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Abstract 
 

The World Health Organization defines premature birth as the birth of a baby before the completion 

of 37 weeks of gestation which is considered a high health risk for both the baby and the mother. Prematurity 

is the leading cause of death in the world for children under 5 years old, therefore monitoring the uterus to 

predict preterm labor has become essential. Currently, the Intrauterine Pressure Catheter and the External 

Tocography are the most used monitoring devices, however, they are invasive and don’t perform well with 

high body mass index (BMI) patients, respectively. The Electrohysterogram (EHG) has emerged as a non-

invasive method for predicting premature birth with high performance for mothers with high BMI. This 

method uses electrodes placed on the abdomen to record uterine contractions by producing an electrical 

signal, that contains important information regarding the electrical activity of the uterus. The study of the 

EHG signal is one of the most used practices for studying and classifying premature birth using Machine 

Learning (ML) and Deep Learning (DL) techniques. In this technique, features are extracted from the signal 

such as frequency, amplitude, and others to represent the signal and inserted into algorithms capable of 

making predictions based on the signal characteristics. However, this classification method is still in the 

experimental phase, and there is a gap in the clinical context for automatic birth type prediction. One of the 

challenges faced by this method is the lack of observations of premature births in the databases used. 

Oversampling techniques, such as SMOTE, address the lack of observations of premature births in the 

databases by producing synthetic observations for the minority class. 

In this thesis, the Welch estimation of the power spectra of the signal of each contraction from the 

TPEHG Ljubljana public database is used as features, comprising 200 features. The Minimum Redundancy 

Maximum Relevance (MRMR) Algorithm was used to search for the most relevant features from this dataset 

with only 180 showing any relevance, and SMOTE was applied to solve the skewed dataset problem. Four 

different machine learning algorithms were used, including the Support Vector Machine, the RUSBoosted 

trees, a Shallow Neural Network, and a Random Forest classifier, moreover, a deep learning network was 

also tested. These were also optimized with the Bayesian hyperparameter optimization. All algorithms 

performed with high accuracy, although showing a low predictive power for the test group, probably due to 

a highly imbalanced test set.  

 We concluded that the use of spectral features of the contractions as an alternative to the time-

frequency features shows promising results with the training dataset, but cannot accurately predict preterm 

labor in the test set, due to the imbalanced dataset problem. More samples should be collected in the future 

so more meaningful conclusions can be taken.  
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Resumo 
 

De acordo com a Organização Mundial da Saúde (OMS) o parto prematuro é definido como o 

nascimento de bebés antes da finalização das 37 semanas de gestação, sendo considerado um risco de saúde 

elevado tanto para o bebé como para a mãe. Dois terços destes partos, não tem um diagnóstico específico, 

enquanto os restantes encontram-se normalmente associados a fatores relacionados com a mãe como várias 

gravidezes, historial de partos prematuros, uso de drogas, idade inferior a 18 anos, entre outros. A 

prematuridade é a primeira causa de morte no mundo para crianças com menos de 5 anos, uma vez que 

quando ocorre o parto, os bebés não se encontram completamente desenvolvidos, podendo vir a sofrer 

deficiências a nível visual e auditivo e também outras complicações ao nível da saúde como problemas 

cardiovasculares ou respiratórios. Em Portugal, de acordo com a Sociedade Portuguesa de Pediatria, 8% dos 

bebés nascem prematuros. Deste modo, a monitorização dos partos de forma a prever partos pré-termo 

tornou-se fundamental.  

Os dois métodos mais comumente usados na monitorização da contratilidade uterina são o Cateter 

de Pressão Intrauterino e o Tocograma Externo, porém ambos apresentam limitações como o facto de ser 

invasivo ou de não mostrar eficácia para grávidas de elevada massa corporal, respetivamente. O estudo da 

atividade das contrações no útero através do Electrohisterograma (EHG) como método alternativo tem sido 

uma forte aposta na previsão do parto prematuro. O EHG é um método não invasivo realizado através de 

elétrodos colocados no abdómen, que regista a atividade contrátil do útero e resulta num sinal elétrico. 

Demonstra eficácia em pacientes com índice de massa corporal alta, sendo capaz de indicar quando as 

grávidas vão entrar em trabalho de parto.  

Atualmente, o estudo do sinal EHG é uma das práticas mais usadas para estudar e classificar o parto 

prematuro através de técnicas de Machine Learning (ML) e Deep Learning (DL). Para isso, utilizam-se 

características frequenciais, temporais, entre outras provenientes do sinal, chamadas de features, que vão 

representar o sinal. Estas são depois inseridas em algoritmos de ML e DL capazes de fazer previsões com 

base nas características do sinal. Em literatura as features mais utilizadas para representar os sinais EHG 

consistem na frequência, amplitude, entropia e outras, demonstrando resultados positivos com elevado valor 

preditivo, tanto em algoritmos de Machine Learning como de Deep Learning. Desta forma, através do sinal 

EHG obtido na monitorização do útero será possível prever se a grávida irá ter um parto prematuro ou termo. 

No entanto, esta classificação ainda se encontra numa fase experimental, existindo uma lacuna no contexto 

clínico, para uma previsão automática do tipo de parto.  

Todos estes trabalhos enfrentam um problema associado à falta de observações de partos prematuros 

nas bases de dados utilizadas. As soluções propostas para combater o desequilíbrio nos dados envolve a 

utilização de técnicas de sobreamostragrem, como SMOTE, que consistem na produção de observações 

sintéticos para a classe da minoria (partos prematuros). O número ideal de amostras a serem produzidas é 

ainda algo a ser estudado, sendo que a maior parte dos estudos fazem uma compensação dos dados com 

uma proporção final de observações de 1:1, porém este método pode levar a um decréscimo na habilidade 

do classificador identificar a classe maioritária e uma previsão irrealista e demasiado otimista. De acordo 

com os autores, o SMOTE atinge os melhores resultados através da combinação de uma subamostragem da 

classe maioritária com a sobreamostragem da classe minoritária, através do SMOTE.  

Num sinal EHG processado é possível distinguir a existência de contrações como Braxton-Hicks, 

ondas Alvarez e ondas LDBF (Longue Durée Basse Fréquence). De momento, na literatura as features são 

extraídas do sinal completo e não das contrações, nomeadamente das Alvarez e Braxton-Hicks, que contêm 

informação relevante para a prematuridade do parto. Contudo, as contrações são séries temporais com um 

número diferente de observações. Deste modo, a solução apresentada para este problema é a análise 
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espectral de cada contração, através do espetro de cada contração, obtido através de uma transformação de 

tempo para frequência, como a Transformada de Fourier, que é capaz de representar um sinal na base de 

dados. Esta técnica é usada para extração de features e classificação no campo de diagnóstico médico. 

Dentro da estimação espetral existem dois métodos: paramétricos e não paramétricos, sendo que o método 

Welch é uma abordagem não paramétrica, capaz de calcular o espetro de cada contração detetada no sinal 

EHG, que demonstrou bons resultados na classificação das contrações noutros trabalhos, representando bem 

o singal EHG, e apresentando sempre a mesma dimensão, independente da duração da contração. 

Neste estudo, foi utilizada a base de dados pública TPEHG (Term Preterm EHG) com um total de 

300 registos, 262 pré-termo e 38 termo. A base de dados apresenta 4 elétrodos, com 3 canais bipolares, 

sendo que apenas um canal foi escolhido, de acordo com a literatura, visto que o sinal vertical tem uma 

maior variação do potencial de sinal. Este sinal foi depois filtrado para eliminar o ruído materno do ECG, 

ou outros ruídos relacionados, e processado para uma frequência amostral final de 4 Hz. As features foram 

extraídas através da estimação espetral pelo método Welch, finalizando com um total de 200 features. No 

final, o base de dados utilizado consistia em 4622 observações/contrações, 407 correspondentes a parto 

prematuro e 2829 parto termo, com 200 features cada. Esta base de dados foi depois fornecida a três 

algoritmos diferentes de ML, incluindo o Random Forest, RUSBoosted Trees, Support Vector Machine, e 

uma Shallow Neural Network, e o algoritmo Long-Short Term Memory de DL, com o objetivo de classificar 

os parto prematuros. Até agora, nenhum estudo se focou na utilização de um algoritmo de LSTM, e na 

utilização do espetro das contrações como features.  

Neste estudo, as técnicas mencionadas anteriormente foram aplicadas em 5 cenários diferentes nos 

algoritmos de ML, de modo a obter o modelo mais robusto para evitar situações de overfitting, e obter os 

resultados mais realistas possíveis, (1) treinar os dados, sem qualquer opção adicional de outros métodos; 

(2) treinar os dados com os mesmos algoritmos, adicionando uma técnica de sobreamostragem sintética, 

SMOTE; (3) treinar os dados com técnica de SMOTE mais uma técnica de redução de dimensionalidade, 

PCA; (4) treinar os dados com a utilização de um método de seleção de features, MRMR; (5) tuning dos 

parâmetros do modelo, através do método Bayesian Optimization. Desta forma, os dados foram treinados, 

validados, e os modelos com melhores resultados preditivos foram depois testados. Os algoritmos de DL 

foram apenas testados usando o dataset original e o dataset com SMOTE aplicado. Para todos os algoritmos, 

a accuracy, precision, recall, F1-Score, false negative rate, false positive rate e AUC (exceto para os de 

DL) foram calculados.  

Os resultados indicam que usar os primeiros 200 pontos da estimação espetral pelo método Welch, 

como features frequenciais, não proporciona melhores resultados quando comparando a features mais 

tradicionais, de tempo-frequência, usadas em toda a literatura. Além disso, utilizar a técnica de SMOTE 

conciliada com uma subamostragem da classe maioritária produz piores resultados quando comparando com 

a aplicação de só SMOTE, como usado pela maioria dos autores. Os algoritmos de ML têm um melhor 

comportamento que os de DL, uma vez que são modelos mais simples não dependentes de uma elevada 

quantidade de dados.  Apesar dos resultados promissores no grupo de treino, com uma elevada Accuracy, 

F1-score e AUC, o momento de teste teve uma performance abaixo dos valores esperados e em literatura. 

Com base nestes resultados, concluímos que apesar da abordagem da aplicação de SMOTE após a separação 

em grupo de treino de teste ser a mais correta, não permite resultados semelhantes à literatura (em que esta 

ordem de passos usada é a inversa), uma vez que o algoritmo é processado usando um grupo de teste com 

uma estrutura muito diferente à de treino, o que pode levar a menor precision e recall.  

Em suma, conclui-se que a utilização do espetro das contrações como features frequenciais num 

dataset sobreamostrado com a técnica de SMOTE, utilizando as diferentes técnicas de ML e DL referidas, 

não é uma melhor alternativa em relação à utilização de features de tempo-frequência presentes em 

literatura. Contudo, é possível concluir a importância de registar mais dados de partos prematuros de EHG, 

com vista a melhorar as experiências futuras, e evitar a utilização de técnicas como a de SMOTE. Para além 

disso, abriu-se também a possibilidade da aplicação de uma rede neuronal complexa como o LSTM, com 

resultados promissores para o futuro, que podem ser eficazes quando aplicados na classificação de parto 

prematuro.  
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1. Introduction 
 

1.1.  Framework and Motivation 
 

 Preterm birth or premature delivery is defined by the World Health Organization (WHO) as the 

delivery of babies before 37 completed weeks of gestation and it is considered a serious health issue not 

only for the fetus but also for the mother.[1] Although some of these births tend to happen spontaneously, 

some of these are due to early induction of labor or cesarean birth. Moreover, most of the time these 

deliveries don’t have a specific diagnosis, with some of the most common causes being multiple 

pregnancies, infections, and chronic conditions, like hypertension or diabetes. With 1 in 10 babies being 

born premature we can say that preterm birth is a modern problem, with its rates still growing. [1] 

Prematurity is also the primary cause of death in the world in children under the age of 5 years old. 

Since babies born before 37 weeks are not usually fully developed, when they survive, they can face lifelong 

disabilities such as visual and hearing problems, learning and cognitive difficulties, and other health 

complications, like cardiovascular or respiratory issues, especially in low-income settings. [1] 

Like in most health-related issues in the world, low-income settings are the most harmed population 

when it comes to inequalities in cheap and accessible care like warmth, breastfeeding support, and basic 

care for infections and breathing problems. The lack of these basic conditions leads to the death of half of 

the babies that are born at or below 32 weeks, in these types of populations. Even in middle-income settings, 

the poor use of technology is causing a rise in the number of disabled children who survive the neonatal 

period after preterm delivery. By comparison, in high-income settings, practically all babies born at this 

time survive. [1]  

So, the problem seems to stand on the early diagnosis so the mother can be treated accordingly thus 

preventing prematurity.  

Currently, the most used techniques are the intrauterine pressure catheter (IUPC), an invasive 

technique for the mother, and the tocodynamometry (TOCO) which does not work well for high body mass 

index (BMI) patients. The electrohysterogram (EHG) is a non-invasive method that records a signal related 

to the electrical activity that propagates through the uterine cells. From this signal, many features can be 

extracted and consequently analyzed to evaluate the difference between preterm and term delivery[2]. This 

technique presents the same results present in TOCO but with the advantage of working with high BMI 

mothers. As of now, instant labor classification is not possible in the raw EHG signals, so currently, there 

is still a gap in devices that can successfully predict preterm labor for women that don’t present any risks. 

Even though this technique has very little application in the medical field, it is currently gaining more 

success among clinics and hospitals.  

 Through the years, countless of articles applied machine learning techniques to various EHG 

databases, since they are capable of predicting while adapting to new data. More recently deep learning 

methods have also joined the conversation of the prediction of preterm labor using EHG signals, also 

showing very promising results, but there is still a gap in the problem of preterm delivery [3]. The biggest 

gap is the lack of preterm observations, that limits the accuracy of the classifying algorithm. Authors 

throughout the studies, try to mitigate this problem by using synthetic oversampling techniques, like 

SMOTE or ADASYN, that can lead to a nun-realistic performances when used as the sole skewed class 

treatment [4]. Furthermore, to answer this complex problem authors try to use more features, including 

quantitative features from raw EHG readings on the time domain, frequency domain and time-frequency 
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domain to classify preterm labor [5]. However, as of now, no author has used the power spectra of the 

contractions from the EHG signal. 

This dissertation was made in the context of the Uterine Explorer (UEX) Project, within the Faculty 

of Sciences of the University of Lisbon and the Faculty of Sciences and Technology at the New University 

of Lisbon.  

 In the present thesis, we’re going to apply different machine learning algorithms and a deep learning 

network, in a publicly available database to predict preterm birth. With practical and cost-effective care, 

researchers suggest that over three-quarters of babies born prematurely could be saved. Therefore, there is 

a crucial need for an automated approach to detect and predict labor for pregnant women with a high risk 

of premature birth [5]. Such an approach can help mitigate the consequences of premature birth and provide 

better healthcare for both the pregnant woman and the fetus. 

 

1.2.  Research Goals and Expected Results  
 

To issue the problems of preterm prediction, mentioned before, one must elaborate a strategy to find 

a solution to the problem. This dissertation will focus on the application of Machine Learning Techniques 

and Deep Learning suitable to this exact problem.  

The following work tries to answer three main questions: 1) Can each point in the power spectra of 

contractions be used as features for predicting preterm labor? 2) Can the combination of oversampling the 

minority class using SMOTE and undersampling the majority class outperform the more common 

oversampling technique only using SMOTE? 3) Can an LSTM network be used for doing preterm labor 

predictions? 

The main objectives are stated below:   

 

1. Comprehend the EHG signal and extract features for the TPEHG Database: study and 

understand the EHG signal, to identify the best features to originate the study dataset. 

Additionally, a categorical feature, for classification, must be calculated based on the time of 

birth of each patient. This first step is essential to build our study dataset and start with the 

second step of classification.  

 

2. Apply and experiment different Machine learning algorithms and techniques in the study 

database: this step involves applying different machine learning algorithms to classify preterm 

and term labor, with the objective of predicting preterm labor. Inside this objective, it is 

necessary to try different techniques associated with improving the performance of the different 

classifiers, including oversampling of the minority class, feature selection and hyperparameter 

tuning.  

 

3. Apply and experiment a Deep Learning algorithm to the study database: this step involves 

applying a deep learning network to classify preterm and term labor, with the objective of 

predicting preterm labor. Within this step an oversampling technique will also be applied to the 

minority class in order to improve the results.  
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1.3. New Contributions 
 

Through all the developments achieved inside the preterm labour prediction problem, we are still 

lacking a way to detect and predict a premature birth. The main problem associated with this is the lack of 

observations for preterm labour, which limits significally the algorithms classification power. 

 In literature, the authors tried to mitigate this problem with the use of techniques like SMOTE and 

using more and more innovative features. 

 Since the main purpose of this thesis was to find a way to predict preterm labour, we decided to 

innovate by using as features each point of the power spectra of the contractions extracted from the EHG 

signal and by using SMOTE as a technique of data compensation, before the train-test split, something never 

done before in literature. 
 

 

1.4. Document Organization 
 

This document in organized in six main chapters, which in a whole allow us to reach and present 

the goals and the expected results from this thesis. The theoretical background necessary to understand this 

work is introduced in Chapter 2, including the literature review, and in Chapter 3 that introduces the 

concepts of preterm birth, the anatomy and physiology of the uterus and the EHG signal. Then, Chapter 4 

explains the materials and methods used in this thesis, including the dataset explanation, all Machine 

Learning Algorithms, as well as oversampling, feature selection and hyperparameters tuning techniques, 

and Deep Learning Algorithms. In Chapter 5 the results and discussion are presented, and Chapter 6 

concludes this thesis, with some final remarks about future works.  

 

2. Literature Review 
 

Being that the subject of this thesis is "Preterm Labor Prediction Using Electromyography and Deep 

Learning Models”, it was crucial to understand what type of research and discoveries have already been 

done, with the final goal of trying to innovate. For that reason, literature research is essential for our work 

of preterm labor classification, to grasp what has been tried and what is still missing. 

Therefore, the literature research will be conducted around every work related to labor classification 

using electromyography data, including machine learning and deep learning techniques for classification. It 

is important to point out that some exceptions were made for papers that seemed relevant for the study, with 

other types of main objectives, excluding classification for preterm labor.  

This research was summarized in Table 1, where it displays the author and the study objective, the 

database used in that study, the features used for classification, the algorithms used as classifiers and the 

imbalanced class treatment method performed, if applied, for each paper. The best classifying methods and 

the correspondent metrics results are also displayed, with some additional details that stood out from the 

study.
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Table 1: Literature Review  

Author Database Features Classifiers 
Imbalanced 

Class Treatment 
Research Goal 

Best Achieved 

Results 
Comments 

Idowu et 

al. (2014) 

[6] 

TPEGH 

 

Root mean square, 

median frequency, 

peak frequency and 

sample entropy 

Artificial neural 

network classifiers: 

BPXNC, LMNC, 

NEURC,RBNC, 

RNNC,PERLC 

SMOTE Preterm Birth 

Classification 

LMNC with 96% 

sensitivity,92% 

specificity,95% AUC 

and a 6% mean error 

rate. 

The use of oversampling 

techniques influences 

the good results.  

Ryu et al. 

(2015) [7]  

TPEHG Sample entropy   Linear classifiers Subsampling a 

balanced dataset 

of 38 term and 38 

preterm records, 

100 times 

Preterm Birth 

Classification 

60,49% AUC  PCA is used for 

dimensionality 

reduction.  

Hussain 

et al. 

(2015) [8] 

TPEHG -------------- Recurrent Neural 

Networks: Elman, 

Jordan network and 

Layer recurrent 

neural network  
where each layer 

has a recurrent 

connection with a 

tap delay associated 

with it (layrecnet). 

-------------- Classification of 

EHG signals for 

prediction of 

term and 

preterm birth 

RNN’s can capture 

temporal behavior of 

the signals.  

Applying RNNs as 

filtering method to 

increase uterine EHG 

signal to noise ratio 

value. 

Hussain 

et al. 

(2015)  

[9]   

TPEHG Root mean square, 

median frequency, 

peak frequency, 

sample entropy 

MLP,SONIA,K-

Nearest neighbour, 

Decision Tree, 

Support Vector 

classifier,Fuzzy-

SONIA, DSIA 

Oversampling 

using a min/max 

technique. 

Preterm Birth 

Classification 

SONIA with 91,23% 

sensitivity, 94,51% 

specificity, 94,9% 

positive predicted 

value, 90,6% 

negative predicted 

value, 92,77% 

accuracy 

-------------- 
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Sahid- 

Ahmed et 

al. (2017) 

[10]  

TPEGH 

 

8 frequency related 

features are extracted 

from 2 IMF’s, using 

the periodogram as 

estimator of PSD 

Support vector 

machine  

-------------- Preterm Birth 

Classification 

Combination of 2 

channels (7 

features)with a 

95,7% 

accuracy,98,40% 

sensitivity, 93% 

specificity and 95% 

AUC.  

The 12 IMF’s are 

obtained through the 

Huang-Hilbert transform 

(HHT).  

Hoseinza

deh 

et al. 

(2018) 

[11]   

 

TPEHG Extraction of the 

features using an AR 

model followed by 

PSO for feature 

selection.  

SVM with RBF 

kernel function 

ADASYN Preterm Birth 

Classification 

SVM with 97.1% 

accuracy rate, 95% 

sensitivity, and 99% 

specificity 

Application of EMD for 

extraction of the IMF’s 

for the calculation of the 

wavelet coefficients for 

each IMF.   

Jager et 

al. (2018) 

[12] 

TPEHGT DS Sample entropy, 

median frequency of 

the power  spectra, 

peak amplitude of the 

normalized power 

spectra 

Cross-Validation -------------- Preterm Birth 

Classification 

Accuracy of 100% 

and 99,44% AUC for 

all records. 

Features from the 

dummy intervals are 

better than the features 

obtained from the 

contraction intervals.   

Shahbak

hti 

et al. 

(2019) 

[13]  

TPEHG Root mean square of 

two IMF’s using 

different channels 

SVM -------------- Preterm Birth 

Classification 

99,56% accuracy, 

98,95% sensitivity 

and 99,30% 

specificity.  

Application of EMD for 

feature extraction, 

trough the IMF’s.  

Chen et 

al. (2019) 

[14] 

Icelandic 16-

electrode 

Electrohyster

ogram 

Sample Entropy  Stacked sparse 

autoenconder 

(SSAE) 

-------------- Preterm Birth 

Classification 

90% accuracy, 92% 

sensitivity and 88% 

specificity, and 90% 

of AUC.  

-------------- 

Saleem et 

al. (2020) 

[15]  

TPEGHT (13 

term and 13 

cGC, uGC, mGC, cDI, 

uDI, mDI measures  

Quadratic 

discriminant 

-------------- Preterm Birth 

Classification 

91% accuracy, 94% 

sensitivity, 95% 

specificity, 97% 

Extract the features 

using Granger causal 

analysis of contraction 
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preterm 

records) 

analysis (QDA) 

based classifier 

AUC when using 

features related to 

dummy and 

contraction intervals.  

and dummy intervals. It 

focused on the synergy 

between electrical and 

mechanical conduct of 

the uterus during 

contraction and dummy 

intervals.  

Peng et 

al. (2020) 

[2] 

 

TPEHG 31 linear and non-

linear features (root 

mean square, sample 

entropy, peak 

frequency, among 

others). 

Random forest ADASYN Preterm Birth 

Classification 

93% accuracy, 89% 

sensitivity, 97% 

specificity, and 80% 

AUC.  

The data was divided 

into two groups, before 

and after the 26th week 

of gestation, but the 

results were the same. 

The sample entropy was 

the feature that weighted 

the most on the results.  

Oliver et 

al. (2020) 

[16]  

TPEHG RMS, median 

frequency, peak 

frequency, sample 

entropy. 

Support Vector, 

Naïve Bayes, KNN, 

Gradient Boost, 

Decision Tree 

-------------- Preterm Birth 

Classification 

SVM with 92% 

sensitivity, 94% 

specificity, 96% 

accuracy and 

gradient boost that 

also showed similar 

results.  

Extract the features 

using PCA for 

dimensionality reduction 

of the data.  

Degbedz

ui 

 et al. 

(2020) 

[17]  

TPEHG  Feature vector of time-

varying spectral 

content of the EHG 

signal 

KNN-Cos, KNN-

Cor, SVM-RBF, 

SVM-Gauss 

ADASYN Preterm Birth 

Classification 

SVM with RBF 

kernel function with 

97,10% accuracy, 

95% sensitivity, 99% 

specificity. 

The spectral properties 

of the signals are 

extracted using a 

centroid frequency 

method.The 

classification is done for 

the extracted features 

from each of the three 

channels and then 

compared.  
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Chen et 

al. (2020) 

[18]  

TPEGHT 20 entropy features.  Sparse autoencoder 

based deep neural 

network (SAE-

based DNN 

network) 

-------------- Preterm Birth 

Classification 

SSAE with the DNN 

classifier with 98,2% 

sensitivity, 97,74% 

specificity and 

97,9% accuracy.  

Features are extracted 

by sample entropy and 

wavelet entropy, from 

the EHG and TOCO 

signals before 

classification.  

Esgalhad

o et al. 

(2020) 

[19]  

Icelandic 16-

electrode 

Electrohyster

ogram 

Signal envelope 

features 

5 energy burst 

delineation 

methods: Wavelet 

energy, Teager 

energy, root mean 

square (RMS), 

squared RMS, and 

Hilbert envelope 

-------------- Contraction 

detection using 

EHG 

RMS with 97,15% 

accuracy for 

contraction detection 

and 89,43% for 

delineation and 

0,63% of FNR. The 

wavelet energy 

method was the 

second-best method.  

 

Xu et al. 

(2021) [4]  

TPEGH Root mean square, 

peak Frequency, 

median frequency, 

sample entropy 

Linear 

Discriminant 

Classifier (LDC), 

Support Vector 

Classifier (SVC), 

Decision Tree ( 

DTC), Gradient 

Boosting Classifier 

( GBC) 

ADASYN and 

SMOTE at the 

optimal sample 

balance 

coefficient.  

Preterm Birth 

Classification 

The SVC-based 

classifiers are the top 

performers. The use 

of SMOTE showed 

better results than the 

ADASYN.  

The authors create a 

sample balance 

coefficient, that has a 

positive correlation with 

the overall accuracy. 

Additionally, training 

with the optimal number 

of synthetic samples 

leads to an improved 

performance. The 

importance of the 

features decreases when 

the number of synthetic 

samples is bigger.  

SAĞLA

M 

TPEGH Average Frequency, 

Median Frequency, 

Peak Frequency, Peak 

Naïve Bayes, SVM, 

Kstar, Random 

SMOTE Preterm Birth 

Classification 

CNN shows the best 

results with 87,67% 

accuracy, followed 

SMOTE does not 

improve the results in 

the SVM, Decision 
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et al. 

(2021) 

[20]  

Magnitude root mean 

square ratio, Sample 

Entropy, Shannon 

Entropy, among others 

Forest, Decision 

Table, KNN, CNN 

by SVM, Random 

Forest and decision 

table with 87,33%.  

 

Table (worsens them 

both) and RF (no 

difference in the final 

results).  

Allahem 

et al. 

(2022) [5]  

7271 30 

minute-long 

datasets 

extracted 

from the 5 

datasets: 

Icelandic 16-

electrode 

Electro 

hysterogram 

Database, 

TPEGH, 

TPEGHT,  

CTU-CHB 

Intrapartum 

Cardiotocogr

aphy 

Database,  

OB-1 Fetal 

ECG 

Database.  

Machine Learning 

Approach: Mean 

frequency, peak 

frequency and median 

frequency features. 

 

Deep Learning 

Approach: Mean 

Frequency, Peak 

frequency and Median 

frequency, pregnancy 

gestational age, 

pregnant woman’s age 

and parity. 

Machine Learning 

Approach: 

Decision Tree, 

Random Forest, 

Support Vector 

Machine, Naïve 

Bayes 

 

Deep Learning 

Approach: ANN 

Creation of new 

EHG balanced 

datasets using 

Gretel Labs, Inc. 

service on Python  

(https: 

//gretel.ai/)  

Labor Detection Machine Learning 

Approach: RF 

showed better results 

with 95,7% AC, 99% 

AUC, 3,6% FNR and 

4,6% FPR.  

 

Deep Learning 

Approach: the ANN 

classifier has better 

results than the RF 

with 98% AC, FNR 

0,01% and 0,00,1% 

FPR. 

Amplitude and 

Frequency are essential 

to analyze uterine 

contractions.  

Grid Search is used as 

tuning technique.    

Mohamm

adi et al. 

(2022) 

[21] 

TPEHG Root mean square, 

sample entropy, mean 

Teager-Kaiser energy 

(MTKE) 

kNN, SVM, 

Decision Tree  

Stratified 10-fold 

cross-validation 

Preterm Birth 

Classification 

SVM with 

polynomial kernel 

The features are 

extracted from 2 IMFs, 

after empirical mode 

decomposition of the 

signal.  
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With the research shown in Table 1, it is possible to see all the different classification algorithms 

that have already been utilized. Through all of them, we were able to pick out some papers that stood out 

for our work specifically. Hussain et al. (2015) experimented with recurrent neural networks for the 

prediction of term and preterm delivery, with positive results. SAĞLAM et al. (2021) [20] showed that 

SMOTE in general improved the classification results while pointing out that CNN was the highest-

performing algorithm, concluding that LSTM networks should be studied more in depth. Allahem et al. 

(2022) [5] innovated when using an amalgamation of databases in order to combat the imbalanced data 

problem, although mentioning the application of a synthetic oversampling technique, but inferring that the 

use of this would lead to deceiving classification results. Additionaly, Mohammadi et al. (2022) [21]also 

tried to issue the combat the skewed class problem by applying a Stratified 10-fold cross-validation, a 

technique usually used for validation in imbalanced datasets. In general, in the works that used an 

imbalanced class treatment technique, like ADASYN and SMOTE, they all showed very positive results 

[17]. In terms of the type of features used, most of the authors used similar features like sample entropy, 

peak frequency, root mean square, median frequency, among others, extracted from the pre-processed EHG 

signal [16][13], [21].  

It is also important to mention the limitations encountered throughout our literature research. 

Vandewiele et al.[22] , points out that synthetizing new samples before partitioning the dataset into training 

and testing sets can lead to un-realistic and an overly optimistic prediction results on imbalanced data. This 

can be misleading since most authors choose this technique. In the other hand since the TPEHG Database 

contains a very small number of observations, by introducing synthetic samples after splitting the dataset 

might lead to worse results.  

Throughout the literature review, we can see that a lot of different algorithms were used for 

classification, from SVM, RF to Naïve-Bayes. With the purpose of seeing the most predominant classifers, 

a simple wordcloud was done using as keywords the acronym of each type of classifier. The wordcloud 

results are present in Figure 1. The words that appear in bigger and bolder lettering meaning that they are 

the most common in our research, which includes the RF, SVM, DT and KNN algorithms.   

 

 
Figure 1: Wordcloud representing all the different algorithms present in literature. SVM, 

DT, KNN and RF appear in bigger and bolder lettering, meaning that they are more 

predominant 

 

Another limitation appears on the number of samples to be synthetized when using SMOTE. 

According to the Chawla N. et al. [23], the authors behind the SMOTE technique, the combination of 

oversampling the minority class and undersampling the majority class can achieve better classifier 

performance. In most papers that use SMOTE, the number of samples synthetized in the minority class are 

the same as in the majority [20].  
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Lastly, most authors don’t report important evaluation metrics like F1-Score (F), Area under the 

Curve (AUC), false positive rate (FPR) and the false negative rate (FNR) [5].  
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3. Preterm Birth and the EHG Signal: Theoretical Context 

3.1.  Premature Birth 
 

Preterm birth or premature delivery is defined by the World Health Organization (WHO) as the 

delivery of babies before 37 completed weeks of gestation and it is considered a serious health issue not 

only for the fetus but also for the mother. [1] 

According to data from the US National Vital Statistics this is also a problem that affects more 

multiple pregnancies in comparison with singleton. All these pre-term births can be divided into three sub-

categories: extremely preterm (less than 28 weeks), very preterm (28 to 32 weeks), late preterm (32 to 37 

weeks) as shown in Figure 2 [24]  

Prematurity is also the primary cause of death in the world in children under the age of 5 years old. 

Since babies born before 37 weeks are not usually fully developed, when they survive, they can face lifelong 

disabilities such as visual and hearing problems, learning and cognitive difficulties and other health 

complications, like cardiovascular or respiratory issues, especially in low-income settings.  

According to the Portuguese Pediatrics Society (SPP), 8% of babies in Portugal are born premature 

and 1,2% of these labors occur below 32 weeks. Although this is a high number, Portugal is in the 9th place 

between 162 countries with the lowest mortality rate, with a rate of 1,8 in 1000 live births, a consequence 

of early detection and intervention in premature birth. [25]  

 

 
 

Figure 2: Preterm Birth subcategories according to gestational week [26] 

 

3.1.1.  Causes of Premature Birth 

 

These premature labors can result from three clinical conditions: medically indicated or medically 

induced, preterm premature rupture of membranes (PPROM) and spontaneous preterm birth, with the last 

one being responsible for most of the cases.  Almost 2/3, or 67% of these deliveries don’t have a specific 

diagnosis [27], with the other 33% being associated with multiple pregnancies, infections, and chronic and 

genetic conditions, like hypertension or diabetes. In the following Table 2, it is shown some of the risk 

factors associated with preterm birth [28].  
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Table 2: Recognized risk factors associated with clinical presentation of preterm birth [28] 

 

Medically induced preterm birth Preterm premature 

rupture of membranes 

Spontaneus preterm 

birth causes Maternal Causes Fetal Causes 

Pregnancy hypertension 

and vascular disorder 

Medical illness or chronic 

conditions 

Obstetrical compilation 

Antepartum bleeding 

Maternal age >35 years 

Intrauterine 

growth restrition 

Unstable fetal 

condition 

Fetal anomaly 

Multiple 

pregnancies 

Infection 

Uterine distension 

Cervical anomalies 

Afro-American ethnicity 

Disadvantaged population 

Previous preterm birth, 

preterm labor 

Low body mass, poor 

weight gain 

Strenuces physical 

workland, ergonomic 

factors 

Uterine anomalies 

Psychesocial stress 

Lifestyle, smoking 

Drug abuse 

Maternal age <18 years 

Unknown 

 

3.1.2.  Consequences of Preterm birth 

 

Premature birth has severe health consequences or even risk of death in newborns, especially in low 

income countries. Like in most health-related issues in the world, low-income settings are the most harmed 

population when it comes to inequalities in cheap and accessible care like warmth, breastfeeding support 

and basic care for infections and breathing problems. The lack of this basic conditions leads to the death of 

half of the babies that are born at or below 32 weeks, in these types of populations. Even in middle-income 

settings the poor use of technology is causing a rise on the number of disabled children who survive the 

neonatal period after preterm delivery. By comparison, in high-income settings, practically all babies born 

at this time survive. Another factor that contributes to a disparity in the mortality rate between poor and rich 

countries is that often premature babies will need further hospitalizations during development, creating an 

even bigger problem in countries where the medical care is lacking and where those families will be hindered 

[1][3].  

One of the ways of minimizing premature birth rate and all its consequences in a way that is 

inclusive to all settings, is to improve the early detection of labor, by monitoring the woman’s biochemical 

or biophysical signals throughout the pregnancy, so that early medical intervention to the fetus and the 

mother is provided as soon as possible. This will allow the reduction of the treatment cost on children born 

premature, decreasing the number of deaths in children born premature [1][3]. 

 The most common and practical procedures for monitoring pregnant woman is uterine activity 

carried out by medical staff. [17] Some of the methods that are also used to measure contractions in the 

pregnant uterus, include intrauterine pressure catheter, tocodynamometry and more recently, 

electrohysterography that are explained in this chapter.  
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3.2. Uterine Contractility 
  

Uterine contractions are connected to electrical events in the myometrium. The myometrium is the 

middle layer of the uterine wall, as seen in Figure 3, and it is composed of smooth muscle cells, called 

uterine myocytes, as seen in Figure 4. These cells are the ones responsible for the underlying electrical 

activities in the form of action potentials in the uterus, resulting in uterine contractions. The propagation of 

the electrical activity happens due to a grouping of connexin proteins in the gap junctions of the myometrial 

cells, that allows them to be electrically connected. These cell-to-cell contacts are usually low, with a small 

electrical conductance, however when contractions occur these gap junctions increase allowing coordinated 

and effective contractions. This electrical activity and cell contact is a direct cause of the uterine volume 

(chronic stretch) and ovarian hormones levels (mostly estrogen) on resting membrane potentials. [29], [30] 

 

 
Figure 3: Anatomy of the Uterus [31] 

 

 

 
Figure 4: Architecture of myometrial cells [31] 

 

In terms of the biochemical process the action potentials are a result from voltage- and time-

dependent changes in membrane ionic permeabilities of calcium (Ca2+), potassium (K+) and sodium ions 

(Na+). In the uterus an inward current of Ca2+ ions and Na+ ions will cause a depolarizing phase on the action 

potential. In the preterm myometrium, a “plateau-type” action potential occurs from a combined effect of a 

constant inward of Ca2+ ions or Na+ ions and a decrease in the voltage-sensitive outward current.  [32], [33] 
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Figure 5: Action Potentials in the Uterus [32] 

 

 

The amplitude, frequency and duration of these contractions are determined by how frequent the 

burst of energy happens across the myocytes, the total number of cells that are simultaneously active during 

the burst and how long they last. Therefore, uterine contractions are related to the electrical properties and 

excitability or conductivity of the uterine myocytes. [32] 

For premature birth, there exists an early onset of synchronized contractions of the uterine muscle 

cells. These activities can be measured through electrohysterogram (EHG). [29] 

 

3.3.  Uterine Contraction Monitoring Devices 
 

With the goal monitoring uterine contractions, a series of systems were created that are still in use 

now, with both of them being inadequate for preterm labor risk evaluation. These are the following and are 

represented in Figure 6 [34]:  

 

Intrauterine Pressure Catheter (IUPC): it is considered the Golden Standard for monitoring 

uterine contractions since allows the analysis of the frequency and the intensity of contractions more 

accurately. One of the big downsides is that this technique involves the insertion of a catheter, which requires 

the woman with ruptured membranes, and it might lead to fetal and placental damage, infection and/or 

uterine perforation. 

 

External Tocography (TOCO): this method in also widely used in contractions monitoring 

although it shows some limitations. The TOCO shows a degraded predictive value since there is a mismatch 

between the tocogram amplitude and the strength of the uterine contraction. Additionally, it is inaccurate 

for high body mass index mothers (BMI) since the ultrasound has difficulties penetrating fatty issue [35].   
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(a) (b) 

 
  

Figure 6: Uterine Contraction monitoring devices used more frequently in a clinical setting. 

(a) Intrauterine Pressure Catheter (IUPC). (b) External Tocography (TOCO) [34] 

 

3.4.  Uterine Electrohysterography (EHG)  
  

Electrohysterogram (EHG) is technique dating as early as 1931, consisting in a non-invasive method 

that involves the placing of electrodes on the abdomen of pregnant women, that will record a signal related 

to the sum of the electrical activities that propagate through the uterine cells to the abdomen of pregnant 

women. This allows that information like frequency and length of uterine contractions, and contraction 

power of the uterus, are recorded and then used to identify if labor is occurring or not. [3] 

 This is an advantageous technique since it gives us information from the electrical activity generated 

at the muscle fiber level in a non-invasive way.   

During most of the pregnancy the uterine electrical activity is very low, consisting of infrequent and 

low amplitude signals.  However, during preterm and term labor EHG activity is higher in frequency and 

with large amplitude, a consequence of the changes in intrauterine pressure and pain sensation. Therefore, 

this technique can be very helpful for contraction-monitoring in term and preterm labor since it can 

differentiate preterm and term contractions, by distinguishing the transition from non-labor to labor states 

in the myometrium, something other techniques encounter challenges on [29][36] 

There is an extensive research background that found measuring electrical activity from electrodes 

placed directly on the uterus very successful for monitoring uterine contractility.  

Comparing to other techniques, EHG produces very similar results to tocodynamometry (TOCO) 

and Intrauterine Pressure Catheter (IPC), although with better results than the TOCO device and with the 

advantage of being non-invasive when comparing to the IPUC. Therefore, EHG is gaining more attention 

each day, since it is a non-invasive, low-cost, and real-time technique [37]. 

 Even though EHG as gained a lot of attention recently by producing very good results, its 

applicability has still raised some issues. One of these is the interpretability of the results since the signal 

records are complex and hard to interpret. Additionally, the collection of records is still very hard, especially 

for preterm labors since this technique is not a clinical practice [29].  

 As mentioned before, raw signals from the myometrium are obtained through the placement of 

bipolar electrodes adhered to the abdominal surface. Typically, four electrodes are used in most studies, 

although some studies have used 2, 16 and even 64 small electrodes. The problem with a small number of 

electrodes is the structural and functional complexity of the uterus. The uterus is an assembly of stochastic, 

nonlinear biological mechanisms interacting with a fluctuating environment. For that reason, a higher 
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number of electrodes will be preferred [38]. In Figure 7 it is possible to see how the electrode placement 

was done in some studies, since different layouts are on trial by different research groups.  

a)  b)  

  
c)  d)  

  

Figure 7: Electrode placement on the EHG from different authors. a) Ye-Lin Y et al.[39] b) 

Alexandersson A. et al. [40] c) Hayes-Gill B. et al. [41]  d) Garfield R. et al.[42] 
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3.4.1. Commercial Monitoring Systems for the EHG signal 

 

  

At present, the EHG signal can be obtained through different monitoring equipment available to the 

public, with one of upsides of the increased sensitivity to patients with a high BMI. These systems were 

designed to detect uterine contractions and fetal electrocardiogram, replacing TOCO, but still fail to provide 

contractions identification as well as labor prediction, being uncapable of assessing if there is a risk of 

preterm labor. In Figure 8 it is possible to see the different available systems using the EHG with the 

American Food and Drug administration (FDA) and European Commission (EC) marks. 

 

3.4.2. EHG Signal Characteristics  

 

 As mentioned before EHG is one of the best techniques to measure non-invasively the electrical 

activities of the muscle cells related to uterine contractions, but it has a very weak signal (from 0 to <5 Hz). 

This comes with a price, since the frequency range of other types of electrical activities from the mother 

and the fetus can also be recorded (called noise), overlapping the spectra of the signal of interest. One of the 

strongest signals that corrupts the EHG signal is the maternal electrocardiogram (ECG), that remains present 

even after the analog filtering during the assessment. Others like fetal electrocardiogram, maternal 

(a) Nemo Healthcare [43] (b) Monica HealthCare Inc.[44] 

  

(c) The SureCALL® Labor 

Monitor®[45] 
(d) OB Tools[46] 

 

 
Figure 8: Existing monitoring devices for the EHG signal 
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respiration, motion artifacts, electromagnetic noise from external devices, as seen in Table 3, also contribute 

for the signal noise. Therefore, the solution is performing a de-noising step before utilizing the signal data, 

to improve the accuracy of preterm classification. [3] 

 

Table 3: Frequency range for the main noise in the EHG signal [3] 

Noise Frequency Range 

Maternal ECG 1.38 to 1.5 Hz 

Maternal Respiration 0.2 to 0.34 Hz 

Electromyography noise Above 30 Hz 

Power supply interference 50 or 60 Hz 

 

 The frequency of the EHG signal can be classified in two waves: fast wave and slow wave. The 

frequency on the fast wave varies between 0.01 to 0.03 Hz, and the slow can also be divided into two 

categories, fast wave high (FWH) with frequency ranges of 0.2 to 0.45 Hz and fast wave low (FWL) with 

frequency ranging from 0.8 to 3 Hz, including. These last waves are connected since FWH is related to the 

excitability of the uterus while FWL is related to the electrical activity of the uterine muscle cells. Moreover, 

the phasic uterine contractions are triggered by slow and fast waves.[3][38]. Figure 9 shows an example of 

the representation of an EHG signal.  

 

 

Figure 9: EHG Signal. The peaks correspond to different contractions  

 

 A way of denoising the signal is applying digital filters. The problem with this method is that some 

of the frequencies from the noise overlaps with the EHG signal, as you can see from Table 3. Consequently, 

other techniques must be applied to eliminate noise with a common frequency range that characterizes 

uterine contraction. Various denoising techniques have been approached in literature. Leman et al. [47] 

based on the success of the wavelets as a denoising tool, proposed the application of the redundant wavelet 

packet transform. Hassan et al. 2011 [48] applied a combination of the canonical correlation analysis and 

empirical mode decomposition (EMD) for removing the noise without losing information on propagation. 

Ryu et al. 2015, proposes a novel method where multivariate empirical mode decomposition (MEMD) is 

applied before extracting any features, showing better results compared to the Fourier-based prefilter.  [7] 
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4. Materials and Methods 

4.1. Data Description 
 

The electrohysterogram records used in this work belong to the Term-Preterm EHG Dataset (TPEHG) 

Database stored in PhysioNet [49]. The records were collected from 1997 to 2005 at the University Medical 

Centre Ljubljana, Department of Obstetrics and Gynecology, during regular check-ups of pregnant women 

within the 22nd and 32nd week of gestation, with a total of 300 records, whose distribution can be seen in 

Figure 10. From these records, 262 were obtained from women whose delivery was on term (above 37 

weeks) and a total of 38 records, were obtained from pregnancies that ended prematurely (below or equal 

to 37 weeks). The majority class can be easily seen as the term labors and the minority class as preterm 

labors. From 26 to 29 weeks we can also see that there is a lot of recordings, indicating that the recordings 

were not continuous during the pregnancy of all the individuals, which can lead to biased results. [49] 

 

 

 

 
Figure 10: Scatter plot of labors represented by week of delivery in relation to the 

recording time for the EHG records, for the TPEHG database. At 37 weeks we have the 

threshold represented since it is the week for differentiating preterm from term birth. 

 

Each record is composed of three bipolar channels (S1, S2 and S3), recorded from 4 electrodes 

(E1,E2,E3 and E4) that are placed in two horizontal rows, separated 7 cm apart, on the abdominal surface. 

The placement scheme can be seen in Figure 11 and is later explained.  
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Figure 11: Electrode’s configuration in the recordings of the TPEHG Database, placed on 

the abdomen, above the uterine surface of the pregnant individual. [49] 

 

• The first electrode (E1) was placed 3.5 cm to the left and 3.5 cm above the navel. 

• The second electrode (E2) was placed 3.5 cm to the right and 3.5 cm above the navel. 

• The third electrode (E3) was placed 3.5 cm to the right and 3.5 cm below the navel. 

• The fourth electrode (E4) was placed 3.5 cm to the left and 3.5 cm below the navel. 

As mentioned before, 3 bipolar channels were calculated from these records. This was done by 

measuring the differences between the electrical potentials of the electrodes, following this order: 

• First Channel (S1) = E2–E1  

• Second channel (S2) = E2–E3  

• Third channel (S3) = E4–E3  

Bipolar channels have the advantage of reducing noise of the maternal electrocardiogram, electrode 

movements or respiratory movements of the signal. This happens due to the noise of the monopolar signals 

being identical, therefore being eliminated when the subtraction is done.  

The work presented on this thesis consist in the original dataset, where the final records have a 

duration of 30 minutes each, with a sampling frequency of 20 Hz per channel with a resolution of 16-bits 

with the amplitude range of  2.5 millivolts. Furthermore, it is important to mention that this dataset has a 

variety of features collected from the gestation to parity, previous abortions, existence of hypertension, 

diabetes or bleeding, smoker status, among others. Although not used in this work, this is very important 

since these categories are all reasons linked to preterm labor.[49] From the original dataset, only channel 2 

(E2-E3) was chosen since according to previous work on this matter, the vertical signal has a higher 

variation of signal potential. [19] [34] 

 

4.2. Uterine Explorer Tool  

 
Additional to the denoising of the signals, extracting the contractions from the original EHG signals 

is also very important, especially for the work presented in this thesis.  
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The Uterine Explorer (UEX) project is an application tool developed by the Department of 

Electrical Engineer and Computers of NOVA School of Science and Technology, on MathWorks® software, 

which main goal is the processing of EHG signals, as well as contraction extraction. This tool was 

implemented in this thesis, to detect and delineate the contractions present in the EHG signals. Below, the 

UEX welcome screen can be seen in Figure 12.  

4.2.1 Data Processing 

 
The TPEHG database authors choose an initial sample frequency of 20 Hz. The UEX platform 

includes an array of EHG processing algorithms. In this project we worked with a decimation rate of 5, 

ending with a final sample frequency equal to 4 Hz. Additionally, a wavelet band-pass filter with bandwidth 

0.1 and 1 Hz was selected according to reference values found in literature.  An example output can be seen 

in Figure 13, of a preprocessed EHG signal for a specific patient. 

 

Figure 12: UEX homepage for data processing 
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Figure 13: Three pre-processed EHG channels for patient tpehg552m are represented. The 

contractions correspond to energy bursts above the uterine baseline activity 

4.3.  Machine Learning 
 

As mentioned before, one of the goals of the present work is predicting preterm birth using machine 

learning (ML) techniques. So, what is machine learning? 

ML is a branch of artificial intelligence (AI) and computer science that uses data and algorithms to 

mimic the way humans learn while experiencing things, whilst improving its performance at each use or 

experience. [50] Examples of machine learning pass through the first game of checkers on an IBM 7094 

computer in 1962 to Netflix’s recommendation algorithm. [51] 

Through the years machine learning has become one of the most used tools to solve problems related 

with analyzing large and complex data sets. Using statistical methods, algorithms are trained to detect 

automatically meaningful patterns in the data, in a process that we call classification and prediction. [51] 

Machine learning tools are also special since the behavior of the programs adapts to their input data. 

One can also say that the algorithms are learning or training. This happens every time ML algorithms build 

models from data. [52]. 

Machine learning models can be applied to various fields, from psychology to artificial intelligence. 

Real world problems, like the ones in medical diagnosis, are perfect candidates for applying these techniques 

since they are highly complex. Therefore, machine learning has the capability to solve a variety of problems. 

In this way, a learning problem is constituted by three features [53]: 

 

- Task classes (The task to be learnt)  

- Performance measure to be improved  

- The process of gaining experience 

 

To evaluate the overall performance of a model to see if it can answer to the problem in question, 

six generic steps must be followed, these are the following (seen in Figure 14). 



 23 

 

Figure 14: Steps to evaluate the performance of a machine learning model [53] 

  

1. Collection and Preparation of Data: the first step is the collection and preparation of data in a 

structured format to be used in the algorithm. In our case the preparation of the data will include the 

signal pre-processing.  

2. Feature Selection: select the features and relevant variables for the learning problem.  

3. Choice of Algorithm: choose the appropriate machine learning algorithm for the problem. 

4. Selection of Models and Parameters: manual selection, based on different criteria, of the most 

appropriate model and values for parameters of the same model.  

5. Training: training of the chosen model, using a part of the dataset as training data, known as 

training set.  

6. Performance Evaluation: this is the last step before the real-time implementation of the system, 

where the model is tested with new data, known as testing set, in order to evaluate through different 

performance parameters like accuracy and precision, if the model is learning and can indeed be 

validated and used. 

Based on the previous information, one can say that Machine learning is, after all, a learning process 

where the data is trained and, in the end, tested.  ML is constituted by several subfields that will include all 

these steps. Here we will be talking about the two most relevant subcategories inside ML to this research: 

supervised and unsupervised, mentioned in Figure 15. [53] 

 

Figure 15: Machine Learning Branches (Adapted from [53]) 
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4.3.1. Supervised Learning  

 

Supervised learning is the most important and most used domain in machine learning. In supervised 

learning, algorithms learn through examples, just like humans. Humans use the knowledge gained from past 

experiences in order to improve their capacity towards real-world tasks, but since algorithms cannot 

experience real-world events, they will learn from previously collected data called a training set. The 

learning algorithm will then find patterns in the data and construct mathematical models that will be used 

to classify/predict values from previously unseen data [54]. After this the models will be evaluated on their 

qualificative/predictive capacity through different statistical measures. [55] 

A training set can be defined as a set of labeled data, that is: various input observations, called 

features and the corresponding correct output, called labels [54]. In this phase the algorithm will compare 

the current output with the correct one, with the goal of finding the mistakes and improving the precision of 

the model. After the training, the learning model will predict the label of an observation based on a known 

set of features on the testing dataset, where the precision of the model is also evaluated.  

A general scheme of the process can be seen below in Figure 16:  

 

Supervised learning can be divided into two main models, based on the type of the labels: 

classification models (classifiers), where the resulting label is discrete, and regression models, where the 

label is continuous. This means the following: [54] 

 

• Classification model: predicts discrete values, in other words, classifies data into 

different categorical outcomes (labels). Ex: whether a patient has cancer or not.  

• Regression model: predicts the numerical value of an item. Ex: predicting house prices. 

[57] 

 

Although they have different purposes, the goal remains in achieving the best and more precise 

model, minimizing the difference between the predicted value and the real value.  

 

 

Figure 16: Supervised Learning Training and Testing Process Scheme (Adapted from [56]) 
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The previous scheme can be easily explained with a simple example of a classification model 

(shown in Figure 17). Suppose that the training set is constituted by different types of fruit shapes, the 

features group, while the name of said fruit shapes are the labels for each one of them. This set is then used 

to train the machine learning algorithm, that then gives a predictive model. To construct the predictive model 

we input data containing a set of known features, called the testing set, that will return the labels for each 

one, so the corresponding name to each fruit shape [57]. These features are then evaluated according to the 

precision of the prediction, and if it does not perform well, the process repeats. In this example, all of our 

fruits in the prediction pile were rightly labeled, concluding that our machine learning algorithm can classify 

each fruit shape into the correct name (category).  

 

 
Figure 17: Classification Model Mechanism 

 

 

A selection of supervised learning algorithms examples is shown below: 

 

• Decision Trees:  

 

A decision tree is one of the most popular approaches, either for classification or for regression 

problems. A decision tree has a hierarchical tree shape, consisting of a set of nodes and branches that form 

a root tree. There will be three kinds of nodes: a root node, a single node with no incoming branches, and 

two outgoing branches from the root: the decision nodes, which will help us split the data with a specific 

condition, and finally the leaf nodes that will help us decide the class of a new data point, by representing 

all the possible outcomes within the dataset. [58], [59] 

The root node represents the complete dataset, that will be split into consecutively smaller 

subdatasets, following different decisions.  The splitting process will be repeated in a top-down, recursive 

manner until most of the objects have been classified into a specific label.  The classification starts in the 

root node and finishes in the last leaf node. In a way of avoiding overfitting and bias, decision trees are more 

suitable for smaller datasets, since when a tree grows, it becomes increasingly difficult to maintain the purity 

of each leaf node [59] . In Figure 18 shows the architecture of a decision tree model.  
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Figure 18: Architecture of a Decision Tree Model [59] 

 

 

• Random Forest (RF): 

 

Random forest, a very commonly used ML algorithm, can be used for both classification and 

regression problems. As previously mentioned, decision trees can be associated with overfitting and bias 

when dealing with larger and more complex datasets. The Random Forest algorithm also faces that problem 

by combining the output of various decision trees to reach a single result, giving a more precise prediction.  

For this algorithm three main hyperparameters will be selected: node size, number of trees and the 

number of features sampled. Each decision tree consists of a bootstrap sample, where data is drawn 

repeatedly with replacement from the training set. Through feature bagging, where the algorithm randomly 

selects a subset of features, the randomness in the dataset is increased and the correlation problem between 

the trees is reduced. Therefore, for each decision tree in RF, the algorithm will train different features and 

consequently give different predictions.  

These predictions will vary depending on the type of problem. In the regression model each 

individual decision tree will be averaged, whereas in the classification model there is a voting, in which the 

most frequent categorical variable in all the trees, will indicate the predicted class. In Figure 19 shows 

architecture of this model [60].  
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Figure 19: Architecture of a Random Forest Model [61] 

 

• Support Vector Machines (SVM): 

 

Support Vector Machines algorithm consists of a classification and regression tool that works very 

well analyzing very large datasets, since it maximizes the predictive accuracy without overfitting the 

training data. It works by mapping the data to a high-dimensional feature space, where the data will separate 

by their corresponding category, even if the data is not linearly separable. When the separator between these 

categories is found, the data are transformed in such a way that the separator could be drawn as a hyperplane. 

The prediction of the label for each value will happen based on the characteristics of the new data [62] [63] 

. In Figure 20 the architecture of the model can be seen. 

 

 
Figure 20: Architecture of a SVM Model. 1: original dataset; 2: the data can be separated 

into two categories as seen by the the red curve; 3: this boundary of the two categories is 

called a hyperplane, and is show in image purple line (adapted from [63]) 

 

 

4.3.2.  Unsupervised Learning 

 

Previously we referred to about supervised learning. This method learns to correctly label a desired 

input through a set of inputs with the corresponding output given before. In unsupervised learning, the 

algorithm learns by using a created model that can extract the similarities in unlabeled data, where the 
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number of classes is unknown. In that way the model’s main goal is to find meaningful and, most of the 

times, hidden patterns in the data and consequently organize it into different groups or classes, to be used 

for the prediction of inputs, decision making, among others. Essentially, unsupervised learning will differ 

from supervised learning since, although it receives inputs, the data the algorithm works with is unlabeled 

and the number of classes is not known, which will lead to a simpler method, but less accurate results 

[68][1]. 

 Essentially, unsupervised learning comprises three main goals, clustering, association, and 

dimensionality reduction. Some of the most popular techniques used for unsupervised learning is PCA for 

dimensionality reduction. Their respective definitions follow below: 

 

• Principal Component Algorithm (PCA): 

  

As mentioned before, the principal component algorithm technique is used primarily for 

dimensionality reduction of the dataset. This technique can be very advantageous in cases where the dataset 

is very long and complex, by reducing its dimensions and consequently reducing the computational cost, 

minimizing information loss. PCA reduces the number of features or independent variables in the dataset. 

Through a linear transformation, this method converts correlated variables into linearly uncorrelated ones, 

named the principal components, where the components are the direction that maximizes the variance of 

the dataset, and each principal component is uncorrelated to the other. The direction that each principal 

component follows is always orthogonal to the prior components with the most variance [69][70]. 

   

4.3.3. Ensemble Learning: 

 

The goal of machine learning is to find a model that will predict a desired outcome. In ensemble 

learning this technique combines several individual models and their corresponding hypotheses in order to 

produce one optimal predictive model. The main objectives are to decrease bias, variance or improve 

predictions. Ensemble learning can be divided into two groups: 

• Sequential ensemble approaches: here the models are constructed sequentially since they 

are dependent from each other. An example of this is the AdaBoost technique. 

• Parallel ensemble approaches: here the models are constructed in parallel since the models 

are independent of each other. 

Two important concepts in ensemble learning are boosting and bagging. The first is a repetitive 

technique that adjusts the observation’s weight based on the last classification. Bagging or Bootstrap 

Aggregation combines bootstrapping and aggregation to form one ensemble model, that will apply 

homogenous models on sample populations by taking the mean of all predictions.  

In this work we will be working with the RUSBoosted Tree algorithm, since it specializes in skewed 

datasets. This classifier will apply random undersampling (RUS) from the majority class, decreasing its 

number of observations. [71] [72] 

 

4.4.  Deep Learning 
 

 Deep learning is a branch of ML, that is considered as a more robust machine learning technique, 

with stronger computational power and a better competency in dealing with larger data bases. DL main 
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strategy is based on learning by example, just like us humans, by a hierarchical learning process with abstract 

levels.  

Although the official DL term only came into perspective in 2006 by Hinton et al. [73] based on the 

concept of artificial neural network (ANN), it was already used in the form of neural networks in the late 

1980s. Nowadays, DL is used to solve various complex problems, like facial or voice recognition.[74], 

instead of more traditional machine learning algorithms since the former have proved to have better capacity 

to deal with data comprehension and manipulation, in a more autonomous manner, as the volume of data 

increases. Even though DL takes more time to train a model due to many parameters, its testing time is 

shorter than to other ML techniques.  

 So how does DL work? Deep learning started with ANN, so it is clear that most deep learning 

methods use neural network architectures to learn. These neural networks were inspired by biological 

nervous systems, since they are composed by multiple processing layers of neurons, a simple processor that 

generates series of real-valued activations for the target outcome. The Figure 21 (b) shows the 

representation of the mathematical model of an artificial neuron.  

 

a) 

 

b) 

 
Figure 21: a) Human neuron structure; b) Schematic representation of the mathematical 

model of an artificial neuron (processing g element), highlighting input (Xi ), weight (w), 

bias (b), summation function (), activation (f) and output signal (y) 

 

The scheme shown in Figure 21 (b) was proposed by McCulloch-Pitts and its mechanism can be 

explained using an analogy with the biological neuron, represented in Figure 21 (a) that inspired the first. 

A neuron receives signals from other neurons, that are connect between each other. That information is then 
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processed through the cell body and the processed signal is passed through the axon. However, the upon 

receiving the signal, the neuron can either “fire” or “not fire”, depending on the input signals. In an artificial 

neuron, the computational version of the neuron occurs. Here, the neuron receives several binary inputs 

(x1,x2,…), that are summed (weighted sum) in E (summation function), also adding a bias term. This value 

is then processed in an activation function, f, and transmitted in a single binary output, to the following 

neuron.  

This output can either be 0 or 1, and it is determined by verifying if the value of the sum of the 

weights of each input is bigger or smaller than the value of the threshold, previously defined. If the value is 

the same or smaller than the threshold the output is 0, if the sum is bigger than the output is 1. [75]  

 The typical ANN is composed by several layers of neurons, specifically by one input layer, one 

output layer, that are all connected through several hidden layers, allowing for the decisions taken in one 

layer to be transmitted to the following layers, as can be seen in Figure 22. In the input layer the decision 

is only taking in consideration the summed weight of the inputs, but as the layers progress all the decisions 

made in previous layers will be taken in consideration, allowing for a more robust and complex process. In 

that way DL’s performance improves with the increase of data (Figure 23)[74] .  

 

 
Figure 22: Architecture of an ANN model. Each circle represents a neuron, that outputs a 

value. The values together form a vector that represents the feature extracted from the 

input in this layer. The arrows represent the connection between the neurons and the 

transmission of the data [76] 

 

 

 
Figure 23: Comparison between deep learning (DL) and machine learning (ML) 

algorithms, where DL modeling from large amounts of data can increase the performance 

[74] 
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The field of deep learning is constituted by several different types of algorithms, just like in machine 

learning. Some of the algorithms are explained below: 

The work of this thesis will focus on Recurrent Neural Networks (RNN) and its main variant, the 

Long Short-Term memory algorithm. These techniques are explained below:  

 

• Recurrent Neural Networks (RNN):  

 

Is an artificial neural network used for time series prediction, with a ‘memory’-like property [77]. 

A time series prediction is the task of forecasting future values or patterns in a sequence of data points that 

are ordered in time. Time series prediction methods typically involve analyzing the historical data, 

identifying patterns or relationships, and building mathematical models that capture the underlying 

dynamics of the series. 
RNN consists of multiple layers: input layer, hidden layer(s) and an output layer. Inside the hidden 

layer, the RNN contains recurrent units that allows the algorithm to process sequence data, by recurrently 

passing a hidden state from a previous timestep 1and combining it with an input of the current one. So this 

means that the first layer has the weight derived from the input layer, and every layer after that will receive 

weight from the previous layer.[78] In other words, the present layers’ output is completely dependent on 

the outputs of the previous layers. However, RNN has not shown very successful results with long term 

memory. That is why LSTM are considered a variant of RNN, since it fixes the problem of long-term 

memory with a forget gate. The architecture of a typical RNN can be seen in Figure 24.  

 
Figure 24: Architecture of a Recurrent Neural Network model [79] 

 

 

 

 

 

 
1 Timestep: single processing of the inputs through the recurrent unit. The number of timesteps is equal to the 

length of the sequence. 
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• Long Short-Term memory (LSTM):  

 

This is a special recurrent neural network (RNN) algorithm that contains special units called 

memory blocks in the recurrent hidden layer, not present in a classic RNN architecture, as shown in Figure 

25. These memory blocks contain three gate types, that can be compared to a filter, and are explored below 

[81]: 

 

• Forget Gate: controls which information is relevant and which information must be 

forgotten from the cell state in the previous timestep (ct-1 ).  

• Input or “Memory” Gate: controls which new input data must be saved into the cell state, 

ct. Here the results of the input gate get multiplied by the cell state, with important 

information chosen by the input gate. 

• Output Gate: controls which information will be included in the output.  

 

These gates will be the ones that’ll help solve the long-term memory issue, by controlling the cell 

state by adding or removing information. As seen in Figure 25 we have: 

 

• Hidden state and new inputs: the hidden state from a previous timestep (ht-1) combines 

with the input at a current timestep (xt) before transmitting copies of the timestep through 

various gates.[98] 

• Update cell state: the cell state from the previous timestep (ct-1 ) gets multiplied by the 

results of the forget gate .Then new information is added from [input gate x cell state 

candidate] to get the latest cell state (ct). [98] 

 

As can be seen in Figure 25 presented below, LSTM architecture can normally be seen over the 

t(time)-dimension. The process consists of three steps:  

 

 Step 1: the first step in the process happens at the forget gate, where the decisions will be 

processed by a sigmoid function () with ranges between 0 and 1. Here, ct-1 will be multiplied 

element-wise by a vector, ft , through the sigmoid function, which will generate a vector with values 

comprised between 0 and 1. If the value of the output is equal to 0 the information is rejected and if 

it is equal to 1 the information is considered relevant and is kept and transmitted in the loop. [80]  

 

Step 2: here the new memory network is a hyperbolic tangent (tanh) activated neural 

network, which means that it will output values to the range [-1,1], so our new vector will have 

values within that range. Later, the sigmoid function will act as a filter, and transform the data into 

a vector of values in [0,1], through element-wise multiplication. Then the result is summed up with 

the previous cell state, resulting in ct.[98] 

 

Step 3: To stop an overload of information, the output gate will act as a filter. It will be 

applied to a version of the cell state, so it does not modify the cell state. Here this cell goes through 

a tanh function so the values are between -1 and 1, and then through the activation function, a 

sigmoid function, to filter the values in [0,1], through pointwise multiplication, and the new hidden 
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state is outputted. [81] The latest cell state and the hidden state return to the recurrent unit where 

the process repeats at timestep t+1, until the loop reaches the end of the sequence.[98] 

 

 
 

Figure 25: Architecture of an LSTM network. ht-1 –  hidden state at previous timestep t-1 

(short-term memory), where the red circle represents the sigmoid activation function, the 

blue circle represents the tanh activation function, the black dots represent the states, the 

red dots represent the gates, the blue dots represent the updates, x- vector pointwise 

multiplication, + - vector pointwise addition, ct-1 – cell state at previous timestep t-1 (long-

term memory), xt – input vector at current timestep t, ht – hidden state at current timestep 

t, ct – cell state at current timestep t, [81], [82] ,[98] 

 
 

 
Figure 26: Side by side comparison of the Machine Learning and Deep Learning Process 

 

A comparison scheme of ML and DL, can be seen in Figure 26. In short, we can say that machine 

learning is an artificial intelligence tool that will learn automatically with a need of human interference for 

learning and training specifically, particularly with feature extraction. Deep learning is a field of machine 

learning that will learn through a process like the human brain, via artificial neural networks, without the 

need of constant supervising, especially with feature extraction. The first trains small amounts of data with 

simple and quicker processes and has a lower accuracy, whereas the second requires big datasets thus taking 
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more time to train, but with a higher accuracy. DL also learns with its own environment, and can achieve 

better results with more complex data, in comparison with ML that is in constant need for human 

intervention to improve.  

 

4.4.1. Deep Learning in biological data 

 

 In life sciences research scientists are flooded with large and complex datasets, which can be very 

laborious for traditional ML techniques to find patterns. The data can be split into three different groups 

based on its origin: images (e.g.: electromyogram, electrocardiogram), signals (e.g.: radiographs, MRI 

images) and sequences (e.g.: DNA/RNA sequences), that can produce very heterogenous and dynamic data. 

Dealing with this type of data with traditional ML techniques can be very challenging, therefore deep 

learning has been very successful with pattern recognition problems within biological problems.    

 According to Mufti Mahmud et. al.[77], some of the most used techniques inside DL for biological 

data, include convolutional neural network (CNN) (with the highest percentage of articles representing the 

technique), Fully Connected Network (FNN), Deep Autoencoder (DA[E]) and Recurrent Neural Network 

(RNN) including Long Short-Term Memory or LSTM. Based on the same article, in 2019 CNN was the 

most used algorithm around all data types, with DA as the second most used one and RNN showing an 

increased percentage of usage in applications. 

 

4.5. Imbalanced Data 
 

 Previously it was mentioned that the objective of this work is the prediction of preterm labor using 

the data from the TPEHG dataset. However, the use of this dataset comes with some difficulties, in this case 

an imbalanced dataset, where the number of term recordings is larger than preterm ones. Such problem was 

emphasised in Figure 10.  

Imbalanced data refers to an unequal distribution of classes within a dataset. Figure 27 ilustrates 

the problem of imbalanced data. In our study it is obvious that most of the births in research correspond to 

term labors, while only a few are premature. This will generate an unbalance between the data points 

belonging to the term class and the ones in the preterm class, with our majority class being term labor, 

leaving the preterm labor class as the minority class.  

 

Imbalanced Class Distribution 

 

a) b) 

  

Figure 27: a) Imbalanced Class Distribution. The grey circles correspond to the minority 

class while the black circles correspond to the majority class. b) Unbalanced scale. Is an 

analogy that shows that the data represented with the black color has more weight than the 

one represented with the grey color. 
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When datasets are not balanced, classifiers like the ones referred to above, will be more sensitive to 

the majority class rather than to the minority class, causing a biased classification towards the majority class. 

This can be a huge problem since most of the time the dataset is composed of mainly “normal” examples 

with minority class being often the most relevant and useful one in the study. [83] On that account, different 

methods to overcome the imbalanced data problem have been employed, ranging from resampling the 

dataset to generating synthetic samples, with the two most popular ones being the SMOTE and ADASYN 

methods. [84] Two approaches can be defined: undersampling, where the majority class is sampled, and in 

our case specifically reducing the number of the majority class data points so it matches the number of 

minority class recordings and oversampling, where datapoints from the minority class are replicated to be 

equal to the majority class, a more accurate method than the former. [22]  

In this work, the synthetic approaches are going to be explored, since they are the most used in 

premature birth literature, as seen in Table 1.  

 

4.5.1.  Synthetic Minority Over-sampling Technique:  

 

Synthetic Minority Over-sampling Technique (SMOTE) is the simplest synthetic oversampling 

method, that treats all minority class samples equally. Here the minority class is over-sampled by creating 

“synthetic” examples. The oversampling is done by first drawing seed samples randomly (random numbers 

to ensure reproducibility) from all minority class samples, and after by calculating the k-nearest neighbors 

in the minority class for each seed sample and then introducing new synthetic samples along the line 

segments between the seed sample and its nearest minority neighbors, by joining them. [85] 

The SMOTE algorithm currently runs with five nearest neighbors, but the number used is 

recalculated based on the percentage of the oversampling needed, so if the oversampling is at 200% only 2 

of the neighbors will be used.  

Synthetic samples are generated as follows: first take the difference between the feature vector 

(sample) under consideration and its nearest neighbor, then multiply this difference by a random number 

between 0 and 1, and finally add it to the previously mentioned feature vector. This leads to selecting a 

random point along the line segment between two specific features, originating the decision region of the 

minority class to become more general. [23] 

The authors of SMOTE state that combining the oversampling of the minority class (using SMOTE) 

with the undersampling of the majority class, will lead to higher predictive accuracy results [23]. 

 

4.6.  Feature Extraction 
 

 Feature extraction for machine learning is a necessary step that yields better results than working 

with the raw data. It can be defined as the process of turning raw data into numerical features that can be 

processed whilst keeping the information in the original dataset. This procedure can be done manually by 

first identifying and describing the most relevant features and then extracting the most relevant features 

using a defined manual method and first, or automatically with an algorithm specialized in automatically 

and independently extracting features from signals or images, a faster process than the first. For signal data, 

feature extraction can be challenging due to information redundancy and high data rate. [87] . In Figure 28 

a scheme of the feature extraction process can be seen.  
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Figure 28: Feature Extraction process in raw signals and time series data for a ML classifier 

(taken from [87]) 

 

  

4.7.  Dataset Features 
 

As seen in Table 1, in the literature, the predominant features used in the preterm prediction are 

time-signal features. Idowu et al. used sample entropy, root mean square, frequency, median and peak 

frequency, among others as features, Ryu et al. also showed promising results while using sample entropy 

[6], [7]. Jager et al. used frequency and peak amplitude of the power spectra in the contraction intervals as 

features [12]. The TPEHG database has several features, from the characteristics of the patients like age, 

parity, existence of diabetes, smoker status and others, to characteristics of the signal [12].  

Overall algorithms perform well with a higher volume of features since they will have more data to 

learn from, so it would be beneficial to work with more features in this work.  

As mentioned before, in this thesis the goal was to use only the contractions instead of the whole 

signal, which still needs to be done. The problem is that contractions are non-stationary time series, and 

each contraction can have a different number of samples. For that reason, we chose the signals power spectra 

density as it represents the EHG signal more accurately independently of the number of samples of the 

contraction. [34]  

Therefore, we will focus on the spectral analysis of all the contractions for each pregnant woman. 

Time-frequency transformations, such as the short-time Fourier transform (STFT) or the Fast Fourier 

Transform (FFT) can be used as signal representations for training data in machine learning and deep 

learning models.[88]   

Signal processing is often used for feature extraction and classification in medical disease diagnosis 

[88], where spectral analysis plays a very important role in signal processing for distinguishing and tracking 

signals of interest. The goal of spectral analysis is to decompose the data into a sum of weighted sinusoids, 

that allows one to assess the frequency content of the signal. [89]  

Power spectral density (PSD) measures a signal’s power content versus frequency and its estimation 

results are typically used to characterize signals. In other words, PSD represents the power of the input 

signal over a range of frequencies. It has been proven before that the PSD can be used to analyses EHG 

signals to evaluate the changes of the power spectra in premature labors[34]. Its methods can be divided 

into parametric and non-parametric groups. Parametric methods are model-based methods, that match the 

signal with a model. One disadvantage is that when the selected model is wrong, PSD estimation can contain 

invalid frequency peaks.  The non-parametric spectral analysis estimates the spectral density of a random 

signal without pre-parameter modeling, being very robust. However, since it needs data windowing, it can 

lead to a distortion of the PSD. [34] [90] 

A spectral estimator is expected to have good statistical properties such as consistency, high 

resolution, and small variance. For one spectral estimation method, there exists a trade-off between high 

resolution and small variance. Our created database includes several PSD methods, in this work specifically 
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we are going to use the Welch method as the PSD estimation method. The Welch method, also called the 

periodogram method is an average of periodograms across time, consisting of a non-parametric approach. 

This method will estimate the power spectra by dividing the time signal into successive blocks, forming a 

periodogram for each block and finally doing the correspondent average. In Figure 30 a scheme for this 

method can be seen, step by step [91]. According to the literature, it is common to process signals like the 

EMGs in blocks, due to their slow varying nature in time [92]. In Figure 29 the power spectra of two 

different contractions using the welch method can be seen, showing that the contractions will always be the 

same length.  

By looking at the signals from observation 200 to observation 513 the value of the welch is 

approximately 0. Based on these values, the correspondent features would be useless to the classification 

algorithm, so they were not added to our analysis. Therefore, in our final dataset the power spectra for each 

contraction, present in each signal per individual were used as features, until observation 200, ending up 

with a dataset with a total of 4622 observations with 200 features. Additionally, a classification column was 

added representing the labor category that each contraction belonged to based on the Time of Gestation, 

with a value of 0 when it is term labor and 1 if it is preterm labor. This dataset will be later added to the 

classification algorithm. In Figure 31, a sample of the organization of the dataset is shown.  

 

(a) 

 
(b) (c) 

  
Figure 29:  Power Spectrum of a contraction using the Welch Method. By using this method all the 

contractions present the same length. (a) EHG signal with two different contraction, Alvarez Wave and 

Braxton-Hicks Contraction; (b) PSD of the Alvarez Wave; (c) PSD of the Braxton-Hicks Contraction. 
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Figure 31:  Case Study Dataset for Machine Learning  

 

4.8. Algorithm Evaluation 
 

Evaluation of different classifiers is challenging since we can only know if a model is good until it 

is used. Therefore, its performance must be estimated using available data when we have the target or the 

outcome. This evaluation consists in a lot more than testing a learning algorithm, it assembles different types 

of tests with various elements. It includes testing different data preparation schemes, different learning 

algorithms, and different hyperparameters for well-performing learning algorithms. In the end, the model 

with the best construction procedure (data preparation, learning algorithm, and hyperparameters) and 

correspondent best score (with our chosen metric) can be selected and used. [93] 

For very large datasets or datasets where the data is well represented and balanced, with all the 

classes in the problem having the same proportion, a simple procedure of splitting the dataset into two equal 

parts, one for training the model and the other for testing works. Although splitting the data 50/50 will be 

ideal,  70/30 or 80/20 splits for train and test sets, respectively, are more frequent.  

 
 

Figure 30: Welch Method Scheme [91] 
 

 

 

(...) 
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For unbalanced datasets, k-fold cross-validation is commonly used for validation. This approach 

consists in splitting the training set into k folds. The first k-1 folds are used to train the model while the 

holdout kth fold is used as the validation set. This step repeats a k number of times, where each of the folds 

can be used as the holdout test set and a total of k models are fit and evaluated, and the model’s performance 

is calculated as the mean of these runs.  In literature, a value of k=10 folds has shown the most success in a 

wide range of datasets and different models. However, more often than expected, when dealing with highly 

unbalanced datasets, splitting the data into two groups will be impossible, since it might happen that one of 

the groups has no data for the group of interest, in this case premature births. To combat this issue, a stratified 

k-fold cross-validation procedure can be used. This is a common procedure in cases of imbalanced datasets, 

since it ensures that the proportion of elements in each class in the original distribution is preserved in all 

folds. In this process the dataset is randomly split while maintaining the same class distribution in each 

subset, to protect the imbalanced class distribution in each fold and protecting the distribution in the 

complete training dataset. [93] 

Recently, Mohammadi Far, S. has shown success with 10-fold stratified cross validation in the 

TPEHG dataset, guaranteeing the existence of both classes in all subsets. [21], [94]  

 

4.9. Feature Selection 

 
While continuously trying to construct the best model, feature selection algorithms come into action. 

In most classification problems, especially when dealing with many features, it is easy to assume that some 

of these predictor’s variables can be redundant to the classification problem, or just damage the prediction 

performance. This method consists in reducing the dimensionality of data by selecting a subset of features 

that improve the classification performance, in a much quicker procedure. There are three different 

categories in the feature selection algorithms [94]: 

 

• Filter Type Feature Selection: this method measures the predictors importance based on 

the characteristics of the features.  

• Wrapper Type Feature Selection: this method trains several models using a subset of 

different features and then adds or removes a feature using a selection criterion, then 

choosing the best performing model.  

• Embedded Type Feature Selection: this method will rank feature importance while the 

model is training, as a part of the model learning process. Thus, the features selected will 

be the ones that work well in the learning process.  

 

The methods used in this work consist of a filter type method for feature ranking, including the 

Minimum Redundancy Maximum Relevance (MRMR) Algorithm.  

 

• Minimum Redundancy Maximum Relevance (MRMR) Algorithm: it works by finding an 

optimal group of features mutually and maximally unrelated to each other to effectively represent 

the response variable.  This procedure will minimize the redundancy of a feature set to the response 

variable, by quantifying the redundancy and relevance of the pairwise mutual information of 

features and mutual information of a feature and the response. [94] 

In Matlab® the correspondent function is the fscmrmr, and it ranks features in 6 steps: 

o The feature with the largest relevance is selected and added to an empty subset, S. 
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o Searches for features with nonzero relevance and with zero redundancy in the complement 

of subset, Sc . 

o If the complement set does not have this type of features, it goes directly to step 4.  

o Otherwise, the feature with the highest relevance value is selected and appended to the 

subset, S.  

o Repeat step 2 until the redundancy value for all features in the complement set is different 

from zero.  

o In Sc , selects the feature with the largest mutual information quotient (MIQ2) value with 

relevance and redundance different from zero, and appends it to the set S.  

o Step 4 will be repeated until the relevance is equal to zero for all features in Sc. 

The features with zero relevance are randomly added to S. [94] 

 

4.10.  Hyperparameters 
 

As mentioned before, to construct a good classification model, we must consider the best 

combination of hyperparameters. Hyperparameters are numeric or Boolean values that the user can adjust 

before training the model, which will help to improve the training time, performance and prediction of the 

classifier, and will be used to control the learning process. Thus, as the name states they are “hyper” and 

therefore very important since they will make training very effective in terms of both time and fit, avoiding 

overfitting and underfitting. Some examples of hyperparameters are the train-test split ratio, batch size, 

branches in decision tree or the number of clusters in the clustering algorithm. 

Although you can find the most relevant hyperparameters for the classifier manually, currently one 

can find a few optimization tools capable of identifying good hyperparameters, in a process called 

hyperparameter tuning/optimization (HPO). In this work, the Bayesian Optimization tool was used, which 

consists of building a probability model of the unknown scalar objective function, f(x) using a probabilistic 

surrogate model, typically a Gaussian process, to minimize f(x) for x in a bounded domain. The components 

in x can be reals, integers or categorical. The key elements in this process are: 

 

• A Gaussian process model of f(x). 

• A Bayesian update procedure that modifies the Gaussian process model at each new evaluation of 

f(x). 

• An acquisition function a(x), based on the Gaussian process model of f, that determines the next 

point of x for evaluation.  

 

The probabilistic surrogate model will provide a representation of the objective function while 

updating iteratively as new data points are observed. The surrogate function is the Bayesian approximation 

of the objective function and the acquisiton function selects the next sample of hyperparameters from the 

search space. The way this process works is:[96], [97]  

 

 

2 [94] 
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1. Select a sample by optimizing the acquisition function, finding the best hyperparameters 

that outperform the rest on the surrogate model 

2. Evaluate the hyperparameters in the true objective function 

3. Incorporate the new results on the surrogate model 

4. Keep repeating the process until the end of the fixed number of iterations (30 is the default 

number) or fixed time (the default is no time limit) 

 

The problem with finding the optimal hyperparameters is that it is very time consuming, since the 

evaluation consists in training the model and testing I, and then calculate the evaluation metric on a 

validation set. The traditional approach for HPO is the “one try” method, were the tunning tool finds the 

best hyperparameters in just one try. [97] 

Bayesian optimization is the model chosen for this research since it can outperform the previous 

ones mentioned. Grid search and Random search, although better than manual tuning, are still lacking. The 

problem with these methods is that they don’t take in consideration past results and for that reason a big 

portion of the time is spent evaluating hyperparameters that are unsatisfactory.  

The six types of acquisition functions found in Bayesian Optimization are:  

 

• “expected-improvement-per-second-plus” (default) 

• “expected-improvement” 

• “expected-improvement-plus” 

• “expected-improvement-per-second” 

• “lower-confidence-bound” 

• “probability-of-improvement” 

 

The “expected-improvement-per-second-plus” default option was the chosen as our optimization 

tool. These expected-improvement functions evaluate the total expected improvement in the objective 

function, using time-weighting (-per-second-) in its acquisition function and modifying their behavior when 

they estimate that they are overexploiting an area (-plus). [96] 

  



 42 

 

4.11. Evaluation methodology 
 

To evaluate the performance of our classifiers different statistical measures had to be used. These 

measures were chosen based on the most popular measures used in literature since the goal is to see if our 

classifier can achieve better results in comparison to the more traditional ones presented in literature, seen 

in Table 1. 

For every classifier and with each combination, for the performance evaluation we will be using a 

confusion matrix, a two- dimensional matrix table used to rate the performance of a classifier based on 

testing data [5]. The confusion matrix is a table with 4 different combinations of predicted (described as 

positive and negative) and the true/actual (described as true and false) values, that can be seen in Table 32: 

 

 

 Predicted Class 

T
ru

e 
C

la
ss

 

 Negative (0) – Term 

Labour 

Positive (1) – Preterm 

Labour 

Negative (0) – Term 

Labour 
True Negative (TN) False Positive (FP) 

Positive (1) – Preterm 

Labour 
False Negative (FN) True Positive (TP) 

Table 32: Confusion Matrix  

 

In Table 32 we see that the confusion matrix is constituted by: 

 

• True Negative Value (TN): when the algorithm predictes negative, and it is true, corresponding 

to a correctly identified term labor.  

• True Positive Value (TP): when the algorithm predicts positive, and it is true, corresponding 

to a correctly identified preterm labor.  

• False Positive (FP): when the algorithm predicts positive and it is false, meaning that the 

algorithm predicted a preterm labor but it is actually a term labor. 

• False Negative (FP): when the algorithm predicts negative and it is false, meaning that the 

algorithm predicted a term labor but it is actually a preterm labor. 

 

It is very useful for measuring several performance metrics [5]. These include: 

 

• Accuracy (AC): this is the most used metric. It consists in a percentage of how often the 

classifier is correct in naming term or preterm labor. It is given by the following equation 

[5]: 

 

𝐴𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

where TP (true positive value), TN (true negative value), FP (false positive value), FN (false 

negative value) can be extracted from the confusion matrix.  
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• Recall (R): percentage of how often the classifier gives correct predictions, so when it 

identifies the labor as preterm when it is preterm, giving an actual positive. Recall should 

be as high as possible. R is given by the following equation [5]: 

 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

• Precision (P): it gives us a measure of how precise/accurate the model is, so between all 

the positive predicted values, how many are true positives. In this case, how many preterm 

labours are correctly identified as preterm. Precision should be as high as possible. It is 

defined by the following equation [5]: 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

  

• F1 Score: it is a measure that combines the precision and the recall values, more precisely 

it corresponds to the harmonic mean of precision and recall. A higher value of F means a 

better classifier. It is a good metric to compare different models with low precision and high 

recall. It is defined by the following equation [5] : 

 

𝐹 = 2 × 
𝑃 × 𝑅

𝑃 + 𝑅
 

  

• False Negative Rate (FNR): it measures the percentage of how often the classifier 

classifies the labor as term when it is preterm. It is defined by the following equation [5] : 

 

𝐹𝑁𝑅 =  
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

  

• False Positive Rate (FPR): it measures the percentage of how often the algorithm classifies 

the labor as preterm when it is term. It is defined by the following equation [5] : 

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

 

• Receiver Operating Characteristic (ROC) Curve and Area Under the Curve (AUC): 

these are tools that will also measure the performance of the classifier. The ROC is also a 

performance evaluation measurement for binary classification algorithms. It corresponds to 

a graphic plot representation of the variation in the recall (also referred to as TPR, true 

positive rate) and the FPR for all different thresholds. The AUC is an area measure that 

helps us compare the ROC Curves. It is defined as the probability of the classifier ranking 

a randomly chosen positive instance higher than a randomly chosen negative instance. So 

it will measure the performance of the classifier, with values between 0 and 1, the closer to 

1 the better the classifier is, exhibiting an excellent discrimination power. It is important to 

know that the ROC curve does not depend on the class distribution, which is particularly 
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helpful in imbalanced datasets, where the classifiers tend to predict a negative outcome for 

the majority class [5].  

 

The next chapter will present our case study.   
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5. Results and Discussion 
 

In this section, we present the results of our study on the classification of preterm and term delivery 

using both Machine Learning and Deep Learning algorithms. We implemented a total of five algorithms, 

including four machine learning algorithms: Random Forest (RF), Random Undersampling (RUSBoosted 

Tree), Support Vector Machine with a Gaussian Kernel (SVM), and a Shallow Neural Network, as well as 

one Deep Learning Algorithm, a bilateral Long short-term memory (LSTM) network. We chose RF and 

SVM based in Table 1, and the Wordcloud shown in Figure 1, where both were the most predominant 

classifiers with positive results in preterm birth classification using EHG signals. Additionally, we selected 

RUSBoosted Tree as it is an ensemble algorithm that performs well with imbalanced datasets like our own. 

The Shallow Neural Network was chosen to provide insight into the deep neural network used in the DL 

step of the analysis. For the DL approach, we chose the bilateral LSTM network as it is well-suited for 

sequence models. 

Our dataset comprises a total of 200 features belonging to the Power Spectral Density (PSD) of each 

contraction from each patient. This novel approach differs from the literature, where time-signal and spectral 

features, such as sample entropy and peak frequency, are typically used. We split the dataset using a 70% 

holdout technique, with 70% of our dataset as the training dataset and the remaining 30% as the test dataset. 

The split was chosen to ensure that both classes are represented in both the training and testing sets. After 

splitting, the training set consisted of 3236 observations, with 2829 term labor and 407 preterm labor 

observations. The testing set contained 1386 observations, with 1212 term labor and 174 preterm labor 

observations. Figure 33 shows the number of observations per class in the test and training sets, 

demonstrating that both classes are represented despite the imbalanced dataset. 

 

(a) (b) 

  

Figure 33: Number of observations for each class (Term or Preterm) in the initial training (a) and the test set (b) 

 

The training set was later inserted in the Classification Learner App, to begin the training and 

validation with each classification model. For the ML approach, presented in Chapter 4.3 , the trained 

dataset was trained and validated using a stratified k-fold cross validation method with k equal to 10, since 
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this exact method has been positively linked to the classification of preterm labor using a skewed dataset, 

more recently. A k-fold CV is preferable, especially when working with smaller datasets, to evaluate a 

model since it repeats the process k times. It is also known that this method can be more advantageous with 

imbalanced data, when comparing to k-fold cross validation, like it was mentioned before in Chapter 4.8. 

A visual representation of this step is seen in Figure 34:  

 
Figure 34: Number of Preterm and Term observations for each fold in the Stratified 10-fold 

Cross Validation Partition for the original dataset 

 

Later when we achieved a good model performance, the trained model was evaluated using the test 

set and the different metrics, mentioned in Chapter 4.11, were computed. The workflow, present in Figure 

35 consists of: 

1. Training dataset is used to train each model 

2. Validation dataset is used to evaluate each model 

3. The best trained model is tested and evaluated with the test dataset, after the feature 

selection and hyperparameter tuning process 

 
Figure 35: Scheme of the training-validation-testing plan 
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All the training and validation processes were performed through the Classification Learner App 

from Mathworks®.  

 The following sections will present the performance evaluation results and discussion of the ML 

and DL approaches. First, for the ML, we’ll present the confusion matrix and AUROC plot for each 

classifier with the untouched data, second using the transformed datasets using SMOTE, third using the 

SMOTE datasets and an undersampling technique, fourth applying PCA, a dimensionality reduction 

technique to the dataset, and finally using a feature selection method with hyperparameter optimization. In 

the last step, we’ll also perform the testing using the test dataset with 1386 observations, in the best tuned 

model. This last step was only done with the best performance classifiers since it would be pointless to test 

a model that does not predict well our results. It is important to use the test dataset without any modifications, 

so the machine learning model behavior is tested with observations that he’s never seen before and are 

unbiased. For the DL approach the classifiers were trained with the original dataset and the dataset after 

applying SMOTE. The best classifiers were then tested with the same test set used in the ML part. In the 

end both methods, ML and DL, are compared to each other and to the best results found in literature.  

 

5.1. Machine Learning Methods 
 

5.1.1 Results for the study dataset  

 

In this first section the dataset was used without any transformation, so 3236 observations were used 

for the training dataset, leaving 1386 for the test dataset. The data used in the stratified cross-validation step 

was split into 10 different groups, with the same class ratio throughout the 10 folds as in the original dataset, 

as seen in Figure 34.  

The Figure 36 represents the training results based on the confusion matrix from the RF, 

RUSBoosted Tree, SVM with Gaussian kernel and Shallow Neural Network, shown in Table 4 to Table 7, 

respectively, and in the ROC curves present in the attachment.  

 

Table 4: RF classifier confusion matrix for the training set of the original dataset 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2814 15 

Preterm Labor 406 1 

 

 Table 5: RUSBoosted Tree classifier confusion matrix for the training set 

of the original dataset 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 1541 1288 

Preterm Labor 211 196 
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 Table 6: SVM with the Gaussian kernel classifier confusion matrix for 

the training set of the original dataset 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2829 0 

Preterm Labor 407 0 

 

 

Table 7: NN classifier confusion matrix for the training set of the 

original dataset 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2484 345 

Preterm Labor 338 69 
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Figure 36:Machine learning performance results for the validation dataset (using only 

stratified cross-validation) for comparison 

 

As seen in Figure 36 amongst all classifiers the SVM with the Gaussian Kernel performed the best 

in terms of the accuracy rate, with both the SVM and the RF scoring very high results, of around 87%. The 

NN and RUSBoosted Trees also showed a high accuracy of approximately 80%. However, since we are 

dealing with an extremely unbalanced dataset, based on the confusion matrix of Table 6 (where the model 

does not predict any preterm labor), the model simply learned to predict the majority class very well. For 

that reason, looking at the accuracy it is not the best way to measure the model’s performances with this 

exact dataset. Based on the other measures of the classifiers we can see that the RUSBoosted Tree showed 

the best results with the highest value for Recall, Precision and F1 Score, and lowest value of FNR. This 

classifier also shows the highest value for the FPR, and even if the value is notvery high it means that it will 

classify a labor as preterm when in the dataset is term, which is notgood for a classifier. SVM and RF show 

a FNR of approximately 100%, meaning that all preterm births were classified as term. 

Additionally, looking at the AUC values curves present in Figure 36, overall, all classifiers 

perfomed very poorly, with the SVM showing the best AUC value of 55,6%, indicating that the model is 

incapable of doing real predictions. Even though the RUSBoosted Tree is linked to a high performance with 

imbalanced datasets, its performance did not stand out, most likely due to the extremely imbalanced dataset.  
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5.1.2. Results for the study dataset using SMOTE for oversampling  

 

 Since the results presented before were very low due to the highly imbalanced dataset, the next step 

was to apply the oversampling techniques to the feature dataset. Considering this, the SMOTE method was 

applied to our contraction’s dataset. The oversampling was only applied to the training dataset, after the 

partition since these yields more accurate results without an overly positive classification measure. It is 

important to note that the testing set will not suffer any changes from this oversampling method. This is also 

a new approach different from the usual in literature, where the partition occurs only after SMOTE is 

applied. However, as it was mentioned before recent studies have found that using oversampling techniques, 

like SMOTE on the test set might lead to overly optimistic results. [22] 

 In almost all literature using SMOTE as an oversampling technique for the TPEHG dataset, the 

method is always to oversample the minority class to equal the majority class, which leads to extremally 

good results. However, on the original paper on SMOTE [23], the authors suggested combining SMOTE 

with random undersampling of the majority class, admitting that this should favor even more the results, 

avoiding overfitting. For that reason, in this step, we are going to compare using the SMOTE with and 

without undersampling of the majority class.  

 This comparation approach has the objective of seeing if there is a significant difference in utilizing 

SMOTE with and without undersampling of the majority class and if it improves the performance of the 

classifiers.  

 

a) Results for using only SMOTE 

 

First SMOTE was applied to the training dataset, that originally had 3236 observations, with 2829 

term labor contractions and 407 preterm labor contractions. After this step the dataset had a total of 5658 

observations, with the same number of preterm contractions as term ones, as seen in Figure 37.  

 
Figure 37: Number of observations for each class (Term or Preterm) in the training dataset 

after applying SMOTE 

 

The previous classifiers were applied including the RF, the RUSBoosted Tree, the SVM with 

Gaussian kernel and Shallow Neural Network.  For the validation set the same stratified 10-fold cross 
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validation as before was applied. Figure 37 displays the classification metrics for the training set, based on 

the confusion matrix from the RF, RUSBoosted Tree, SVM with Gaussian kernel and Shallow Neural 

Network, shown in Table 8 to Table 11, respectively and in the ROC curves shown in the attachment.    

 

 
Table 8: RF classifier confusion matrix for the SMOTE training dataset 

Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2468 361 

Preterm Labor 287 2542 

 

Table 9: RUSBoosted Tree Trees classifier confusion matrix for the SMOTE 

training dataset 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 1030 1799 

Preterm Labor 285 2544 

 
 

 

 

 
 
 

 

 

Table 10: SVM with the Gaussian kernel classifier confusion matrix for the 

SMOTE training dataset 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2440 389 

Preterm Labor 1180 1649 

Table 11: NN classifier confusion matrix for the SMOTE training dataset 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2336 493 

Preterm Labor 163 2666 
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Figure 38: Machine learning performance results for the validation dataset (SMOTE) for 

comparison 

 

As seen in Figure 38 and in the confusion matrix of all classifiers, the results improved significantly 

from applying an oversampling technique. From the confusion matrix we can see that overall, all classifiers 

were able to predict almost all preterm labor contractions, expect for the SVM that performed slightly worse 

compared to the rest. Both the RF and NN performed extremely well compared to the performance in the 

initial dataset presented in Chapter 5.1.1, with an accuracy of 88.5% and 88.4%, respectively, and a high 

value for the F1-score of 88.7% and 89%, which is also a significant improvement from the F value of 0.4% 

and 16.8%. In terms of the FNR and FPR, the performance was similar for both the RF and the NN, showing 

a low rate of false negatives of 10.1% and 5.8% respectively and low rate of false positives, of less than 

20%, which is once again a large improvement from the rates of 100% presented in the Chapter 5.1.1. Even 

though the SVM and RUSBoost did not present the highest scores they still performed well with 72.3% and 

63.2% of accuracy, respectively and F1-score around 70%. However, these the RUSBoosted Trees showed 

a high false positive rate. These values were expected since the SMOTE method allowed to overcome the 

issue of the extremely imbalanced dataset present before.  
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In terms of the AUC values for the ROC curves, the classifiers also showed an improvement, with 

values above 60%. The RF and NN classifier stood out from the rest, with an AUC of 94,5% and 91.5%, 

respectively, and the SVM with 80,3% which means that the classifiers have an excellent predictive ability. 

The RUSBoosted Trees performed slightly lower, with an AUC of 64%, showing a good predictive ability.  

 

5.1.3. Results for combining SMOTE and random undersampling for the majority 

class 

 

In this step instead of oversampling the minority class to equal the number of observations 

corresponding to preterm and term, we decided to combine a process of oversampling the minority class 

and then undersample the majority class, to end with a 1:2 ratio in the train dataset.  

 First the minority class was oversampled, using the SMOTE algorithm, to have 40% of the number 

of examples of the majority class (e.g. about 1132). It is important to know that this value was agreed on 

after carefully searching for the percentage that would give better results, while still being fairly accurate. 

Then random undersampling was used to reduce the number of observations in the majority class to have 

50% more than the minority class (e.g. 2264). After these steps, the final dataset had a total of 3396 

observations, with 2264 term labor contractions and 1132 preterm labor contractions, as seen in Figure 39. 

This way the 1:7 ratio of the classes in the original dataset was transformed to a 1:2 ratio.  

 

 
Figure 39: Number of observations for each class (Term or Preterm) in the training dataset 

after combining SMOTE with undersampling 

 

The previous classifiers were applied including the RF, RUSBoosted Tree, SVM with Gaussian 

kernel and Shallow Neural Network.  Figure 43 displays the classification metrics for the training set, based 

on the confusion matrix from the RF, RUSBoosted Tree, SVM with Gaussian kernel and Shallow Neural 

Network, shown in Table 12 to Table 15, respectively, and ROC curves in the attachment.  
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 Table 12: RF classifier confusion matrix for the training dataset with 

SMOTE + undersampling 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2147 113 

Preterm Labor 462 668 

 

 Table 13: RUSBoosted Tree classifier confusion matrix for the training 

dataset with SMOTE + undersampling 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 1286 974 

Preterm Labor 236 894 

 

 Table 14: SVM with the Gaussian kernel classifier confusion matrix for 

the training dataset with SMOTE + undersampling 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2259 1 

Preterm Labor 1095 35 

 

 

Table 15: NN classifier confusion matrix for the training dataset with 

SMOTE + undersampling 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 1870 394 

Preterm Labor 213 919 
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Figure 40: Machine learning performance results for the dataset using SMOTE with 

undersampling training dataset for comparison 

 

As seen in Figure 40 and in the confusion matrix of all classifiers, compared to the technique 

without the undersampling of the majority class, the classifiers performed worse overall, specifically in the 

recall score, meaning that the models started to produce more false negatives, which can also be seen with 

the increase of the FNR. This is usually associated with an imbalanced class or untuned model 

hyperparameters, which means that since we are currently working with a balanced dataset, the next step to 

improve our classifiers will be to tune the model hyperparameters.  

The SVM, RF and NN showed the biggest change, with a significant drop in the F1-score value and 

the false negative rate increase. Even though these classifiers showed an increased capacity of identifying 

preterm labor, with a decrease on the the FPR, the change wasn’t enough to construct a better model.  

In terms of the AUC percentage values, the RUSBoosted Trees and SVM did not perform as well 

as before, with values around 70% which means that these classifiers have less predictive power, when 

comparing with the AUC value of 80,3% and 64% presented before. Finally, the Random Forest and 
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Shallow Neural Network algorithm continued to show the biggest value of the AUC of 86.5% and 84.7%, 

respectively, showing a good predictive capability.  

This kind of results can be linked with the classifier having less observations from the minority class 

to learn from. Although the authors of the SMOTE paper showed that the results improved when combining 

random undersampling, the same did not happen with our work, and matching the number of observations 

in the minority class to the majority class, proved to be the best, with all algorithms showing better and more 

promising results for preterm l. In the next step we will use the SMOTE dataset used in 4.1.2, a) chapter to 

apply feature selection methods, dimensionality reduction and later a tuning of hyperparameters, to 

hopefully improve our results.  

 

5.1.4.  Results for the dataset combining PCA with the SMOTE dataset 

 

 After applying oversampling using SMOTE, our results increased significantly. With the purpose 

of making our classifier more robust and to avoid problems like overfitting, we chose to try the application 

of a PCA. This technique reduces the dimension of a dataset, so it is simpler and easier to work with, while 

preserving the information contained in it. This technique was applied keeping enough components to 

explain 95% of the variance.   

The next step was to classify this new dataset with our different algorithms, to check for any 

improvements. The RF, RUSBoosted Tree, SVM with Gaussian kernel and Shallow Neural Network were 

trained and validated using a 10-fold stratified cross-validation. The Figure 43 displays the classification 

metrics for the training set, based on the confusion matrix from the RF, RUSBoosted Tree, SVM with 

Gaussian kernel and Shallow Neural Network, shown in Table 16 to  

 

Table 19, respectively.  
 

  

Table 16: RF classifier confusion matrix for the training dataset after applying 

PCA 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2298 531 

Preterm Labor 343 2486 

 

Table 17: RUSBoosted Tree classifier confusion matrix for the training dataset 

after applying PCA 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 956 1873 

Preterm Labor 539 2290 
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 Table 18: SVM with the Gaussian kernel classifier confusion matrix for 

the training dataset after applying PCA 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2218 611 

Preterm Labor 1737 1092 

 

 

 

 

 

Table 19: NN classifier confusion matrix for the training 

dataset after applying PCA 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 1995 834 

Preterm Labor 493 2336 
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Figure 41: Machine learning performance results for the validation dataset for 

comparison after dimensionality reduction technique 

 

In Figure 43 it is visible that the PCA did not improve our results. Overall, the accuracy, recall, 

precision, F1-score and AUC got lower, while the FNR and FPR increased. The biggest noticeable 

difference is with the SVM classifier, in which you can see the biggest drop with the AC value dropping 

from 72,3% to 58,5%, the F value from the 67,8% to 48,2% and the AUC value from 80,3% to 60,4%.  

 By looking at these results, we conclude that PCA should not be used with our data, since it 

negatively influences the results for all classifiers. Although not expected, PCA can harm the results in 

classification problems, since as an unsupervised method, it will not take in consideration the labels of the 

observations. As a result, some features of a certain class, might not be considered since their labels are not 

correlated with the variance of the features, and for that reason worsening the results.  

In the next step we will use the SMOTE dataset used in Chapter 50 to apply feature selection 

methods.  

5.1.5. Results for the dataset with oversampling combining Feature Selection 

Methods with the SMOTE dataset 

 

 In this next phase, we continued to try to improve the performance of our classifiers. This step 

consisted in applying a feature selection method, explained in Chapter 4.9, to the training dataset with an 
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oversampled minority class. This technique was used since we are working with a high number of features, 

specifically 200, and some might be redundant, so by removing features with low predictive power, we can 

improve our models, so that the classifier is better at generalizing, avoiding overfitting. The feature ranking 

methods applied was the Minimum Redundancy Maximum Relevance (MRMR) Algorithm, and the 

correspondent feature importance ranking results are presented in Figure 42. 

 
Figure 42: Feature ranking using Minimum Redundancy Maximum Relevance (MRMR) 

test rank 

 

Looking at these results we can see in Figure 42, that only 183 features show any relevance, with 

17 of the features scoring zero importance. With the goal of improving our dataset, we tried to establish a 

threshold within the ranking of Figure 42, to find the optimal number of features. Since there is not an 

evident drop in the score overall, three different number of features were selected: 16 (where the biggest 

drop of importance happens, from feature 16 to feature 17), 100 (considering a threshold equal to half of 

the number of features) and 183 (considering the only features that showed importance). It is important to 

mention that from feature 100 to feature 183 the feature importance0 score is approximately 0.005 and it 

keeps getting lower, therefore they are considered very low importance. 

 The next step was to classify these three datasets, to check for any improvements. RF, RUSBoosted 

Tree, SVM with Gaussian kernel, and Shallow Neural Network were trained and validated using 10-fold 

stratified cross-validation. Figure 43 displays the classification metrics for the validation set using 183 

features, based on the confusion matrix from the RF, RUSBoosted Tree, SVM with Gaussian kernel, and 

Shallow Neural Network, shown in Table 20 to Table 23, respectively. The ROC curves are represented in 

the attachment. The results for the other two datasets using 16 and 100 features are shown in the attachment 

since they performed poorer than the 183 features.   
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Table 20: RF classifier confusion matrix for the training dataset after feature selection 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2433 396 

Preterm 

Labor 
321 2508 

 

  

Table 21: RUSBoosted Tree classifier confusion matrix for the training dataset 

after feature selection 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 1120 1709 

Preterm Labor 357 2472 

 

Table 22: SVM with the Gaussian kernel classifier confusion matrix for the training 

dataset after feature selection 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2224 605 

Preterm Labor 1232 1597 

 

Table 23: NN classifier confusion matrix for the training dataset after feature 

selection 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2295 534 

Preterm Labor 175 2654 
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Figure 43: Machine learning performance results for the validation dataset with 

183 features for comparison after feature selection 
 

  

In Figure 43 we can see that by removing some of the features that were poorly ranked, the results 

did not suffer any significant change, expect for the SVM that showed the biggest difference in the AUC 

value, with its value decreasing from 80 to 76. This means that the predictive ability of this classifier 

decreased slightly, but not enough to change the classification power.  In terms of the F1-Score, in general 

the values stayed approximately the same. By deleting seventeen features with zero importance, the 

classifiers achieved, approximately, the same performance but with less training time and less chances of 

overfitting the data.  

 The next step in this thesis, was the last procedure for improvement, where the new dataset with 

only 183 features was used for hyperparameter optimization, with the Bayesian optimization method. 

 

5.1.6. Results for the dataset applying SMOTE, Feature Selection and 

Hyperparameter Optimization 

 

This next step consists of the final step in the machine learning classifier methods. Here we are 

tuning our model with our best performing dataset (oversampling of the minority class using the SMOTE 

technique with 183 features of the most relevant features) by selecting different advanced options, called 

hyperparameters, that strongly affect the performance of the algorithms.  This technique is called Bayesian 
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optimization and was done by using the Classification Learner app from MatLab®, with 30 iterations each 

and using the “Expected improvement per second plus” method. This app tries different combinations of 

hyperparameter values and returns a final model with the optimized hyperparameters that minimized the 

model classification error and then trains it with the training data. The validation is then done with the same 

10-fold stratified cross validation used previously. Finally, the test dataset is used in the trained model and 

the performance metrics are calculated. Only 30 iterations were chosen since a higher number was 

impossible to reach with the CPU used for this thesis. 

For the Random Forest and RUSBoosted Tree model, the hyperparameters that were tuned were the 

maximum number of splits, the number of learners, learning rate and number of predictors to sample for the 

RF.  The RF model was improved by 410 learners, with 3981 maximum number of splits and 2 predictors 

to sample. Comparing to the RUSBoosted Tree, the best tuned model had 12 learners, a learning rate of 0-

814 and 500 maximum splits.  

For the optimizable SVM model with the Gaussian kernel function, the Box constraint level and 

standardize data parameter were tuned. The model was improved by utilizing a a box constraint level of 

590.7263 and the standardize data was set to false. 

Finally, for the optimizable neural network, the number of fully connected layers, the activation 

function, standardize data parameter, regularization strength, first layer size, second layer size and the third 

layer size were tuned. The model was improved by utilizing three fully connected layers, the Tahn activation 

function, standardize data parameter was set to True, the first layer size was 221, the second layer size was 

240 and the third layer size was 52. 

The hyperparameter optimization results for the classification metrics for the training dataset are 

shown in Figure 44. Each of these results is based on the confusion matrix from the RF, RUSBoosted Tree, 

SVM with Gaussian kernel and Shallow Neural Network, shown in Table 24 to Table 27, respectively, and 

the ROC curves shown in the attachment.   

 

 Table 24: RF classifier confusion matrix for the training dataset after 

hyperparameter tuning 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2602 227 

Preterm Labor 188 2641 

 

Table 25: RUSBoosted Tree Trees classifier confusion matrix for the training 

dataset after hyperparameter tuning 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2013 816 

Preterm Labor 516 2313 
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Table 26: SVM with the Gaussian kernel classifier confusion matrix for the 

training dataset after hyperparameter tuning 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2456 373 

Preterm Labor 315 2514 

 

Table 27: NN classifier confusion matrix for the training dataset after 

hyperparameter tuning 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2347 482 

Preterm Labor 156 2673 
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Figure 44: Machine learning performance results for the validation dataset for comparison 

after hyperparameter tuning 

 

Analyzing the results in the Figure 44 for the validation results, all classifiers performed better with 

the hyperparameter optimization. The accuracy, recall, precision, F1-score and AUC all improved. The 

SVM algorithm showed a significant increase in the recall value, from 58.3% to 88.9%, improving the 

ability of classifying the positive class, preterm labor. The optimized RF algorithm stood out from the rest, 

with a F of 92.7%, an AUC of 97.3%, a FNR 6.6% and FPR of 8%, while maintaining an accuracy of 92.7%.  

The RUSBoosted Trees performance in the precision, and false positive rate got better, increasing from 

58.6% to 73.9% and decreasing from 63.6% to 28.8%.  

After achieving such positive results, the models were tested with the test dataset, presented earlier 

in this chapter, with 1386 total observations. As mentioned before, although we are working with a dataset 

with the application of SMOTE and with feature selection, the test set will only include the original samples, 

so we have an unbiased estimate of how well the classifier works with new data. In Figure 45 we can see 

all the results in a bar plot for comparison, and the confusion matrix for the RF, RUSBoosted Tree and SVM 
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with Gaussian kernel, from Table 28 to Table 31 respectively. The correspondent ROC curves are 

represented in the attachment.  

 

 

 

Table 29: RUSBoosted Tree classifier confusion matrix for the test 

dataset after hyperparameter tuning 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 864 348 

Preterm Labor 121 53 

 

Table 31: NN classifier confusion matrix for the test dataset after hyperparameter 

tuning 

Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 992 220 

Preterm Labor 140 34 

 
 

 
 

 

Table 28: RF classifier confusion matrix for the test dataset after hyperparameter 

tuning 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 1106 106 

Preterm Labor 152 22 

 

Table 30: SVM with the Gaussian kernel classifier confusion matrix for the test 

dataset after hyperparameter tuning 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 1041 171 

Preterm Labor 139 35 
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Figure 45: Machine learning performance results for the test dataset for comparison after 

hyperparameter tuning 

 

For the test results we can see that the values were slightly lower than expected. Although the values 

for the accuracy remained similar for all classifiers, in the range of 70-80%, a good AC value, the precision 

and recall, as well as the F1-Score decreased at about 70%, overall. Additionally, the values for the FNR 

increased for all classifiers, at about 80%, while the FPR stayed approximately constant in the low range. 

Based on the high accuracy and the values presented in the confusion matrix from Table 28 to Table 31, 

the classifiers are able to classify the term labors but struggle to predict preterm labors, justifying the high 

false negative rate. The AUC values sit between 50% and 60%, meaning that the predictions are just as good 

as random guesses.  

 It was expected for the results to be lower in the test set, since it is almost impossible to achieve the 

same performance on the test data as when validating on the training data. However, these values were way 

below expected. The main reason for this happening can be due to the change of the data quality in the train 

and test group, specifically the difference in the distribution of the data in the test set and training set. This 
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can be seen in Table 32, where the preterm term ratio drops from 1:1 to 1:7 in the test data, having almost 

90% of term observations, thus being unrepresentative of the minority class. Apart from this it could also 

be the case of overfitting, and so the data is not able to generalize well to new unseen data. This is unlikely 

since from the beginning we set a robust model, to avoid any issues like this, by validating the results using 

stratified cross-validation, using feature selection to eliminate redundant features and complexity off the 

model, and adding more samples to the training data using the SMOTE technique. 

 

 
Table 32: Comparison between Train and Test data distribution 

 

 
Train Data Test Data 

Count Percent Count Percent 

Term Labor 2829 50 1212 87.5 

Preterm Labor 2829 50 174 12.6 

 

 In conclusion we can say that the RF had the best performance, even though all classifiers showed 

similar weak performances with the test set. This classifier showed the highest accuracy and precision, and 

lowest FPR, as well as one of the highest AUC value.   

 

5.2.  Deep Learning Methods 
 

 In this section we will present the performance evaluation results and discussion of the Deep 

Learning approaches. Firstly, we present the performance of the bidirectional LSTM with the original 

dataset, followed by the results obtained with the dataset treated with the oversampling technique, SMOTE. 

The original dataset was adapted to the raw structure, where we don’t have the Welch variable organized 

into 200 features, but in a matrix of 1 by 200, demonstrating our sequential variable. This can be seen in 

Figure A. 31, shown in the attachment.  

To process the observations (power spectra of the contractions), a bidirectional LSTM layer was 

chosen. This type of layer looks at the sequence in both forward and backward directions, which can help 

capture temporal dependencies. Since our observations have one dimension each, the chosen input size of 

the sequences is 1. The LSTM layer had 200 units, and the output was set to the last timestep to map the 

input into 200 features and prepare the output for the fully connected layer. Finally, a fully connected layer 

with a size of 2 was chosen to represent the two classes, term and pre-term, followed by a sigmoid layer 

(suited for binary classification problems) and a classification layer. Figure 46 shows a code snippet of this 

model. 

 
layers = [ ... 
sequenceInputLayer(1) 
bilstmLayer(200,'OutputMode','last') 

fullyConnectedLayer(2) 
sigmoidLayer 
classificationLayer 
] 

 

Figure 46: Layer architecture for the LSTM algorithm 

 

For the training options, represented in Figure 47 we can see that “MaxEpochs” option was sent to 

50 to allow the network to make 50 runs through the training dataset. A “MiniBatchSize” of 128 was chosen 
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so the network could look at 128 training observations at a time. The “InitialLearnRate” was 0.00001 to 

help speed up the training process, with a “SequenceLength” of 30 to help the algorithm to look for shorter 

pieces of the observations. The “GradientThreshold” was 1 to prevent gradients from getting too larger and 

to stabilize the training process.  

 
options = trainingOptions('adam', ... 
    'MaxEpochs',50, ... 
    'MiniBatchSize',128, ... 
    'InitialLearnRate', 0.00001, ... 
    'SequenceLength', 30, ... 
    'GradientThreshold', 1, ... 
    'ExecutionEnvironment',"auto",... 
    'plots','training-progress', ... 
    'Verbose',false); 

 

Figure 47: Training options for the LSTM algorithm 

 

After specifying the layer architecture and training options the LSTM network was trained, using 

the “trainNetwork” function from MathWorks. The training process can be seen in Figure 48 for the original 

dataset and in Figure 49 for the dataset with SMOTE. On the top subplot we can see the training accuracy, 

that represents the classification accuracy on each mini-batch, and in the bottom we see the training loss, 

that corresponds to the cross-entropy loss on each mini-batch and ideally would decrease towards zero. 
 

 

Figure 48: Training Progress for the LSTM network - Original Dataset 
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Figure 49: Training Progress for the LSTM network – Dataset with SMOTE application 

 

In Figure 48 we can see the training progress for the LSTM network in the original dataset. The 

accuracy oscilates between about 60% and 100%, and the loss function varies between zero and one.  In 

Table 33 the confusion matrix for the LSTM network is represented, where it is visible that the algorithm 

made no predictions for preterm labor but was able to successfully predict all term labor observations.   

For the LSTM training with the SMOTE dataset, the training progress was recorded in Figure 49, 

where the accuracy sits between the range of 40-60%, while the loss function decreases to zero. In Table 

33 we can see the correspondent confusion matrix. For this dataset we would expect the results to improve, 

however that was not the case, and no predictions for preterm labor were visible, explaining the FNR value 

of 100% seen in Figure 50.  

In Figure 50 we see that for both datasets the deep learning classifier did not produce good results, 

showing a value of zero in all metrics and a 100% for the FNR, since all preterm labors were classified as 

term. Although it showed a high accuracy with 87,4% for the original dataset and a more modest value of 

66,7% for the SMOTE+undersampling dataset, as previously mentioned in the ML classifiers results, a high 

accuracy, especially in this dataset, means very little, telling us that the algorithm just learned with the term 

observations.   

 

Table 33: Confusion Matrix for the training dataset for the LSTM network – 

Original Dataset 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 2829 0 

Preterm Labor 407 0 
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Table 34: Confusion Matrix for the training dataset for the LSTM network – 

Dataset with SMOTE application 

 

 Predicted Class 
T

ru
e 

C
la

ss
  Term Labor Preterm Labor 

Term Labor 2829 0 

Preterm Labor 2829 0 

 

 

 
Figure 50: Deep learning performance results for the train datasets for comparison 

 

After training the model we proceed to test the test dataset in the trained model. The results were 

again not successful and are shown in Table 35 and Table 36 for the for the confusion matrix, for the 

original dataset and for the dataset with SMOTE+undersampling, respectively.  

 

Table 35: Confusion Matrix for the test dataset for LSTM network – 

Dataset with SMOTE application 

 

Predicted Class 

 Term Labor Preterm Labor 

Term Labor 1212 0 

Preterm Labor 174 0 
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 Table 36: Confusion Matrix for the test dataset for LSTM network – 

Dataset with SMOTE application 

 Predicted Class 

T
ru

e 
C

la
ss

  Term Labor Preterm Labor 

Term Labor 1212 0 

Preterm Labor 174 0 

 

 

 
Figure 51: Deep learning performance results for the test datasets for comparison 

 

In Figure 51 we can see that once again the algorithm shows a high accuracy, of 87.4% and for 

both the original dataset and for the dataset after applying SMOTE. Additionally, the only metric that shows 

results different from 0 is the FNR, with a value of 100%. This value is extremely high, especially for this 

metric, where the value should be the lowest possible. Once again, this is a result of the network only 

learning with the majority class observations, visible on the confusion matrix in Table 35 and Table 36.  

Overall, the LSTM model did not perform well in predicting preterm labor, possibly due to 

overfitting. This highlights the importance of having a large and diverse dataset when using deep learning 

algorithms. The results obtained with the oversampled dataset using SMOTE were not satisfactory, 

indicating that oversampling techniques alone may not be sufficient to improve the performance of deep 

learning models. Even though the power of the LSTM algorithm is very enticing, these results show that 

with a smaller dataset, like ours, will not produce the expected results.  
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5.3.  Results comparison with the literature review studies  
 

We will compare our best performing classifiers in the ML and DL chapter, the Random Forest 

classifier and LSTM, with the classifiers from the studies in the literature review, in Table 37. 

 

We can see in  Table 37 that most studies do not have all the evaluation criteria used in this work, 

except for the work of Allahem et al [5]. This makes our work more challenging since a lot of important 

measures like the F1-Score and the AUC are missing in literature, like in the DT proposed model by Xu et 

al. [20] or the RF proposed by SAĞLAM et al. [21], which only shows the value for the AC, which can be 

misleading when working with imbalanced test sets, as mentioned before. All the models proposed by 

Allahem et al. [5], show more promising results than our own, both in the ML and DL approaches. As 

mentioned in Chapter 2, these authors choose to use several different EHG datasets over oversampling, to 

make sure the quality of the data was not an issue, even though there is no evidence of the accuracy of that 

when comparing to real data.  

 Taking all of this into consideration, we can say that in terms of accuracy our proposed RF model 

classifies well in relation to the rest of the models, however in terms of the other metrics, except for the 

FPR, our proposed model scores significantly lower than the rest. Looking at the high value for the false 

negative rate, compared with the low FNR presented by Allahem et al. [5], it might also agree with the issue 

of having very proportionally different train and test sets, and an excess of synthetic samples in the training 

set, that decreased the classifiers’ ability in identifying the majority sample with the test set.  By comparing 

our study with the one from Allahem et al. [5], it shows that the use of synthetic samples on the training set 

might have a higher impact on the results than expected.  

  

Table 37: Summary of the ML related work studies 

 

Algoritm AC 

(%) 

R (%) P (%)  F (%) FNR (%) FPR 

(%) 

AUC 

(%) 

Proposed RF 

classifier 

81.4 12.6 17.2 14.5 87.4 8.7 53.5 

Proposed LSTM 

classifier 

87.4 0 0 0 100 0 x 

RF proposed by 

Peng et al. [3]  

 

93 89 x x x x 80 

DT proposed  by 

Oliver et al. [16] 

90 x x x x x x 

RF  proposed by 

Allahem et al. [5] 

95.7 96.3 92.9 94.5 3.6 4.6 99 

DT  proposed by 

Allahem et al. [5] 

95.3 94.1 93.7 93.9 5.8 3.8 98 

RF proposed  by 

SAĞLAM 

et al. [21] 

87.28 x x x x x x 

ANN proposed by 

Allahem et al. [5] 

98 98 97 98 10 10 99 
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6. Conclusions  
 

The prediction of preterm birth using machine learning (ML) and deep learning (DL) algorithms 

with electrohysterogram (EHG) signals is an ever-evolving field, but the lack of preterm data for 

classification remains a significant hurdle to further progress. It is important to note that preterm labor 

is a complex problem since there is no specific diagnostic for two thirds of these labours and there is 

very limited data for preterm births. Additionally, the ML field is vast, encompassing a variety of 

algorithms, data balancing techniques, feature selection algorithms, and different hyperparameter tuning 

methods. Therefore, finding the most robust dataset with the right features and the best performing 

classifier involves a trial-and-error strategy. 

The results with the imbalanced TPEHG dataset were insignificant, indicating the considerable 

difference between the number of preterm records (minority classs) and term records (majority class). 

To address the skewed dataset problem, an oversampling technique called SMOTE was applied after 

partitioning the dataset, ensuring the test set remained untouched, achieving better and more significant 

results on the training dataset. However, combining oversampling of the minority class with SMOTE 

and randomly undersampling the majority class did not improve the results when compared to applying 

a more “common” SMOTE technique without undersampling. Applying PCA to the dataset also did not 

improve the results as expected. Furthermore, the F1-Score and AUC classification metrics appeared to 

be the most trustworthy metrics, correctly representing the performance of each classifier, while 

Accuracy, one of the most used in the literature, could be misleading with our imbalanced dataset. 

This study proposes a novel approach to the classification problem by using the Welch power 

spectra of each contraction found in the EHG signal as features to predict preterm labor. Although 

promising results were obtained for all classifiers in the training dataset, for ML, using SMOTE with 

feature selection and hyperparameter tuning, with high values of F1-score, Accuracy, and AUC, the test 

data produced disappointing results with low AUC and F1-score, but good accuracy. These results can 

be linked to the test dataset, which is very imbalanced, causing the classifiers to perform badly to this 

unseen data. 

In the DL network, the LSTM could not predict any preterm labor, possibly due to overfitting. This 

methodology problem is associated with the lack of data, severely impacting the performance of DL 

algorithms, which require big data to produce excellent and reliable results. In future studies, alternative 

deep learning models and architectures can be explored to improve the accuracy of preterm labor 

prediction.  

While this study opens up various innovative investigation possibilities, including the possibility of 

using more complex features like the power spectra of each contraction, it is associated with some 

methodological problems, including the need to overcome the imbalanced data problem. Using 

synthetic samples to address this problem can decrease the algorithms’ predictive ability for the majority 

class, especially not knowing about the quality of these samples in terms of similarity to the actual 

dataset. Moreover, different oversampling alternatives must be further investigated. As of now, we can 

say that these features were not successful and should not be use under these conditions, since they 

don’t produce better results than the literature. 

This study highlights the importance of collecting more preterm EHG recordings to improve the 

results without the use of SMOTE and to successfully use LSTM and other ML algorithms as a 

classification approach. In the future, this work may contribute to the discovery of a successful 

classification tool for preterm labor using EHG signals, preventing preterm birth. 
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7. Appendix 

 
Figure A. 1: ROC curve for the validation set for the original dataset using RF as the classifier 

 
Figure A. 2: ROC curve for the validation set for the original dataset using RUSBoosted Tree 

as the classifier 
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Figure A. 3:ROC curve for the validation set for the original dataset using SVM with 

Gaussian Kernel as the classifier 

 

 
Figure A. 4: ROC curve for the validation set for the original dataset using a Shallow 

Neural Network 
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Figure A. 5: ROC curve for validation set after applying the SMOTE using RF as the 

classifier 
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Figure A. 6: ROC curve for validation set after applying the SMOTE using RUSBoosted 

Tree as the classifier 
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Figure A. 7: ROC curve for validation set after applying the SMOTE using a Shallow 

Neural Network 

 
Figure A. 8: ROC curve for validation set after applying the SMOTE using SVM with the 

Gaussian kernel as the classifier 
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Figure A. 9: ROC curve for the validation set after applying SMOTE + undersampling 

using RF as the classifier 

 

 
 

Figure A. 10: ROC curve for the validation set after applying SMOTE + undersampling 

using RUSBoosted Tree as the classifier 
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Figure A. 11:ROC curve for the validation set after applying SMOTE + undersampling 

using SVM with Gaussian Kernel as the classifier 

 
Figure A. 12: ROC curve for the validation set after applying SMOTE + undersampling 

using Shallow Neural Network as the classifier 
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Figure A. 13: ROC curve for the validation set after applying PCA using RF as the 

classifier 
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Figure A. 14: ROC curve for the validation set after applying PCA using RUSBoosted Tree  

as the classifier 
 

 
Figure A. 15:ROC curve for the validation set after applying PCA using SVM with a 

Gaussian Kernel as the classifier 
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Figure A. 16: ROC curve for the validation set after applying PCA using a Shallow Neural 

Network as the classifier 
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Figure A. 17: ROC curve for the validation set after feature selection using RF as the 

classifier 
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Figure A. 18: ROC curve for the validation set after feature selection using RUSBoosted 

Tree  as the classifier 
 

 
Figure A. 19: ROC curve for the validation set after feature selection using SVM with a 

Gaussian Kernel as the classifier 
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Figure A. 20: ROC curve for the validation set after feature selection using a Shallow 

Neural Network as the classifier 
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Figure A. 21: ROC curve for the validation set after hyperparameter tuning using RF as 

the classifier 
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Figure A. 22: ROC curve for the validation set after hyperparameter tuning using 

RUSBoosted Tree  as the classifier 
 

 
Figure A. 23: ROC curve for the validation set after hyperparameter tuning using SVM 

with a Gaussian Kernel as the classifier 
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Figure A. 24: ROC curve for the validation set after hyperparameter tuning using a 

Shallow Neural Network as the classifier 
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Figure A. 26: ROC curve for the test set using RUSBoosted Tree as the classifier 

 

Figure A. 25: ROC curve for the test set using RF as the classifier 
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Figure A. 27: ROC curve for the test set using SVM with a Gaussian Kernel as the classifier 

 

 
Figure A. 28: ROC curve for the test set using a Shallow Neural Network as the classifier 
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Figure A. 29: Machine learning performance results for the validation dataset with 16 

features for comparison after feature selection 
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Figure A. 30: Machine learning performance results for the validation dataset with 100 



 95 

 

(a) 

 
(b) 

 
Figure A. 31: (a) LSTM Dataset (b) Observation Structure 
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