library for dealing with reactivity, converting pull operations for call-backs into observables Rxjs.

A.1.4 Playwright Tests

The Playwright Test was designed specifically to meet the requirements of end-to-end testing. It

accomplishes what is expected of a standard test runner, and more. The Playwright test allows us

to Playwright:

67

Appendix A. Appendix 68

1. Run tests across all browsers;

2. Tests should be run in parallel;

3. Right out of the box, you can enjoy context isolation;

4. On failure, record videos, screenshots, and other artifacts;

5. Make POMs extendable fixtures by incorporating them into your structure.

A.1.5 Adobe XD

Adobe XD is more than just a UI/UX design tool, it’s a collaborative platform where designers

can create magic. Move in the same direction. Gather feedback. Iterate frequently. With tools

designed for simple collaboration, you can push your creations even further. The developers use

Adobe XD to gather the information they need to implement XD.

A.2 Methodologies

A.2.1 Reactive Programming

Asynchronous programming logic is used to handle real-time updates to otherwise static informa-

tion in reactive programming. When a user makes an inquiry, it provides an effective way to handle

data modifications to content. Building a reactive system entails addressing issues such as separa-

tion of concerns, data consistency, failure management, choice of messaging implementation, and

so on.

Although reactive programming can be used as an implementation approach to ensure that

individual services employ an asynchronous, non-blocking model, designing the system as a whole

to be a reactive system necessitates a design that addresses all of these additional considerations.

A.2.2 Design System

In Acro Companion, we use a design system. The capacity to swiftly recreate ideas using preset

UI components and elements is the fundamental value of design systems.

The teams can reuse the same pieces, eliminating the requirement to reinvent and hence the

danger of unintentional inconsistency.

When it’s essential, and if we’ll be using a component in a lot of various areas throughout the

web application, we’ll create a custom component for it, so we only have to customize it once and

can use it in several places.

A.2.3 Unit Testing and e2e Testing (End-to-End)

Unit testing is a sort of software testing that examines individual units or functions. Its primary

purpose is to thoroughly test each unit or function. A unit is the smallest testable part of an

application that can be tested. It mainly has one or a few inputs and produces only one output.

Appendix A. Appendix 69

End-to-end testing is a software development lifecycle (SDLC) methodology for evaluating

an application’s functionality and performance under product-like conditions and data to simulate

real-world scenarios. The purpose is to recreate a real-world user scenario from beginning to end.

A.2.4 Test-driven Development (TDD)

”Test-driven” or ”test-first” development isn’t truly a testing technique, despite its name. TDD,

often known as test-driven design, operates as follows: The programmers build unit tests for

each small piece of functionality they code. After that, they write the code that allows the unit

tests to pass. This forces the programmer to consider a variety of factors before developing the

functionality Crispin [2006].

	Figure List
	Table List
	Introduction
	Study context: Acro Companion
	Organizational setting
	Document structure
	Flexibility difficulties: Acro Companion

	Methodology
	Action design research
	Intervention
	Theorizing in Design Science Research
	Evaluating Design Science Research

	Dynamic sidebars
	Evolution of the sidebar
	Sidebar Reactivity

	Dinamic sidebar Proof of concept (First iteration)
	Problem
	Design/building
	Intervention
	Practical implementation
	Evaluation
	Reflection

	Navigational sidebar (Second iteration)
	Problem
	Design/building
	Intervention
	Practical implementation
	Evaluation
	Reflection

	Content sidebar (Third iteration)
	Problem
	Design/building
	Intervention
	Practical implementation
	Evaluation
	Reflection

	Formalization of learning
	Dynamic sidebars
	Impact on user experience
	Impact on organizational experience
	Future work

	Conclusions
	Abreviaturas
	bibliografia
	Índice
	Appendix
	Technologies
	Angular and Typescript
	 Google Firebase (Cloud Computing)
	RXJS
	Playwright Tests
	Adobe XD

	Methodologies
	Reactive Programming
	Design System
	Unit Testing and e2e Testing (End-to-End)
	Test-driven Development (TDD)

