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Abstract

The World Health Organization defines premature birth as the birth of a baby before the completion
of 37 weeks of gestation which is considered a high health risk for both the baby and the mother. Prematurity
is the leading cause of death in the world for children under 5 years old, therefore monitoring the uterus to
predict preterm labor has become essential. Currently, the Intrauterine Pressure Catheter and the External
Tocography are the most used monitoring devices, however, they are invasive and don’t perform well with
high body mass index (BMI) patients, respectively. The Electrohysterogram (EHG) has emerged as a non-
invasive method for predicting premature birth with high performance for mothers with high BMI. This
method uses electrodes placed on the abdomen to record uterine contractions by producing an electrical
signal, that contains important information regarding the electrical activity of the uterus. The study of the
EHG signal is one of the most used practices for studying and classifying premature birth using Machine
Learning (ML) and Deep Learning (DL) techniques. In this technique, features are extracted from the signal
such as frequency, amplitude, and others to represent the signal and inserted into algorithms capable of
making predictions based on the signal characteristics. However, this classification method is still in the
experimental phase, and there is a gap in the clinical context for automatic birth type prediction. One of the
challenges faced by this method is the lack of observations of premature births in the databases used.
Oversampling techniques, such as SMOTE, address the lack of observations of premature births in the
databases by producing synthetic observations for the minority class.

In this thesis, the Welch estimation of the power spectra of the signal of each contraction from the
TPEHG Ljubljana public database is used as features, comprising 200 features. The Minimum Redundancy
Maximum Relevance (MRMR) Algorithm was used to search for the most relevant features from this dataset
with only 180 showing any relevance, and SMOTE was applied to solve the skewed dataset problem. Four
different machine learning algorithms were used, including the Support Vector Machine, the RUSBoosted
trees, a Shallow Neural Network, and a Random Forest classifier, moreover, a deep learning network was
also tested. These were also optimized with the Bayesian hyperparameter optimization. All algorithms
performed with high accuracy, although showing a low predictive power for the test group, probably due to
a highly imbalanced test set.

We concluded that the use of spectral features of the contractions as an alternative to the time-
frequency features shows promising results with the training dataset, but cannot accurately predict preterm
labor in the test set, due to the imbalanced dataset problem. More samples should be collected in the future
so more meaningful conclusions can be taken.

Keywords: SMOTE, Machine Learning, Deep Learning, Electrohysterogram, Preterm Birth



Resumo

De acordo com a Organizacdo Mundial da Saiude (OMS) o parto prematuro é definido como o
nascimento de bebés antes da finalizagdo das 37 semanas de gestacao, sendo considerado um risco de saude
elevado tanto para o bebé como para a mée. Dois tergos destes partos, ndo tem um diagndstico especifico,
enquanto os restantes encontram-se normalmente associados a fatores relacionados com a m&e como varias
gravidezes, historial de partos prematuros, uso de drogas, idade inferior a 18 anos, entre outros. A
prematuridade é a primeira causa de morte no mundo para criangas com menos de 5 anos, uma vez que
guando ocorre 0 parto, 0s bebés ndo se encontram completamente desenvolvidos, podendo vir a sofrer
deficiéncias a nivel visual e auditivo e também outras complicacdes ao nivel da satide como problemas
cardiovasculares ou respiratérios. Em Portugal, de acordo com a Sociedade Portuguesa de Pediatria, 8% dos
bebés nascem prematuros. Deste modo, a monitorizagdo dos partos de forma a prever partos pré-termo
tornou-se fundamental.

Os dois métodos mais comumente usados na monitorizagéo da contratilidade uterina sdo o Cateter
de Pressao Intrauterino e 0 Tocograma Externo, porém ambos apresentam limitagdes como o facto de ser
invasivo ou de ndo mostrar eficacia para gravidas de elevada massa corporal, respetivamente. O estudo da
atividade das contragdes no Utero através do Electrohisterograma (EHG) como método alternativo tem sido
uma forte aposta na previsdo do parto prematuro. O EHG é um método ndo invasivo realizado atraves de
elétrodos colocados no abdémen, que regista a atividade contratil do Gtero e resulta num sinal elétrico.
Demonstra eficacia em pacientes com indice de massa corporal alta, sendo capaz de indicar quando as
gravidas vao entrar em trabalho de parto.

Atualmente, o estudo do sinal EHG é uma das préticas mais usadas para estudar e classificar o parto
prematuro através de técnicas de Machine Learning (ML) e Deep Learning (DL). Para isso, utilizam-se
caracteristicas frequenciais, temporais, entre outras provenientes do sinal, chamadas de features, que véo
representar o sinal. Estas sdo depois inseridas em algoritmos de ML e DL capazes de fazer previsdes com
base nas caracteristicas do sinal. Em literatura as features mais utilizadas para representar os sinais EHG
consistem na frequéncia, amplitude, entropia e outras, demonstrando resultados positivos com elevado valor
preditivo, tanto em algoritmos de Machine Learning como de Deep Learning. Desta forma, através do sinal
EHG obtido na monitorizag&o do Utero serd possivel prever se a gravida ira ter um parto prematuro ou termo.
No entanto, esta classificacdo ainda se encontra numa fase experimental, existindo uma lacuna no contexto
clinico, para uma previsao automatica do tipo de parto.

Todos estes trabalhos enfrentam um problema associado a falta de observacdes de partos prematuros
nas bases de dados utilizadas. As solugdes propostas para combater o desequilibrio nos dados envolve a
utilizagdo de técnicas de sobreamostragrem, como SMOTE, que consistem na producdo de observagdes
sintéticos para a classe da minoria (partos prematuros). O nimero ideal de amostras a serem produzidas é
ainda algo a ser estudado, sendo que a maior parte dos estudos fazem uma compensacdo dos dados com
uma proporcdo final de observagfes de 1:1, porém este método pode levar a um decréscimo na habilidade
do classificador identificar a classe maioritaria e uma previsdo irrealista e demasiado otimista. De acordo
com os autores, 0 SMOTE atinge os melhores resultados atraves da combinacéo de uma subamostragem da
classe maioritaria com a sobreamostragem da classe minoritéria, através do SMOTE.

Num sinal EHG processado € possivel distinguir a existéncia de contra¢cdes como Braxton-Hicks,
ondas Alvarez e ondas LDBF (Longue Durée Basse Fréquence). De momento, na literatura as features sdo
extraidas do sinal completo e ndo das contrages, nomeadamente das Alvarez e Braxton-Hicks, que contém
informacdo relevante para a prematuridade do parto. Contudo, as contragdes sdo séries temporais com um
numero diferente de observacBes. Deste modo, a solucdo apresentada para este problema é a analise



espectral de cada contracéo, através do espetro de cada contragdo, obtido atraves de uma transformacgéo de
tempo para frequéncia, como a Transformada de Fourier, que é capaz de representar um sinal na base de
dados. Esta técnica é usada para extracao de features e classificacdo no campo de diagnéstico médico.
Dentro da estimagdo espetral existem dois métodos: paramétricos e ndo paramétricos, sendo que o método
Welch é uma abordagem ndo paramétrica, capaz de calcular o espetro de cada contracdo detetada no sinal
EHG, que demonstrou bons resultados na classificacdo das contracdes noutros trabalhos, representando bem
o0 singal EHG, e apresentando sempre a mesma dimensdo, independente da duracdo da contracdo.

Neste estudo, foi utilizada a base de dados publica TPEHG (Term Preterm EHG) com um total de
300 registos, 262 pré-termo e 38 termo. A base de dados apresenta 4 elétrodos, com 3 canais bipolares,
sendo que apenas um canal foi escolhido, de acordo com a literatura, visto que o sinal vertical tem uma
maior variacdo do potencial de sinal. Este sinal foi depois filtrado para eliminar o ruido materno do ECG,
ou outros ruidos relacionados, e processado para uma frequéncia amostral final de 4 Hz. As features foram
extraidas através da estimacao espetral pelo método Welch, finalizando com um total de 200 features. No
final, o base de dados utilizado consistia em 4622 observac6es/contracfes, 407 correspondentes a parto
prematuro e 2829 parto termo, com 200 features cada. Esta base de dados foi depois fornecida a trés
algoritmos diferentes de ML, incluindo o Random Forest, RUSBoosted Trees, Support Vector Machine, e
uma Shallow Neural Network, e 0 algoritmo Long-Short Term Memory de DL, com o objetivo de classificar
0s parto prematuros. Até agora, nenhum estudo se focou na utilizacdo de um algoritmo de LSTM, e na
utilizagdo do espetro das contra¢cdes como features.

Neste estudo, as técnicas mencionadas anteriormente foram aplicadas em 5 cenarios diferentes nos
algoritmos de ML, de modo a obter o modelo mais robusto para evitar situagdes de overfitting, e obter os
resultados mais realistas possiveis, (1) treinar os dados, sem qualquer opcdo adicional de outros métodos;
(2) treinar os dados com os mesmos algoritmos, adicionando uma técnica de sobreamostragem sintética,
SMOTE; (3) treinar os dados com técnica de SMOTE mais uma técnica de reducéo de dimensionalidade,
PCA,; (4) treinar os dados com a utilizacdo de um método de selecdo de features, MRMR; (5) tuning dos
parametros do modelo, através do método Bayesian Optimization. Desta forma, os dados foram treinados,
validados, e 0os modelos com melhores resultados preditivos foram depois testados. Os algoritmos de DL
foram apenas testados usando o dataset original e o dataset com SMOTE aplicado. Para todos os algoritmos,
a accuracy, precision, recall, F1-Score, false negative rate, false positive rate e AUC (exceto para os de
DL) foram calculados.

Os resultados indicam que usar os primeiros 200 pontos da estimacédo espetral pelo método Welch,
como features frequenciais, ndo proporciona melhores resultados quando comparando a features mais
tradicionais, de tempo-frequéncia, usadas em toda a literatura. Além disso, utilizar a técnica de SMOTE
conciliada com uma subamostragem da classe maioritéaria produz piores resultados quando comparando com
a aplicacdo de s6 SMOTE, como usado pela maioria dos autores. Os algoritmos de ML tém um melhor
comportamento que os de DL, uma vez que sdo modelos mais simples ndo dependentes de uma elevada
guantidade de dados. Apesar dos resultados promissores no grupo de treino, com uma elevada Accuracy,
F1-score e AUC, o momento de teste teve uma performance abaixo dos valores esperados e em literatura.
Com base nestes resultados, concluimos que apesar da abordagem da aplicacdo de SMOTE apds a separacao
em grupo de treino de teste ser a mais correta, ndo permite resultados semelhantes a literatura (em que esta
ordem de passos usada é a inversa), uma vez que o algoritmo é processado usando um grupo de teste com
uma estrutura muito diferente a de treino, o que pode levar a menor precision e recall.

Em suma, conclui-se que a utilizacdo do espetro das contragcdes como features frequenciais num
dataset sobreamostrado com a técnica de SMOTE, utilizando as diferentes técnicas de ML e DL referidas,
ndo é uma melhor alternativa em relacdo a utilizacdo de features de tempo-frequéncia presentes em
literatura. Contudo, € possivel concluir a importancia de registar mais dados de partos prematuros de EHG,
com vista a melhorar as experiéncias futuras, e evitar a utilizagdo de técnicas como a de SMOTE. Para além
disso, abriu-se também a possibilidade da aplicacdo de uma rede neuronal complexa como o LSTM, com
resultados promissores para o futuro, que podem ser eficazes quando aplicados na classificacdo de parto
prematuro.
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1. Introduction

1.1. Framework and Motivation

Preterm birth or premature delivery is defined by the World Health Organization (WHO) as the
delivery of babies before 37 completed weeks of gestation and it is considered a serious health issue not
only for the fetus but also for the mother.[1] Although some of these births tend to happen spontaneously,
some of these are due to early induction of labor or cesarean birth. Moreover, most of the time these
deliveries don’t have a specific diagnosis, with some of the most common causes being multiple
pregnancies, infections, and chronic conditions, like hypertension or diabetes. With 1 in 10 babies being
born premature we can say that preterm birth is a modern problem, with its rates still growing. [1]

Prematurity is also the primary cause of death in the world in children under the age of 5 years old.
Since babies born before 37 weeks are not usually fully developed, when they survive, they can face lifelong
disabilities such as visual and hearing problems, learning and cognitive difficulties, and other health
complications, like cardiovascular or respiratory issues, especially in low-income settings. [1]

Like in most health-related issues in the world, low-income settings are the most harmed population
when it comes to inequalities in cheap and accessible care like warmth, breastfeeding support, and basic
care for infections and breathing problems. The lack of these basic conditions leads to the death of half of
the babies that are born at or below 32 weeks, in these types of populations. Even in middle-income settings,
the poor use of technology is causing a rise in the number of disabled children who survive the neonatal
period after preterm delivery. By comparison, in high-income settings, practically all babies born at this
time survive. [1]

So, the problem seems to stand on the early diagnosis so the mother can be treated accordingly thus
preventing prematurity.

Currently, the most used techniques are the intrauterine pressure catheter (IUPC), an invasive
technique for the mother, and the tocodynamometry (TOCQO) which does not work well for high body mass
index (BMI) patients. The electrohysterogram (EHG) is a non-invasive method that records a signal related
to the electrical activity that propagates through the uterine cells. From this signal, many features can be
extracted and consequently analyzed to evaluate the difference between preterm and term delivery[2]. This
technique presents the same results present in TOCO but with the advantage of working with high BMI
mothers. As of now, instant labor classification is not possible in the raw EHG signals, so currently, there
is still a gap in devices that can successfully predict preterm labor for women that don’t present any risks.
Even though this technique has very little application in the medical field, it is currently gaining more
success among clinics and hospitals.

Through the years, countless of articles applied machine learning techniques to various EHG
databases, since they are capable of predicting while adapting to new data. More recently deep learning
methods have also joined the conversation of the prediction of preterm labor using EHG signals, also
showing very promising results, but there is still a gap in the problem of preterm delivery [3]. The biggest
gap is the lack of preterm observations, that limits the accuracy of the classifying algorithm. Authors
throughout the studies, try to mitigate this problem by using synthetic oversampling techniques, like
SMOTE or ADASYN, that can lead to a nun-realistic performances when used as the sole skewed class
treatment [4]. Furthermore, to answer this complex problem authors try to use more features, including
quantitative features from raw EHG readings on the time domain, frequency domain and time-frequency



domain to classify preterm labor [5]. However, as of now, no author has used the power spectra of the
contractions from the EHG signal.

This dissertation was made in the context of the Uterine Explorer (UEX) Project, within the Faculty
of Sciences of the University of Lisbon and the Faculty of Sciences and Technology at the New University
of Lisbon.

In the present thesis, we’re going to apply different machine learning algorithms and a deep learning
network, in a publicly available database to predict preterm birth. With practical and cost-effective care,
researchers suggest that over three-quarters of babies born prematurely could be saved. Therefore, there is
a crucial need for an automated approach to detect and predict labor for pregnant women with a high risk
of premature birth [5]. Such an approach can help mitigate the consequences of premature birth and provide
better healthcare for both the pregnant woman and the fetus.

1.2. Research Goals and Expected Results

To issue the problems of preterm prediction, mentioned before, one must elaborate a strategy to find
a solution to the problem. This dissertation will focus on the application of Machine Learning Technigques
and Deep Learning suitable to this exact problem.

The following work tries to answer three main questions: 1) Can each point in the power spectra of
contractions be used as features for predicting preterm labor? 2) Can the combination of oversampling the
minority class using SMOTE and undersampling the majority class outperform the more common
oversampling technique only using SMOTE? 3) Can an LSTM network be used for doing preterm labor
predictions?

The main objectives are stated below:

1. Comprehend the EHG signal and extract features for the TPEHG Database: study and
understand the EHG signal, to identify the best features to originate the study dataset.
Additionally, a categorical feature, for classification, must be calculated based on the time of
birth of each patient. This first step is essential to build our study dataset and start with the
second step of classification.

2. Apply and experiment different Machine learning algorithms and techniques in the study
database: this step involves applying different machine learning algorithms to classify preterm
and term labor, with the objective of predicting preterm labor. Inside this objective, it is
necessary to try different techniques associated with improving the performance of the different
classifiers, including oversampling of the minority class, feature selection and hyperparameter
tuning.

3. Apply and experiment a Deep Learning algorithm to the study database: this step involves
applying a deep learning network to classify preterm and term labor, with the objective of
predicting preterm labor. Within this step an oversampling technique will also be applied to the
minority class in order to improve the results.



1.3.New Contributions

Through all the developments achieved inside the preterm labour prediction problem, we are still
lacking a way to detect and predict a premature birth. The main problem associated with this is the lack of
observations for preterm labour, which limits significally the algorithms classification power.

In literature, the authors tried to mitigate this problem with the use of techniques like SMOTE and
using more and more innovative features.

Since the main purpose of this thesis was to find a way to predict preterm labour, we decided to
innovate by using as features each point of the power spectra of the contractions extracted from the EHG
signal and by using SMOTE as a technique of data compensation, before the train-test split, something never
done before in literature.

1.4.Document Organization

This document in organized in six main chapters, which in a whole allow us to reach and present
the goals and the expected results from this thesis. The theoretical background necessary to understand this
work is introduced in Chapter 2, including the literature review, and in Chapter 3 that introduces the
concepts of preterm birth, the anatomy and physiology of the uterus and the EHG signal. Then, Chapter 4
explains the materials and methods used in this thesis, including the dataset explanation, all Machine
Learning Algorithms, as well as oversampling, feature selection and hyperparameters tuning techniques,
and Deep Learning Algorithms. In Chapter 5 the results and discussion are presented, and Chapter 6
concludes this thesis, with some final remarks about future works.

2. Literature Review

Being that the subject of this thesis is "Preterm Labor Prediction Using Electromyography and Deep
Learning Models”, it was crucial to understand what type of research and discoveries have already been
done, with the final goal of trying to innovate. For that reason, literature research is essential for our work
of preterm labor classification, to grasp what has been tried and what is still missing.

Therefore, the literature research will be conducted around every work related to labor classification
using electromyography data, including machine learning and deep learning techniques for classification. It
is important to point out that some exceptions were made for papers that seemed relevant for the study, with
other types of main objectives, excluding classification for preterm labor.

This research was summarized in Table 1, where it displays the author and the study objective, the
database used in that study, the features used for classification, the algorithms used as classifiers and the
imbalanced class treatment method performed, if applied, for each paper. The best classifying methods and
the correspondent metrics results are also displayed, with some additional details that stood out from the
study.



Table 1: Literature Review

Author Database Features Classifiers Imbalanced Research Goal Best Achieved Comments
Class Treatment Results
Idowuet | TPEGH Root mean square, Artificial neural SMOTE Preterm Birth LMNC with 96% The use of oversampling
al. (2014) median frequency, network classifiers: Classification sensitivity,92% techniques influences
[6] peak frequency and BPXNC, LMNC, specificity,95% AUC | the good results.
sample entropy NEURC,RBNC, and a 6% mean error
RNNC,PERLC rate.
Ryuetal. | TPEHG Sample entropy Linear classifiers Subsampling a Preterm Birth 60,49% AUC PCA is used for
(2015) [7] balanced dataset | Classification dimensionality
of 38 term and 38 reduction.
preterm records,
100 times
Hussain | TPEHG | - Recurrent Neural | -------------- Classification of | RNN’s can capture Applying RNNs as
et al. Networks: Elman, EHG signals for | temporal behavior of | filtering method to
(2015) [8] Jordan network and prediction of the signals. increase uterine EHG
Layer recurrent term and signal to noise ratio
neural network .
where each layer preterm birth value.
has a recurrent
connection with a
tap delay associated
with it (layrecnet).
Hussain TPEHG Root mean square, MLP,SONIA, K- Oversampling Preterm Birth SONIA with 91,23% | --------------
et al. median frequency, Nearest neighbour, | using a min/max | Classification sensitivity, 94,51%
(2015) peak frequency, Decision Tree, technique. specificity, 94,9%
[9] sample entropy Support Vector positive predicted
classifier,Fuzzy- value, 90,6%
SONIA, DSIA negative predicted

value, 92,77%
accuracy




Sahid- TPEGH 8 frequency related Support vector | -m--m-mmmeee- Preterm Birth Combination of 2 The 12 IMF’s are
Ahmed et features are extracted | machine Classification channels (7 obtained through the
al. (2017) from 2 IMF’s, using features)with a Huang-Hilbert transform
[10] the periodogram as 95,7% (HHT).
estimator of PSD accuracy,98,40%
sensitivity, 93%
specificity and 95%
AUC.
Hoseinza | TPEHG Extraction of the SVM with RBF ADASYN Preterm Birth SVM with 97.1% Application of EMD for
deh features using an AR kernel function Classification accuracy rate, 95% extraction of the IMF’s
et al. model followed by sensitivity, and 99% | for the calculation of the
(2018) PSO for feature specificity wavelet coefficients for
[11] selection. each IMF.
Jageret | TPEHGT DS | Sample entropy, Cross-Validation | -------------- Preterm Birth Accuracy of 100% Features from the
al. (2018) median frequency of Classification and 99,44% AUC for | dummy intervals are
[12] the power spectra, all records. better than the features
peak amplitude of the obtained from the
normalized power contraction intervals.
spectra
Shahbak | TPEHG Root mean square of SVM ] e Preterm Birth 99,56% accuracy, Application of EMD for
hti two IMF’s using Classification 98,95% sensitivity feature extraction,
et al. different channels and 99,30% trough the IMF’s.
(2019) specificity.
[13]
Chen et Icelandic 16- | Sample Entropy Stacked sparse | ----m-m-mee-- Preterm Birth 90% accuracy, 92% | --------------
al. (2019) | electrode autoenconder Classification sensitivity and 88%
[14] Electrohyster (SSAE) specificity, and 90%
ogram of AUC.
Saleem et | TPEGHT (13 | ¢cGC, uGC, mGC, cDI, | Quadratic =~ | -------------- Preterm Birth 91% accuracy, 94% Extract the features
al. (2020) | termand 13 | uDI, mDI measures discriminant Classification sensitivity, 95% using Granger causal
[15] specificity, 97% analysis of contraction




preterm analysis (QDA) AUC when using and dummy intervals. It
records) based classifier features related to focused on the synergy
dummy and between electrical and
contraction intervals. | mechanical conduct of
the uterus during
contraction and dummy
intervals.
Peng et TPEHG 31 linear and non- Random forest ADASYN Preterm Birth 93% accuracy, 89% | The data was divided
al. (2020) linear features (root Classification sensitivity, 97% into two groups, before
[2] mean square, sample specificity, and 80% | and after the 26" week
entropy, peak AUC. of gestation, but the
frequency, among results were the same.
others). The sample entropy was
the feature that weighted
the most on the results.
Oliver et | TPEHG RMS, median Support Vector, | -------------- Preterm Birth SVM with 92% Extract the features
al. (2020) frequency, peak Naive Bayes, KNN, Classification sensitivity, 94% using PCA for
[16] frequency, sample Gradient Boost, specificity, 96% dimensionality reduction
entropy. Decision Tree accuracy and of the data.
gradient boost that
also showed similar
results.
Degbedz | TPEHG Feature vector of time- | KNN-Cos, KNN- ADASYN Preterm Birth SVM with RBF The spectral properties
ui varying spectral Cor, SVM-RBF, Classification kernel function with | of the signals are
etal. content of the EHG SVM-Gauss 97,10% accuracy, extracted using a
(2020) signal 95% sensitivity, 99% | centroid frequency
[17] specificity. method.The

classification is done for
the extracted features
from each of the three
channels and then
compared.




Chenet | TPEGHT 20 entropy features. Sparse autoencoder | -------------- Preterm Birth SSAE with the DNN | Features are extracted
al. (2020) based deep neural Classification classifier with 98,2% | by sample entropy and
[18] network (SAE- sensitivity, 97,74% wavelet entropy, from
based DNN specificity and the EHG and TOCO
network) 97,9% accuracy. signals before
classification.
Esgalhad | Icelandic 16- | Signal envelope 5energy burst | ----mmmme-- Contraction RMS with 97,15%
oetal. electrode features delineation detection using | accuracy for
(2020) Electrohyster methods: Wavelet EHG contraction detection
[19] ogram energy, Teager and 89,43% for
energy, root mean delineation and
square (RMS), 0,63% of FNR. The
squared RMS, and wavelet energy
Hilbert envelope method was the
second-best method.
Xuetal. | TPEGH Root mean square, Linear ADASYN and Preterm Birth The SVC-based The authors create a
(2021) [4] peak Frequency, Discriminant SMOTE at the Classification classifiers are the top | sample balance
median frequency, Classifier (LDC), optimal sample performers. The use | coefficient, that has a
sample entropy Support Vector balance of SMOTE showed positive correlation with
Classifier (SVC), coefficient. better results than the | the overall accuracy.
Decision Tree ( ADASYN. Additionally, training
DTC), Gradient with the optimal number
Boosting Classifier of synthetic samples
(GBC) leads to an improved
performance. The
importance of the
features decreases when
the number of synthetic
samples is bigger.
SAGLA | TPEGH Average Frequency, Naive Bayes, SVM, | SMOTE Preterm Birth CNN shows the best | SMOTE does not
M Kstar, Random Classification results with 87,67%

Median Frequency,
Peak Frequency, Peak

accuracy, followed

improve the results in
the SVM, Decision




et al. Magnitude root mean | Forest, Decision by SVM, Random Table (worsens them
(2021) square ratio, Sample Table, KNN, CNN Forest and decision both) and RF (no
[20] Entropy, Shannon table with 87,33%. difference in the final
Entropy, among others results).
Allahem | 7271 30 Machine Learning Machine Learning | Creation of new Labor Detection | Machine Learning | Amplitude and
et al. minute-long | Approach: Mean Approach: EHG balanced Approach: RF Frequency are essential
(2022) [5] | datasets frequency, peak Decision Tree, datasets using showed better results | to analyze uterine
extracted frequency and median | Random Forest, Gretel Labs, Inc. with 95,7% AC, 99% | contractions.
from the 5 frequency features. Support Vector service on Python AUC, 3,6% FNR and | Grid Search is used as
datasets: Machine, Naive (https: 4,6% FPR. tuning technique.
Icelandic 16- | Deep Learning Bayes lgretel.ai/)
electrode Approach: Mean Deep Learning
Electro Frequency, Peak Deep Learning Approach: the ANN
hysterogram | frequency and Median | Approach: ANN classifier has better
Database, frequency, pregnancy results than the RF
TPEGH, gestational age, with 98% AC, FNR
TPEGHT, pregnant woman’s age 0,01% and 0,00,1%
CTU-CHB and parity. FPR.
Intrapartum
Cardiotocogr
aphy
Database,
OB-1 Fetal
ECG
Database.
Mohamm | TPEHG Root mean square, kNN, SVM, Stratified 10-fold | Preterm Birth SVM with The features are
adi et al. sample entropy, mean | Decision Tree cross-validation Classification polynomial kernel extracted from 2 IMFs,
g?]zz) Teager-Kaiser energy after empirical mode

(MTKE)

decomposition of the
signal.




With the research shown in Table 1, it is possible to see all the different classification algorithms
that have already been utilized. Through all of them, we were able to pick out some papers that stood out
for our work specifically. Hussain et al. (2015) experimented with recurrent neural networks for the
prediction of term and preterm delivery, with positive results. SAGLAM et al. (2021) [20] showed that
SMOTE in general improved the classification results while pointing out that CNN was the highest-
performing algorithm, concluding that LSTM networks should be studied more in depth. Allahem et al.
(2022) [5] innovated when using an amalgamation of databases in order to combat the imbalanced data
problem, although mentioning the application of a synthetic oversampling technique, but inferring that the
use of this would lead to deceiving classification results. Additionaly, Mohammadi et al. (2022) [21]also
tried to issue the combat the skewed class problem by applying a Stratified 10-fold cross-validation, a
technique usually used for validation in imbalanced datasets. In general, in the works that used an
imbalanced class treatment technique, like ADASYN and SMOTE, they all showed very positive results
[17]. In terms of the type of features used, most of the authors used similar features like sample entropy,
peak frequency, root mean square, median frequency, among others, extracted from the pre-processed EHG
signal [16][13], [21].

It is also important to mention the limitations encountered throughout our literature research.
Vandewiele et al.[22] , points out that synthetizing new samples before partitioning the dataset into training
and testing sets can lead to un-realistic and an overly optimistic prediction results on imbalanced data. This
can be misleading since most authors choose this technique. In the other hand since the TPEHG Database
contains a very small number of observations, by introducing synthetic samples after splitting the dataset
might lead to worse results.

Throughout the literature review, we can see that a lot of different algorithms were used for
classification, from SVM, RF to Naive-Bayes. With the purpose of seeing the most predominant classifers,
a simple wordcloud was done using as keywords the acronym of each type of classifier. The wordcloud
results are present in Figure 1. The words that appear in bigger and bolder lettering meaning that they are
the most common in our research, which includes the RF, SVM, DT and KNN algorithms.

naive-bayes

Figure 1: Wordcloud representing all the different algorithms present in literature. SVM,
DT, KNN and RF appear in bigger and bolder lettering, meaning that they are more
predominant

Another limitation appears on the number of samples to be synthetized when using SMOTE.
According to the Chawla N. et al. [23], the authors behind the SMOTE technique, the combination of
oversampling the minority class and undersampling the majority class can achieve better classifier
performance. In most papers that use SMOTE, the number of samples synthetized in the minority class are
the same as in the majority [20].



Lastly, most authors don’t report important evaluation metrics like F1-Score (F), Area under the
Curve (AUC), false positive rate (FPR) and the false negative rate (FNR) [5].
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3. Preterm Birth and the EHG Signal: Theoretical Context
3.1. Premature Birth

Preterm birth or premature delivery is defined by the World Health Organization (WHO) as the
delivery of babies before 37 completed weeks of gestation and it is considered a serious health issue not
only for the fetus but also for the mother. [1]

According to data from the US National Vital Statistics this is also a problem that affects more
multiple pregnancies in comparison with singleton. All these pre-term births can be divided into three sub-
categories: extremely preterm (less than 28 weeks), very preterm (28 to 32 weeks), late preterm (32 to 37
weeks) as shown in Figure 2 [24]

Prematurity is also the primary cause of death in the world in children under the age of 5 years old.
Since babies born before 37 weeks are not usually fully developed, when they survive, they can face lifelong
disabilities such as visual and hearing problems, learning and cognitive difficulties and other health
complications, like cardiovascular or respiratory issues, especially in low-income settings.

According to the Portuguese Pediatrics Society (SPP), 8% of babies in Portugal are born premature
and 1,2% of these labors occur below 32 weeks. Although this is a high number, Portugal is in the 9" place
between 162 countries with the lowest mortality rate, with a rate of 1,8 in 1000 live births, a consequence
of early detection and intervention in premature birth. [25]

Category Gestation (weeks)
1. Extremely preterm Under 28
2. Very preterm 28 to under 32
3. Moderate preterm 32 to under 37

a) Early moderate preterm | 32 to under 34

b) Late moderate preterm 34 to under 37

Figure 2: Preterm Birth subcategories according to gestational week [26]
3.1.1. Causes of Premature Birth

These premature labors can result from three clinical conditions: medically indicated or medically
induced, preterm premature rupture of membranes (PPROM) and spontaneous preterm birth, with the last
one being responsible for most of the cases. Almost 2/3, or 67% of these deliveries don’t have a specific
diagnosis [27], with the other 33% being associated with multiple pregnancies, infections, and chronic and
genetic conditions, like hypertension or diabetes. In the following Table 2, it is shown some of the risk
factors associated with preterm birth [28].
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Table 2: Recognized risk factors associated with clinical presentation of preterm birth [28]

Medically induced preterm birth Preterm premature Spontaneus preterm
Maternal Causes Fetal Causes rupture of membranes birth causes

Previous preterm birth,
preterm labor
Low body mass, poor

Pregnancy hypertension | Intrauterine weight gain
and vascular disorder growth restrition | Infection Strenuces physical
Medical illness or chronic | Unstable fetal Uterine distension workland, ergonomic
conditions condition Cervical anomalies factors
Obstetrical compilation  Fetal anomaly Afro-American ethnicity | Uterine anomalies
Antepartum bleeding Multiple Disadvantaged population 'Psychesocial stress
Maternal age >35 years | pregnancies Lifestyle, smoking
Drug abuse
Maternal age <18 years
Unknown

3.1.2. Consequences of Preterm birth

Premature birth has severe health consequences or even risk of death in newborns, especially in low
income countries. Like in most health-related issues in the world, low-income settings are the most harmed
population when it comes to inequalities in cheap and accessible care like warmth, breastfeeding support
and basic care for infections and breathing problems. The lack of this basic conditions leads to the death of
half of the babies that are born at or below 32 weeks, in these types of populations. Even in middle-income
settings the poor use of technology is causing a rise on the number of disabled children who survive the
neonatal period after preterm delivery. By comparison, in high-income settings, practically all babies born
at this time survive. Another factor that contributes to a disparity in the mortality rate between poor and rich
countries is that often premature babies will need further hospitalizations during development, creating an
even bigger problem in countries where the medical care is lacking and where those families will be hindered
[11L3].

One of the ways of minimizing premature birth rate and all its consequences in a way that is
inclusive to all settings, is to improve the early detection of labor, by monitoring the woman’s biochemical
or biophysical signals throughout the pregnancy, so that early medical intervention to the fetus and the
mother is provided as soon as possible. This will allow the reduction of the treatment cost on children born
premature, decreasing the number of deaths in children born premature [1][3].

The most common and practical procedures for monitoring pregnant woman is uterine activity
carried out by medical staff. [17] Some of the methods that are also used to measure contractions in the
pregnant uterus, include intrauterine pressure catheter, tocodynamometry and more recently,
electrohysterography that are explained in this chapter.
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3.2.Uterine Contractility

Uterine contractions are connected to electrical events in the myometrium. The myometrium is the
middle layer of the uterine wall, as seen in Figure 3, and it is composed of smooth muscle cells, called
uterine myocytes, as seen in Figure 4. These cells are the ones responsible for the underlying electrical
activities in the form of action potentials in the uterus, resulting in uterine contractions. The propagation of
the electrical activity happens due to a grouping of connexin proteins in the gap junctions of the myometrial
cells, that allows them to be electrically connected. These cell-to-cell contacts are usually low, with a small
electrical conductance, however when contractions occur these gap junctions increase allowing coordinated
and effective contractions. This electrical activity and cell contact is a direct cause of the uterine volume
(chronic stretch) and ovarian hormones levels (mostly estrogen) on resting membrane potentials. [29], [30]

: Uterus
\ Myometsum
Endometrium —
Vagina
Figure 3: Anatomy of the Uterus [31]
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Figure 4: Architecture of myometrial cells [31]

In terms of the biochemical process the action potentials are a result from voltage- and time-
dependent changes in membrane ionic permeabilities of calcium (Ca?"), potassium (K*) and sodium ions
(Na*). In the uterus an inward current of Ca?* ions and Na* ions will cause a depolarizing phase on the action
potential. In the preterm myometrium, a “plateau-type” action potential occurs from a combined effect of a
constant inward of Ca?* ions or Na* ions and a decrease in the voltage-sensitive outward current. [32], [33]
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Figure 5: Action Potentials in the Uterus [32]

The amplitude, frequency and duration of these contractions are determined by how frequent the
burst of energy happens across the myocytes, the total number of cells that are simultaneously active during
the burst and how long they last. Therefore, uterine contractions are related to the electrical properties and
excitability or conductivity of the uterine myocytes. [32]

For premature birth, there exists an early onset of synchronized contractions of the uterine muscle
cells. These activities can be measured through electrohysterogram (EHG). [29]

3.3. Uterine Contraction Monitoring Devices

With the goal monitoring uterine contractions, a series of systems were created that are still in use
now, with both of them being inadequate for preterm labor risk evaluation. These are the following and are
represented in Figure 6 [34]:

Intrauterine Pressure Catheter (IUPC): it is considered the Golden Standard for monitoring
uterine contractions since allows the analysis of the frequency and the intensity of contractions more
accurately. One of the big downsides is that this technique involves the insertion of a catheter, which requires
the woman with ruptured membranes, and it might lead to fetal and placental damage, infection and/or
uterine perforation.

External Tocography (TOCO): this method in also widely used in contractions monitoring
although it shows some limitations. The TOCO shows a degraded predictive value since there is a mismatch
between the tocogram amplitude and the strength of the uterine contraction. Additionally, it is inaccurate
for high body mass index mothers (BMI) since the ultrasound has difficulties penetrating fatty issue [35].
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Figure 6: Uterine Contraction monitoring devices used more frequently in a clinical setting.
(a) Intrauterine Pressure Catheter (IUPC). (b) External Tocography (TOCO) [34]

3.4. Uterine Electrohysterography (EHG)

Electrohysterogram (EHG) is technique dating as early as 1931, consisting in a non-invasive method
that involves the placing of electrodes on the abdomen of pregnant women, that will record a signal related
to the sum of the electrical activities that propagate through the uterine cells to the abdomen of pregnant
women. This allows that information like frequency and length of uterine contractions, and contraction
power of the uterus, are recorded and then used to identify if labor is occurring or not. [3]

This is an advantageous technique since it gives us information from the electrical activity generated
at the muscle fiber level in a non-invasive way.

During most of the pregnancy the uterine electrical activity is very low, consisting of infrequent and
low amplitude signals. However, during preterm and term labor EHG activity is higher in frequency and
with large amplitude, a consequence of the changes in intrauterine pressure and pain sensation. Therefore,
this technique can be very helpful for contraction-monitoring in term and preterm labor since it can
differentiate preterm and term contractions, by distinguishing the transition from non-labor to labor states
in the myometrium, something other techniques encounter challenges on [29][36]

There is an extensive research background that found measuring electrical activity from electrodes
placed directly on the uterus very successful for monitoring uterine contractility.

Comparing to other techniques, EHG produces very similar results to tocodynamometry (TOCO)
and Intrauterine Pressure Catheter (IPC), although with better results than the TOCO device and with the
advantage of being non-invasive when comparing to the IPUC. Therefore, EHG is gaining more attention
each day, since it is a non-invasive, low-cost, and real-time technique [37].

Even though EHG as gained a lot of attention recently by producing very good results, its
applicability has still raised some issues. One of these is the interpretability of the results since the signal
records are complex and hard to interpret. Additionally, the collection of records is still very hard, especially
for preterm labors since this technique is not a clinical practice [29].

As mentioned before, raw signals from the myometrium are obtained through the placement of
bipolar electrodes adhered to the abdominal surface. Typically, four electrodes are used in most studies,
although some studies have used 2, 16 and even 64 small electrodes. The problem with a small number of
electrodes is the structural and functional complexity of the uterus. The uterus is an assembly of stochastic,
nonlinear biological mechanisms interacting with a fluctuating environment. For that reason, a higher
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number of electrodes will be preferred [38]. In Figure 7 it is possible to see how the electrode placement
was done in some studies, since different layouts are on trial by different research groups.
b)

Figure 7: Electrode placement on the EHG from different authors. a) Ye-Lin Y et al.[39] b)
Alexandersson A. et al. [40] c¢) Hayes-Gill B. et al. [41] d) Garfield R. et al.[42]
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3.4.1.Commercial Monitoring Systems for the EHG signal

(8) Nemo Healthcare [43] (b) Monica HealthCare Inc.[44]
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Figure 8: Existing monitoring devices for the EHG signal

At present, the EHG signal can be obtained through different monitoring equipment available to the
public, with one of upsides of the increased sensitivity to patients with a high BMI. These systems were
designed to detect uterine contractions and fetal electrocardiogram, replacing TOCO, but still fail to provide
contractions identification as well as labor prediction, being uncapable of assessing if there is a risk of
preterm labor. In Figure 8 it is possible to see the different available systems using the EHG with the
American Food and Drug administration (FDA) and European Commission (EC) marks.

3.4.2.EHG Signal Characteristics

As mentioned before EHG is one of the best techniques to measure non-invasively the electrical
activities of the muscle cells related to uterine contractions, but it has a very weak signal (from 0 to <5 Hz).
This comes with a price, since the frequency range of other types of electrical activities from the mother
and the fetus can also be recorded (called noise), overlapping the spectra of the signal of interest. One of the
strongest signals that corrupts the EHG signal is the maternal electrocardiogram (ECG), that remains present
even after the analog filtering during the assessment. Others like fetal electrocardiogram, maternal
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respiration, motion artifacts, electromagnetic noise from external devices, as seen in Table 3, also contribute
for the signal noise. Therefore, the solution is performing a de-noising step before utilizing the signal data,
to improve the accuracy of preterm classification. [3]

Table 3: Frequency range for the main noise in the EHG signal [3]

Noise Frequency Range
Maternal ECG 1.38t0 1.5 Hz
Maternal Respiration 0.21t00.34 Hz
Electromyography noise Above 30 Hz
Power supply interference 50 or 60 Hz

The frequency of the EHG signal can be classified in two waves: fast wave and slow wave. The
frequency on the fast wave varies between 0.01 to 0.03 Hz, and the slow can also be divided into two
categories, fast wave high (FWH) with frequency ranges of 0.2 to 0.45 Hz and fast wave low (FWL) with
frequency ranging from 0.8 to 3 Hz, including. These last waves are connected since FWH is related to the
excitability of the uterus while FWL is related to the electrical activity of the uterine muscle cells. Moreover,
the phasic uterine contractions are triggered by slow and fast waves.[3][38]. Figure 9 shows an example of
the representation of an EHG signal.

EHG signal
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Figure 9: EHG Signal. The peaks correspond to different contractions

A way of denoising the signal is applying digital filters. The problem with this method is that some
of the frequencies from the noise overlaps with the EHG signal, as you can see from Table 3. Consequently,
other techniques must be applied to eliminate noise with a common frequency range that characterizes
uterine contraction. Various denoising techniques have been approached in literature. Leman et al. [47]
based on the success of the wavelets as a denoising tool, proposed the application of the redundant wavelet
packet transform. Hassan et al. 2011 [48] applied a combination of the canonical correlation analysis and
empirical mode decomposition (EMD) for removing the noise without losing information on propagation.
Ryu et al. 2015, proposes a novel method where multivariate empirical mode decomposition (MEMD) is
applied before extracting any features, showing better results compared to the Fourier-based prefilter. [7]
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4. Materials and Methods
4.1.Data Description

The electrohysterogram records used in this work belong to the Term-Preterm EHG Dataset (TPEHG)
Database stored in PhysioNet [49]. The records were collected from 1997 to 2005 at the University Medical
Centre Ljubljana, Department of Obstetrics and Gynecology, during regular check-ups of pregnant women
within the 22" and 32" week of gestation, with a total of 300 records, whose distribution can be seen in
Figure 10. From these records, 262 were obtained from women whose delivery was on term (above 37
weeks) and a total of 38 records, were obtained from pregnancies that ended prematurely (below or equal
to 37 weeks). The majority class can be easily seen as the term labors and the minority class as preterm
labors. From 26 to 29 weeks we can also see that there is a lot of recordings, indicating that the recordings

were not continuous during the pregnancy of all the individuals, which can lead to biased results. [49]

Week of Delivery

Figure 10: Scatter plot of labors represented by week of delivery in relation to the
recording time for the EHG records, for the TPEHG database. At 37 weeks we have the
threshold represented since it is the week for differentiating preterm from term birth.
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Each record is composed of three bipolar channels (S1, S2 and S3), recorded from 4 electrodes
(E1,E2,E3 and EA4) that are placed in two horizontal rows, separated 7 cm apart, on the abdominal surface.
The placement scheme can be seen in Figure 11 and is later explained.
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Figure 11: Electrode’s configuration in the recordings of the TPEHG Database, placed on
the abdomen, above the uterine surface of the pregnant individual. [49]

o The first electrode (E1) was placed 3.5 cm to the left and 3.5 cm above the navel.

e The second electrode (E2) was placed 3.5 cm to the right and 3.5 cm above the navel.
e The third electrode (E3) was placed 3.5 cm to the right and 3.5 cm below the navel.

e The fourth electrode (E4) was placed 3.5 cm to the left and 3.5 cm below the navel.

As mentioned before, 3 bipolar channels were calculated from these records. This was done by
measuring the differences between the electrical potentials of the electrodes, following this order:

e First Channel (S1) = E2-E1
e Second channel (S2) = E2-E3
e Third channel (S3) = E4-E3

Bipolar channels have the advantage of reducing noise of the maternal electrocardiogram, electrode
movements or respiratory movements of the signal. This happens due to the noise of the monopolar signals
being identical, therefore being eliminated when the subtraction is done.

The work presented on this thesis consist in the original dataset, where the final records have a
duration of 30 minutes each, with a sampling frequency of 20 Hz per channel with a resolution of 16-bits
with the amplitude range of + 2.5 millivolts. Furthermore, it is important to mention that this dataset has a
variety of features collected from the gestation to parity, previous abortions, existence of hypertension,
diabetes or bleeding, smoker status, among others. Although not used in this work, this is very important
since these categories are all reasons linked to preterm labor.[49] From the original dataset, only channel 2
(E2-E3) was chosen since according to previous work on this matter, the vertical signal has a higher
variation of signal potential. [19] [34]

4.2.Uterine Explorer Tool

Additional to the denoising of the signals, extracting the contractions from the original EHG signals
is also very important, especially for the work presented in this thesis.
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The Uterine Explorer (UEX) project is an application tool developed by the Department of
Electrical Engineer and Computers of NOVA School of Science and Technology, on MathWorks® software,
which main goal is the processing of EHG signals, as well as contraction extraction. This tool was
implemented in this thesis, to detect and delineate the contractions present in the EHG signals. Below, the

UEX welcome screen can be seen i

n Figure 12.
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Figure 12: UEX homepage for data processing

4.2.1 Data Processing

The TPEHG database authors choose an initial sample frequency of 20 Hz. The UEX platform
includes an array of EHG processing algorithms. In this project we worked with a decimation rate of 5,
ending with a final sample frequency equal to 4 Hz. Additionally, a wavelet band-pass filter with bandwidth
0.1 and 1 Hz was selected according to reference values found in literature. An example output can be seen
in Figure 13, of a preprocessed EHG signal for a specific patient.
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Figure 13: Three pre-processed EHG channels for patient tpehg552m are represented. The
contractions correspond to energy bursts above the uterine baseline activity

4.3. Machine Learning

As mentioned before, one of the goals of the present work is predicting preterm birth using machine
learning (ML) techniques. So, what is machine learning?

ML is a branch of artificial intelligence (Al) and computer science that uses data and algorithms to
mimic the way humans learn while experiencing things, whilst improving its performance at each use or
experience. [50] Examples of machine learning pass through the first game of checkers on an IBM 7094
computer in 1962 to Netflix’s recommendation algorithm. [51]

Through the years machine learning has become one of the most used tools to solve problems related
with analyzing large and complex data sets. Using statistical methods, algorithms are trained to detect
automatically meaningful patterns in the data, in a process that we call classification and prediction. [51]

Machine learning tools are also special since the behavior of the programs adapts to their input data.
One can also say that the algorithms are learning or training. This happens every time ML algorithms build
models from data. [52].

Machine learning models can be applied to various fields, from psychology to artificial intelligence.
Real world problems, like the ones in medical diagnosis, are perfect candidates for applying these techniques
since they are highly complex. Therefore, machine learning has the capability to solve a variety of problems.
In this way, a learning problem is constituted by three features [53]:

- Task classes (The task to be learnt)
- Performance measure to be improved

- The process of gaining experience

To evaluate the overall performance of a model to see if it can answer to the problem in question,
six generic steps must be followed, these are the following (seen in Figure 14).
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Figure 14: Steps to evaluate the performance of a machine learning model [53]

1. Collection and Preparation of Data: the first step is the collection and preparation of data in a
structured format to be used in the algorithm. In our case the preparation of the data will include the
signal pre-processing.

2. Feature Selection: select the features and relevant variables for the learning problem.

3. Choice of Algorithm: choose the appropriate machine learning algorithm for the problem.

4. Selection of Models and Parameters: manual selection, based on different criteria, of the most
appropriate model and values for parameters of the same model.

5. Training: training of the chosen model, using a part of the dataset as training data, known as
training set.

6. Performance Evaluation: this is the last step before the real-time implementation of the system,
where the model is tested with new data, known as testing set, in order to evaluate through different
performance parameters like accuracy and precision, if the model is learning and can indeed be
validated and used.

Based on the previous information, one can say that Machine learning is, after all, a learning process
where the data is trained and, in the end, tested. ML is constituted by several subfields that will include all
these steps. Here we will be talking about the two most relevant subcategories inside ML to this research:
supervised and unsupervised, mentioned in Figure 15. [53]

Classification
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based on both input and

Supervised Learning /

/ output data R .
H egression
Machine €
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Group and interpret data based .
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only on input data

Figure 15: Machine Learning Branches (Adapted from [53])
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4.3.1.Supervised Learning

Supervised learning is the most important and most used domain in machine learning. In supervised
learning, algorithms learn through examples, just like humans. Humans use the knowledge gained from past
experiences in order to improve their capacity towards real-world tasks, but since algorithms cannot
experience real-world events, they will learn from previously collected data called a training set. The
learning algorithm will then find patterns in the data and construct mathematical models that will be used
to classify/predict values from previously unseen data [54]. After this the models will be evaluated on their
qualificative/predictive capacity through different statistical measures. [55]

A training set can be defined as a set of labeled data, that is: various input observations, called
features and the corresponding correct output, called labels [54]. In this phase the algorithm will compare
the current output with the correct one, with the goal of finding the mistakes and improving the precision of
the model. After the training, the learning model will predict the label of an observation based on a known
set of features on the testing dataset, where the precision of the model is also evaluated.

A general scheme of the process can be seen below in Figure 16:
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Figure 16: Supervised Learning Training and Testing Process Scheme (Adapted from [56])

Supervised learning can be divided into two main models, based on the type of the labels:
classification models (classifiers), where the resulting label is discrete, and regression models, where the
label is continuous. This means the following: [54]

e Classification model: predicts discrete values, in other words, classifies data into
different categorical outcomes (labels). Ex: whether a patient has cancer or not.

e Regression model: predicts the numerical value of an item. Ex: predicting house prices.
[57]

Although they have different purposes, the goal remains in achieving the best and more precise
model, minimizing the difference between the predicted value and the real value.
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The previous scheme can be easily explained with a simple example of a classification model
(shown in Figure 17). Suppose that the training set is constituted by different types of fruit shapes, the
features group, while the name of said fruit shapes are the labels for each one of them. This set is then used
to train the machine learning algorithm, that then gives a predictive model. To construct the predictive model
we input data containing a set of known features, called the testing set, that will return the labels for each
one, so the corresponding name to each fruit shape [57]. These features are then evaluated according to the
precision of the prediction, and if it does not perform well, the process repeats. In this example, all of our
fruits in the prediction pile were rightly labeled, concluding that our machine learning algorithm can classify
each fruit shape into the correct name (category).
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- Algarithm Maodel 5
< @ ‘ 2 , )
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Pear Banana
a S b
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Figure 17: Classification Model Mechanism

A selection of supervised learning algorithms examples is shown below:
e Decision Trees:

A decision tree is one of the most popular approaches, either for classification or for regression
problems. A decision tree has a hierarchical tree shape, consisting of a set of nodes and branches that form
a root tree. There will be three kinds of nodes: a root node, a single node with no incoming branches, and
two outgoing branches from the root: the decision nodes, which will help us split the data with a specific
condition, and finally the leaf nodes that will help us decide the class of a new data point, by representing
all the possible outcomes within the dataset. [58], [59]

The root node represents the complete dataset, that will be split into consecutively smaller
subdatasets, following different decisions. The splitting process will be repeated in a top-down, recursive
manner until most of the objects have been classified into a specific label. The classification starts in the
root node and finishes in the last leaf node. In a way of avoiding overfitting and bias, decision trees are more
suitable for smaller datasets, since when a tree grows, it becomes increasingly difficult to maintain the purity
of each leaf node [59] . In Figure 18 shows the architecture of a decision tree model.
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Figure 18: Architecture of a Decision Tree Model [59]

¢ Random Forest (RF):

Random forest, a very commonly used ML algorithm, can be used for both classification and
regression problems. As previously mentioned, decision trees can be associated with overfitting and bias
when dealing with larger and more complex datasets. The Random Forest algorithm also faces that problem
by combining the output of various decision trees to reach a single result, giving a more precise prediction.

For this algorithm three main hyperparameters will be selected: node size, number of trees and the
number of features sampled. Each decision tree consists of a bootstrap sample, where data is drawn
repeatedly with replacement from the training set. Through feature bagging, where the algorithm randomly
selects a subset of features, the randomness in the dataset is increased and the correlation problem between
the trees is reduced. Therefore, for each decision tree in RF, the algorithm will train different features and
consequently give different predictions.

These predictions will vary depending on the type of problem. In the regression model each
individual decision tree will be averaged, whereas in the classification model there is a voting, in which the
most frequent categorical variable in all the trees, will indicate the predicted class. In Figure 19 shows
architecture of this model [60].

26



X

lree, tree, o000 /recp

| 1 7

ke

. \

voting (in classification) or averaging (in regression)

|

k
Figure 19: Architecture of a Random Forest Model [61]

e Support Vector Machines (SVM):

Support Vector Machines algorithm consists of a classification and regression tool that works very
well analyzing very large datasets, since it maximizes the predictive accuracy without overfitting the
training data. It works by mapping the data to a high-dimensional feature space, where the data will separate
by their corresponding category, even if the data is not linearly separable. When the separator between these
categories is found, the data are transformed in such a way that the separator could be drawn as a hyperplane.
The prediction of the label for each value will happen based on the characteristics of the new data [62] [63]
. In Figure 20 the architecture of the model can be seen.

Figure 20: Architecture of a SVM Model. 1: original dataset; 2: the data can be separated
into two categories as seen by the the red curve; 3: this boundary of the two categories is
called a hyperplane, and is show in image purple line (adapted from [63])

4.3.2. Unsupervised Learning

Previously we referred to about supervised learning. This method learns to correctly label a desired
input through a set of inputs with the corresponding output given before. In unsupervised learning, the
algorithm learns by using a created model that can extract the similarities in unlabeled data, where the
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number of classes is unknown. In that way the model’s main goal is to find meaningful and, most of the
times, hidden patterns in the data and consequently organize it into different groups or classes, to be used
for the prediction of inputs, decision making, among others. Essentially, unsupervised learning will differ
from supervised learning since, although it receives inputs, the data the algorithm works with is unlabeled
and the number of classes is not known, which will lead to a simpler method, but less accurate results
[68][1].

Essentially, unsupervised learning comprises three main goals, clustering, association, and
dimensionality reduction. Some of the most popular techniques used for unsupervised learning is PCA for
dimensionality reduction. Their respective definitions follow below:

e Principal Component Algorithm (PCA):

As mentioned before, the principal component algorithm technique is used primarily for
dimensionality reduction of the dataset. This technique can be very advantageous in cases where the dataset
is very long and complex, by reducing its dimensions and consequently reducing the computational cost,
minimizing information loss. PCA reduces the number of features or independent variables in the dataset.
Through a linear transformation, this method converts correlated variables into linearly uncorrelated ones,
named the principal components, where the components are the direction that maximizes the variance of
the dataset, and each principal component is uncorrelated to the other. The direction that each principal
component follows is always orthogonal to the prior components with the most variance [69][70].

4.3.3.Ensemble Learning:

The goal of machine learning is to find a model that will predict a desired outcome. In ensemble
learning this technique combines several individual models and their corresponding hypotheses in order to
produce one optimal predictive model. The main objectives are to decrease bias, variance or improve
predictions. Ensemble learning can be divided into two groups:

e Sequential ensemble approaches: here the models are constructed sequentially since they
are dependent from each other. An example of this is the AdaBoost technique.

o Parallel ensemble approaches: here the models are constructed in parallel since the models
are independent of each other.

Two important concepts in ensemble learning are boosting and bagging. The first is a repetitive
technique that adjusts the observation’s weight based on the last classification. Bagging or Bootstrap
Aggregation combines bootstrapping and aggregation to form one ensemble model, that will apply
homogenous models on sample populations by taking the mean of all predictions.

In this work we will be working with the RUSBoosted Tree algorithm, since it specializes in skewed
datasets. This classifier will apply random undersampling (RUS) from the majority class, decreasing its
number of observations. [71] [72]

4.4. Deep Learning

Deep learning is a branch of ML, that is considered as a more robust machine learning technique,
with stronger computational power and a better competency in dealing with larger data bases. DL main
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strategy is based on learning by example, just like us humans, by a hierarchical learning process with abstract
levels.

Although the official DL term only came into perspective in 2006 by Hinton et al. [73] based on the
concept of artificial neural network (ANN), it was already used in the form of neural networks in the late
1980s. Nowadays, DL is used to solve various complex problems, like facial or voice recognition.[74],
instead of more traditional machine learning algorithms since the former have proved to have better capacity
to deal with data comprehension and manipulation, in a more autonomous manner, as the volume of data
increases. Even though DL takes more time to train a model due to many parameters, its testing time is
shorter than to other ML techniques.

So how does DL work? Deep learning started with ANN, so it is clear that most deep learning
methods use neural network architectures to learn. These neural networks were inspired by biological
nervous systems, since they are composed by multiple processing layers of neurons, a simple processor that
generates series of real-valued activations for the target outcome. The Figure 21 (b) shows the
representation of the mathematical model of an artificial neuron.
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Axon Terminal

Node of
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Schwann cell
Myelin sheath

Nucleus
b)
Input : . ' . ‘
. Weight Summation Activation
X~ funcion | function

B et : Artificial Neuron
b (processing element)

Bias
Figure 21: a) Human neuron structure; b) Schematic representation of the mathematical

model of an artificial neuron (processing g element), highlighting input (X;), weight (w),
bias (b), summation function (), activation (f) and output signal (y)

The scheme shown in Figure 21 (b) was proposed by McCulloch-Pitts and its mechanism can be
explained using an analogy with the biological neuron, represented in Figure 21 (a) that inspired the first.
A neuron receives signals from other neurons, that are connect between each other. That information is then
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processed through the cell body and the processed signal is passed through the axon. However, the upon
receiving the signal, the neuron can either “fire” or “not fire”, depending on the input signals. In an artificial
neuron, the computational version of the neuron occurs. Here, the neuron receives several binary inputs
(x1,x2,...), that are summed (weighted sum) in E (summation function), also adding a bias term. This value
is then processed in an activation function, f, and transmitted in a single binary output, to the following
neuron.

This output can either be 0 or 1, and it is determined by verifying if the value of the sum of the
weights of each input is bigger or smaller than the value of the threshold, previously defined. If the value is
the same or smaller than the threshold the output is 0, if the sum is bigger than the output is 1. [75]

The typical ANN is composed by several layers of neurons, specifically by one input layer, one
output layer, that are all connected through several hidden layers, allowing for the decisions taken in one
layer to be transmitted to the following layers, as can be seen in Figure 22. In the input layer the decision
is only taking in consideration the summed weight of the inputs, but as the layers progress all the decisions
made in previous layers will be taken in consideration, allowing for a more robust and complex process. In
that way DL’s performance improves with the increase of data (Figure 23)[74] .

mput layer hidden layer 1 hidden layer 2 output layer

Figure 22: Architecture of an ANN model. Each circle represents a neuron, that outputs a
value. The values together form a vector that represents the feature extracted from the
input in this layer. The arrows represent the connection between the neurons and the
transmission of the data [76]

Deep learning

Most learning
Performance algorithms

v

Amount of data

Figure 23: Comparison between deep learning (DL) and machine learning (ML)
algorithms, where DL modeling from large amounts of data can increase the performance
[74]
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The field of deep learning is constituted by several different types of algorithms, just like in machine
learning. Some of the algorithms are explained below:

The work of this thesis will focus on Recurrent Neural Networks (RNN) and its main variant, the
Long Short-Term memory algorithm. These techniques are explained below:

e Recurrent Neural Networks (RNN):

Is an artificial neural network used for time series prediction, with a ‘memory’-like property [77].
A time series prediction is the task of forecasting future values or patterns in a sequence of data points that
are ordered in time. Time series prediction methods typically involve analyzing the historical data,
identifying patterns or relationships, and building mathematical models that capture the underlying
dynamics of the series.

RNN consists of multiple layers: input layer, hidden layer(s) and an output layer. Inside the hidden

layer, the RNN contains recurrent units that allows the algorithm to process sequence data, by recurrently
passing a hidden state from a previous timestep *and combining it with an input of the current one. So this
means that the first layer has the weight derived from the input layer, and every layer after that will receive
weight from the previous layer.[78] In other words, the present layers’ output is completely dependent on
the outputs of the previous layers. However, RNN has not shown very successful results with long term
memory. That is why LSTM are considered a variant of RNN, since it fixes the problem of long-term
memory with a forget gate. The architecture of a typical RNN can be seen in Figure 24.

Hidden / Recurrent
Layer

Hidden Node /

Input Node AN UN Output Node

Hidden Node /

Input Node Recurrent Unit

Recurrent Unit

Figure 24: Architecture of a Recurrent Neural Network model [79]

! Timestep: single processing of the inputs through the recurrent unit. The number of timesteps is equal to the
length of the sequence.
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e Long Short-Term memory (LSTM):

This is a special recurrent neural network (RNN) algorithm that contains special units called
memory blocks in the recurrent hidden layer, not present in a classic RNN architecture, as shown in Figure
25. These memory blocks contain three gate types, that can be compared to a filter, and are explored below
[81]:

o Forget Gate: controls which information is relevant and which information must be
forgotten from the cell state in the previous timestep (Ct.1).

e Inputor “Memory” Gate: controls which new input data must be saved into the cell state,
c.. Here the results of the input gate get multiplied by the cell state, with important
information chosen by the input gate.

e Output Gate: controls which information will be included in the output.

These gates will be the ones that’ll help solve the long-term memory issue, by controlling the cell
state by adding or removing information. As seen in Figure 25 we have:

e Hidden state and new inputs: the hidden state from a previous timestep (h1) combines
with the input at a current timestep (x;) before transmitting copies of the timestep through
various gates.[98]

e Update cell state: the cell state from the previous timestep (ct1) gets multiplied by the
results of the forget gate .Then new information is added from [input gate x cell state
candidate] to get the latest cell state (ct). [98]

As can be seen in Figure 25 presented below, LSTM architecture can normally be seen over the
t(time)-dimension. The process consists of three steps:

Step 1: the first step in the process happens at the forget gate, where the decisions will be
processed by a sigmoid function (o) with ranges between 0 and 1. Here, ¢.1 will be multiplied
element-wise by a vector, f;, through the sigmoid function, which will generate a vector with values
comprised between 0 and 1. If the value of the output is equal to 0 the information is rejected and if
it is equal to 1 the information is considered relevant and is kept and transmitted in the loop. [80]

Step 2: here the new memory network is a hyperbolic tangent (tanh) activated neural
network, which means that it will output values to the range [-1,1], so our new vector will have
values within that range. Later, the sigmoid function will act as a filter, and transform the data into
a vector of values in [0,1], through element-wise multiplication. Then the result is summed up with
the previous cell state, resulting in c:.[98]

Step 3: To stop an overload of information, the output gate will act as a filter. It will be
applied to a version of the cell state, so it does not modify the cell state. Here this cell goes through
a tanh function so the values are between -1 and 1, and then through the activation function, a
sigmoid function, to filter the values in [0,1], through pointwise multiplication, and the new hidden
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state is outputted. [81] The latest cell state and the hidden state return to the recurrent unit where
the process repeats at timestep t+1, until the loop reaches the end of the sequence.[98]

Updated cell state to help

LSTM Recurrent Unit  dctermine new hidden state

Cell state

Hidden state

X¢ 2y
Candidate
for cell state
update
Forget Input Output
gate gate gate

Figure 25: Architecture of an LSTM network. hi.1 — hidden state at previous timestep t-1
(short-term memory), where the red circle represents the sigmoid activation function, the
blue circle represents the tanh activation function, the black dots represent the states, the
red dots represent the gates, the blue dots represent the updates, x- vector pointwise
multiplication, + - vector pointwise addition, c.1 — cell state at previous timestep t-1 (long-
term memory), X;— input vector at current timestep t, h; — hidden state at current timestep
t, ¢: — cell state at current timestep t, [81], [82] ,[98]
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Figure 26: Side by side comparison of the Machine Learning and Deep Learning Process

A comparison scheme of ML and DL, can be seen in Figure 26. In short, we can say that machine
learning is an artificial intelligence tool that will learn automatically with a need of human interference for
learning and training specifically, particularly with feature extraction. Deep learning is a field of machine
learning that will learn through a process like the human brain, via artificial neural networks, without the
need of constant supervising, especially with feature extraction. The first trains small amounts of data with
simple and quicker processes and has a lower accuracy, whereas the second requires big datasets thus taking
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more time to train, but with a higher accuracy. DL also learns with its own environment, and can achieve
better results with more complex data, in comparison with ML that is in constant need for human
intervention to improve.

4.4.1.Deep Learning in biological data

In life sciences research scientists are flooded with large and complex datasets, which can be very
laborious for traditional ML techniques to find patterns. The data can be split into three different groups
based on its origin: images (e.g.: electromyogram, electrocardiogram), signals (e.g.: radiographs, MRI
images) and sequences (e.g.: DNA/RNA sequences), that can produce very heterogenous and dynamic data.
Dealing with this type of data with traditional ML techniques can be very challenging, therefore deep
learning has been very successful with pattern recognition problems within biological problems.

According to Mufti Mahmud et. al.[77], some of the most used techniques inside DL for biological
data, include convolutional neural network (CNN) (with the highest percentage of articles representing the
technique), Fully Connected Network (FNN), Deep Autoencoder (DA[E]) and Recurrent Neural Network
(RNN) including Long Short-Term Memory or LSTM. Based on the same article, in 2019 CNN was the
most used algorithm around all data types, with DA as the second most used one and RNN showing an
increased percentage of usage in applications.

4.5.Imbalanced Data

Previously it was mentioned that the objective of this work is the prediction of preterm labor using
the data from the TPEHG dataset. However, the use of this dataset comes with some difficulties, in this case
an imbalanced dataset, where the number of term recordings is larger than preterm ones. Such problem was
emphasised in Figure 10.

Imbalanced data refers to an unequal distribution of classes within a dataset. Figure 27 ilustrates
the problem of imbalanced data. In our study it is obvious that most of the births in research correspond to
term labors, while only a few are premature. This will generate an unbalance between the data points
belonging to the term class and the ones in the preterm class, with our majority class being term labor,
leaving the preterm labor class as the minority class.

Imbalanced Class Distribution

a) b)

Figure 27: a) Imbalanced Class Distribution. The grey circles correspond to the minority
class while the black circles correspond to the majority class. b) Unbalanced scale. Is an
analogy that shows that the data represented with the black color has more weight than the
one represented with the grey color.
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When datasets are not balanced, classifiers like the ones referred to above, will be more sensitive to
the majority class rather than to the minority class, causing a biased classification towards the majority class.
This can be a huge problem since most of the time the dataset is composed of mainly “normal” examples
with minority class being often the most relevant and useful one in the study. [83] On that account, different
methods to overcome the imbalanced data problem have been employed, ranging from resampling the
dataset to generating synthetic samples, with the two most popular ones being the SMOTE and ADASYN
methods. [84] Two approaches can be defined: undersampling, where the majority class is sampled, and in
our case specifically reducing the number of the majority class data points so it matches the number of
minority class recordings and oversampling, where datapoints from the minority class are replicated to be
equal to the majority class, a more accurate method than the former. [22]

In this work, the synthetic approaches are going to be explored, since they are the most used in
premature birth literature, as seen in Table 1.

4.5.1. Synthetic Minority Over-sampling Technique:

Synthetic Minority Over-sampling Technique (SMOTE) is the simplest synthetic oversampling
method, that treats all minority class samples equally. Here the minority class is over-sampled by creating
“synthetic” examples. The oversampling is done by first drawing seed samples randomly (random numbers
to ensure reproducibility) from all minority class samples, and after by calculating the k-nearest neighbors
in the minority class for each seed sample and then introducing new synthetic samples along the line
segments between the seed sample and its nearest minority neighbors, by joining them. [85]

The SMOTE algorithm currently runs with five nearest neighbors, but the number used is

recalculated based on the percentage of the oversampling needed, so if the oversampling is at 200% only 2
of the neighbors will be used.

Synthetic samples are generated as follows: first take the difference between the feature vector
(sample) under consideration and its nearest neighbor, then multiply this difference by a random number
between 0 and 1, and finally add it to the previously mentioned feature vector. This leads to selecting a
random point along the line segment between two specific features, originating the decision region of the
minority class to become more general. [23]

The authors of SMOTE state that combining the oversampling of the minority class (using SMOTE)
with the undersampling of the majority class, will lead to higher predictive accuracy results [23].

4.6. Feature Extraction

Feature extraction for machine learning is a necessary step that yields better results than working
with the raw data. It can be defined as the process of turning raw data into numerical features that can be
processed whilst keeping the information in the original dataset. This procedure can be done manually by
first identifying and describing the most relevant features and then extracting the most relevant features
using a defined manual method and first, or automatically with an algorithm specialized in automatically
and independently extracting features from signals or images, a faster process than the first. For signal data,
feature extraction can be challenging due to information redundancy and high data rate. [87] . In Figure 28
a scheme of the feature extraction process can be seen.
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Figure 28: Feature Extraction process in raw signals and time series data for a ML classifier
(taken from [87])

4.7. Dataset Features

As seen in Table 1, in the literature, the predominant features used in the preterm prediction are
time-signal features. Idowu et al. used sample entropy, root mean square, frequency, median and peak
frequency, among others as features, Ryu et al. also showed promising results while using sample entropy
[6], [7]. Jager et al. used frequency and peak amplitude of the power spectra in the contraction intervals as
features [12]. The TPEHG database has several features, from the characteristics of the patients like age,
parity, existence of diabetes, smoker status and others, to characteristics of the signal [12].

Overall algorithms perform well with a higher volume of features since they will have more data to
learn from, so it would be beneficial to work with more features in this work.

As mentioned before, in this thesis the goal was to use only the contractions instead of the whole
signal, which still needs to be done. The problem is that contractions are non-stationary time series, and
each contraction can have a different number of samples. For that reason, we chose the signals power spectra
density as it represents the EHG signal more accurately independently of the number of samples of the
contraction. [34]

Therefore, we will focus on the spectral analysis of all the contractions for each pregnant woman.
Time-frequency transformations, such as the short-time Fourier transform (STFT) or the Fast Fourier
Transform (FFT) can be used as signal representations for training data in machine learning and deep
learning models.[88]

Signal processing is often used for feature extraction and classification in medical disease diagnosis
[88], where spectral analysis plays a very important role in signal processing for distinguishing and tracking
signals of interest. The goal of spectral analysis is to decompose the data into a sum of weighted sinusoids,
that allows one to assess the frequency content of the signal. [89]

Power spectral density (PSD) measures a signal’s power content versus frequency and its estimation
results are typically used to characterize signals. In other words, PSD represents the power of the input
signal over a range of frequencies. It has been proven before that the PSD can be used to analyses EHG
signals to evaluate the changes of the power spectra in premature labors[34]. Its methods can be divided
into parametric and non-parametric groups. Parametric methods are model-based methods, that match the
signal with a model. One disadvantage is that when the selected model is wrong, PSD estimation can contain
invalid frequency peaks. The non-parametric spectral analysis estimates the spectral density of a random
signal without pre-parameter modeling, being very robust. However, since it needs data windowing, it can
lead to a distortion of the PSD. [34] [90]

A spectral estimator is expected to have good statistical properties such as consistency, high
resolution, and small variance. For one spectral estimation method, there exists a trade-off between high
resolution and small variance. Our created database includes several PSD methods, in this work specifically
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we are going to use the Welch method as the PSD estimation method. The Welch method, also called the
periodogram method is an average of periodograms across time, consisting of a non-parametric approach.
This method will estimate the power spectra by dividing the time signal into successive blocks, forming a
periodogram for each block and finally doing the correspondent average. In Figure 30 a scheme for this
method can be seen, step by step [91]. According to the literature, it is common to process signals like the
EMGs in blocks, due to their slow varying nature in time [92]. In Figure 29 the power spectra of two
different contractions using the welch method can be seen, showing that the contractions will always be the
same length.

By looking at the signals from observation 200 to observation 513 the value of the welch is
approximately 0. Based on these values, the correspondent features would be useless to the classification
algorithm, so they were not added to our analysis. Therefore, in our final dataset the power spectra for each
contraction, present in each signal per individual were used as features, until observation 200, ending up
with a dataset with a total of 4622 observations with 200 features. Additionally, a classification column was
added representing the labor category that each contraction belonged to based on the Time of Gestation,
with a value of 0 when it is term labor and 1 if it is preterm labor. This dataset will be later added to the
classification algorithm. In Figure 31, a sample of the organization of the dataset is shown.
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Figure 29: Power Spectrum of a contraction using the Welch Method. By using this method all the
contractions present the same length. (a) EHG signal with two different contraction, Alvarez Wave and
Braxton-Hicks Contraction; (b) PSD of the Alvarez Wave; (c) PSD of the Braxton-Hicks Contraction.
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(Hanning Window)
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Estimation of the PSD by the Welch method

Figure 30: Welch Method Scheme [91]
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4.8.Algorithm Evaluation
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Evaluation of different classifiers is challenging since we can only know if a model is good until it
is used. Therefore, its performance must be estimated using available data when we have the target or the
outcome. This evaluation consists in a lot more than testing a learning algorithm, it assembles different types
of tests with various elements. It includes testing different data preparation schemes, different learning
algorithms, and different hyperparameters for well-performing learning algorithms. In the end, the model
with the best construction procedure (data preparation, learning algorithm, and hyperparameters) and
correspondent best score (with our chosen metric) can be selected and used. [93]

For very large datasets or datasets where the data is well represented and balanced, with all the
classes in the problem having the same proportion, a simple procedure of splitting the dataset into two equal
parts, one for training the model and the other for testing works. Although splitting the data 50/50 will be
ideal, 70/30 or 80/20 splits for train and test sets, respectively, are more frequent.
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For unbalanced datasets, k-fold cross-validation is commonly used for validation. This approach
consists in splitting the training set into k folds. The first k-1 folds are used to train the model while the
holdout kth fold is used as the validation set. This step repeats a k number of times, where each of the folds
can be used as the holdout test set and a total of k models are fit and evaluated, and the model’s performance
is calculated as the mean of these runs. In literature, a value of k=10 folds has shown the most success in a
wide range of datasets and different models. However, more often than expected, when dealing with highly
unbalanced datasets, splitting the data into two groups will be impossible, since it might happen that one of
the groups has no data for the group of interest, in this case premature births. To combat this issue, a stratified
k-fold cross-validation procedure can be used. This is a common procedure in cases of imbalanced datasets,
since it ensures that the proportion of elements in each class in the original distribution is preserved in all
folds. In this process the dataset is randomly split while maintaining the same class distribution in each
subset, to protect the imbalanced class distribution in each fold and protecting the distribution in the
complete training dataset. [93]

Recently, Mohammadi Far, S. has shown success with 10-fold stratified cross validation in the
TPEHG dataset, guaranteeing the existence of both classes in all subsets. [21], [94]

4.9.Feature Selection

While continuously trying to construct the best model, feature selection algorithms come into action.
In most classification problems, especially when dealing with many features, it is easy to assume that some
of these predictor’s variables can be redundant to the classification problem, or just damage the prediction
performance. This method consists in reducing the dimensionality of data by selecting a subset of features
that improve the classification performance, in a much quicker procedure. There are three different
categories in the feature selection algorithms [94]:

e Filter Type Feature Selection: this method measures the predictors importance based on
the characteristics of the features.

e Wrapper Type Feature Selection: this method trains several models using a subset of
different features and then adds or removes a feature using a selection criterion, then
choosing the best performing model.

e Embedded Type Feature Selection: this method will rank feature importance while the
model is training, as a part of the model learning process. Thus, the features selected will
be the ones that work well in the learning process.

The methods used in this work consist of a filter type method for feature ranking, including the
Minimum Redundancy Maximum Relevance (MRMR) Algorithm.

e Minimum Redundancy Maximum Relevance (MRMR) Algorithm: it works by finding an
optimal group of features mutually and maximally unrelated to each other to effectively represent
the response variable. This procedure will minimize the redundancy of a feature set to the response
variable, by quantifying the redundancy and relevance of the pairwise mutual information of
features and mutual information of a feature and the response. [94]

In Matlab® the correspondent function is the fscmrmr, and it ranks features in 6 steps:
o The feature with the largest relevance is selected and added to an empty subset, S.
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o Searches for features with nonzero relevance and with zero redundancy in the complement
of subset, S°.

o If the complement set does not have this type of features, it goes directly to step 4.

o Otherwise, the feature with the highest relevance value is selected and appended to the
subset, S.

o Repeat step 2 until the redundancy value for all features in the complement set is different
from zero.

o In S, selects the feature with the largest mutual information quotient (M1Q?) value with
relevance and redundance different from zero, and appends it to the set S.

o Step 4 will be repeated until the relevance is equal to zero for all features in S°.

The features with zero relevance are randomly added to S. [94]

4.10. Hyperparameters

As mentioned before, to construct a good classification model, we must consider the best
combination of hyperparameters. Hyperparameters are numeric or Boolean values that the user can adjust
before training the model, which will help to improve the training time, performance and prediction of the
classifier, and will be used to control the learning process. Thus, as the name states they are “hyper” and
therefore very important since they will make training very effective in terms of both time and fit, avoiding
overfitting and underfitting. Some examples of hyperparameters are the train-test split ratio, batch size,
branches in decision tree or the number of clusters in the clustering algorithm.

Although you can find the most relevant hyperparameters for the classifier manually, currently one
can find a few optimization tools capable of identifying good hyperparameters, in a process called
hyperparameter tuning/optimization (HPO). In this work, the Bayesian Optimization tool was used, which
consists of building a probability model of the unknown scalar objective function, f(x) using a probabilistic
surrogate model, typically a Gaussian process, to minimize f(x) for x in a bounded domain. The components
in x can be reals, integers or categorical. The key elements in this process are:

e A Gaussian process model of f(x).

e A Bayesian update procedure that modifies the Gaussian process model at each new evaluation of
f(x).

e An acquisition function a(x), based on the Gaussian process model of f, that determines the next
point of x for evaluation.

The probabilistic surrogate model will provide a representation of the objective function while
updating iteratively as new data points are observed. The surrogate function is the Bayesian approximation
of the objective function and the acquisiton function selects the next sample of hyperparameters from the
search space. The way this process works is:[96], [97]

max MIQ, = max _ Iy

xes© xest — 1(x, z

€S s\v)
2 S| =<8 [94]
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1. Select a sample by optimizing the acquisition function, finding the best hyperparameters
that outperform the rest on the surrogate model

2. Evaluate the hyperparameters in the true objective function

Incorporate the new results on the surrogate model

4. Keep repeating the process until the end of the fixed number of iterations (30 is the default
number) or fixed time (the default is no time limit)

w

The problem with finding the optimal hyperparameters is that it is very time consuming, since the
evaluation consists in training the model and testing I, and then calculate the evaluation metric on a
validation set. The traditional approach for HPO is the “one try” method, were the tunning tool finds the
best hyperparameters in just one try. [97]

Bayesian optimization is the model chosen for this research since it can outperform the previous
ones mentioned. Grid search and Random search, although better than manual tuning, are still lacking. The
problem with these methods is that they don’t take in consideration past results and for that reason a big
portion of the time is spent evaluating hyperparameters that are unsatisfactory.

The six types of acquisition functions found in Bayesian Optimization are:

e  “expected-improvement-per-second-plus” (default)
e  “expected-improvement”

o “expected-improvement-plus”

e  “expected-improvement-per-second”

e “lower-confidence-bound”

o  “probability-of-improvement”

The “expected-improvement-per-second-plus” default option was the chosen as our optimization
tool. These expected-improvement functions evaluate the total expected improvement in the objective
function, using time-weighting (-per-second-) in its acquisition function and modifying their behavior when
they estimate that they are overexploiting an area (-plus). [96]
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4.11. Evaluation methodology

To evaluate the performance of our classifiers different statistical measures had to be used. These
measures were chosen based on the most popular measures used in literature since the goal is to see if our
classifier can achieve better results in comparison to the more traditional ones presented in literature, seen
in Table 1.

For every classifier and with each combination, for the performance evaluation we will be using a
confusion matrix, a two- dimensional matrix table used to rate the performance of a classifier based on
testing data [5]. The confusion matrix is a table with 4 different combinations of predicted (described as
positive and negative) and the true/actual (described as true and false) values, that can be seen in Table 32:

Predicted Class

Negative (0) — Term Positive (1) — Preterm

@ Labour Labour
3] -
o N -T . .
g egative (0) - Term True Negative (TN) False Positive (FP)
2 Labour
= Positive (1) -Preterm .\ . Negative (FN) True Positive (TP)

Labour

Table 32: Confusion Matrix
In Table 32 we see that the confusion matrix is constituted by:

o True Negative Value (TN): when the algorithm predictes negative, and it is true, corresponding
to a correctly identified term labor.

e True Positive Value (TP): when the algorithm predicts positive, and it is true, corresponding
to a correctly identified preterm labor.

e False Positive (FP): when the algorithm predicts positive and it is false, meaning that the
algorithm predicted a preterm labor but it is actually a term labor.

o False Negative (FP): when the algorithm predicts negative and it is false, meaning that the
algorithm predicted a term labor but it is actually a preterm labor.

It is very useful for measuring several performance metrics [5]. These include:

e Accuracy (AC): this is the most used metric. It consists in a percentage of how often the
classifier is correct in naming term or preterm labor. It is given by the following equation

[5]:

B TP + TN
" TP+TN +FP + FN

AC

where TP (true positive value), TN (true negative value), FP (false positive value), FN (false
negative value) can be extracted from the confusion matrix.
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Recall (R): percentage of how often the classifier gives correct predictions, so when it
identifies the labor as preterm when it is preterm, giving an actual positive. Recall should
be as high as possible. R is given by the following equation [5]:

R TP
" TP+ FN

Precision (P): it gives us a measure of how precise/accurate the model is, so between all
the positive predicted values, how many are true positives. In this case, how many preterm
labours are correctly identified as preterm. Precision should be as high as possible. It is
defined by the following equation [5]:

po TP
TP+ FP

F1 Score: it is a measure that combines the precision and the recall values, more precisely
it corresponds to the harmonic mean of precision and recall. A higher value of F means a
better classifier. It is a good metric to compare different models with low precision and high
recall. It is defined by the following equation [5] :

P XR
P+R

F=2X

False Negative Rate (FNR): it measures the percentage of how often the classifier
classifies the labor as term when it is preterm. It is defined by the following equation [5] :

FN

FNR = ——
TP +FN

False Positive Rate (FPR): it measures the percentage of how often the algorithm classifies
the labor as preterm when it is term. It is defined by the following equation [5] :

FPR= —
TN + FP

Receiver Operating Characteristic (ROC) Curve and Area Under the Curve (AUC):
these are tools that will also measure the performance of the classifier. The ROC is also a
performance evaluation measurement for binary classification algorithms. It corresponds to
a graphic plot representation of the variation in the recall (also referred to as TPR, true
positive rate) and the FPR for all different thresholds. The AUC is an area measure that
helps us compare the ROC Curves. It is defined as the probability of the classifier ranking
a randomly chosen positive instance higher than a randomly chosen negative instance. So
it will measure the performance of the classifier, with values between 0 and 1, the closer to
1 the better the classifier is, exhibiting an excellent discrimination power. It is important to
know that the ROC curve does not depend on the class distribution, which is particularly
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helpful in imbalanced datasets, where the classifiers tend to predict a negative outcome for
the majority class [5].

The next chapter will present our case study.
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5. Results and Discussion

In this section, we present the results of our study on the classification of preterm and term delivery
using both Machine Learning and Deep Learning algorithms. We implemented a total of five algorithms,
including four machine learning algorithms: Random Forest (RF), Random Undersampling (RUSBoosted
Tree), Support Vector Machine with a Gaussian Kernel (SVM), and a Shallow Neural Network, as well as
one Deep Learning Algorithm, a bilateral Long short-term memory (LSTM) network. We chose RF and
SVM based in Table 1, and the Wordcloud shown in Figure 1, where both were the most predominant
classifiers with positive results in preterm birth classification using EHG signals. Additionally, we selected
RUSBoosted Tree as it is an ensemble algorithm that performs well with imbalanced datasets like our own.
The Shallow Neural Network was chosen to provide insight into the deep neural network used in the DL
step of the analysis. For the DL approach, we chose the bilateral LSTM network as it is well-suited for
sequence models.

Our dataset comprises a total of 200 features belonging to the Power Spectral Density (PSD) of each
contraction from each patient. This novel approach differs from the literature, where time-signal and spectral
features, such as sample entropy and peak frequency, are typically used. We split the dataset using a 70%
holdout technique, with 70% of our dataset as the training dataset and the remaining 30% as the test dataset.
The split was chosen to ensure that both classes are represented in both the training and testing sets. After
splitting, the training set consisted of 3236 observations, with 2829 term labor and 407 preterm labor
observations. The testing set contained 1386 observations, with 1212 term labor and 174 preterm labor
observations. Figure 33 shows the number of observations per class in the test and training sets,
demonstrating that both classes are represented despite the imbalanced dataset.
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Figure 33: Number of observations for each class (Term or Preterm) in the initial training (a) and the test set (b)
The training set was later inserted in the Classification Learner App, to begin the training and

validation with each classification model. For the ML approach, presented in Chapter 4.3, the trained
dataset was trained and validated using a stratified k-fold cross validation method with k equal to 10, since
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this exact method has been positively linked to the classification of preterm labor using a skewed dataset,
more recently. A k-fold CV is preferable, especially when working with smaller datasets, to evaluate a
model since it repeats the process k times. It is also known that this method can be more advantageous with
imbalanced data, when comparing to k-fold cross validation, like it was mentioned before in Chapter 4.8.
A visual representation of this step is seen in Figure 34:

3000

Mumber of Observations

2547

Stratified 10-fold Cross Validation Partition
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10
Training Set (Fold)

Figure 34: Number of Preterm and Term observations for each fold in the Stratified 10-fold

Cross Validation Partition for the original dataset

Later when we achieved a good model performance, the trained model was evaluated using the test
set and the different metrics, mentioned in Chapter 4.11, were computed. The workflow, present in Figure

35 consists of:
1.
2.
3.

Training dataset is used to train each model
Validation dataset is used to evaluate each model
The best trained model is tested and evaluated with the test dataset, after the feature

selection and hyperparameter tuning process

Dataset

Training Testing = Holdout Method

Cross Validation

Figure 35: Scheme of the training-validation-testing plan
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All the training and validation processes were performed through the Classification Learner App
from Mathworks®.

The following sections will present the performance evaluation results and discussion of the ML
and DL approaches. First, for the ML, we’ll present the confusion matrix and AUROC plot for each
classifier with the untouched data, second using the transformed datasets using SMOTE, third using the
SMOTE datasets and an undersampling technique, fourth applying PCA, a dimensionality reduction
technique to the dataset, and finally using a feature selection method with hyperparameter optimization. In
the last step, we’ll also perform the testing using the test dataset with 1386 observations, in the best tuned
model. This last step was only done with the best performance classifiers since it would be pointless to test
amodel that does not predict well our results. It is important to use the test dataset without any modifications,
so the machine learning model behavior is tested with observations that he’s never seen before and are
unbiased. For the DL approach the classifiers were trained with the original dataset and the dataset after
applying SMOTE. The best classifiers were then tested with the same test set used in the ML part. In the
end both methods, ML and DL, are compared to each other and to the best results found in literature.

5.1.Machine Learning Methods

5.1.1 Results for the study dataset

In this first section the dataset was used without any transformation, so 3236 observations were used
for the training dataset, leaving 1386 for the test dataset. The data used in the stratified cross-validation step
was split into 10 different groups, with the same class ratio throughout the 10 folds as in the original dataset,
as seen in Figure 34.

The Figure 36 represents the training results based on the confusion matrix from the RF,
RUSBoosted Tree, SVM with Gaussian kernel and Shallow Neural Network, shown in Table 4 to Table 7,
respectively, and in the ROC curves present in the attachment.

Table 4: RF classifier confusion matrix for the training set of the original dataset
Predicted Class

o Term Labor Preterm Labor

(%2}

5 Term Labor 2814 15

o

[ Preterm Labor 406 1

Table 5: RUSBoosted Tree classifier confusion matrix for the training set
of the original dataset
Predicted Class

. Term Labor Preterm Labor
5 Term Labor 1541 1288
3
= Preterm Labor 211 196
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True Class

True Class

Table 6: SVM with the Gaussian kernel classifier confusion matrix for

the training set of the original dataset
Predicted Class

Term Labor Preterm Labor
Term Labor 2829 0
Preterm Labor 407 0

Table 7: NN classifier confusion matrix for the training set of the
original dataset
Predicted Class

Term Labor Preterm Labor
Term Labor 2484 345
Preterm Labor 338 69
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Figure 36:Machine learning performance results for the validation dataset (using only
stratified cross-validation) for comparison

As seen in Figure 36 amongst all classifiers the SVM with the Gaussian Kernel performed the best
in terms of the accuracy rate, with both the SVM and the RF scoring very high results, of around 87%. The
NN and RUSBoosted Trees also showed a high accuracy of approximately 80%. However, since we are
dealing with an extremely unbalanced dataset, based on the confusion matrix of Table 6 (where the model
does not predict any preterm labor), the model simply learned to predict the majority class very well. For
that reason, looking at the accuracy it is not the best way to measure the model’s performances with this
exact dataset. Based on the other measures of the classifiers we can see that the RUSBoosted Tree showed
the best results with the highest value for Recall, Precision and F1 Score, and lowest value of FNR. This
classifier also shows the highest value for the FPR, and even if the value is notvery high it means that it will
classify a labor as preterm when in the dataset is term, which is notgood for a classifier. SVM and RF show
a FNR of approximately 100%, meaning that all preterm births were classified as term.

Additionally, looking at the AUC values curves present in Figure 36, overall, all classifiers
perfomed very poorly, with the SVM showing the best AUC value of 55,6%, indicating that the model is
incapable of doing real predictions. Even though the RUSBoosted Tree is linked to a high performance with
imbalanced datasets, its performance did not stand out, most likely due to the extremely imbalanced dataset.
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5.1.2.Results for the study dataset using SMOTE for oversampling

Since the results presented before were very low due to the highly imbalanced dataset, the next step
was to apply the oversampling techniques to the feature dataset. Considering this, the SMOTE method was
applied to our contraction’s dataset. The oversampling was only applied to the training dataset, after the
partition since these yields more accurate results without an overly positive classification measure. It is
important to note that the testing set will not suffer any changes from this oversampling method. This is also
a new approach different from the usual in literature, where the partition occurs only after SMOTE is
applied. However, as it was mentioned before recent studies have found that using oversampling techniques,
like SMOTE on the test set might lead to overly optimistic results. [22]

In almost all literature using SMOTE as an oversampling technique for the TPEHG dataset, the
method is always to oversample the minority class to equal the majority class, which leads to extremally
good results. However, on the original paper on SMOTE [23], the authors suggested combining SMOTE
with random undersampling of the majority class, admitting that this should favor even more the results,
avoiding overfitting. For that reason, in this step, we are going to compare using the SMOTE with and
without undersampling of the majority class.

This comparation approach has the objective of seeing if there is a significant difference in utilizing
SMOTE with and without undersampling of the majority class and if it improves the performance of the
classifiers.

a) Results for using only SMOTE

First SMOTE was applied to the training dataset, that originally had 3236 observations, with 2829
term labor contractions and 407 preterm labor contractions. After this step the dataset had a total of 5658
observations, with the same number of preterm contractions as term ones, as seen in Figure 37.
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Figure 37: Number of observations for each class (Term or Preterm) in the training dataset
after applying SMOTE

The previous classifiers were applied including the RF, the RUSBoosted Tree, the SVM with
Gaussian kernel and Shallow Neural Network. For the validation set the same stratified 10-fold cross
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validation as before was applied. Figure 37 displays the classification metrics for the training set, based on
the confusion matrix from the RF, RUSBoosted Tree, SVM with Gaussian kernel and Shallow Neural
Network, shown in Table 8 to Table 11, respectively and in the ROC curves shown in the attachment.

Table 8: RF classifier confusion matrix for the SMOTE training dataset
Predicted Class

True Class

Term Labor Preterm Labor
Term Labor 2468 361
Preterm Labor 287 2542

Table 9: RUSBoosted Tree Trees classifier confusion matrix for the SMOTE

training dataset

Predicted Class

True Class

Term Labor Preterm Labor
Term Labor 1030 1799
Preterm Labor 285 2544

Table 10: SVM with the Gaussian kernel classifier confusion matrix for the
SMOTE training dataset
Predicted Class

True Class

Term Labor Preterm Labor
Term Labor 2440 389
Preterm Labor 1180 1649

Table 11: NN classifier confusion matrix for the SMOTE training dataset

Predicted Class

True Class

Term Labor Preterm Labor
Term Labor 2336 493
Preterm Labor 163 2666
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Figure 38: Machine learning performance results for the validation dataset (SMOTE) for
comparison

As seen in Figure 38 and in the confusion matrix of all classifiers, the results improved significantly
from applying an oversampling technique. From the confusion matrix we can see that overall, all classifiers
were able to predict almost all preterm labor contractions, expect for the SVM that performed slightly worse
compared to the rest. Both the RF and NN performed extremely well compared to the performance in the
initial dataset presented in Chapter 5.1.1, with an accuracy of 88.5% and 88.4%, respectively, and a high
value for the F1-score of 88.7% and 89%, which is also a significant improvement from the F value of 0.4%
and 16.8%. In terms of the FNR and FPR, the performance was similar for both the RF and the NN, showing
a low rate of false negatives of 10.1% and 5.8% respectively and low rate of false positives, of less than
20%, which is once again a large improvement from the rates of 100% presented in the Chapter 5.1.1. Even
though the SVM and RUSBoost did not present the highest scores they still performed well with 72.3% and
63.2% of accuracy, respectively and F1-score around 70%. However, these the RUSBoosted Trees showed
a high false positive rate. These values were expected since the SMOTE method allowed to overcome the
issue of the extremely imbalanced dataset present before.
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In terms of the AUC values for the ROC curves, the classifiers also showed an improvement, with
values above 60%. The RF and NN classifier stood out from the rest, with an AUC of 94,5% and 91.5%,
respectively, and the SVM with 80,3% which means that the classifiers have an excellent predictive ability.
The RUSBoosted Trees performed slightly lower, with an AUC of 64%, showing a good predictive ability.

5.1.3.Results for combining SMOTE and random undersampling for the majority
class

In this step instead of oversampling the minority class to equal the number of observations
corresponding to preterm and term, we decided to combine a process of oversampling the minority class
and then undersample the majority class, to end with a 1:2 ratio in the train dataset.

First the minority class was oversampled, using the SMOTE algorithm, to have 40% of the number
of examples of the majority class (e.g. about 1132). It is important to know that this value was agreed on
after carefully searching for the percentage that would give better results, while still being fairly accurate.
Then random undersampling was used to reduce the number of observations in the majority class to have
50% more than the minority class (e.g. 2264). After these steps, the final dataset had a total of 3396
observations, with 2264 term labor contractions and 1132 preterm labor contractions, as seen in Figure 39.
This way the 1:7 ratio of the classes in the original dataset was transformed to a 1:2 ratio.

Train Group Observations

2500

Number of Observations

Preterm Term
Categories

Figure 39: Number of observations for each class (Term or Preterm) in the training dataset
after combining SMOTE with undersampling

The previous classifiers were applied including the RF, RUSBoosted Tree, SVM with Gaussian
kernel and Shallow Neural Network. Figure 43 displays the classification metrics for the training set, based
on the confusion matrix from the RF, RUSBoosted Tree, SVM with Gaussian kernel and Shallow Neural
Network, shown in Table 12 to Table 15, respectively, and ROC curves in the attachment.
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True Class True Class True Class

True Class

Table 12: RF classifier confusion matrix for the training dataset with
SMOTE + undersampling
Predicted Class

Term Labor Preterm Labor

Term Labor 2147 113

Preterm Labor 462 668

Table 13: RUSBoosted Tree classifier confusion matrix for the training
dataset with SMOTE + undersampling
Predicted Class

Term Labor Preterm Labor

Term Labor 1286 974

Preterm Labor 236 894

Table 14: SVM with the Gaussian kernel classifier confusion matrix for
the training dataset with SMOTE + undersampling
Predicted Class

Term Labor Preterm Labor

Term Labor 2259 1

Preterm Labor 1095 35

Table 15: NN classifier confusion matrix for the training dataset with
SMOTE + undersampling
Predicted Class

Term Labor Preterm Labor

Term Labor 1870 394

Preterm Labor 213 919
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Figure 40: Machine learning performance results for the dataset using SMOTE with
undersampling training dataset for comparison

As seen in Figure 40 and in the confusion matrix of all classifiers, compared to the technique
without the undersampling of the majority class, the classifiers performed worse overall, specifically in the
recall score, meaning that the models started to produce more false negatives, which can also be seen with
the increase of the FNR. This is usually associated with an imbalanced class or untuned model
hyperparameters, which means that since we are currently working with a balanced dataset, the next step to
improve our classifiers will be to tune the model hyperparameters.

The SVM, RF and NN showed the biggest change, with a significant drop in the F1-score value and
the false negative rate increase. Even though these classifiers showed an increased capacity of identifying
preterm labor, with a decrease on the the FPR, the change wasn’t enough to construct a better model.

In terms of the AUC percentage values, the RUSBoosted Trees and SVM did not perform as well
as before, with values around 70% which means that these classifiers have less predictive power, when
comparing with the AUC value of 80,3% and 64% presented before. Finally, the Random Forest and
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Shallow Neural Network algorithm continued to show the biggest value of the AUC of 86.5% and 84.7%,
respectively, showing a good predictive capability.

This kind of results can be linked with the classifier having less observations from the minority class
to learn from. Although the authors of the SMOTE paper showed that the results improved when combining
random undersampling, the same did not happen with our work, and matching the number of observations
in the minority class to the majority class, proved to be the best, with all algorithms showing better and more
promising results for preterm I. In the next step we will use the SMOTE dataset used in 4.1.2, a) chapter to
apply feature selection methods, dimensionality reduction and later a tuning of hyperparameters, to
hopefully improve our results.

5.1.4. Results for the dataset combining PCA with the SMOTE dataset

After applying oversampling using SMOTE, our results increased significantly. With the purpose
of making our classifier more robust and to avoid problems like overfitting, we chose to try the application
of a PCA. This technique reduces the dimension of a dataset, so it is simpler and easier to work with, while
preserving the information contained in it. This technique was applied keeping enough components to
explain 95% of the variance.

The next step was to classify this new dataset with our different algorithms, to check for any
improvements. The RF, RUSBoosted Tree, SVM with Gaussian kernel and Shallow Neural Network were
trained and validated using a 10-fold stratified cross-validation. The Figure 43 displays the classification
metrics for the training set, based on the confusion matrix from the RF, RUSBoosted Tree, SVM with
Gaussian kernel and Shallow Neural Network, shown in Table 16 to

Table 19, respectively.

Table 16: RF classifier confusion matrix for the training dataset after applying
PCA
Predicted Class
Term Labor Preterm Labor

Term Labor 2298 531

True Class

Preterm Labor 343 2486

Table 17: RUSBoosted Tree classifier confusion matrix for the training dataset
after applying PCA
Predicted Class
Term Labor Preterm Labor

Term Labor 956 1873

Preterm Labor 539 2290

True Class
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True Class

Table 18: SVM with the Gaussian kernel classifier confusion matrix for
the training dataset after applying PCA
Predicted Class

Term Labor Preterm Labor
Term Labor 2218 611
Preterm Labor 1737 1092

Table 19: NN classifier confusion matrix for the training
dataset after applying PCA
Predicted Class

. Term Labor | Preterm Labor
5 Term Labor 1995 834
(5]
>
= Preterm Labor 493 2336
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Figure 41: Machine learning performance results for the validation dataset for
comparison after dimensionality reduction technique

In Figure 43 it is visible that the PCA did not improve our results. Overall, the accuracy, recall,
precision, Fl-score and AUC got lower, while the FNR and FPR increased. The biggest noticeable
difference is with the SVM classifier, in which you can see the biggest drop with the AC value dropping
from 72,3% to 58,5%, the F value from the 67,8% to 48,2% and the AUC value from 80,3% to 60,4%.

By looking at these results, we conclude that PCA should not be used with our data, since it
negatively influences the results for all classifiers. Although not expected, PCA can harm the results in
classification problems, since as an unsupervised method, it will not take in consideration the labels of the
observations. As a result, some features of a certain class, might not be considered since their labels are not
correlated with the variance of the features, and for that reason worsening the results.

In the next step we will use the SMOTE dataset used in Chapter 50 to apply feature selection
methods.

5.1.5.Results for the dataset with oversampling combining Feature Selection
Methods with the SMOTE dataset

In this next phase, we continued to try to improve the performance of our classifiers. This step
consisted in applying a feature selection method, explained in Chapter 4.9, to the training dataset with an
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oversampled minority class. This technique was used since we are working with a high number of features,
specifically 200, and some might be redundant, so by removing features with low predictive power, we can
improve our models, so that the classifier is better at generalizing, avoiding overfitting. The feature ranking
methods applied was the Minimum Redundancy Maximum Relevance (MRMR) Algorithm, and the
correspondent feature importance ranking results are presented in Figure 42.

Feature ranking using MRMR algorithm
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Figure 42: Feature ranking using Minimum Redundancy Maximum Relevance (MRMR)
test rank

0.005
1]

Looking at these results we can see in Figure 42, that only 183 features show any relevance, with
17 of the features scoring zero importance. With the goal of improving our dataset, we tried to establish a
threshold within the ranking of Figure 42, to find the optimal number of features. Since there is not an
evident drop in the score overall, three different number of features were selected: 16 (where the biggest
drop of importance happens, from feature 16 to feature 17), 100 (considering a threshold equal to half of
the number of features) and 183 (considering the only features that showed importance). It is important to
mention that from feature 100 to feature 183 the feature importanceO score is approximately 0.005 and it
keeps getting lower, therefore they are considered very low importance.

The next step was to classify these three datasets, to check for any improvements. RF, RUSBoosted
Tree, SVM with Gaussian kernel, and Shallow Neural Network were trained and validated using 10-fold
stratified cross-validation. Figure 43 displays the classification metrics for the validation set using 183
features, based on the confusion matrix from the RF, RUSBoosted Tree, SVM with Gaussian kernel, and
Shallow Neural Network, shown in Table 20 to Table 23, respectively. The ROC curves are represented in
the attachment. The results for the other two datasets using 16 and 100 features are shown in the attachment
since they performed poorer than the 183 features.
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Table 20: RF classifier confusion matrix for the training dataset after feature selection
Predicted Class

" Term Labor | Preterm Labor
[%]
8 Term Labor 2433 396
[}
~ Preterm
21 2
= Labor 3 508

Table 21: RUSBoosted Tree classifier confusion matrix for the training dataset
after feature selection
Predicted Class
Term Labor Preterm Labor

Term Labor 1120 1709

True Class

Preterm Labor 357 2472

Table 22: SVM with the Gaussian kernel classifier confusion matrix for the training
dataset after feature selection
Predicted Class

" Term Labor Preterm Labor

[%2]

8 Term Labor 2224 605
[<5]

>

= Preterm Labor 1232 1597

Table 23: NN classifier confusion matrix for the training dataset after feature
selection
Predicted Class
Term Labor | Preterm Labor

Term Labor 2295 534

True Class

Preterm Labor 175 2654
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Figure 43: Machine learning performance results for the validation dataset with
183 features for comparison after feature selection

In Figure 43 we can see that by removing some of the features that were poorly ranked, the results
did not suffer any significant change, expect for the SVM that showed the biggest difference in the AUC
value, with its value decreasing from 80 to 76. This means that the predictive ability of this classifier
decreased slightly, but not enough to change the classification power. In terms of the F1-Score, in general
the values stayed approximately the same. By deleting seventeen features with zero importance, the
classifiers achieved, approximately, the same performance but with less training time and less chances of
overfitting the data.

The next step in this thesis, was the last procedure for improvement, where the new dataset with
only 183 features was used for hyperparameter optimization, with the Bayesian optimization method.

5.1.6.Results for the dataset applying SMOTE, Feature Selection and
Hyperparameter Optimization

This next step consists of the final step in the machine learning classifier methods. Here we are
tuning our model with our best performing dataset (oversampling of the minority class using the SMOTE
technique with 183 features of the most relevant features) by selecting different advanced options, called
hyperparameters, that strongly affect the performance of the algorithms. This technique is called Bayesian
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optimization and was done by using the Classification Learner app from MatLab®, with 30 iterations each
and using the “Expected improvement per second plus” method. This app tries different combinations of
hyperparameter values and returns a final model with the optimized hyperparameters that minimized the
model classification error and then trains it with the training data. The validation is then done with the same
10-fold stratified cross validation used previously. Finally, the test dataset is used in the trained model and
the performance metrics are calculated. Only 30 iterations were chosen since a higher number was
impossible to reach with the CPU used for this thesis.

For the Random Forest and RUSBoosted Tree model, the hyperparameters that were tuned were the
maximum number of splits, the number of learners, learning rate and number of predictors to sample for the
RF. The RF model was improved by 410 learners, with 3981 maximum number of splits and 2 predictors
to sample. Comparing to the RUSBoosted Tree, the best tuned model had 12 learners, a learning rate of 0-
814 and 500 maximum splits.

For the optimizable SVM model with the Gaussian kernel function, the Box constraint level and
standardize data parameter were tuned. The model was improved by utilizing a a box constraint level of
590.7263 and the standardize data was set to false.

Finally, for the optimizable neural network, the number of fully connected layers, the activation
function, standardize data parameter, regularization strength, first layer size, second layer size and the third
layer size were tuned. The model was improved by utilizing three fully connected layers, the Tahn activation
function, standardize data parameter was set to True, the first layer size was 221, the second layer size was
240 and the third layer size was 52.

The hyperparameter optimization results for the classification metrics for the training dataset are
shown in Figure 44. Each of these results is based on the confusion matrix from the RF, RUSBoosted Tree,
SVM with Gaussian kernel and Shallow Neural Network, shown in Table 24 to Table 27, respectively, and
the ROC curves shown in the attachment.

Table 24: RF classifier confusion matrix for the training dataset after
hyperparameter tuning
Predicted Class
Term Labor Preterm Labor

Term Labor 2602 227

True Class

Preterm Labor 188 2641

Table 25: RUSBoosted Tree Trees classifier confusion matrix for the training
dataset after hyperparameter tuning
Predicted Class
Term Labor Preterm Labor

Term Labor 2013 816

True Class

Preterm Labor 516 2313
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Table 26: SVM with the Gaussian kernel classifier confusion matrix for the
training dataset after hyperparameter tuning
Predicted Class

Term Labor Preterm Labor

Term Labor 2456 373

Preterm Labor 315 2514

True Class

Table 27: NN classifier confusion matrix for the training dataset after
hyperparameter tuning
Predicted Class

Term Labor Preterm Labor

Term Labor 2347 482

True Class

Preterm Labor 156 2673
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Figure 44: Machine learning performance results for the validation dataset for comparison
after hyperparameter tuning

Analyzing the results in the Figure 44 for the validation results, all classifiers performed better with
the hyperparameter optimization. The accuracy, recall, precision, F1-score and AUC all improved. The
SVM algorithm showed a significant increase in the recall value, from 58.3% to 88.9%, improving the
ability of classifying the positive class, preterm labor. The optimized RF algorithm stood out from the rest,
with a F of 92.7%, an AUC of 97.3%, a FNR 6.6% and FPR of 8%, while maintaining an accuracy of 92.7%.
The RUSBoosted Trees performance in the precision, and false positive rate got better, increasing from
58.6% to 73.9% and decreasing from 63.6% to 28.8%.

After achieving such positive results, the models were tested with the test dataset, presented earlier
in this chapter, with 1386 total observations. As mentioned before, although we are working with a dataset
with the application of SMOTE and with feature selection, the test set will only include the original samples,
so we have an unbiased estimate of how well the classifier works with new data. In Figure 45 we can see
all the results in a bar plot for comparison, and the confusion matrix for the RF, RUSBoosted Tree and SVM
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with Gaussian kernel, from Table 28 to Table 31 respectively. The correspondent ROC curves are
represented in the attachment.

Table 28: RF classifier confusion matrix for the test dataset after hyperparameter
tuning
Predicted Class

" Term Labor Preterm Labor
(%]
5 Term Labor 1106 106
[«5)
>
= Preterm Labor 152 22
Table 29: RUSBoosted Tree classifier confusion matrix for the test
dataset after hyperparameter tuning
Predicted Class
. Term Labor Preterm Labor
[%2}
5 Term Labor 864 348
3
= Preterm Labor 121 53

Table 30: SVM with the Gaussian kernel classifier confusion matrix for the test
dataset after hyperparameter tuning
Predicted Class

" Term Labor Preterm Labor
5 Term Labor 1041 171

=

= Preterm Labor 139 35

Table 31: NN classifier confusion matrix for the test dataset after hyperparameter
tuning
Predicted Class
Term Labor Preterm Labor

Term Labor 992 220

True Class

Preterm Labor 140 34
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Figure 45: Machine learning performance results for the test dataset for comparison after
hyperparameter tuning

For the test results we can see that the values were slightly lower than expected. Although the values
for the accuracy remained similar for all classifiers, in the range of 70-80%, a good AC value, the precision
and recall, as well as the F1-Score decreased at about 70%, overall. Additionally, the values for the FNR
increased for all classifiers, at about 80%, while the FPR stayed approximately constant in the low range.
Based on the high accuracy and the values presented in the confusion matrix from Table 28 to Table 31,
the classifiers are able to classify the term labors but struggle to predict preterm labors, justifying the high
false negative rate. The AUC values sit between 50% and 60%, meaning that the predictions are just as good
as random guesses.

It was expected for the results to be lower in the test set, since it is almost impossible to achieve the
same performance on the test data as when validating on the training data. However, these values were way
below expected. The main reason for this happening can be due to the change of the data quality in the train
and test group, specifically the difference in the distribution of the data in the test set and training set. This
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can be seen in Table 32, where the preterm term ratio drops from 1:1 to 1:7 in the test data, having almost
90% of term observations, thus being unrepresentative of the minority class. Apart from this it could also
be the case of overfitting, and so the data is not able to generalize well to new unseen data. This is unlikely
since from the beginning we set a robust model, to avoid any issues like this, by validating the results using
stratified cross-validation, using feature selection to eliminate redundant features and complexity off the
model, and adding more samples to the training data using the SMOTE technique.

Table 32: Comparison between Train and Test data distribution

Train Data Test Data
Count Percent Count Percent
Term Labor 2829 50 1212 87.5
Preterm Labor 2829 50 174 12.6

In conclusion we can say that the RF had the best performance, even though all classifiers showed
similar weak performances with the test set. This classifier showed the highest accuracy and precision, and
lowest FPR, as well as one of the highest AUC value.

5.2. Deep Learning Methods

In this section we will present the performance evaluation results and discussion of the Deep
Learning approaches. Firstly, we present the performance of the bidirectional LSTM with the original
dataset, followed by the results obtained with the dataset treated with the oversampling technique, SMOTE.
The original dataset was adapted to the raw structure, where we don’t have the Welch variable organized
into 200 features, but in a matrix of 1 by 200, demonstrating our sequential variable. This can be seen in
Figure A. 31, shown in the attachment.

To process the observations (power spectra of the contractions), a bidirectional LSTM layer was
chosen. This type of layer looks at the sequence in both forward and backward directions, which can help
capture temporal dependencies. Since our observations have one dimension each, the chosen input size of
the sequences is 1. The LSTM layer had 200 units, and the output was set to the last timestep to map the
input into 200 features and prepare the output for the fully connected layer. Finally, a fully connected layer
with a size of 2 was chosen to represent the two classes, term and pre-term, followed by a sigmoid layer
(suited for binary classification problems) and a classification layer. Figure 46 shows a code snippet of this
model.

layers = [ ...

sequencelnputLayer (1)
bilstmLayer (200, 'OutputMode', "last"')
fullyConnectedLayer (2)

sigmoidLayer

classificationLayer

]

Figure 46: Layer architecture for the LSTM algorithm

For the training options, represented in Figure 47 we can see that “MaxEpochs” option was sent to
50 to allow the network to make 50 runs through the training dataset. A “MiniBatchSize” of 128 was chosen
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so the network could look at 128 training observations at a time. The “InitialLearnRate” was 0.00001 to
help speed up the training process, with a “SequenceLength” of 30 to help the algorithm to look for shorter
pieces of the observations. The “GradientThreshold” was 1 to prevent gradients from getting too larger and
to stabilize the training process.

options = trainingOptions('adam',
'MaxEpochs', 50,
'MiniBatchSize', 128,
'InitiallLearnRate', 0.00001,
'Sequencelength', 30,
'GradientThreshold', 1,
'ExecutionEnvironment', "auto", ...
'plots', 'training-progress',
'Verbose', false);

Figure 47: Training options for the LSTM algorithm

After specifying the layer architecture and training options the LSTM network was trained, using
the “trainNetwork” function from MathWorks. The training process can be seen in Figure 48 for the original
dataset and in Figure 49 for the dataset with SMOTE. On the top subplot we can see the training accuracy,
that represents the classification accuracy on each mini-batch, and in the bottom we see the training loss,
that corresponds to the cross-entropy loss on each mini-batch and ideally would decrease towards zero.

Figure 48: Training Progress for the LSTM network - Original Dataset
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Figure 49: Training Progress for the LSTM network — Dataset with SMOTE application

In Figure 48 we can see the training progress for the LSTM network in the original dataset. The
accuracy oscilates between about 60% and 100%, and the loss function varies between zero and one. In
Table 33 the confusion matrix for the LSTM network is represented, where it is visible that the algorithm
made no predictions for preterm labor but was able to successfully predict all term labor observations.

For the LSTM training with the SMOTE dataset, the training progress was recorded in Figure 49,
where the accuracy sits between the range of 40-60%, while the loss function decreases to zero. In Table
33 we can see the correspondent confusion matrix. For this dataset we would expect the results to improve,
however that was not the case, and no predictions for preterm labor were visible, explaining the FNR value
of 100% seen in Figure 50.

In Figure 50 we see that for both datasets the deep learning classifier did not produce good results,
showing a value of zero in all metrics and a 100% for the FNR, since all preterm labors were classified as
term. Although it showed a high accuracy with 87,4% for the original dataset and a more modest value of
66,7% for the SMOTE+undersampling dataset, as previously mentioned in the ML classifiers results, a high
accuracy, especially in this dataset, means very little, telling us that the algorithm just learned with the term
observations.

Table 33: Confusion Matrix for the training dataset for the LSTM network —
Original Dataset
Predicted Class

Term Labor Preterm Labor
Term Labor 2829 0

Preterm Labor 407 0

True Class
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Table 34: Confusion Matrix for the training dataset for the LSTM network —
Dataset with SMOTE application

Predicted Class

» Term Labor Preterm Labor
(72}
8 Term Labor 2829 0
(D)
~
[ Preterm Labor 2829 0

87.4

0,0 0,0 0,0 0,0

3

Figure 50: Deep learning performance results for the train datasets for comparison

After training the model we proceed to test the test dataset in the trained model. The results were
again not successful and are shown in Table 35 and Table 36 for the for the confusion matrix, for the
original dataset and for the dataset with SMOTE+undersampling, respectively.

Table 35: Confusion Matrix for the test dataset for LSTM network —
Dataset with SMOTE application

Predicted Class
Term Labor Preterm Labor

Term Labor 1212 0

Preterm Labor 174 0
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Table 36: Confusion Matrix for the test dataset for LSTM network —
Dataset with SMOTE application
Predicted Class

” Term Labor Preterm Labor
[72]
8 Term Labor 1212 0
[<5]
~
= Preterm Labor 174 0

87.4 874

@

8
T
1

0,0 0,0 0,0 0,0
AC R P FNR FPR

Figure 51: Deep learning performance results for the test datasets for comparison

In Figure 51 we can see that once again the algorithm shows a high accuracy, of 87.4% and for
both the original dataset and for the dataset after applying SMOTE. Additionally, the only metric that shows
results different from 0O is the FNR, with a value of 100%. This value is extremely high, especially for this
metric, where the value should be the lowest possible. Once again, this is a result of the network only
learning with the majority class observations, visible on the confusion matrix in Table 35 and Table 36.

Overall, the LSTM model did not perform well in predicting preterm labor, possibly due to
overfitting. This highlights the importance of having a large and diverse dataset when using deep learning
algorithms. The results obtained with the oversampled dataset using SMOTE were not satisfactory,
indicating that oversampling techniques alone may not be sufficient to improve the performance of deep
learning models. Even though the power of the LSTM algorithm is very enticing, these results show that
with a smaller dataset, like ours, will not produce the expected results.
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5.3. Results comparison with the literature review studies

We will compare our best performing classifiers in the ML and DL chapter, the Random Forest
classifier and LSTM, with the classifiers from the studies in the literature review, in Table 37.

Table 37: Summary of the ML related work studies

Algoritm AC R (%) P (%) F (%) FNR (%) FPR AUC
(%) (%) (%)
Proposed RF 81.4 12.6 17.2 14.5 87.4 8.7 53.5
classifier
Proposed LSTM 87.4 0 0 0 100 0 X
classifier
RF proposed by 93 89 X X X X 80

Peng et al. [3]

DT proposed by 90 X X X X X X
Oliver et al. [16]

RF proposed by 95.7 96.3 92.9 94.5 3.6 4.6 99
Allahem et al. [5]

DT proposed by 95.3 94.1 93.7 93.9 5.8 3.8 98
Allahem et al. [5]

RF proposed by 87.28 X X X X X X
SAGLAM

etal. [21]

ANN proposed by 98 98 97 98 10 10 99

Allahem et al. [5]

We can see in Table 37 that most studies do not have all the evaluation criteria used in this work,
except for the work of Allahem et al [5]. This makes our work more challenging since a lot of important
measures like the F1-Score and the AUC are missing in literature, like in the DT proposed model by Xu et
al. [20] or the RF proposed by SAGLAM et al. [21], which only shows the value for the AC, which can be
misleading when working with imbalanced test sets, as mentioned before. All the models proposed by
Allahem et al. [5], show more promising results than our own, both in the ML and DL approaches. As
mentioned in Chapter 2, these authors choose to use several different EHG datasets over oversampling, to
make sure the quality of the data was not an issue, even though there is no evidence of the accuracy of that
when comparing to real data.

Taking all of this into consideration, we can say that in terms of accuracy our proposed RF model
classifies well in relation to the rest of the models, however in terms of the other metrics, except for the
FPR, our proposed model scores significantly lower than the rest. Looking at the high value for the false
negative rate, compared with the low FNR presented by Allahem et al. [5], it might also agree with the issue
of having very proportionally different train and test sets, and an excess of synthetic samples in the training
set, that decreased the classifiers’ ability in identifying the majority sample with the test set. By comparing
our study with the one from Allahem et al. [5], it shows that the use of synthetic samples on the training set
might have a higher impact on the results than expected.

72



6. Conclusions

The prediction of preterm birth using machine learning (ML) and deep learning (DL) algorithms
with electrohysterogram (EHG) signals is an ever-evolving field, but the lack of preterm data for
classification remains a significant hurdle to further progress. It is important to note that preterm labor
is a complex problem since there is no specific diagnostic for two thirds of these labours and there is
very limited data for preterm births. Additionally, the ML field is vast, encompassing a variety of
algorithms, data balancing techniques, feature selection algorithms, and different hyperparameter tuning
methods. Therefore, finding the most robust dataset with the right features and the best performing
classifier involves a trial-and-error strategy.

The results with the imbalanced TPEHG dataset were insignificant, indicating the considerable
difference between the number of preterm records (minority classs) and term records (majority class).
To address the skewed dataset problem, an oversampling technique called SMOTE was applied after
partitioning the dataset, ensuring the test set remained untouched, achieving better and more significant
results on the training dataset. However, combining oversampling of the minority class with SMOTE
and randomly undersampling the majority class did not improve the results when compared to applying
amore “common” SMOTE technique without undersampling. Applying PCA to the dataset also did not
improve the results as expected. Furthermore, the F1-Score and AUC classification metrics appeared to
be the most trustworthy metrics, correctly representing the performance of each classifier, while
Accuracy, one of the most used in the literature, could be misleading with our imbalanced dataset.

This study proposes a novel approach to the classification problem by using the Welch power
spectra of each contraction found in the EHG signal as features to predict preterm labor. Although
promising results were obtained for all classifiers in the training dataset, for ML, using SMOTE with
feature selection and hyperparameter tuning, with high values of F1-score, Accuracy, and AUC, the test
data produced disappointing results with low AUC and F1-score, but good accuracy. These results can
be linked to the test dataset, which is very imbalanced, causing the classifiers to perform badly to this
unseen data.

In the DL network, the LSTM could not predict any preterm labor, possibly due to overfitting. This
methodology problem is associated with the lack of data, severely impacting the performance of DL
algorithms, which require big data to produce excellent and reliable results. In future studies, alternative
deep learning models and architectures can be explored to improve the accuracy of preterm labor
prediction.

While this study opens up various innovative investigation possibilities, including the possibility of
using more complex features like the power spectra of each contraction, it is associated with some
methodological problems, including the need to overcome the imbalanced data problem. Using
synthetic samples to address this problem can decrease the algorithms’ predictive ability for the majority
class, especially not knowing about the quality of these samples in terms of similarity to the actual
dataset. Moreover, different oversampling alternatives must be further investigated. As of now, we can
say that these features were not successful and should not be use under these conditions, since they
don’t produce better results than the literature.

This study highlights the importance of collecting more preterm EHG recordings to improve the
results without the use of SMOTE and to successfully use LSTM and other ML algorithms as a
classification approach. In the future, this work may contribute to the discovery of a successful
classification tool for preterm labor using EHG signals, preventing preterm birth.
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7. Appendix
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Figure A. 1: ROC curve for the validation set for the original dataset using RF as the classifier
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Figure A. 2: ROC curve for the validation set for the original dataset using RUSBoosted Tree

as the classifier
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Model 2.4 (Fine Gaussian SVM)
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Figure A. 3:ROC curve for the validation set for the original dataset using SVM with
Gaussian Kernel as the classifier

Model 6.3 (Wide Neural Network)
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Figure A. 4: ROC curve for the validation set for the original dataset using a Shallow
Neural Network
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Model 3 (Bagged Trees)
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Figure A. 5: ROC curve for validation set after applying the SMOTE using RF as the
classifier



Figure A. 6: ROC curve for validation set after applying the SMOTE using RUSBoosted
Tree as the classifier
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Model 2 (Wide Neural Network)
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Figure A. 7: ROC curve for validation set after applying the SMOTE using a Shallow
Neural Network

Model 6 (Fine Gaussian SVM)
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Figure A. 8: ROC curve for validation set after applying the SMOTE using SVM with the
Gaussian kernel as the classifier
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Model 2 (Bagged Trees)
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Figure A. 9: ROC curve for the validation set after applying SMOTE + undersampling
using RF as the classifier

Model 6 (RUSBoosted Trees)
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Figure A. 10: ROC curve for the validation set after applying SMOTE + undersampling
using RUSBoosted Tree as the classifier
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Model 4 (Fine Gaussian SVM)
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Figure A. 11:ROC curve for the validation set after applying SMOTE + undersampling
using SVM with Gaussian Kernel as the classifier

Model 7.3 (Wide Neural Network)
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Figure A. 12: ROC curve for the validation set after applying SMOTE + undersampling
using Shallow Neural Network as the classifier
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Figure A. 13: ROC curve for the validation set after applying PCA using RF as the
classifier
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Model 10 (RUSBoosted Trees)
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Figure A. 14: ROC curve for the validation set after applying PCA using RUSBoosted Tree
as the classifier

Model 11 (Fine Gaussian SVM)
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Figure A. 15:ROC curve for the validation set after applying PCA using SVM with a
Gaussian Kernel as the classifier

83



Model 7 (Wide Neural Network)
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Figure A. 16: ROC curve for the validation set after applying PCA using a Shallow Neural
Network as the classifier
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Figure A. 17: ROC curve for the validation set after feature selection using RF as the
classifier

Model 33 (Bagged Trees)
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Model 34 (RUSBoosted Trees)
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Figure A. 18: ROC curve for the validation set after feature selection using RUSBoosted
Tree as the classifier

Model 35 (Fine Gaussian SVM)
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Figure A. 19: ROC curve for the validation set after feature selection using SVM with a
Gaussian Kernel as the classifier
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Model 32 (Wide Neural Network)
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Figure A. 20: ROC curve for the validation set after feature selection using a Shallow
Neural Network as the classifier



Figure A. 21: ROC curve for the validation set after hyperparameter tuning using RF as
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Model 45 (Optimizable Ensemble)
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Figure A. 22: ROC curve for the validation set after hyperparameter tuning using
RUSBoosted Tree as the classifier

Model 46 (Optimizable SVM)
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Figure A. 23: ROC curve for the validation set after hyperparameter tuning using SVM
with a Gaussian Kernel as the classifier
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Medel 47 (Optimizable Neural Network)
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Figure A. 24: ROC curve for the validation set after hyperparameter tuning using a
Shallow Neural Network as the classifier
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Figure A. 25: ROC curve for the test set using RF as the classifier

Model 44 (Optimizable Ensemble)

1 7
(
s
? 4
~7
’ 4
/7
08 I
B
pie
7
/7
7
) il
T 06 il
& 4z
© 4
S 7/
£ A7
[/
£ 7 //
g 04r 7
2 Ao
= S
{ 7
7
§ £
L7
02 =LA
7
’
o7
[/
v
/
L V4
0 1(AUC =0.5317)
® 1 Model Operating Point
0 0.2 0.4 0.6 0.8 1
False Positive Rate
Model 45 (Optimizable Ensemble)
1F —
/
v é
y 4
7
/7
7
08 /7
F
4
v
/7
/7
© <
T 06 il
.4 y s
[ i3
k4 i
é
g 041 .n//
= /7
[/
[’
/
Ve
02 /
Vi
Y
4
p
/
//
or 1(AUC = 0.5168)
® 1 Model Operating Point
0 0.2 0.4 0.6 0.8 1

False Positive Rate

Figure A. 26: ROC curve for the test set using RUSBoosted Tree as the classifier
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Model 46 (Optimizable SVM)
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Figure A. 27: ROC curve for the test set using SVM with a Gaussian Kernel as the classifier

Model 47 (Optimizable Neural Network)
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Figure A. 28: ROC curve for the test set using a Shallow Neural Network as the classifier
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